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Abstract

This paper shows how reflection on undecorated syntax trees used in attribute grammars, that is, terms, can
significantly reduce the amount of boiler-plate specifications that must be written. The proposed reflection system
is implemented in the form of a reflect function mapping terms and other values into a generic representation and
a reify function for the inverse mapping. The system is implemented in the Silver attribute grammar system. We
demonstrate the usefulness of this approach to reflection in attribute grammars in several ways. The first use is in
the serialization and de-serialization of the interface files Silver generates to support separate compilation; a custom
interface language was replaced by a generic reflection-based implementation. Secondly, we describe an extension to
Silver itself that simplifies writing language extensions for the ableC extensible C specification by allowing language
engineers to specify C-language syntax trees using the concrete syntax of C (with typed holes) instead of writing
abstract syntax trees. Third, strategic term rewriting in the style of Stratego is implemented using reflection as a
library for, and extension to, Silver. Finally, an experimental implementation of staged interpreters for a small staged
functional language is discussed.

1. Introduction

Strong static type systems are a lightweight, yet effective, kind of formal methods for ensuring that run-time type
errors cannot happen when executing type-correct programs. Many find the benefits of type safety outweigh the
restrictions that such systems necessarily impose. Some meta-programming languages and systems enjoy the benefits
of strong static typing, e.g. the Kiama [1] system embedded in Scala, the Java-based JastAdd [2] attribute grammar
system, and the Silver [3] attribute grammar system used in the work presented here. The type systems in these ensure
that all object-language syntax trees are well-sorted, that is, they correspond to the context-free grammar defining the
abstract syntax of the language being specified by these systems.

But as many have observed, for example in Lämmel and Peyton Jones’s “scrap-your-boilerplate” work [4], well-
sortedness often comes at a price; transformations over syntax trees from syntactically rich languages are cumbersome
to express. For example, consider implementing a program transformation that rewrites x + 0 to x; a recursive imple-
mentation typically requires code or specifications not only for the case of addition, but also for all other constructs
in the language. For these other constructs the specification simply duplicates each subtree with its rewritten compo-
nents, leading to a large amount of uninteresting, cumbersome boilerplate code.

One approach to this problem is to use a form of reflection [5]. In the approach presented here, a (well-sorted)
term is reflected into a generic form over which transformations such as the ones described above can be dramatically
simplified. In the example uses discussed here there are cases in which thousands of lines of language specifications
can be eliminated, or did not otherwise have to be written, due to the use of the proposed reflection system. The
generic form used here has just a few mechanisms for representing all terms, regardless of the constructor (grammar
production) used to build it. Thus the code written to, for example, serialize a tree need only be written for the few
cases in this generic form. This ease of writing is traded for the loss of type-safety as well-sortedness is not guaranteed
when constructing or manipulating object-language trees in this form. This paper presents a technique for bringing
reflection of terms (syntax trees without attributes) to attribute grammars and evaluates it on several examples.
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1.1. Motivating Example

1 ({ float _res = 1;

2 for (int _i = 0; _i < y; _i++) {

3 _res *= x;

4 }

5 _res; })

Figure 1: The translation of an exponent expression x ** y, where x is
a float and y is an int. Note this uses a statement-expression ({...;

...;}), a C extension supported by GCC and other compilers, to embed
a statement in an expression.

The reflection system presented here is imple-
mented in Silver and some example uses are in an
extensible specification of C, ableC [6], all of which
are written in Silver. As a first example, consider a
language extension that introduces an exponent oper-
ator x ** y to C; this new expression should trans-
late to the C code shown in Figure 1. Directly con-
structing the syntax tree of this translation by call-
ing abstract productions is quite tedious and imposes
barriers to entry for new language developers who
must learn the numerous productions in the ableC
abstract syntax grammar to become productive. In-
stead it is desirable to extend the meta-language, in this case Silver, to allow abstract syntax trees to be constructed
using the actual concrete syntax of the object-language, as can be done in systems such as Stratego [7].

An example use of object-language concrete syntax is shown in Figure 2. Here the extension developer introduces
a new abstract syntax production (named exponent) for an exponent operator that extends the ableC host language,
and specifies that this new exponent construct translates down (via the forwards to specification [8]) to a plain C
language abstract syntax tree like the one in Figure 1. Some attributes (such as pp, the “pretty-printed” version of the
construct) may be defined directly on the new production, while all other attributes (such as an attribute to translate
the program to some executable form) are automatically computed on the forwarded-to tree.

Concrete syntax of the object language, in this case C, is embedded here in Figure 2 as an expression in Silver
using a so-called quote production that wraps a piece of code in the object-language (C) for which the abstract
syntax tree should be constructed; ableC_Expr {...} beginning on line 6 of Figure 2 is an instance of a quote
production that introduces an Expr term from the C language. Sometimes portions of the desired tree are not fixed but
instead should be constructed using Silver code. Such holes in the tree may be specified in using so-called antiquote
productions that escape from the object-language syntax back to Silver expressions, such as $TypeExpr on line 7.
This line specifies the declaration and initialization of _res seen on line 1 of Figure 1. The specification in Figure 3
is what is needed when writing the abstract syntax directly to specify this same single line. Since Silver itself is an
extensible language, language developers may easily construct a version of Silver tailored to their object-language
(such as the ableC extension to Silver used here, referred to as Silver-ableC) by introducing appropriate quote and
antiquote productions.

