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Abstract

This paper presents strategy attributes, a seamless integra-
tion of strategic term rewriting into attribute grammars.
Strategy attributes are specified using rewrite rules with
strategies that control their application. The rules can refer-
ence contextual information held in attributes on the trees
being rewritten. This use of attributes leads to rewriting on
decorated trees instead of undecorated terms. During rewrit-
ing, attributes are (lazily) computed on new trees to ensure
they are correct with respect to their defining equations. At-
tributes and strategic rewriting can each be used where most
appropriate, thus avoiding the cumbersome aspects of each.

Strategy attributes are essentially higher-order attributes
for which the defining equations are automatically gener-
ated from the attributes’ strategy expressions. They are thus
compatible with other attribute grammar features such as
reference attributes, forwarding, and attribute flow analyses
for well-definedness. A conservative static analysis checks if
a strategy is intended to always succeed or to be partial, thus
simplifying its use and optimizing its translation. Strategy
attributes are demonstrated in the optimization of a simple
expression language, evaluation of the lambda calculus, and
optimization of strategy attribute translations.
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1 Introduction and Motivation

Attribute grammars and strategic term rewriting are two
long-standing techniques for specifying language semantics
and transformations. Attribute grammars were invented by
Knuth [24]. Since then there have been many extensions to
the formalism [5, 12, 14, 39, 42] and many attribute grammar
systems [2, 11, 13, 16, 20, 28, 30, 36, 40] have been developed.
Term rewriting has a longer history [1, 9] in logic and lan-
guages, but our interest here is in strategic term rewriting in
which strategies control the application of a set of rewrite
rules. Strategies, in various forms, have been popularized
by systems such as ASF+SDF [6], TOM [3], TXL [8], and of
course, Stratego [41]. Both attribute grammars and term
rewriting can be used for a wide range of applications, but
each is most well-suited to different types of problems. The
work presented here integrates strategic term rewriting into
attribute grammars so that rewriting can be carried out over
attribute-decorated trees instead of plain terms. This allows
the strengths of each approach to be leveraged in solving a
single problem. We call this tree-rewriting instead of term-
rewriting to emphasize the point that there are attributes on
syntax trees that can be used in the process, whereas terms
are not associated with attributes.
In attribute grammars (AGs), syntax trees are decorated

with semantic attributes, defined by equations associated
with the productions in the grammar of the language. Speci-
fying static analysis tasks such as name binding, type check-
ing, and error reporting are common tasks for which this
formalism is rather useful. However, AG specifications are
often rather verbose when performing program transforma-
tions that modify only a small number of constructs in the
language since equations must be written for all constructs.
Transformation tasks are often more conveniently specified
using strategic term rewriting approaches. Strategies specify
how a set of rewrite rules, which are often not confluent,
are applied over a term. This control lets one specify how
the rewriting process traverses the tree and can be used to
ensure the intended application order of the rules and also
to provide speedups over non-strategic rewriting. However
dealing with contextual information, such as a typing envi-
ronment, is less straightforward than in AGs. In Stratego,
for example, one may dynamically create new rewrite rules
to track program variables and their types.

Traditionally attribute grammars and term rewriting sys-
tems have been separate tools or systems that are not easily
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1 synthesized attribute

2 defs ::[Pair <String Maybe <Expr >>];

3 inherited attribute

4 env::[Pair <String Maybe <Expr >>];

5 synthesized attribute freeVars ::[ String ];

6 inherited attribute usedVars ::[ String ];

7

8 nonterminal Decls

9 with defs , env , freeVars , usedVars;

10 production seq

11 ds::Decls ::= d1::Decls d2::Decls

12 { ds.defs = d1.defs ++ d2.defs;

13 d1.env = top.env;

14 d2.env = d1.defs ++ top.env; }

15 production empty Decls ::=

16 production decl Decls ::= String Expr

17

18 nonterminal Expr with env , freeVars;

19 production add Expr ::= Expr Expr

20 production sub Expr ::= Expr Expr

21 production neg Expr ::= Expr

22 production const Expr ::= Integer

23 production letE Expr ::= Decls Expr

24 production var Expr ::= String

25 production app Expr ::= String Exprs

Figure 1. Partial attribute grammar for a simple language.

used jointly. There are some exceptions, however.Kiama [36]
supports strategic rewriting and attribution, but the pro-
cesses are seen as essentially separate. Attributes can be
used during rewriting, but they are not re-calculated on new
trees constructed during a rewrite and this limits how ef-
fectively contextual information in attributes can be used.
We have also extended the Silver [40] AG system with a
mechanism [27] for rewriting on undecorated terms based on
reflection [26]. This is similar to Kiama in that attributes can
only be used in rules by explicitly providing values for any
required inherited attributes. Rewriting in the JastAdd [11]
AG system and forwarding in Silver can make full use of
attributes, but forwarding is limited to a single one-step
transformation and rewriting in JastAdd does not support
strategies. Both are also primarily used to de-sugar language
extensions and not to perform, for example, optimizing trans-
formations. Our aim is to provide a seamless integration of
the two paradigms.

Motivating Example: To motivate this work, consider
a portion of a Silver specification for a small expression
language in Figure 1. Silver [40] is an extensible AG system
and our strategic tree rewriting integration is done as an
extension to it. A program in this language is a sequence of

declarations, represented by the (abstract) grammar contain-
ing the Decls nonterminal and associated productions on
lines 8Ð16. Decls can be a sequence of declarations (line 10),
an empty declaration (line 15), binding a name to an ex-
pression (line 16), or a function declaration (not shown.)
Lines 18Ð25 specify the Expr nonterminal for expressions,
with productions for arithmetic, let-expressions, variable
references, and named function application. These nontermi-
nals are decorated with the inherited attribute env, a list of
pairs mapping strings to optional (Maybe) expressions (to be
explained shortly), and the synthesized attribute freeVars,
the list of free variables in the expression. The attribute defs
collects declarations on let-expressions to populate the envi-
ronment and usedVars is the list of names used in the scope
of a declaration. The production seq on lines 10Ð14 shows
how lists of definitions are collected and passed down the
tree in the inherited env attribute. Note that ++ is list concate-
nation and that nonterminals in the production signature
can be named in order to reference their attributes.

The motivating example here optimizes expressions using
constants as expressed by the following rewrite rules:

add(e, const(0)) → e (1)

add(const(0), e) → e (2)

add(const(a), const(b)) → const(a + b) (3)

sub(e1, e2) → add(e1, neg(e2)) (4)

neg(neg(e)) → e (5)

neg(const(a)) → const(−a) (6)

var(id) | (id, just(e)) ∈ env → e (7)

The first 6 rules require no use of contextual information,
but rule 7 does. The environment env indicates if an iden-
tifier should be inlined in this optimization by mapping it
to its defining expression (in decl on line 16) wrapped up
in the just constructor for type Maybe. Since let-expressions
support name shadowing, all bound names must appear in
the environment. Those identifiers that will not be inlined
are paired with a nothing() value. In Section 3 we will see
the attribute grammar specification that determines if an
identifier is inlined; this is done when the bound expression
has no free variables or the identifier is used just once in
its bound scope, which is determined using attributes. The
overall transformation is driven by strategies to control the
application of the rules above. The inlining of some expres-
sions for identifiers will enable the inlining of others in a
later step as the number of identifier uses decreases. This
decrease is realized in computing these attributes on new
trees as they are created during the strategic rewrite. These
strategies must also, for example, ensure that after rule 4 pro-
duces a term, the result is further optimized when possible.
Specifying rules and strategies like these in attribute gram-
mars is rather awkward and more verbose than a strategy
based specification; the result from applying a rule must be
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re-decorated with attributes to compute the next step in the
optimization, and must also be able to stop when applying
the optimization does not further simplify the term. This ex-
ample demonstrates the benefit of using both attributes and
strategies in the same task as enabled by strategy attributes.

Strategy attributes: Strategy attributes provide a seam-
less integration of attribute grammars and term rewriting to
address the shortcomings of both as discussed above. Rewrit-
ing strategies are expressed in a domain-specific language
based on the strategy expressions in Stratego and similar
systems and realized as strategy attributes. These attributes
are simply higher-order attributes [42] that store the result
of applying the strategy to the tree on which the attribute oc-
curs. One does not write equations for these attributes; they
are automatically generated from the strategy expressions.

For example, we define a strategy attribute named optimize
to perform the optimizations from rules 1ś6 as:

strategy attribute optimize = all(optimize)

<* (( optimizeStep <* optimize) <+ id);

attribute optimize occurs on Expr;

This recursive strategy expression applies itself to all child
trees, and then (using the <* sequence combinator) applies
optimizeStep and (if this succeeds) itself to the current tree,
or (<+ is the choice combinator) succeeds with the identity
transformation; note that optimizeStep is the strategy at-
tribute that realizes rules 1ś6. There is no operator to apply
a strategy, to get the result one simply accesses the attribute
in the same manner as for traditional higher-order attributes.

As will be demonstrated in Section 3.3, a critical aspect of
this seamless integration is the capability of rewrite rules, as
constructs in strategy expressions, to reference traditional
attributes on the decorated trees being rewritten. No explicit
redecoration directives are needed. This allows intermediate
trees generated during a rewriting to be correctly decorated
with the appropriate inherited attributes.

Note that the optimize strategy above will always produce
a tree. We refer to these as total strategy attributes and they
have the same type as the nonterminal they decorate, in the
case above the type of optimize on an Expr is Expr. Some
strategies may fail, for example optimizeStep will fail when
applied to an addition term in which neither child is a con-
stant; these are partial strategies and are labeled by a partial
keyword modifier. When these occur on a nonterminal X, the
attribute type is Maybe<X>. An access must explicitly check if
the rewrite succeeded. A conservative static analysis checks
that total strategies will succeed, if they terminate (termina-
tion is not part of the totality check.) This simplifies the use
of total strategies in that checks for failure are not needed.