Computing the translation of quote productions (such as ableC_Expr) into ordinary Silver expressions presents
a difficulty without a reflection system like the one presented here; we must generate the abstract syntax for the

1 abstract production exponent

2 top::Expr ::= base::Expr exp::Expr

3 {

4 top.pp = base.pp ++ " ** " ++ exp.pp;

5 forwards to

6 ableC_Expr {

7 ({ $TypeExpr{base.ty.tyExpr} _res = 1;

8 for ($TypeExpr{exp.ty.tyExpr} _i = 0; _i < $Expr{exp}; _i++) {

9 _res *= $Expr{base};

10 }

11 _res; })

12 };

13 }

Figure 2: An example using Silver-ableC to implement an exponent expression in ableC.
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1 declStmt(

2 variableDecls(nilStorageClass (), base.ty.tyExpr ,

3 consDeclarator(

4 declarator(name("_res"), baseTypeExpr (),

5 justInitializer(

6 exprInitializer(integerConstant("1", false , noSuffix ())))) ,

7 nilDeclarator ())))

Figure 3: The tedious code that would be written using only plain Silver, for just line 7 of the exponent production in Figure 2.

Silver expression which, when compiled and evaluated, will construct the specified object-language syntax tree. In
systems like Stratego this process may be accomplished by the use of rewrite rules; this is permitted as terms have
a uniform/generic representation, and weak typing allows for an incremental transformation of object-language into
meta-language abstract syntax. However in a strongly typed system such as Silver, object-language trees are strongly
distinguished from meta-language expressions that construct trees; thus a direct transformation is required from the
former to the latter.

One approach is to define a translation-to-Silver attribute on all nonterminals of the object-language attribute
grammar, on each production writing an equation that constructs the Silver expression for a call to that C-language
production. With nearly 500 abstract productions in the ableC specification doing this would require writing a tremen-
dous amount of boilerplate code. An important observation is that the desired translation does not depend on the se-
mantics of particular productions, but rather is only based on the name of the production and number of children. Thus,
some approach is needed for dealing with a generic representation of an abstract syntax tree, rather than performing a
computation on the well-sorted tree itself.

There are other similar problems that can best be expressed as generic analyses on trees. For example consider
serializing and de-serializing between a term and a text string; this can easily be done with a uniform untyped term
representation, but not so easily with a well-sorted tree using a variety of nonterminals. Thus we want a general-
purpose mechanism that can represent a term in a generic way, and convert between well-sorted terms and this generic
representation.

1.2. Reflection in Silver
Problems of like those described above can benefit from some form of reflection in the meta-language. Here we

present a reflection mechanism, implemented in Silver, consisting of two primary operations:

• reflect: which converts a well-sorted terms (syntax trees without attributes) in Silver into a generic tree
representation of type AST, defined below. This type is a nonterminal in a small Silver grammar with a small
set of productions for representing terms in a generic manner.

• reify: which converts generic AST trees back to their original well-sorted term form. This requires run-time
type checking and may fail if the generic form does not correspond to a well-sorted tree in the object-language.
Thus reify returns a value of type Either<String a>: either a string error message or a tree of the correct
type (represented by type variable a).

Transformations and analyses on AST trees are implemented by specifying attributes and their defining equations. The
resulting specifications that are much less verbose with much less boilerplate code than the equivalent specifications
on well-sorted trees.

These reflection features can be used to solve the object-language to meta-language translation problem in a sig-
nificantly more concise manner. Instead of computing the translation directly using attributes on the object-language
syntax tree, we can reflect this tree into the AST representation, and compute the desired translation on this AST
tree. This allows us to view data, that is syntax trees, in two ways. The first is through Silver’s type system as well-
sorted terms. The second view is a more generic one in which values of different types or sorts can be viewed in a
uniform way by the reflect transformation into a generic AST representation.
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1.3. Contributions

The primary contributions of the paper are enumerated below.

• We integrate reflection and attribute grammars using a special AST nonterminal and bidirectional reflect/

reify transformations between AST trees and well-sorted object-language syntax terms; the design of this
system is discussed in Section 3 and its implementation in Section 9.

• We use reflection in conjunction with Silver’s attribute grammar and parser specification features to provide a
serialization/de-serialization library for arbitrary trees. This allowed 1,698 lines of hand-coded environment tree
serialization/de-serialization code in the Silver compiler to be replaced with only 257 lines, removing 3.75% of
the Silver specification. (Section 4)

• We demonstrate the use of reflection in mapping object-language concrete syntax to the Silver constructs that
would construct it, allowing specifications like those in Figure 2. This saved almost 18,000 lines of specification
over several ableC extension specifications, amounting to 40% of the code base by character count. The code
generation for many extensions was complex enough that they would likely not have been attempted had only
the direct method of specifying translation (as shown in Figure 3) been available. (Section 5)

• We demonstrate the use of reflection in attribute grammars to implement a strategic term rewriting library and
language extension in the style of Stratego [7]. One use of this system is to perform “scrap your boilerplate”-
style [4] substitutions of particular subtrees within much larger abstract syntax trees. This saved over 2,500
lines of specification between ableC and several extensions, amounting to 11.8% of the ableC specification
code base. (Section 6)

• We implement an interpreter for a simple staged language as an attribute grammar specification using reflection.
(Section 7)

This paper is an extension and revision of the paper “Reflection in Attribute Grammars” by the same authors[9],
presented at the 2019 ACM SIGPLAN International Conference on Generative Programming: Concepts & Experi-
ences (GPCE). This paper extends and expands the discussion in that paper of the reflection system and its use in the
serialization/de-serialization example, the object-language concrete syntax example, and the staged language example
listed above. The most significant change is the addition of a new example for a Stratego-inspired term rewriting
system found in Section 6. This replaces an example of a specialized substitution mechanism used for instantiating
C++-style templates in ableC. The term rewriting extension to Silver is used to implement substitution as well, but is
more general. Examples of this term rewriting extension include the x+0→ x optimization and an implementation of
a λ-calculus evaluator based on an implementation in Stratego [10]. This section discusses the features in the Silver
library that implements term rewriting and the new syntax provided by an extension to Silver that simplifies the use
of this library.

Silver version 0.4.31 [3] is the attribute grammar system used in this paper. The ableC2 [6] code and extensions
to it [11] are from version 0.1.5 and the Silver-ableC3 code is from version 0.1.3. Specifications from each are shown
in several figures below and can be found in grammars directory of the corresponding repository in the directory or
file name given in caption in each figure. A description of how the number of lines saved in Silver specifications or
ableC extension specifications by using reflection was computed is given in the relevant section. New keywords
introduced by extensions we discuss here are highlighted in the figures as bold.

1Available at http://melt.cs.umn.edu/silver and https://github.com/melt-umn/silver, archived at https://doi.org/10.
13020/D6QX07.

2Available at http://melt.cs.umn.edu/ableC and https://github.com/melt-umn/ableC, archived at https://doi.org/10.

13020/D6VQ25.
3Available at http://melt.cs.umn.edu/ and https://github.com/melt-umn/silver-ableC, archived at https://doi.org/10.

13020/hbr0-9z50.
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1 nonterminal Either <a b>;

2
3 synthesized attribute isLeft :: Boolean occurs on Either <a b>;

4 synthesized attribute fromLeft <a> :: a occurs on Either <a b>;

5
6 abstract production left top::Either <a b> ::= value ::a

7 { top.fromLeft = value;

8 top.isLeft = true;

9 }

10
11 abstract production right top::Either <a b> ::= value ::b

12 { top.fromLeft = error("fromLeft accessed on a right instance of Either");

13 top.isLeft = false;

14 }

Figure 4: Some sample Silver specifications, these defining a polymorphic nonterminal Either, and productions and attributes for it.

2. Background: Attribute Grammars and Silver

In this section we provide some background on attribute grammars (AGs) and the Silver [3] attribute grammar
system since reflection is integrated into this particular system. Essentially, attribute grammars provide a “semantics of
context-free languages” [12] by associating semantic attributes (semantic values) with nodes in a well-sorted syntax
tree. These decorated/attributed trees conform to a context-free grammar that specifies the (abstract) syntax of the
language. These attributes carry information (semantics) about that language construct. For example, consider an
attribute grammar for type checking a functional language. A nonterminal for expressions may be decorated with
an attribute that specifies the type of the expression and another providing a typing context that maps names to their
types. Equations are associated with the grammar productions and are used to determine the values of these attributes.

More formally, we may define an attribute grammar as a tuple

AG = (G, A,O,Γ, E)

where G is a context-free grammar (NT,T, P) with a finite set of nonterminal symbols NT , a finite set of terminal sym-
bols T which includes basic types for integers and strings, and P a set of grammar productions. Grammar productions
have the form

n0 :: NT0 ::= n1 :: X1 ... nk :: Xk

Productions have a left-hand side nonterminal NT0 and 0 or more right-hand side symbols in NT ∪ T . Symbols in
productions are are labeled (e.g. n0, ni) so that tree nodes can be easily referenced when defining or accessing attribute
values on them. In Silver, productions are labeled as concrete if they are passed to the Copper [13] scanner and
parser generator bundled with Silver. Those labeled by abstract are not; they are used to define the abstract syntax
of a language and are our primary focus here, as seen in Figure 2.

Nonterminals and productions are analogous to, and often used like, inductive data types and their constructors as
commonly found in functional languages such as ML and Haskell. Silver also has primitive types, including Integer,
String, and Boolean, and a built in notion of lists, all of which can also be used on the right hand side of abstract
productions. Hindley-Milner-style parametric polymorphism is also supported in Silver and type variables are written
using lowercase names. An example of using attribute grammars in Silver in this way can be seen in Figure 4. Line 1
declares a nonterminal that has two type parameters. Lines 6 and 11 declare two abstract productions, one named
left and one named right, for constructing trees of type Either. Note that top is commonly used as the name of
the tree being constructed but this is not required. Both productions here have a single right-hand side element named
value of the appropriate type parameter.

In an attribute grammar (G, A,O,Γ, E), the set A is the set of attributes and is partitioned into synthesized at-
tributes AS that propagate information up the syntax tree and inherited attributes AI that propagate information down
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the tree. The relation O is called an occurrence relation and it indicates which attributes decorate which nonterminals.
Attributes can hold various types of values beyond primitive types such as strings and integers. Vogt et. al. [14] in-
troduced higher-order attributes in which attributes contain terms, that is (yet undecorated) syntax trees. Attribute can
also hold (references to) decorated syntax trees. Reference attributes [15] and remote attributes [16] allow decorated
trees to be passed around as attribute values; these can be thought of as references or pointers to remote nodes in
the syntax tree. In Figure 4, line 3 declares a Boolean synthesized attribute named isLeft that occurs on Either

nonterminals to indicate if a tree is constructed by the left production. The attribute fromLeft can be used to access
the value provided in the left production in the case that that production was used to construct the Either tree. This
attribute is parameterized such that on a tree of type Either<String Integer>, the fromLeft attribute will have
type String. Similar isRight and fromRight attributes are also defined.

The types of values to be held in attributes and the types/signature of productions is tracked by a typing context
Γ. This is used to type check the equations in E that specify the values of attributes in a syntax tree. Equations in E
are associated with a single production p ∈ P and typically have the form ni.a = e with ni being a label for a symbol
in p. If ni labels the nonterminal on the left hand side of the production then a must be a synthesized attribute used
to compute a value decorating n0. Otherwise a must be an inherited attribute computing a value for a child of n0.
Examples of equations can be seen in Figure 4. Line 7 defines fromLeft to be value, and line 8 defines isLeft to
be false. An attribute grammar evaluator is used to find a solution to the equations in E for a particular syntax tree.
There are various ways to implement such an evaluator, for example, techniques for ordered attribute grammars [17]
or the demand-driven approach [18] used in Silver and JastAdd.

Expressions on the right hand side of equations support many expected constructs, such as conditional expressions
and production applications for building trees. Silver also support pattern matching as an alternative to using attributes
such isLeft and fromLeft as seen above. Silvermakes a distinction between trees that are decorated with attributes
and those that are not; the new operator is used to extract an undecorated term from a decorated syntax tree.