Contributions: This paper’s primary contributions are:

• a seamless integration of strategic rewriting of syntax
trees and attribute grammars. (ğ 3)

• a conservative totality (not including termination) anal-
ysis of strategy attributes to simplify their use and
support their optimization. (ğ 3.1)

• a translation of strategic tree rewriting specifications
into traditional higher-order attributes and equations
that implement them (ğ 4) thus ensuring that strategy
attributes are compatible with other attribute grammar
features such as reference attributes [5, 14], forward-
ing [39], and well-definedness analyses [24].

• the implementation of strategy attributes as a modular
composable language extension to Silver. (ğ 4.3)

Section 2 provides background on AGs and strategic term
rewriting. Section 5 presents several demonstrations of in-
tegrating attributes and strategies in the rewriting process,
including expression inlining (ğ 3.3), evaluation of the λ-
calculus (ğ 5.1), optimized regular expression matching with
Brzozowski derivative (ğ 5.2), for-loop normalization show-
ing integration with Silver and forwarding, (ğ 5.3), and op-
timizing strategy expressions in the strategy attribute trans-
lation process (ğ 5.4). Section 6 presents related work and
Section 7 discusses some limitations of strategy attributes
and draws some conclusions. Silver version 0.4.4 1 [40] is the
attribute grammar system used in this paper. Specifications
of the demonstrations listed above, along with the software
artifact for running them, are also freely available. 2

2 Background

2.1 Attribute Grammars

As sketched in Section 1, attribute grammars [24, 33] are a
formalism for defining language semantics, such as a static
analysis for type checking or a program translation. Formally,
an attribute grammar is a tuple AG = ⟨G,A,EN ,O,EQ⟩ in
which G is a context free grammar, A is a set of attributes
that decorate nodes in trees in the language of G, and the
relationship O indicates which attributes occur on which
nonterminal symbols in G. A grammar G = ⟨NT ,T , P⟩ con-
sists of NT , a finite set of nonterminal symbols, T , a fi-
nite set of terminal symbols, and P , a finite set of produc-
tions. T often includes some primitive types such as string
and numbers. Productions in P have a left-hand side non-
terminal NT0 and 0 or more right-hand side symbols in
Xi ∈ NT ∪T . These symbols are labeled and have the form
n :: NT0 ::= n1 :: X1...nn :: Xn . The labels, e.g. n, ni , are
used to reference specific tree nodes, as seen in Figure 1 in
the seq production. EN is a typing environment containing
attribute types and production signatures. EQ = ∪p∈PEQp

is a set of equations, associated with specified productions,
that define the values of attributes on tree nodes. In Sil-

ver equations are written with the production declaration

1Available at http://melt.cs.umn.edu/silver and https://github.com/melt-

umn/silver, archived at https://doi.org/10.13020/D6QX07.
2Available at http://melt.cs.umn.edu and archived at https://doi.org/10.

13020/D6QX07.

212

http://melt.cs.umn.edu/silver
https://github.com/melt-umn/silver
https://github.com/melt-umn/silver
https://doi.org/10.13020/D6QX07
http://melt.cs.umn.edu
https://doi.org/10.13020/D6QX07
https://doi.org/10.13020/D6QX07


SLE ’20, November 16ś17, 2020, Virtual, USA Lucas Kramer and Eric Van Wyk

SE ::= rule on Ty of Rules end (rule)
| SE <* SE | SE <+ SE (sequence, choice)
| all(SE) | some(SE) | one(SE) (generic traversals)
| fail | id | Ident (strategy reference)
| Ident(SE, ..., SE) (congruence traversal)
| rec Ident -> SE (recursive strategy)

Figure 2. The syntax of strategy expressions.

(lines 10Ð14) or with an aspect production in order to as-
sociate equations with an existing production, for example,
lines 12Ð17 in Figure 6 which gives equations for usedVars
on the seq production.

Attributes can hold values of various types beyond simple
strings and integers. Strategy attributes translate into higher-
order attributes [42] which contain (yet undecorated) syntax
trees. Reference [14] and remote [5] attributes allow deco-
rated syntax trees to be passed around as attribute values;
these are sometimes thought of as references or pointers to
distant nodes in the syntax tree. Syntax trees that are not
children of productions can also be decorated, i.e. provided
with inherited attributes. These can be local higher-order
attributes associated with a production, or done in an expres-
sion using the decorate t with {i1 = e1; ...; in = en} form to
provide tree t with values for inherited attribute i j .

A variety of approaches can be used to evaluate equations
in a satisfiable order, including modern demand-driven ap-
proach [15] as used in Silver and JastAdd and the ordered
approach [21] that statically schedules equations for evalua-
tion. The demand-driven approach works well for strategy
attributes because it ensures that no unnecessary trees or
attributes are calculated.

2.2 Strategic Term Rewriting

Term-rewriting is another formalism useful for specifying
language translations and transformations. These specifi-
cations also include context free grammars to define the
language being transformed, or the source and target lan-
guages in a translation application. As seen in Section 1, a
rewrite rule consists of a pattern with free variables on the
left, and a term that uses those free variables on the right.
A redex is a part of a term that matches the pattern, it is
replaced by the instantiated term on the right, called the
contractum. Simple term rewriting searches for redexes, re-
placing them with their contractum, and terminates when
no more redexes can be found. A set of rules is confluent if
the result of rewriting is independent of the order and loca-
tion in which the rules are applied. Specifying rewrite rules
to be confluent is difficult and can result in complex rules
that obscure the intention of the application. To address this,
many [3, 4, 41] have proposed using strategies as a means of
controlling the application of a set of rewrite rules so that
the outcome for non-confluent rules is determined.

Figure 2 has the grammar for the language of strategies
(SE) used in this paper. These are all based on strategy combi-
nators in Stratego and found in other systems as well, with
only small changes in syntax. A strategy defines a partial
function on terms; it may succeed and produce a new term,
or fail to do so. The fundamental strategy (rule) is a collection
of rewrite rules (Rules) over a specified nonterminal type
(Ty). Strategies can be combined to be applied in sequence
so that if the first strategy produces a term then the second
strategy is applied to it. If the first strategy fails, then the
sequence fails. The choice combinator tries the first strategy
and if it succeeds returns that result, otherwise it tries the
second. The generic traversal strategies are applied to the
children of a term. If the strategy s succeeds on all children of
a term, then all(s) succeeds by reconstructing the tree with
the new resulting children. The some(s) strategy is similar
and succeeds if s succeeds on at least one child, and one(s)
applies s to the child terms, stopping on the first success.
Two primitive strategies are fail, which always fails, and
id, which succeeds by returning the original term. These are
commonly composed to create new strategies:

try(s) = s <+ id (8)

bottomUp(s) = all(bottomUp(s)) <* s (9)

innermost(s) = bottomUp(try(s <* innermost(s))) (10)

Here, try converts a strategy s that may fail into one that
will succeed, by applying s and if it fails instead succeeding
with id. The bottomUp combinator applies a strategy from the
bottom to the top of the term, but fails if the input strategy
fails at any location in the term. innermost uses bottomUp

to repeatedly apply s with preference for the innermost
unreduced sub-terms, until s fails everywhere.

Strategies may be named, and may be referred to by other
strategies. A congruence traversal strategy is used to target
a term built by a specific named production, and fail on all
others. This strategy is constructed by that name and a par-
ticular strategy for each child in the term. An example of this
is discussed in Section 3. The last strategy in Figure 2 is used
to define recursive strategies without naming them in a top-
level declaration, a bit like lambda-expressions. This is often
used in defining new strategy combinators (like innermost)
where strategy declarations would be cumbersome.

3 Design and Use of Strategy Attributes

As laid out in Section 1, strategies are specified and used
as strategy attributes. These are essentially higher-order at-
tributes for which the defining equations are generated from
strategy expressions. The specification of the optimizeStep

strategy implementing rules 1Ð6 over the language in Fig-
ure 1 is given in Figure 3 (the optimize strategy is repeated
here as well.) optimize is a partial strategy that may fail, so its
type on Expr nonterminals is Maybe<Expr>, whereas optimize
is total, so its type on a nonterminal it decorates is just that
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1 partial strategy attribute optimizeStep =

2 rule on Expr of

3 | add(e, const (0)) -> e

4 | add(const(0), e) -> e

5 | add(const(a), const(b)) -> const(a + b)

6 | sub(e1, e2) -> add(e1, neg(e2))

7 | neg(neg(e)) -> e

8 | neg(const(a)) -> const(-a)

9 end occurs on Expr;

10 strategy attribute optimize = all(optimize)

11 <* (( optimizeStep <* optimize) <+ id)

12 occurs on Expr , Exprs , Decls;

13 propagate optimizeStep on Expr;

14 propagate optimize on Expr , Exprs , Decls;

Figure 3.A specification of strategy attributes implementing
rewrite rules 1Ð6; rule 7 is implemented later in Figure 6.

nonterminal; for Expr it is just Expr. Strategy attributes not
labeled as partial are considered to be total. 3

The right side of a strategy attribute definition is a domain-
specific language of strategy expressions, describing rewrite
rules and traversal orderings, as explained in Section 2.2.
This is compiled into attribute equations that implement the
strategic rewrite for each production on which the attribute
is propagated. The generation of these equations is triggered
by a propagate declaration, as seen on line 13 and 14. This is
an overloaded construct in Silver that allows attribute equa-
tions to be generated that will propagate attribute values
over the syntax tree. The propagate declaration for optimize,
discussed in more detail in Section 4, will generate aspect

productions for all productions with the listed nonterminals
on their right hand side (e.g. add, sub, seq, and other in Fig-
ure 1). These will contain the generated equations defining
the synthesized attribute optimize.