Equations are typically associated with a production by writing them with the definition of the production, as is
done for the equation for the pretty-print attribute pp on line 4 of Figure 2. But equations can also be written separately
from their production definition in what are called aspect productions, as originally specified in JastAdd. These are
labeled with aspect and allow new attribute equations to be added for existing productions in a language that is being
extended.

Another attribute grammar feature in Silver is forwarding [8]. Forwarding allows a production like the exponent
production on line 5 in Figure 2 to specify a syntax tree that it is semantically equivalent to. Here, that is the tree with
the for-loop that computes the value of the exponent. If the forwarding tree (the one constructed by the production
with a forwards to clause) has an equation for an attribute, then the value determined by that equation is used. If
there is a query for an attribute for which the forwarding tree does not have a defining equation, then the forwarded-to
tree is computed and decorated and the attribute value from that tree is used instead. This is used extensively in
extensible language specifications and in some examples below. It allows language extensions to define attributes that
have values specialized to the extension that differ from the values of the same attributes on the forwarded-to tree.
This is useful in ableC [6], for example, in an extension that introduces inductive/algebraic data types to C since type
errors in the use of these data types (either in their construction or in pattern matching on them) can be reported in
terms of the extension and not in terms of the generated C code.

Another Silver feature used below is collection production attributes; these are local attributes defined within a
production. These hold values defined within production bodies with an initial value and an append operator for values
of that type (e.g. for lists this is the empty list [] and list append operator ++.) Aspects of a production containing a
collection may contribute additional values, to be incorporated using the append operator.

In Silver, names of productions and attributes have fully-quantified forms that include the name of the grammar in
which they were defined, a bit like fully qualified names in Java (but using colons instead of dots to separate names).
The specification in Figure 4 is in the core grammar, so the fully qualified name of left is core:left. Similarly,
ableC:addExpr is the addExpr production in the ableC grammar. For reasons of brevity, we use ableC as the
grammar name here but the actual grammar name is edu:umn:cs:melt:ableC:abstractsyntax:host, as can be
seen in the specifications in the ableC repository2. Finally, note that when the context permits we will also refer to
grammar elements using their shorter un-qualified name.
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3. Design of the Reflection System

1 grammar silver:reflection;

2
3 nonterminal AST;

4 abstract production nonterminalAST

5 AST ::= prodName :: String

6 children ::ASTs

7
8 abstract production terminalAST

9 AST ::= terminalName :: String

10 lexeme :: String location :: Location

11
12 abstract production listAST

13 AST ::= vals::ASTs

14
15 abstract production stringAST

16 AST ::= String

17
18 abstract production integerAST

19 AST ::= Integer

20
21 abstract production floatAST

22 AST ::= Float

23
24 abstract production booleanAST

25 AST ::= Boolean

26
27 abstract production anyAST

28 AST ::= a

29
30 nonterminal ASTs;

31 abstract production consAST

32 ASTs ::= h::AST t::ASTs

33
34 abstract production nilAST

35 ASTs ::=

Figure 5: The Silver nonterminals and productions used to represent
abstract syntax trees. Production bodies, which contain attribute equa-
tions, are not shown. See core/reflect/AST.sv

In this section we describe the design of the reflec-
tion features and how they are used in attribute gram-
mars. The implementation is discussed later in Sec-
tion 9.

We first introduce the type AST; this is a generic
representation for well-sorted terms. There are two op-
erations over these: reflect which transforms well-
sorted syntax trees into generic AST values, and reify,
which maps generic trees back into well-sorted terms.
The AST type is defined as a nonterminal in a Silver
library, shown in Figure 5 on line 3. AST trees may
be constructed in the same way as other trees in Silver
through the application of productions to primitive val-
ues or other trees. Each AST production in Figure 5 cor-
responds to a type (or class of types) in the Silver lan-
guage: e.g. stringAST to String, nonterminalAST
to nonterminals (well-sorted terms), terminalAST to
terminal symbols (tokens returned from a scanner, oc-
curring in concrete syntax trees), and listAST to Silver
lists. Trees built by the polymorphic anyAST produc-
tion contain values (represented by the type variable a)
that do not typically occur in abstract or concrete syntax
trees: these includes functions which we cannot directly
inspect, and references to decorated trees which may be
circular. The ASTs nonterminal encodes a sequence of
AST trees, such as in the children of a production or a
list value.

The reflect operation uses these productions to
produce an AST value from any value and thus has the
type AST ::= a. (A more familiar writing of this type
might be a -> AST, but functions in Silver use the
same type ::= type notation as productions.) For ex-
ample, reflect will transform the Silver tree

integerConstant("42", true, noIntSuffix())

on line 6 of Figure 3 into the AST tree

nonterminalAST("integerConstant",

consAST(stringAST("42"),

consAST(booleanAST(true),

consAST(

nonterminalAST(

"noIntSuffix", nilAST ()),

nilAST ()))))

As with all nonterminals, attributes may be associated with the AST nonterminal. Aspect productions then specify
new equations for the abstract productions in Figure 5; this is typical for applications using the reflection system.
The Silver-ableC extension discussed in Section 1 introduces a new translation attribute on AST, and provides
equations for this attribute on AST production to produce the Silver abstract syntax that is needed. This process is
described in more detail in Section 5. Another aspect-defined attribute is serialize, used to print out an AST tree
and discussed in Section 4.
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In many of the applications discussed in the following sections a generic AST tree is converted back into a well-
sorted object-language term by the reify operator. This has type Either<String a> ::= AST, taking an AST and
returning either a String error message or the well-sorted term. Because AST trees can be constructed directly using
the productions in Figure 5, it is possible to construct trees that do not correspond to a well-sorted tree. An attempt to
reify such a tree will result in an error, returning left(s), where s is an error message of type String. A successful
reification wraps the tree of type a in the right constructor. The reflection system satisfies the following invariant for
any tree t:

reify(reflect(t)) = right(t)

In our experience large AST trees are rarely constructed directly; they usually are constructed by reflect.4. Thus
ill-sorted ASTs (and thus failures when calling reify) do not occur in typical uses of the system. Even when an error
does occur it is reported immediately by the call to reify, and we have found finding and fixing the source of such
errors to be straightforward. We do, however, recognize that this might not be the case for all Silver users.

Despite this, during the reification process we must check that the AST in question actually corresponds to the
inferred result type of reify. This requires a run-time type checking process, looking up productions and terminals to
ensure they are defined and match the expected types. Since Silver supports polymorphic data types (e.g. nonterminals
such as Either<a b>), it may not be possible to compute the final type of a sub-tree from only its arguments, so type
checking also must perform Hindley-Milner type inference.

4. Reflection for Automatic Tree Serialization and De-serialization

The process of serializing well-sorted terms to strings and de-serializing strings back into terms is a common one
that can involve a significant amount of boiler-plate code. This problem existed in the specification of the Silver
language. In the Silver specification language, a grammar module may import other grammar modules in order
to extend the language specified in another imported module. The Silver system supports separate compilation of
grammar modules by maintaining an interface file for each module that describes the grammar elements, such as
attributes, productions and nonterminals, that are declared and certain properties of them, such as their type. The
Silver language is bootstrapped in Silver so there is a Silver specification of the Silver language. A significant source
of boilerplate specification in this Silver specification is in its module for serializing and de-serializing syntax trees
that represent the environment for a grammar stored in these interface files. Separate compilation of grammar modules
uses the serialization of environments as interface files to avoid reading an unchanged source grammar imported by
another grammar that is being compiled. Originally, serialization of environments was implemented by defining an
unparse attribute on all environment nonterminals and their productions to construct a string representation, and
de-serialization was handled by a parser using a rather large custom grammar.

Using reflection and AST trees we can define a generic implementation of this process, replacing 1,698 lines in the
Silver compiler with 257 lines, and saving 1,441 out of 38,400 lines (3.75%) of the entire code base. 5 This change
does come at a cost, as the generic interface files are on average 215% larger than before (measured for the ableC
code base), less readable by humans, and their de-serialization adds approximately 2-3 seconds in total to build times
taking around 60 seconds. However we believe such penalties are worth the significant savings in code complexity.

A visualization of the serialization/de-serialization process is shown in Figure 6. At the top is a simplified notion of
an environment consisting of a list of three pairs, mapping a to 6, b to 8, and c to 7. Serialization is done by reflecting a
tree into an AST, the middle box of the figure, and accessing the serialize attribute on the AST, which then produces
the string value at the bottom. This attribute, line 1 of Figure 7, is actually of type Either<String String>; this
is because serialization may fail if a non-printable value, such as a function, is a component of the reflected tree
constructed as an anyAST tree (line 21). The left side of Either encodes an error message and the right side the
successful result, as seen before in the return type of reify. Integer and string ASTs (lines 13 and 17) are serialized
as expected, with string special characters needing to be escaped first.

4 Transformations that involve directly constructing new ASTs are less common but do occur, as will be demonstrated with the implementation
of rewriting in Section 6. But even in this case, large portions of the final AST to be reified are copied unchanged from the initial AST returned by
reflect.

5 See https://github.com/melt-umn/silver/pull/255; note that not all changes here are related to serialization/de-serialization.
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[core:pair("a", 6), core:pair("b", 8), core:pair("c", 7)]

1 listAST(

2 consAST(

3 nonterminalAST("core:pair",

4 consAST(stringAST("a"), consAST(integerAST (6), nilAST ()))),

5 consAST(

6 nonterminalAST("core:pair",

7 consAST(stringAST("b"), consAST(integerAST (8), nilAST ()))),

8 consAST(

9 nonterminalAST("core:pair",

10 consAST(stringAST("c"), consAST(integerAST (7), nilAST ()))),

11 nilAST ()))))

"[core:pair (\"a\", 6), core:pair (\"b\", 8), core:pair (\"c\", 7)]"

reflect reify

serialize parse

Figure 6: An example of serialization/de-serialization.

1 synthesized attribute serialize ::Either <String String >

2 occurs on AST , ASTs;

3 aspect production nonterminalAST

4 top::AST ::= prodName :: String children ::ASTs

5 {

6 top.serialize =

7 case children.serialize of

8 | right(childSer) -> right(prodName ++ "(" ++ childSer ++ ")")

9 | left(msg) -> left(msg);

10 end;

11 }

12
13 aspect production integerAST

14 top::AST ::= i:: Integer

15 { top.serialize = right(toString(i)); }

16
17 aspect production stringAST

18 top::AST ::= s:: String

19 { top.serialize = right("\"" ++ escapeStr(s) ++ "\""); }

20
21 aspect production anyAST

22 top::AST ::= x::a

23 { top.serialize = left("Cannot serialize an anyAST"); }

Figure 7: Some of the Silver attribute equations for serialization. See silver/reflect/AST.sv
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1 grammar silver:serialization;

2
3 nonterminal AST_c with ast <AST >;

4 synthesized attribute ast <a>::a;

5
6 concrete productions top::AST_c

7 | n:: QualifiedName_t ’(’ children :: ASTs_c ’)’

8 { top.ast = nonterminalAST(n.ast , foldr(consAST , nilAST(), children.ast)); }

9 | n:: QualifiedName_t ’(’ ’)’

10 { top.ast = nonterminalAST(n.ast , nilAST ()); }

11 | ’[’ vals:: ASTs_c ’]’

12 { top.ast = listAST(foldr(consAST , nilAST(), vals.ast)); }

13 | ’[’ ’]’

14 { top.ast = listAST(nilAST ()); }

15 | s:: String_t -- matches a quoted string literal , must be un-escaped:

16 { top.ast =

17 stringAST(unescapeString(substring (1, length(s.lexeme) - 1, s.lexeme ))); }

18 | i::Int_t

19 { top.ast = integerAST(toInteger(i.lexeme )); }

20 | f:: Float_t

21 { top.ast = floatAST(toFloat(f.lexeme )); }

22 | ’true’

23 { top.ast = booleanAST(true); }

24 | ’false ’

25 { top.ast = booleanAST(false ); }

26
27 nonterminal ASTs_c with ast <[AST]>;

28
29 concrete productions top:: ASTs_c

30 | t:: ASTs_c ’,’ h::AST_c

31 { top.ast = t.ast ++ [h.ast]; }

32 | h::AST_c

33 { top.ast = [h.ast]; }

Figure 8: The grammar used to construct the de-serialization parser. Terminal declarations are straightforward, and are omitted to save space.