3.1 Totality Analysis of Core Strategy Combinators

A (conservative) static analysis is performed on strategy ex-
pressions to determine if they are partial or total. A warning
is emitted when a strategy specified to be total is defined
with a partial strategy expression, and a run-time error is
raised if such an erroneous strategy fails. This analysis is
presented as a set of inference rules in Figure 4 over the core
strategy combinators shown in Figure 2. A strategy s is total
(written Γ ⊢ s total) if such a derivation is possible from
the rules. Γ is an environment containing the names of all
strategy attributes declared to be total, as well as in-scope
rec variables. The id strategy always succeeds with the cur-
rent tree and the rule Id provides a derivation for this. On

3 Note that total heremeans a treewill be produced if the strategy terminates.

No guarantee of termination is to be assumed for attributes in this category.

Similar terminology is used in Scala for its partial and total functions.

Id

Γ ⊢ id total

Seq

Γ ⊢ s1 total Γ ⊢ s2 total

Γ ⊢ s1 <* s2 total

ChoiceL

Γ ⊢ s1 total

Γ ⊢ s1 <+ s2 total

ChoiceR

Γ ⊢ s2 total

Γ ⊢ s1 <+ s2 total

All

Γ ⊢ s total

Γ ⊢ all(s) total

Ref

n ∈ Γ

Γ ⊢ n total

Rec

Γ ∪ {n} ⊢ s total

Γ ⊢ rec n -> s total

Figure 4. Inference rules for totality checking of strategy
expressions with respect to an environment Γ containing
the names of all total strategy attributes.

the other hand, fail always fails; there is no derivation of
Γ ⊢ fail total for any Γ.
The rule strategy (such as optimizeStep) is a sequence

of patterns on a nonterminal and will succeed when one of
its patterns matches the current tree, or will fail otherwise.
Because a rule is defined for a specific nonterminal, and
strategies can be applied to (occur on) multiple nonterminals
we consider rules to always be partial.

Sequence (<*), such as seen on line 11 of Figure 3, applies
its right operand to the term resulting from applying its left
operand to the current tree. Sequence succeeds when both
operands succeed and thus is total only when its arguments
are both total, as indicated in Seq. Choice (<+), such as seen
on line 11 of Figure 3, first applies its left operand to the cur-
rent tree, and if unsuccessful attempts the same for its right
operand. Thus choice is total when either the left (ChoiceL)
or right operand (ChoiceR) is total. Note that this means the
right operand is ignored when the left is total.
One can also reference the names of other strategy at-

tributes that should be computed on the current tree, as is
done for optimizeStep and optimize on line 11 of Figure 3.
Since strategy attributes are translated into higher-order at-
tributes one can reference any higher-order attribute of the
correct type. Such a reference is total only if the referenced
strategy attribute was declared as total (Ref). This can allow
for the definition of recursive strategies, or allow for rules
to be factored out into separate strategy attributes. When
a strategy attribute (such as optimize) references a partial
strategy attribute (such as optimizeStep), the reference will
be treated as failure for any nonterminals on which the ref-
erenced attribute does not occur (such as Decls). Conversely
when a total strategy attribute is referenced, it is an error
for the referenced attribute to not occur on all of the same
nonterminals, as a reference to a total strategy attribute is
itself total and thus has no way to fail.
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strategy translation

try(s) s <+ id

repeat(s) rec x -> try(s <* x)

bottomUp(s) rec x -> all(x) <* s

topDown(s) rec x -> s <* all(x)

downUp(s1, s2) rec x -> s1 <* all(x) <* s2

allTopDown(s) rec x -> s <+ all(x)

onceBottomUp(s) rec x -> one(x) <+ s

innermost(s) rec x -> bottomUp(try(s <* x))

Figure 5. Some of the utility strategies and their translations,
extending utility strategies in rules.

The generic traversal combinators all, some and one allow
for the argument strategy to be applied across the children
of the current tree, producing a new term with the same
production wrapping the results. Any children on which
the argument does not occur are ignored by the traversal
and copied unchanged into the new term. The all strategy,
such as on line 10 of Figure 3, succeeds if the argument was
applied successfully to all the children, thus it is total if the
argument strategy is total (All). The some strategy succeeds
if the argument succeeds for at least one child; any failing
children are left unchanged. However, as the strategy fails
for any production with no children, it cannot be total for
all nonterminals. The one strategy is quite similar to some,
except that it works left to right and stops after the first
succeeding child.

3.2 Utility Strategies

As discussed in Section 2.2, many common patterns exist in
strategy expression specifications leading to the definition
of new strategies composed from others, such as try and
others in rules 8ś10. A set of language extensions to the
strategy expression language provides utilities for some of
these patterns. Figure 5 shows some of these, along with their
translation (using forwarding [39]). Note that the optimize

strategy defined in Figure 3 could have been equivalently de-
fined as innermost(optimizeStep). The specification of many
utility strategies are recursively defined, e.g., the strategy
bottomUp(s) is equivalent to all(bottomUp(s)) <* s. This
presents a problem, as directly performing the translation
in this way would result in an infinite strategy expression
term being constructed, of the form

all(all(all(...) <* s) <* s) <* s

This can be avoided by using the rec strategy expression
combinator: rec x -> body. This binds a name x to the strat-
egy expression body, such that body can refer to itself with
the name x . This allows us to instead define bottomUp(s) as
rec x -> all(x) <* s.

The addition of rec complicates the totality checking pro-
cess, as the totality of a reference to a rec variable now

depends on the totality of the enclosing rec expression. How-
ever this can be resolved by observing that the totality of a
rec expression does not actually depend on the totality of
references to its variable (See Rec). If for a particular rec

expression one assumes that all references to its variable are
total, and the analysis determines that the body is indeed
total, then the correct assumption was made. On the other
hand if the body is determined to be partial, then although
the variable was incorrectly assumed to be total, correctly
assuming it to be partial would not have affected the result
of the analysis. Note that to correctly determine whether
sub-expressions of a rec body are total, the analysis must
still be repeated on the body with Γ updated according to
the result of the first pass. Since the utility strategies are
translated using forwarding, the totality analysis for them is
automatically carried out on this translation.

3.3 Integration of Rewriting and Attributes

Strategy attributes integrate strategic rewriting into attribute
grammars in a seamless way that lead to tree rewriting in-
stead of term rewriting. The advantage of tree rewriting is
that the rewriting process can use inherited and synthesized
attributes in rewrite rules to determine where they can be
applied and what they will produce. An important aspect of
this is that, as new trees are created, they are given inherited
attributes so that they may be re-decorated and those new
attribute values may be used in further rewriting steps.
An example of this is shown in Figure 6, where strategy

attributes are used to perform inlining of let declarations
(rule 7 from Section 1) in addition to the previously described
optimizations. The freeVars and usedVars attributes are used
to determine if a declaration should be inlined (line 6); here
we only wish to inline constant expressions (those with no
free variables, line 6) and variables with at most one refer-
ence, to avoid duplicating computations (lines 7Ð8). If these
conditions hold (inline) then the bound expression is put in
the environment in a just constructor, otherwise nothing()

is associated with the identifier. (This information reaches
the inherited environment attribute env via the synthesized
attribute defs that flows up the tree to the point where they
are passed to the appropriate expressions, e.g. lines 10Ð14 in
Figure 1.) The first rule of the inlineStep strategy (lines 20Ð
21) then attempts to replace variable references with the
corresponding expression by looking them up in the inher-
ited environment. The rule is applied when the result of
looking up n in the environment (top.env) finds n (the outer
just) and the expression is to be inlined (the inner just). It
is this inherited attribute access, top.env, that is important.
Note that synthesized attributes can also be accessed in a
rule. These will be calculated based on the proper inherited
attributes that are provided during the rewriting process.
The following rules (lines 22Ð29) remove bindings that are
no longer referenced as a result of inlining.
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1 aspect production letE

2 top::Expr ::= d::Decls e::Expr

3 { d.usedVars = e.freeVars; }

4 aspect production decl

5 top::Decls ::= id:: String e::Expr

6 { local inline :: Boolean = null(e.freeVars)

7 || length(filter( (==id),

8 top.usedVars )) <= 1;

9 top.defs = [pair(id,

10 if inline then just(e) else nothing ())];

11 }

12 aspect production seq

13 top::Decls ::= s1::Decls s2:: Decls

14 { d1.usedVars = d2.freeVars ++

15 removeAll(map(fst , d2.defs),

16 top.usedVars );

17 d2.usedVars = top.usedVars; }

18 partial strategy attribute inlineStep =

19 rule on top::Expr of

20 | var(n) when lookup(n, top.env)

21 matches just(just(e)) -> e

22 | letE(empty(), e) -> e

23 end <+

24 rule on top::Decls of

25 | decl(id, e) when

26 !contains(id, top.usedVars) -> empty()

27 | seq(d, empty ()) -> d

28 | seq(empty(), d) -> d

29 end

30 occurs on Expr , Decls;

31 strategy attribute optimizeInline = repeat(

32 onceBottomUp(optimizeStep <+ inlineStep ))

33 occurs on Expr , Exprs , Decls;

34

35 propagate inlineStep on Expr , Decls;

36 propagate optimizeInline on Expr , Exprs ,

37 Decls;

Figure 6. Strategy attributes used in conjunction with syn-
thesized and inherited attributes to simplify expressions as
in Figure 3 and to perform an inlining optimization (rule 7).

Lines 31Ð33 define the overall strategy using repeat and
onceBottomUp to control the application of the simpler step-
ping strategies for optimizing expressions (optimizeStep)
and inlining declaration (inlineStep). The onceBottomUp strat-
egy works from the bottom and left of a tree to find the first
successful rewrite of optimizeStep <+ inlineStep and then
does no more rewriting. This is repeated (repeat) until no
more rewrites are made. The translation of repeat uses se-
quence (<*) and it, in s1 <* s2, will decorate the result of
a successful application of s1 with the inherited attributes
of the original term in order to apply s2. This is inefficient

since it traverses the entire tree for each step made. Care
must be taken in designing such strategies to avoid exces-
sive decoration of new trees when more efficient strategies
exist. Note that strategies that do not use sequence, such as
allTopDown, by definition constitute a single pass and will
not result in any redecoration.
One might think to try innermost over these stepping

strategies. Unfortunately, the use of all in its definition
would cause both children of a seq or letE production to
be rewritten simultaneously with their original inherited
attribute values, leading to missed optimizations. For exam-
ple, inlining let a = 1 in awould result in let a = 1 in 1,
because the declaration gets the old value for usedVars, still
containing a. Instead we must rewrite the first child, deco-
rate the resulting term, and only then optimize the second
child (which has now been decorated with an updated env.)
The first child must then be rewritten once again using the
usedVars arising from the second term. This can be achieved
by combined use of the repeat and onceBottomUp strategies.

3.4 Congruence Traversal Operators

While correct, the implementation of optimizeInline in Fig-
ure 6 is rather inefficient, as the entire tree is re-traversed
for every optimization step that is performed. It is still safe
to optimize and inline within most productions in an in-
nermost manner without redecorating the entire sub-tree
between each step, but more careful control over the traver-
sal and decoration of seq and letT is needed. This can be
accomplished by using congruence traversal strategies, origi-
nally introduced by Stratego [41]. A congruence strategy
is specified as the name of a production, applied to a list
of strategy expressions corresponding to each production
argument. When applied to the matching production, each
argument strategy is applied to the corresponding child sub-
tree of the current tree. If all child strategies succeed then
the congruence succeeds with a new term consisting of the
same production applied to each child result. Since they only
succeed for a particular production, congruence traversal
strategy expressions are always partial.

A more efficient version of optimizeInline that uses con-
gruence traversal strategies is shown in Figure 7. The def-
inition of this strategy mirrors the definition of innermost,
except for the addition of special cases in handling traversals.
Line 2 deals with seq declarations, consisting of 3 congruence
sub-expressions chained together in sequence (<*). The first
fails when the current term is not seq, and otherwise recur-
sively applies optimizeInline to the left child while doing
nothing on the right child. When this succeeds, the sequence
operator re-decorates the resulting term with the same in-
herited attributes, and applies the second sub-expression to
rewrite the right child. Since the tree has been re-decorated,
the new inherited attributes resulting from rewriting the left
child are automatically provided to the right child. This is
repeated for a third time by the remaining sub-expression,

216



SLE ’20, November 16ś17, 2020, Virtual, USA Lucas Kramer and Eric Van Wyk

1 strategy attribute optimizeInline =

2 ((seq(optimizeInline , id) <* seq(id , optimizeInline) <* seq(optimizeInline , id)) <+

3 (letE(optimizeInline , id) <* letE(id, optimizeInline) <* letE(optimizeInline , id)) <+

4 all(optimizeInline )) <* try(( optimizeStep <+ inlineStep) <* optimizeInline );

Figure 7. A more efficient implementation of the optimizeInline strategy from Figure 6 using congruence traversal strategies.

rewriting the left child again using new inherited attributes
(usedVars) arising from the rewritten right child. letE pro-
ductions are handled similarly by congruences on line 3. All
other productions are handled by the all traversal combina-
tor on line 4. Since all(optimizeInline) is total, the first half
of this strategy is total as well. The remainder of the strategy
is the same as innermost: if optimizeStep or inlineStep suc-
ceeds, then optimizeInline is repeated again on the result.

4 Implementation

Here we describe the translation of strategy attributes into
higher-order attributes with equations for all the productions
for nonterminals a strategy attribute is propagated on. Part
of the translation of the optimize strategy from Figure 3 for
the Expr nonterminals is shown in Figures 8 and 9. For clarity,
some further optimizations have been performed; these will
be explained in Section 5.4.

4.1 Basic Strategies

Recall that strategy expressions can be total or partial, thus
the values we are operating on can either be nonterminals
(e.g. the optimize strategy) or nonterminals wrapped in Maybe

(e.g. optimizeStep). Consider the total id strategy expression;
it is simply translated as a reference to the current tree (the
label for the production’s left-hand side nonterminal). Con-
versely, fail (a partial strategy) is translated as nothing(),
which has type Maybe<a>. When a partial strategy attribute
is defined with a total strategy expression, the translation of
the expression can be made partial by wrapping it in just.
However if a total strategy attribute is defined with a partial
strategy expression (causing a compile-time warning to be
emitted), a run-time error check is performed using pattern
matching to unwrap the Maybe value.
Rule strategies are translated into Silver pattern match-

ing case expressions. Consider the rule in the optimizeStep

strategy in Figure 3; since it is partial it has type Maybe<Expr>,
as it may either succeed with a new term or fail. This rule
becomes a pattern match on the current tree that includes
only the pattern rules corresponding to the production. This
can be seen in the four case-clauses for the add production on
lines 4Ð7 of Figure 9. The right side of each pattern rule (e.g.,
line 5) is wrapped in just since the strategy is partial. A de-
fault pattern is added that returns nothing() when all of the
rules fail to match. On productions where none of the rule’s
patterns match (such as const), the entire rule is guaranteed
to fail and can be translated as nothing() (line 13.)

References to other attributes that occur on the nontermi-
nal are simply translated by accessing the attribute on the
current tree, as seen with the access of top.optimizeStep on
line 10 of Figure 9. Partial strategy attributes that don’t occur
on the nonterminal, e.g. optimizeStep on Decls, may also be
referenced; such references are translated as nothing().

Sometimes translating a strategy expression requires the
generation of additional łhelperž strategy attributes. This is
done by lifting sub-expressions of the strategy expression
into additional strategy attribute declarations, that occur on
and are translated for the same nonterminals as the original
strategy attribute from which they were generated. This can
be seen with the translation of sequence in Figure 8, where
a portion of the optimize strategy expression has been lifted
into a new strategy attribute optimize_snd. The resulting
propagate declaration (line 4) is then translated to produce
the equations in the lower part of the figure.
The application of a sequence (<*) first applies its left

operand to the current tree, then applies its right operand
to that result when the left operands succeeds. Since left
operand is applied to the current tree, its translation may be
computed as usual. However, the right operand is no longer
being applied to the current tree. When the right operand is
simply a reference to another attribute, we can access this
attribute on the left result. But when the right operand is
not a reference to an attribute, we must lift it to make it one.
This translation of sequence depends on the totality of

its operands, as shown in Figure 10. For simplicity, let us
consider the case when both operands are references to strat-
egy attributes s1 and s2, such that no lifting is required, and
the nonterminal has a single inherited attribute env. When
both strategies are total and inherited attributes are not con-
sidered, we could translate s1 <* s2 as top.s1.s2. However,
strategy attributes are computed on trees that have been
decorated with inherited attributes, whereas the result of
applying a strategy is an undecorated term. Thus we must
explicitly decorate the left result s1.top before we can access
the attribute s2 corresponding to the right expression. When
s1 is total and s2 is partial, we can still directly access s2

on the decorated result of top.s1, and thus the translation
for these cases is the same. However when s1 is partial, its
result is wrapped in a Maybe value; this requires a functor
map or monadic bind operation in the translation. Note that
both translations are given in a functional style using fmap

or monadic bind (>>=), followed by the equivalent, easier-to-
read expansion into a case expression.
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1 strategy attribute optimize = all(optimize) <* optimize_snd occurs on Expr , Exprs , Decls;

2 strategy attribute optimize_snd = (optimizeStep <* optimize) <+ id

3 occurs on Expr , Exprs , Decls;

4 propagate optimize , optimize_snd on Expr , Exprs , Decls;

Figure 8. The lifted transformation of the optimize strategy from Figure 3.

1 synthesized attribute optimizeStep <a>::Maybe <a>;

2 attribute optimizeStep <Expr >, optimize <Expr >, optimize_snd <Expr > occurs on Expr;

3 aspect production add top::Expr ::= e1::Expr e2::Expr

4 { top.optimizeStep = case top of

5 | add(e, const (0)) -> just(e) | add(const(0), e) -> just(e)

6 | add(const(a), const(b)) -> just(const(a + b)) | _ -> nothing ()

7 end;

8 top.optimize = decorate add(e1.optimize , e2.optimize) with {env = top.env;}. optimize_snd;

9 top.optimize_snd = fromMaybe(top ,

10 fmap(\ a::Expr -> decorate a with { env = top.env; }.optimize , top.optimizeStep )); }

11

12 aspect production const top::Expr ::= i:: Integer

13 { top.optimizeStep = nothing (); top.optimize = top.optimize_snd; top.optimize_snd = top; }

Figure 9. The (optimized) translation of the specifications in Figure 3 for the add and const productions.

s1 s2 s1 <* s2 Translation

T T T (decorate top.s1 with { env = top.env; }).s2

T P P (decorate top.s1 with { env = top.env; }).s2

P T P
fmap(\ res -> decorate res with { env = top.env; }.s2, top.s1)

= case top.s1 of just(res) -> just(decorate res with { env = top.env }.s2)

| nothing () -> nothing () end

P P P
top.s1 >>= \ res -> decorate res with { env = top.env; }.s2

= case top.s1 of just(res) -> decorate res with { env = top.env }.s2

| nothing () -> nothing () end

Figure 10. The translation of s1 <* s2, for various combinations of partial (P) and total (T) strategy attributes s1 and s2. The
nonterminal has a single inherited attribute, env.

s1 s2 s1 <+ s2 Translation

T * T top.s1

P T T

fromMaybe(top.s2, top.s1)

= case top.s1 of

| just(res) -> res

| nothing () -> top.s2 end

P P P

top.s1 <> top.s2

= case top.s1 of

| just(res) -> just(res)

| nothing () -> top.s2 end

Figure 11. The translation of s1 <+ s2, for various combi-
nations of partial (P) and total (T) strategy attributes s1 and
s2. The nonterminal has a single inherited attribute, env.