Of interest is the serialization of nonterminalAST trees (line 6 of Figure 7). We first compute the serialization of
the child nodes; if any of these fail we wish to pass along the failure message. Otherwise a string is constructed using
the resulting child serialization, the production name, and appropriate parentheses.

For de-serialization, we use Silver’s built-in declarative parser specification features to define concrete syntax
matching the serialized strings, shown in Figure 8. This grammar defines a concrete syntax for AST trees using the
AST_c and ASTs_c nonterminals. Both have productions that are used in building the AST parser. Both are also
decorated by an ast attribute that, on AST_c nonterminals is an AST tree and on ASTs_c nonterminals is a list of AST
tress, written [AST]. The generated parser constructs the concrete syntax trees and the equations then convert these
concrete syntax trees into AST values. These AST trees are then reified to recreate an environment, as illustrated on
the right of Figure 6. Together, these provide a concise and convenient mechanism for specifying serialization and
de-serialization of Silver syntax trees.
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1 ableC_Expr {

2 ($Expr{e1} + x) / 2

3 }

Silver-ableC source code

4 ableC:divExpr(

5 ableC:addExpr(

6 e1, ableC:varExpr("x")),

7 ableC:intExpr (2))

Equivalent (plain) Silver source code

8 silver:applyExpr(

9 "ableC:divExpr",

10 silver:consAppExpr(

11 silver:applyExpr(

12 "ableC:addExpr",

13 silver:consAppExpr(

14 silver:varExpr("e1"),

15 silver:applyExpr(

16 "ableC:varExpr",

17 silver:consAppExpr(

18 silver:stringExpr("x"),

19 silver:nilAppExpr ())))) ,

20 silver:consAppExpr(

21 silver:applyExpr(

22 "ableC:intExpr",

23 silver:consAppExpr(

24 silver:intExpr (2),

25 silver:nilAppExpr ())),

26 silver:nilAppExpr ())))

27 silverAbleC:quoteExpr(

28 ableC:divExpr(

29 ableC:addExpr(

30 silverAbleC:antiquoteExpr(

31 silver:varExpr("e1")),

32 ableC:varExpr("x")),

33 ableC:intExpr (2)))

34 reflect(

35 ableC:divExpr(

36 ableC:addExpr(

37 silverAbleC:antiquoteExpr(

38 silver:varExpr("e1")),

39 ableC:varExpr("x")),

40 ableC:intExpr (2))). translation

41 nonterminalAST("ableC:divExpr",

42 consAST(

43 nonterminalAST("ableC:addExpr",

44 consAST(

45 nonterminalAST(

46 "silverAbleC:

47 antiquoteExpr",

48 consAST(

49 nonterminalAST(

50 "silver:varExpr",

51 consAST(

52 stringAST("e1"),

53 nilAST())),

54 nilAST ())),

55 consAST(

56 nonterminalAST(

57 "ableC:varExpr",

58 consAST(

59 stringAST("x"),

60 nilAST ())),

61 nilAST ())))

62 consAST(

63 nonterminalAST(

64 "ableC:intExpr",

65 consAST(

66 intAST (2), nilAST ())))))

67 .translation

parse

parse

forwards (translates) to

reflect

translation

Figure 9: The translation process for an ableC quote production. In bold is shown an antiquoted piece of Silver code; note that it is the same
between the original parse result (top right) and the final translation abstract syntax tree (bottom left). Production and grammar names have been
shortened for clarity.
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5. Reflection for Tree Construction Using Object-Language Concrete Syntax

This section further describes the reflection system in Silver and demonstrates its use in an extension to Silver
itself. This extension lets language developers specify trees in the object-language being developed using the concrete
syntax of that language instead of its inconvenient abstract syntax, as briefly demonstrated in Section 1 by Figure 2.
We demonstrate this on ableC, an extensible specification of C, defined in Silver. The extension to Silver for ableC
is referred to as Silver-ableC below. Any specification, including ableC, will have a large number of abstract pro-
ductions and some, such as for type expressions in variable declarations, are complicated. Thus the ability to write
concrete syntax instead of abstract syntax saves a tremendous amount of effort on the part of the language developer,
and has led to the development of ableC extensions that we may not have even undertaken without this capabil-
ity. The question we answer here is how reflection is used in translating the nice specification in Figure 2 into the
implementation in Figure 3.

A step-by-step example use of Silver-ableC is shown in Figure 9. At the top left is the code to construct a simple
term written using Silver-ableC, while beneath it is an equivalent piece of code written using plain Silver (that is,
without the Silver-ableC extension.) Our goal is to translate the Silver-ableC code into the same Silver abstract
syntax tree as would result from parsing the plain Silver code. To keep things manageable, a simpler example than
in Figure 2 is used to explain this process and the Silver-ableC extension. The antiquoted expression e1 (line 2) is
written in bold and we track its translation through both processes of using and not using Silver-ableC. The name e1
will hold an ableC tree that is to be plugged into the expression, such that when the generated C code is executed the
value of this expression will be added to the C variable x and divided by 2. This is a shorter example, but qualitatively
the same as Figure 2.

Below this is the equivalent Silver source specification that does not use the Silver-ableC extension and requires
one to write out the abstract syntax explicitly. This is a shorter example of the same thing as shown in Figure 3. Both
the top-left and middle-left code fragments are functionally equivalent specifications and both need to translated into
the same thing — a Silver abstract syntax tree.

In the plain Silver specification we see that division is represented by the ableC production ableC:divExpr

(line 4) and the name e1 (line 6) is the first argument to the addition production ableC:addExpr (line 5) This is simply
parsed by the Silver compiler to generate the abstract syntax representation in the lower left of Figure 9. Since Silver
is bootstrapped in Silver the abstract syntax of a Silver specification implemented as a Silver attribute grammar. Thus
the resulting abstract syntax is mostly applications of various Silver productions; the production silver:applyExpr

represents the application of productions (tree creation). We see a few instances of silver:applyExpr production
with the first argument being the name of the production in the object-language, in this case ableC, and thus the names
as strings are those fully qualified names from the ableC grammar. The string "ableC:divExpr" is seen on line 9
as this use of applyExpr represents the application of this ableC production for division. The second argument to
applyExpr is the AppExprs list (constructed by silver:consAppExpr and silver:nilAppExpr productions) of
trees to become the children of the constructed tree representing division: the first element being the representation
of the addition, the second the constant 2. We see on line 14 the name e1 used as a Silver variable reference form of
expression. From an abstract syntax tree like this, the Silver compiler will type check the specification and generate
the Java code that forms the attribute grammar evaluator [3].

5.1. Using Reflection

We now consider the other path to this abstract syntax tree, using C concrete syntax in the Silver-ableC extension
and the Silver reflection system. The first step is again parsing, but now using the Silver-ableC parser. This yields
a Silver tree containing quote (line 27) and antiquote (line 30) productions in the upper right box of Figure 9. The
quoteExpr on line 27 contains the ableC abstract syntax that was written out directly in the plain Silver specification.
The Silver-ableC parser is a combination of the concrete syntax for Silver and ableC with syntax for the quote and
antiquote productions on different ableC nonterminals (such as ableC:Expr). The antiquote production, parsed from
$Expr{e1}, switches back into Silver abstract syntax. Thus line 31 here matches line 14 in the tree in the lower left.

The definitions of a few of the quote and antiquote productions introduced by Silver-ableC are shown in Fig-
ure 10. Quote productions such as quoteExpr, being extensions to the Silver language, must specify the equivalent
silver:Expr that they translate down to. This is done via forwarding; one can read “forwards to” as “translates
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1 grammar silverAbleC;

2 imports silver , ableC;

3 imports silver:reflection , silver:metatranslation;

4
5 abstract production quoteExpr

6 top:: silver:Expr ::= e:: ableC:Expr

7 { forwards to reflect(new(e)). translation; }

8
9 abstract production antiquoteExpr

10 top:: ableC:Expr ::= e:: silver:Expr

11 { }

12
13 aspect production nonterminalAST

14 top::AST ::= prodName :: String children ::ASTs

15 {

16 antiquoteProds <-

17 ["silverAbleC:antiquoteExpr", "silverAbleC:antiquoteStmt", ...];

18 }

Figure 10: A sampling of Silver-ableC quote and antiquote productions, and the code to specify which productions are to be translated as antiquote
productions rather than quoted ableC abstract syntax. See edu.umn.cs.melt.exts.silver.ableC/abstractsyntax

to”.6 This translation is the result of applying reflect to (a new undecorated copy of) the syntax tree e convert-
ing the ableC:Expr into a tree of type AST. (If we reflected the syntax tree e decorated with attributes, reflect
would return an anyAST value.) These can be seen in the lower right of Figure 9; all productions (including an-
tiquote ones) have been expanded into their nonterminalAST counterparts: ableC:divExpr on line 35 becomes
nonterminalAST("ableC:divExpr", ...) on line 41.

From the reflected AST, we access the translation attribute (written .translation), seen on line 40 in the
middle-right and line 67 in the lower-right of Figure 9. This attribute constructs the Silver abstract syntax tree in the
lower left, where ableC productions have been converted into silver:Expr trees build by applyExpr as discussed
above. The same is true for the contents of antiquote productions which have been reified directly into silver:Exprs.
Note how the antiquoted Silver tree in the initial Silver-ableC abstract syntax, shown in bold, has been preserved
unchanged in the final abstract syntax tree.

Some equations for translation are shown in Figure 11. Every kind of Silver value represented by AST has a
straightforward transformation into a piece of Silver code, for example an integer value (integerAST on line 7) is
translated to a Silver integer: silver:intExpr(i) on line 9. Here an aspect production is defining the translation
attribute on a production defined in the silver:reflection grammar (line 18 of Figure 5). An attempt to translate
back to Silver an anyAST tree (line 9) results in an error being raised as these are non-inspectable values that can be
reified, but little else.

However, there is a complication introduced when dealing with antiquote productions: they contain a piece of
Silver code that should be evaluated to obtain a tree and thus their translation should just be the wrapped piece of
code. Unfortunately, this silver:Expr tree is no longer directly available as it has been “accidentally” reflected and
turned into an AST. So when an antiquote production is encountered by the translation attribute, the child AST

must be reified back into the silver:Expr that was originally specified.
When translating a nonterminalAST, some method of identifying whether a production is an antiquote produc-

tion is required. This is done by way of a collection production attribute (line 18). The attribute antiquoteProds

6Conversely, antiquote productions are effectively extensions to the object-language (as opposed to quote productions that extend the Silver
meta-language.) To satisfy the requirements of the modular well-definedness analysis [19] they should forward to a translation in C. However,
antiquote productions have no semantic equivalent in the object-language, and productions within a quoted tree will never have attributes demanded.
Thus they forward (not shown) to a dummy value that raises an error if it is erroneously evaluated.
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1 grammar silver:metatranslation;

2 imports silver , silver:reflection;

3
4 synthesized attribute translation <a>::a;