Choice is similar to sequence, except that both options are
applied to the current tree, so lifting is never needed. Its trans-
lation for various combinations of partial and total strategies
is shown in Figure 11. When s1 is total, s2 is ignored as
the choice will always succeed with s1. Otherwise the re-
sults of s1 and s2 are combined using the standard library
function fromMaybe :: (a ::= a Maybe<a>) or the monoid
append operator <>. Again, for the latter two cases a compact
and an equivalent expanded version are given.

4.2 Traversal Strategies

The all traversal strategy applies its argument strategy ex-
pression to all children of the current tree, and constructs a
new term from the results using the same production. Since
the argument strategy expression is not applied on the cur-
rent tree but rather on its children, as with sequence, lifting

218



SLE ’20, November 16ś17, 2020, Virtual, USA Lucas Kramer and Eric Van Wyk

may be required if the argument is not a reference to a strat-
egy attribute. Consider a production prod with children a,
b and c, where s occurs on a and c but not b. When s is
total, all(s) is translated as prod(a.s, b, c.s) to produce
a total result. 4 Otherwise when s is partial, a partial result
is computed by the translation

case a.s, c.s of

| just(a_s),just(c_s) ->just(prod(a_s ,b,c_s))

| _, _ -> nothing () end

This could also be expressed through chained monadic binds
operations.
The translation of some(s) is similar to all(s), except

that s is allowed to fail for some of the children, which are
preserved unchanged in the result. However when s fails
for (or doesn’t occur on) all children, some(s) will fail. Thus
some(s) is always partial, regardless of whether s is total.

When s is total and occurs on at least one child, the trans-
lation of some(s) is identical to that of all(s). However the
translation is somewhat more complicated when s is partial,
as the strategy must fail when all children fail, but if any
succeed the strategy must succeed and include the successful
results in the overall result. The translation for the above
example prod would be

if a.s.isJust || c.s.isJust

then just(prod(

fromMaybe(a, a.s), b, fromMaybe(c, c.s)))

else nothing ()

where isJust is an attribute of type Boolean on Maybe.
one is similar to some except that all children to the right

of the first successful child are left unchanged. When s is
total, the translation for one(s) on prod is

just(prod(a.s, b, c))

When s is partial, the translation would be

case a.s, c.s of

| just(a_s), _ -> just(prod(a_s , b, c))

| _, just(c_s) -> just(prod(a, b, c_s))

| _, _ -> nothing () end

Congruence traversals are always partial, as they only suc-
ceed for the specified production. Their translation is similar
to that of all, except that different attributes may be accessed
on different children. For example if s1 is a partial strategy
attribute occurring on the first child of prod and s2 is a total
strategy attribute that occurs on the third child, then the
strategy expression prod(s1, id, s2) would be translated

case a.s1 of

| just(a_s1) -> just(prod(a_s1 , b, c.s2))

| _ -> nothing () end

The translation of rec is straightforward when rec is the
outermost strategy expression, such as in

4 Any children on which the argument does not occur are copied unchanged;

they are łinvisiblež for the purposes of the traversal operation.

strategy attribute foo = rec s -> all(s) <+ ...;

as the recursive variable s can simply be replaced by foo,
eliminating the rec expression. Lifting can be used when rec

occurs elsewhere within a strategy expression.

4.3 Implementation as an Extension to Silver

Strategy attributes are implemented as a modular extension
to Silver, by introducing new productions on nonterminals
in the Silver specification that translate (via forwarding [39])
to existing constructs in the Silver language. This is much
easier than starting from scratch and also means that all the
core Silver language constructs can be used with specifica-
tions using strategy attributes; additionally, other third-party
modular extensions to Silver do not need to take strategy
attributes into consideration. We also reuse some Silver

constructs in strategy expressions; the rule strategy uses the
Silver constructs for patterns and match rules from case

expressions. This lets us directly use the concrete syntax
for patterns as seen in the for-loop-normalizing example in
Section 5.3. As an extension, this work passes the modular
determinism analysis [35] and the modular well-definedness
analysis [17], ensuring that it will work properly with other
independently developed extensions to Silver.

This does come with some trade-offs in comparison to sim-
ply implementing strategy attributes as a core feature of the
Silver compiler. For example, a new propagate construct is
needed that can forward to the generated aspect productions
and equations implementing the strategy; simply overload-
ing the existing occurs on syntax to also generate these dec-
larations is not permitted, as the modular well-definedness
analysis restricts occurrence declarations from affecting the
environment. While writing explicit propagate declarations
can be annoying, we believe that requiring these also satisfies
a design principle of being łconcise but explicitž; this pattern
is seen elsewhere such as with deriving in Haskell. However
we believe that such trade-offs are worthwhile due to the
significant flexibility and ease of implementation gained as
a Silver extension.

5 Applications

5.1 Evaluation of the λ-Calculus

A common strategic rewriting example is evaluating the un-
typed λ-calculus; implementations are provided as examples
by Stratego [10], Kiama 5 and reflection-based term rewrit-
ing in Silver [27] 6. A strategy attribute implementation
based on these is shown in Appendix A.1. It is as expected
but uses attributes to calculate free variables, used in condi-
tional guards on some rules.

5https://github.com/inkytonik/kiama/blob/master/extras/src/test/scala/

org/bitbucket/inkytonik/kiama/example/lambda/Lambda.scala
6 Available at http://melt.cs.umn.edu/ and https://github.com/melt-umn/

lambda-calculus, archived at https://doi.org/10.13020/xcfv-5k29.
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We have chosen to compare the performance of strategy
attributes with Kiama and reflection-based term rewriting
feature of Silver since these systems provide a limited in-
tegration of attributes and strategies (but lacking support
for inherited attributes in rules.) Three slight variations of
λ-calculus were implemented using these systems. Strategy
attributes provided a 2 to 3× performance improvement over
Kiama, with one outlier at 13×, and an approximately 8.5×

improvement over term rewriting in Silver. Note that part
of the success of Kiama is that it is a library designed to
be simple and easy to understand. Both systems use reflec-
tion in building new trees, and the rewriting process is more
dynamic in that is supports strategies created at runtime.
Dynamic strategies are not supported by strategy attributes,
which are compiled to higher-order attributes; these differ-
ences likely account for much of the performance gain.

5.2 Regular Expression Matching via Derivatives

Regex matching can be implemented in a functional setting
through an approach known as Brzozowski derivatives [7].
Here the derivative of a regular expression r with respect
to some character c is defined as the regular expression r ′

such that r ′ matches s for every string cs matched by r . If
one repeatedly takes the derivative of r with respect to each
character in a string s , then r matches s if and only if the
resulting regex is nullable (i.e. matches the empty string.)

This can be elegantly implemented in attribute grammars
with a higher-order synthesized attribute on the abstract
syntax of regular expressions to compute the derivative with
respect to some character provided as an inherited attribute.
A strategy attribute can be used to improve performance by
simplifying the regex after each derivative with identities
such as sϵ = s or ∅∗ = ∅. The use of strategy attributes
provided a 15× performance speedup over a similar imple-
mentation using Silver’s reflection-based term rewriting
mechanism. The complete implementation using strategy
attributes is provided in Appendix A.2.

5.3 Normalizing for-Loops for Pattern Matching

One example use of strategy attributes may be found in the
implementation of the ableC-Halide extension [19] 7 to
ableC [18], inspired by the Halide [34] C++ embedded DSL.
This extension allows for iterative computations consisting
of multiple nested loops to be expressed separately from
optimizing transformations (such as unrolling, tiling or par-
allelizing), allowing for more readable code and greater ease
of experimentation with various transformations without
fear of introducing errors.

An example use of the extension to perform an optimized
matrix multiplication can be found in Figure 12. Here the
computation to be performed is specified using ordinary C

7 Available at http://melt.cs.umn.edu/ and https://github.com/melt-umn/

ableC-halide, archived at https://doi.org/10.13020/D6VQ25.

1 transform {

2 for (int i = 0; i < m; i++)

3 for (int j = 0; j < n; j++) {

4 c[i][j] = 0;

5 for (int k = 0; k < p; k++)

6 c[i][j] += a[i][k] * b[k][j];

7 }

8 } by {

9 split i into (int i_outer ,

10 int i_inner : (m - 1) / N_THREADS + 1);

11 parallelize i_outer into

12 N_THREADS threads;

13 tile i_inner , j into (TILE_DIM , TILE_DIM );

14 }

Figure 12. An example use of the ableC-Halide extension
to implement an optimized matrix multiplication.

statements (lines 2Ð7), while a series of optimizing trans-
formations on contained for-loops (each identified by their
loop variable) are written using a custom DSL (lines 9Ð14.)
For example, splitting a loop converts it into multiple nested
loops where all but the outermost run for a constant number
of iterations, while unrolling a loop requires duplicating its
body a number of times in sequence. Tiling, parallelizing,
and vectorizing transformations have the expected behavior.
Computing the translation of a transform statement re-

quires for-loops to be recognized; this can be done by re-
cursively pattern matching on the abstract syntax. However
before this can be done, all loops must be normalized to
the form for (type i = 0; i < limit; i++) body; for some
variable i. For example the loop

for (int i = 2; -5 <= i; i -= 2) x += i;

should be normalized to

for (int i = 0; i < 4; i++) {

int old_i = 2 - i * 2; x += old_i; }

This can be achieved using strategy attributes. One rule, of
many, used in this process is shown in Figure 13; here uses
of the <= operator in loop conditions are replaced with <.
In this example, rewrite rules are defined over the ab-

stract syntax of ableC. Concrete syntax patterns and expres-
sions [26, 27] allow for messy syntax trees to be specified
using concrete syntax, permitting significant improvements
in code size, readability and maintainability. These concrete
patterns and expressions are extensions to Silver that for-
ward to the equivalent (verbose) versions that use abstract
syntax; due to the modular nature of extensions built with
forwarding [39], the implementation of strategy attributes
does not require any special handling for concrete patterns.

Discussion: Another advantage of tree rewriting over un-
decorated term rewriting is in regard to composable language
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1 partial strategy attribute preprocessLoop = rule on Stmt of -- Normalize loop conditions

2 | ableC_Stmt{ for ($Decl{init} $Name{i} <= $Expr{limit}; $Expr{iter}) $Stmt{b} } ->

3 ableC_Stmt{ for ($Decl{init} $Name{i} < $Expr{limit} + 1; $Expr{iter}) $Stmt{b} }... end;

Figure 13. One of the many rewrite rules used to normalize loops in the ableC-Halide extension.

extensions. Translating strategies into attributes means that
interaction with other features of attribute grammars, such
as forwarding [39] or a modular well-definedness analy-
sis [17], is already handled properly. For example, consider
an independent language extension providing a new forall

statement for concisely specifying nested loops. This would
let one express lines 2Ð3 of Figure 12 more concisely as
forall (int i : m, int j : n), which might forward to

for (int i = 0; i<m; i+=1) for (int j = 0; j<n; j+=1)

In order for these loops to be transformed by the ableC-

Halide extension, they must first be normalized by rewrit-
ing += 1 to ++. Since the strategy attributes for normalization
(e.g. the one in Figure 13) are defined on the for-statement
host language production to which the forall-statement
extension production forwards, normalization will automat-
ically happen on the forward tree as desired. Conversely an
implementation [27] of the same rewrite rules in Silver’s
undecorated term rewriting system fails to recognize and
properly transform this forall extension production.

5.4 Optimizing Strategy Translation

Another interesting use of strategy attributes is internally
within their own implementation, to optimize strategy ex-
pressions on a per-production basis before translation. For
example in Figure 9, the equations in production const for
optimizeStep and optimize have been reduced to nothing()

and top (line 13) since optimizeStep will never succeed for
this production, and thus optimize will have no effect.

The rules for optimizing strategy expressions are divided
into two categories: generic rules that are applicable regard-
less of the context, and production-dependent optimizations.
Generic rules correspond to basic identities such as

fail <* s → fail (11)

id <* s → s (12)

fail <+ s → s (13)

s1 <+ s2 → s1 if s1 total (14)

all(fail) → fail (15)

rec n -> s → s if n < fv (s) (16)

These are implemented as a single rule strategy expression
on the StrategyExpr nonterminal (as with rules 1Ð7 in Fig-
ure 3), and (except for rule 16, which computes the free
variables in s) do not involve the use of attributes.

Other optimizations, such as eliminating non-matching
rules and congruences, do depend on the current production
and use an inherited attribute frame containing the produc-
tion’s name and signature. However it is not safe to apply
these optimizations everywhere in a strategy expression, as
some sub-expressions (such as arguments to traversals or the
right operand of <*) are not computed on the current tree.

This can be avoided when optimizing a strategy expression
by using congruences to apply generic rules everywhere and
production-specific ones only where it is safe to do so. The
full implementation is shown in Figure 17 of Appendix A.4.
These optimizations provided a roughly 15 to 20 percent

speedup, respectively for the regex and λ-calculus examples,
in comparison to the unoptimized translation. While sig-
nificant, this is less than might be expected, largely due to
the just-in-time compilation approach of the Java Virtual
Machine (Silver is translated into Java.) This allows for re-
duced overhead of branches that are consistently not taken,
such as those arising from a case pattern that always fails
to match. Thus if left undone at compile time, many of the
optimizations we present will still effectively happen at run
time with only a small increase in overhead.

6 Related Work

As mentioned in Section 1, both attribute grammars and
(strategic) term rewriting systems have a long history. Al-
though these formalisms have largely been considered sepa-
rately there has been some work to integrate them.
The JastAdd [11] AG system supports rewriting and

rewrite-rules that can reference attributes on trees as is done
here with strategy attributes. When a tree is rewritten, its
attributes may be recomputed based on its context. How-
ever, strategies are not supported. All rewrite-rules in the
specification can be applied, if their guard holds. JastAdd
is object-oriented in that it allows deeper class hierarchies
than in traditional grammars and these can be used to re-
strict the application of rewrite rules to certain sub-classes
and to prioritize rules based on the sub-class relationship of
the rules’ right hand sides. JastAdd also supports circular at-
tributes [12]; these attributes, via circular equations, depend
on their own value in a previous step in a fixed-point compu-
tation. JastAdd introduced reference attributes and was the
first to integrate circular and reference attributes [29], and
then integrate its approach to rewriting [38]. Silver has ref-
erence attributes and these work seamlessly with strategy at-
tributes, but it does not have circular attributes and we have
not considered integrating these with strategy attributes.
Since strategies are translated into traditional higher-order
attributes, the integration may be straightforward, but it may
raise questions about how they are effectively used together.
Kiama [36] is an embedded DSL in Scala for language

processing tasks. It was the first to support both attribute
grammars and strategic term rewriting (in the same style
of Stratego) and was partly the inspiration of this work.
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In Kiama the tree structure and its attribution are separate,
but linked, data structures [37]. Rewriting takes place on
the tree structures that can access the attribution during
rewriting, but new intermediate trees constructed during
rewriting are not considered as part of the whole tree until
the rewriting completes, and thus are not given contextual
information which corresponds to the inherited attributes in
our approach. The attribution and rewriting processes are
intentionally seen as more-or-less separate ones and provide
an integration of the two is less complete as with strategy
attributes. For this reason, tasks like the expression inlining
in Section 3.3 that use attribute values on new intermediate
trees created during rewriting may be less directly specified.

Aster [23] is a system that uses strategic term-rewriting
as a basis for implementing various schemes for propagating
attribute information in trees, such as reference and remote
attributes, chain attributes for threading information left-to-
right through a tree, and several others. Although based on
strategic rewriting, the exploration of attribute grammars
with rewriting is left as future work.

Silver has a reflection library for converting well-sorted
trees into a generic representation [26] and a strategic term
rewriting system [27] is built on top of that. But it does not
support the use of decoration of new trees with inherited
attributes as strategy attributes do and is thus limited in its
application. There is an implementation of λ-calculus evalua-
tion in the same style as discussed in Section 5.1 [27]. Rewrite
rules can access synthesized attributes that do not depend on
any inherited attributes by reifying the well-sorted tree from
its generic representation. This is rather inefficient as the
strategy attribute implementation of the λ-calculus evaluator
was on average 8.5× faster than this reflection based one.

It is sometimes helpful to construct new strategies at run-
time. This is used in Stratego [31], for example, to create
new rewrite rules based on program variables to propagate
contextual information for concerns such as lexical scope.
Kiama and reflection-based rewriting in Silver also sup-
port dynamic strategies, but the compile-time translation of
strategy attributes to higher-order attribute precludes them.
However, we would contend that inherited attributes often
provide a more direct means for specifying contextual in-
formation for issues such as scoping, name-binding, and
type-checking. In fact, it is not clear that dynamic rewrite
rules are the preferred mechanism for contextual informa-
tion in Stratego. It is now part of the Spoofax [22] language
workbench which includes other domain-specific languages,
such as NaBL [25] and it successors for such purposes.

7 Discussion and Conclusion

Tree rewritingwith strategy attributes does have some limita-
tions in comparison to traditional rewriting on undecorated
terms. Since trees are required to be well-sorted, translations

between different sorts are not possible without some inele-
gant adapter productions; however higher-order attributes
often provide a more elegant alternative to rewriting for this
type of problem. Many term rewriting systems provide a
notion of associative and commutative rewriting over list
terms. This is not possible in our implementation of strategy
attributes, as lists in Silver are a parametric type that can-
not be decorated with attributes and type-specific collection
nonterminals such as Exprs are not recognized as list-like
structures. Additionally, utility strategies here are language
extensions, not library functions as in Stratego and Kiama

that are more easily written by users.
Section 5.3 showed how tree rewriting takes forward-

ing into consideration, as strategy attributes are evaluated
by default on the forwarded-to (translated) tree. But some
transformations, e.g. instantiating C++-style template ex-
tensions [19], should be done on the original (forwarding)
construct. This is not possible with tree rewriting, as strat-
egy attributes would need to be propagated on unknown
third-party extension productions, whereas term rewriting
would treat all productions uniformly by default.

Another future area of development is in detecting strate-
gies that inefficiently repeat work. Some such strategies (e.g.
the optimizeInline strategy as defined in Section 3.3) would
inefficiently repeat traversals even in systems such as Strat-
ego that work on undecorated terms. However the integra-
tion of attributes creates another class of potential inefficien-
cies when rewrite rules demand attribute values, which for
some strategies can cause the children to be re-decorated
with attributes an exponential number of times. This lat-
ter class of performance issues bears some resemblance to
performance problems that sometimes arise with the use of
forwarding, so a solution to automatically finding cases of
re-decoration would be broadly applicable.
Despite these limitations, strategy attributes provide, in

our view, a compelling integration of strategic rewriting
with attribute grammars. This approach reduces boilerplate
in attribute grammar specifications by allowing complex
transformations to be concisely specified in the language of
strategies, while permitting easy access to contextual infor-
mation in rewrite rules using inherited attributes. We have
demonstrated that competitive performance can be attained
by static compilation and optimization. Finally we have pre-
sented several applications of strategy attributes, illustrating
the use of strategy attributes in creating non-trivial yet com-
pact and readable attribute grammar specifications.
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A Additional Details on Applications

In this appendix we present additional details on the imple-
mentations of the applications discussed in Section 5. The
full source code of these can be found on the MELT web-
site (melt.cs.umn.edu) and in the artifact accompanying this
paper.

A.1 Evaluation of the λ-Calculus

An implementation of the untyped λ-calculus based on strat-
egy attributes is shown in Figure 14, based on Stratego [10]
and Kiama 3 implementations of the same. Here substitu-
tion is implemented by means of an additional production
for representing intermediate let-terms (line 16, named letT

to avoid conflicting with Silver’s own let keyword). This
term is only introduced by β-reduction (line 21) and is sub-
sequently distributed through the term using the letDist

strategy (line 25). letT only exists during normalization. On
line 37, letT bindings that are not referenced in their body
are discarded. This is checked with the use of a synthesized
attribute freeVars on Term.
The total strategy attribute evalInnermost (line 41) per-

forms a fully eager evaluation of a term, including normaliz-
ing under lambda expressions, which is typically not desir-
able or guaranteed to terminate - thus more precise control
over the traversal process is desired. This can be achieved
by using congruences. For example, a term is in weak head
normal form if all applications that do not occur within an
abstraction body have been reduced; the evalWHNF strategy
on line 44 of Figure 14 implements this by only recursing into
the sub-terms of applications and lets, but does not perform
β-reduction within the bodies of abstractions.

A.2 Regular Expression Matching via Derivatives

The abstract syntax of regular expressions is represented by
the Regex nonterminal in Figure 15, with productions for ∅
(the regex that does not match anything), ϵ (matching the
empty string), single characters, sequence, alternative and
the Kleene ∗ operation.
The Brzozowski derivative of a Regex is implemented by

the deriv synthesized attribute (line 2), with respect to some
character specified by the wrt autocopy inherited attribute8

(line 3.) For example, the derivative of both empty (line 7)
and epsilon (line 10) is empty(), since neither of these match
any string containing a single character. The derivative of
char(c)with respect to c is epsilon(), since removing c from
a string matched by this regex must leave only the empty
string, but is empty() with respect to any other character
(line 13.) The derivative of alt(r1, r2) corresponds to the

8 Autocopy inherited attributes are just like regular inherited attributes,

except that their values are automatically copied down the tree when ex-

plicit equations are not specified. This allows for a significant amount of

boilerplate code to be avoided.

1 synthesized attribute freeVars ::[ String ];

2 nonterminal Term with freeVars ,

3 beta , letDist , evalInnermost , evalWHNF;

4 abstract production var

5 top::Term ::= id:: String

6 { top.freeVars = [id];

7 }

8 abstract production abs

9 top::Term ::= id:: String body::Term

10 { top.freeVars = remove(id,

11 body.freeVars ); }

12 abstract production app

13 top::Term ::= t1::Term t2::Term

14 { top.freeVars = t1.freeVars ++

15 t2.freeVars; }

16 abstract production letT

17 top::Term ::= id:: String t::Term

18 body::Term

19 { top.freeVars = t.freeVars ++

20 remove(id, body.freeVars ); }

21 partial strategy attribute beta =

22 rule on Term of

23 | app(abs(x, e1), e2) -> letT(x, e2, e1)

24 end;

25 partial strategy attribute letDist =

26 rule on Term of

27 | letT(x, e, var(y)) when x == y -> e

28 | letT(x, e, var(y)) -> var(y)

29 | letT(x, e0, app(e1, e2)) ->

30 app(letT(x, e0, e1), letT(x, e0, e2))

31 | letT(x, e1, abs(y, e2)) ->

32 let z:: String = freshVar () in

33 abs(z, letT(x, e1,

34 letT(y, var(z), e2)))

35 end

36 | letT(x, _, e)

37 when !contains(x, e.freeVars) -> e

38 end;

39 propagate beta , letDist on Term;

40

41 strategy attribute evalInnermost =

42 innermost(beta <+ letDist );

43

44 strategy attribute evalWHNF =

45 try(app(evalWHNF , evalWHNF) <+

46 letT(id, evalWHNF , evalWHNF )) <*

47 try((beta <+ letDist) <* evalWHNF );

48

49 propagate evalInnermost , evalWHNF on Term;

Figure 14. An implementation of the λ-calculus based on
strategy attributes.
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1 synthesized attribute nullable :: Boolean;

2 synthesized attribute deriv::Regex;

3 autocopy attribute wrt:: Integer; -- Encodes a UTF -16 character value

4 nonterminal Regex with nullable , deriv , wrt , simpl , simplDeriv;

5 abstract production empty

6 top::Regex ::=

7 { top.nullable = false; top.deriv = empty (); }

8 abstract production epsilon

9 top::Regex ::=

10 { top.nullable = true; top.deriv = empty (); }

11 abstract production char

12 top::Regex ::= c:: Integer

13 { top.nullable = false; top.deriv = if c == top.wrt then epsilon () else empty (); }

14 abstract production seq

15 top::Regex ::= r1::Regex r2::Regex

16 { top.nullable = r1.nullable && r2.nullable;

17 top.deriv = alt(seq(r1.deriv , r2), if r1.nullable then r2.deriv else empty ()); }

18 abstract production alt

19 top::Regex ::= r1::Regex r2::Regex

20 { top.nullable = r1.nullable || r2.nullable; top.deriv = alt(r1.deriv , r2.deriv); }

21 abstract production star

22 top::Regex ::= r::Regex

23 { top.nullable = true; top.deriv = seq(r.deriv , top); }

24

25 strategy attribute simpl = innermost(

26 rule on Regex of

27 | seq(empty(), r) -> empty() | seq(r, empty ()) -> empty()

28 | seq(epsilon(), r) -> r | seq(r, epsilon ()) -> r

29 | alt(empty(), r) -> r | alt(r, empty ()) -> r

30 | alt(epsilon(), r) when r.nullable -> r | alt(r, epsilon ()) when r.nullable -> r

31 | star(empty ()) -> epsilon () | star(epsilon ()) -> epsilon ()

32 end);

33 strategy attribute simplDeriv = deriv <* simpl;

34 propagate simpl , simplDeriv on Regex;

35

36 function matchStep

37 Regex ::= r::Regex c:: Integer

38 { r.wrt = c; return c.simplDeriv; }

39 function matchesRegex

40 Boolean ::= r::Regex s:: String

41 { return foldl(matchStep , stringToChars(s)). nullable; }

Figure 15. An implementation of regex matching using Brzozowski derivatives.

alternative of the derivatives (line 20), and the derivative of
star(r) is the derivative of r followed by star(r) (line 23.)
A separate synthesized attribute nullable (line 1) deter-

mines whether the Regexmatches the empty string; for exam-
ple epsilon and star are always nullable, while seq(r1, r2)

is nullable when both r1 and r2 are nullable, and alt(r1, r2)

is nullable when either is nullable. This attribute is used in
computing the derivative of seq(r1, r2): removing a char-
acter from the front of this Regex can either correspond to

removing it from r1 or, if r1 is nullable, removing it from r2

(line 17.)
Asmentioned previously, one can check if a stringmatches

a regex by iteratively computing the derivative with respect
to each character in the string, and checking whether the
resulting regex is nullable. However, a naive implementation
would result in the regex increasing in size after every deriv-
ative due to the accumulation of empty() terms, leading to
linear space and quadratic time complexity in the length of
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the string, or worse. One solution is an approach known as
smart constructors [32], in which direct calls to the construc-
tors are replaced by functions that pattern match on their
arguments and perform the needed simplifications.
Strategy attributes provide another (arguably more ele-

gant) solution in the context of attribute grammars. Here
the simpl strategy attribute (lines 25Ð32) performs an in-
nermost traversal of the Regex, simplifying it according to a
number of basic identities. simpl is then used to define the
simplDeriv strategy attribute, that computes the derivative
of a Regex and simplifies the result. Note that deriv is not
a strategy attribute, however it may still be used within a
strategy expression because it has the same type as a to-
tal strategy attribute for the Regex nonterminal on which it
occurs.
The functions matchesRegex and matchStep (lines 36Ð41)

drive the actual string matching process; here a fold opera-
tion is used, incrementally decorating r with each character
as the value for the wrt attribute, and computing simplDeriv

on the resulting tree.

A.3 Normalizing for-Loops for Pattern Matching

The for-loop normalization rewrite rules and strategies pre-
sented here are a strategy attribute re-implementation of the
same rules and strategies, originally implemented [27] using
Silver’s reflection-based library and language extension for
rewriting on undecorated terms. Both versions can be found
in the ableC-Halide extension 9.
This rewriting process is divided into two passes. First,

an initial downward pass fully expands the condition and
update expressions in loops to only use the operators <, >,
+=, and -= at the top level; for example a <= b is rewritten
to a < b + 1. This is done by a strategy attribute named
preprocessLoop (lines 21Ð25.)
A second, bottom-up pass performs the final normaliza-

tion; this is implemented by the transLoop strategy attribute
(lines 26Ð47.) In this pass, loops that range from 0 and step
by 1 can be directly translated to use the ++ increment oper-
ator, and do not require any additional processing (line 28.)
However loops that have a different initial or step value re-
quire a more complex transformation; the loop variable is
changed to start at 0 and increment by 1 (line 40), and a new
variable is introduced to compute the value of the original
loop variable from the rewritten loop variable (line 42.)10

All occurrences of the original loop variable in the body are
then replaced by the new loop variable (line 44.)
This is done by a separate strategy attribute renamed in

conjunction with autocopy inherited attributes target and
replacement (lines 1Ð8.) renamedmakes use of the allTopDown

9 Available at http://melt.cs.umn.edu/ and https://github.com/melt-umn/

ableC-halide, archived at https://doi.org/10.13020/D6VQ25.
10 Loops that work in reverse order by decrementing the loop variable are

handled similarly by a separate case in the transLoop rule, not shown.

strategy, which traverses down the tree until the its argu-
ment first succeeds (in this case when the tree is a name that
matches target.) The original tree is then reconstructed with
name replaced by the new name provided via replacement.

At every point during the upward and downward passes,
we wish to simplify loop expressions involving constants as
much as possible, maximizing the variety of loops that can
be successfully normalized. The simplifyExpr total strategy
attribute (line 15) simplifies all such expressions within a
tree using the simplifyExprStep partial strategy attribute
(lines 10Ð14.) Since we only wish to simplify expressions
within the definition of the loop and not in the body, the
simplifyLoopExpr strategy attribute (line 19) is used in order
to achieve this, by means of a congruence traversal over the
forDeclStmt production.
The overall rewriting process is driven by the total strat-

egy attribute normalizeLoop (line 48). This uses the downUp

strategy to apply the preprocessLoop and transLoop strate-
gies in top-down and bottom-up passes, performing loop
expression simplification before every preprocessing step
and after each transformation step.

A.4 Optimizing Strategy Translation

More of the rules and strategies used in optimizing strategy
expressions are shown in Figure 17. The rules for optimizing
strategy expressions are divided into two categories: generic
rules for algebraic simplification that are applicable regard-
less of the context, and production-dependent optimizations.
Generic optimizations are implemented by the genericStep

strategy attribute; not shown here are rules for optimizing
references to names, such as inlining references to strategy
attributes.
Other optimizations, implemented by the prodStep strat-

egy attribute, are production-dependent; for example, elimi-
nating rules and congruences that do not match the current
production. These optimizations depend on the synthesized
attribute matchesFrame, true only if the rule’s pattern is able
to match, which in turn depends on an inherited attribute
frame containing the current production’s name and signa-
ture.
Rule strategy expressions are represented by the produc-

tion rewriteRule; this has the signature

StrategyExpr ::= Name TypeExpr MatchRuleList

The prodStep strategy replaces an entire rule strategy ex-
pression with fail if all patterns in the match rule list fail to
match, or alternatively deletes a single non-matching match
rule from the list. This is done by using a congruence on the
rewriteRule production to traverse the match rule list with
the onceBottomUp(s) strategy, defined as

rec x -> one(x) <+ s.

Additional rules deal with traversal strategies where the
argument does not occur on any of the children; in this case
all is replaced with id and some/one becomes fail.
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1 autocopy attribute target :: String;

2 autocopy attribute replacement :: String;

3 strategy attribute renamed = allTopDown(

4 rule on top::Name of

5 | name(n) when n == top.target -> name(top.replacement , location=top.location)

6 end);

7 attribute target , replacement , renamed occurs on Decl , Stmt , Expr , Name , ...;

8 propagate renamed on Decl , Stmt , Expr , Name , ...;

9

10 partial strategy attribute simplifyExprStep =

11 rule on Expr of -- Simplify expressions as much as possible

12 | ableC_Expr { $Expr{intExpr(a)} + $Expr{intExpr(b)} } -> intExpr(a + b)

13 | ableC_Expr { $Expr{intExpr(a)} / $Expr{intExpr(b)} } when b != 0 -> intExpr(a / b)

14 | ... end;

15 strategy attribute simplifyExpr = innermost(simplifyExprStep );

16 attribute simplifyExprStep , simplifyExpr occurs on Expr;

17 propagate simplifyExprStep , simplifyExpr on Expr;

18

19 partial strategy attribute simplifyLoopExpr =

20 forDeclStmt(simplifyExpr , simplifyExpr , simplifyExpr , id);

21 partial strategy attribute preprocessLoop =

22 rule on Stmt of -- Normalize condition operators

23 | ableC_Stmt { for ($Decl{init} $Name{i} <= $Expr{limit}; $Expr{iter}) $Stmt{b} } ->

24 ableC_Stmt { for ($Decl{init} $Name{i} < $Expr{limit} + 1; $Expr{iter}) $Stmt{b} }

25 | ... end;

26 partial strategy attribute transLoop =

27 rule on top::Stmt of

28 | ableC_Stmt { -- Restore increment operator on loops that are otherwise -normal

29 for ($TypeExpr{t} $Name{i1} = 0; $Name{i2} < $Expr{n}; $Name{i3} += 1) $Stmt{b}

30 } when i1.name == i2.name && i1.name == i3.name ->

31 ableC_Stmt {

32 for ($TypeExpr{t} $Name{i1} = 0; $Name{i2} < $Expr{n}; $Name{i3}++) $Stmt{b}

33 }

34 | ableC_Stmt { -- Normalize loops with nonstandard initial or step values

35 for ($TypeExpr{t} $Name{i1} = $Expr{initial };

36 $Name{i2} < $Expr{limit}; $Name{i3} += $Expr{step}) $Stmt{b}

37 } when i1.name == i2.name && i1.name == i3.name ->

38 let newName :: String = freshVarName ()

39 in ableC_Stmt {

40 for ($TypeExpr{t} $Name{i1} = 0;

41 $Name{i2} < ($Expr{limit} - $Expr{initial }) / $Expr{step}; $Name{i3}++) {

42 typeof($Name{i1}) $name{newName} = $Expr{initial} + $Name{i1} * $Expr{step};

43 $Stmt{decorate b with {target = i1.name; replacement = newName;

44 env = top.env;}. renamed} }

45 } end

46 | ... -- Similar rules as above for loops that count downward

47 end;

48 strategy attribute normalizeLoop =

49 downUp(try(simplifyLoopExprs <* repeat(preprocessLoop )),

50 try(transLoop <* simplifyLoopExprs ));

51 attribute simplifyLoopExprs , preprocessLoop , transLoop , normalizeLoop occurs on Stmt;

52 propagate simplifyLoopExprs , preprocessLoop , transLoop , normalizeLoop on Stmt;

Figure 16. More of the rewrite rules used to normalize loops in the ableC-Halide extension.
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1 -- Production -independent optimizations

2 partial strategy attribute genericStep =

3 rule on StrategyExpr of

4 | sequence(fail(), _) -> fail()

5 | sequence(_, fail ()) -> fail()

6 | sequence(id(), s) -> s

7 | sequence(s, id()) -> s

8 | choice(fail(), s) -> s

9 | choice(s, fail ()) -> s

10 | choice(s, _) when s.isTotal -> s

11 | allTraversal(id()) -> id()

12 | someTraversal(fail ()) -> fail()

13 | oneTraversal(fail ()) -> fail()

14 | congruenceTraversal(_, ss) when ss.containsFail -> fail()

15 | recComb(n, s) when !contains(n.name , s.freeVars) -> s

16 end;

17 -- Production -dependent optimizations

18 partial strategy attribute prodStep =

19 rule on top:: StrategyExpr of

20 | rewriteRule(_, _, ml) when !ml.matchesFrame -> fail()

21 | congruenceTraversal(p, _) when p.fullName != top.frame.fullName -> fail()

22 | allTraversal(s) when !matchesChild(s, top.frame) -> id()

23 | someTraversal(s) when !matchesChild(s, top.frame) -> fail()

24 | oneTraversal(s) when !matchesChild(s, top.frame) -> fail()

25 end <+

26 rewriteRule(id, id, onceBottomUp(

27 rule on MatchRuleList of

28 | mRuleList_cons(h, _, t) when !h.matchesFrame -> t

29 end ));

30 strategy attribute simplify = innermost(genericStep );

31 strategy attribute optimize =

32 (sequence(optimize , simplify) <+ choice(optimize , optimize) <+

33 allTraversal(simplify) <+ someTraversal(simplify) <+ oneTraversal(simplify) <+

34 congruenceTraversal(simplify) <+ recComb(id, optimize) <+ id) <*

35 try(( genericStep <+ prodStep) <* optimize );

Figure 17. Some of the rewrite rules used to optimize strategy expressions.

The overall optimization process is driven by the optimize
strategy attribute. Note that production-specific optimiza-
tions are not safe to apply arbitrarily in a strategy expression,
as some strategy combinators apply their argument to a dif-
ferent tree (as with congruences and the right operand to se-
quence.) Thus the strategymay ultimately be applied on a dif-
ferent production and so it is unsafe to apply the prodStep op-
timization. However it is always safe to apply the production-
independent optimizations specified by genericStep; the
strategy attribute simplify performs these optimizations in
an innermost pass through the whole tree. optimize makes
this distinction by explicitly traversing the StrategyExpr

tree using congruences rather than innermost; the optimize

strategy is applied recursively to child strategy expressions

known to be applied to the same production, while simplify
is applied to all other children.
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