5 attribute translation <silver:Expr > occurs on AST;

6
7 aspect production integerAST

8 top::AST ::= i:: Integer

9 { top.translation = silver:intExpr(i); }

10
11 aspect production anyAST

12 top::AST ::= x::a

13 { top.translation = error("anyAST error"); }

14
15 aspect production nonterminalAST

16 top::AST ::= prodName :: String children ::ASTs

17 {

18 collection antiquoteProds ::[ String] with ++;

19 antiquoteProds := [];

20
21 top.translation =

22 if contains(prodName , antiquoteProds)

23 then case children of

24 | consAST(a, nilAST ()) -> reify(a)

25 | _ -> error("Expected only one child")

26 end

27 else silver:applyExpr(

28 silver:varExpr(prodName),

29 children.translation );

30 }

31
32 attribute translation <silver:AppExprs > occurs on ASTs;

33
34 aspect production consAST

35 top::ASTs ::= h::AST t::ASTs

36 { top.translation = consAppExpr(h.translation , t.translation ); }

37
38 aspect production nilAST

39 top::ASTs ::=

40 { top.translation = nilAppExpr (); }

Figure 11: Some of the equations in the Silver library for computing the translation of AST to silver:Expr. See silver/metatranslation/Transla-
tion.sv
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will contain the full names of all known antiquote productions. Extensions, such as the Silver-ableC extension which
imports this grammar, can add the names of its antiquote productions to this attribute. This is done using another
aspect production on line 16 in Figure 10 using the <- operator for injecting new elements (names) into this list;
these are combined using the list append ++ operator as specified on line 18 in Figure 11. Using this, the name of a
production being translated may be looked up, as can be seen in on line 22. If the name is not in the list, the AST is
translated normally, otherwise it is reified for evaluation. Thus, the AST translation code forms a library for use by
tree-literal Silver extensions that does not itself have any special handling for particular object-languages.

5.2. Extensions to Antiquotation

The use of antiquoting and object-language concrete syntax has been extended beyond the core implementation
described above. Many languages have notions of lists in their grammar, for example a sequence of function argu-
ments; it is possible that one may wish to construct a tree where only a portion of such a list is antiquoted. For
example, in

ableC_Expr { foo( 3, $Exprs{a}, x ) }

the list of expressions a, represented by the Exprs nonterminal, is to be inserted into the enclosing list of arguments.
The translation of such an antiquote production involves the use of an append function specific to the nonterminal

to assemble these lists at run time, for example the above would translate into

consExpr(intLiteralExpr(3), appendExpr(a, consExpr(varExpr(name("x")), nilExpr())))

where appendExpr is a recursive function defined in the ableC host language specification. The implementation of
this translation process involves additional collection production attributes and translation cases, similar to those on
lines 18 and 22 of Figure 11 (the implementation is not shown here due to its complexity. 7)

5.3. Concrete Object Syntax for Pattern Matching

Similar to the problem of constructing complex syntax trees is the problem of deconstructing them through pattern
matching. Silver does pattern matching on trees much the same way that languages such as ML or Haskell do on
inductive (algebraic) datatypes. An example of this may be found in the implementation of the ableC-Halide exten-
sion [11], inspired by the Halide [20] C++ embedded DSL. The extension allows for iterative computations consisting
of multiple nested loops to be expressed separately from optimizing transformations (such as unrolling, tiling or par-
allelism), allowing for more readable code and greater ease of experimentation with various transformations without
fear of introducing errors.

An example use of the extension to perform an optimized matrix multiplication can be found in Figure 12. The
computation to be performed is specified as using the syntax derivable from the Stmt nonterminal of ableC (lines 4—
11), while a series of optimizing transformations on contained for-loops (identified by loop variable) are written
using a custom DSL (lines 13—21.) For example, splitting a loop converts it into multiple nested loops where all but
the outermost run for a constant number of iterations, while unrolling a loop requires duplicating its body a number
of times in sequence. Tiling, parallelizing, and vectorizing loops has the expected behavior.

Computing the translation of a transform statement requires an intricate series of syntax tree transformations,
using a number of attributes. While it would be possible to directly perform these transformations on the Stmt

nonterminal, this is not the most suitable representation as all loops to be transformed must be of the form

for (TYPE i = 0; i < LIMIT; i++) BODY

for some variable i. A better option is to initially error-check the Stmts for well-formedness and convert them to a
simpler new IterStmt intermediate representation, e.g. representing a for loop with the production forIterStmt

with type

IterStmt ::= ty::TypeExpr var::Name limit::Expr body::Stmt
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1 void matmul(unsigned m, unsigned n, unsigned p,

2 float a[m][p], float b[p][n], float c[m][n]) {

3 transform {

4 for (unsigned i = 0; i < m; i++) {

5 for (unsigned j = 0; j < n; j++) {

6 c[i][j] = 0;

7 for (unsigned k = 0; k < p; k++) {

8 c[i][j] += a[i][k] * b[k][j];

9 }

10 }

11 }

12 } by {

13 split i into (unsigned i_outer ,

14 unsigned i_inner : (m - 1) / NUM_THREADS + 1);

15 parallelize i_outer into (NUM_THREADS) threads;

16 tile i_inner , j into (TILE_DIM , TILE_DIM );

17 split k into (unsigned k_outer ,

18 unsigned k_unroll : UNROLL_SIZE ,

19 unsigned k_vector : VECTOR_SIZE );

20 unroll k_unroll;

21 vectorize k_vector;

22 }

23 }

Figure 12: An example use of the ableC-Halide extension to implement an optimized matrix multiplication.

1 function stmtToIterStmt

2 IterStmt ::= s:: Decorated Stmt

3 {

4 return

5 case s of

6 | nullStmt () -> nullIterStmt ()

7 | seqStmt(s1, s2) -> seqIterStmt(stmtToIterStmt(s1), stmtToIterStmt(s2))

8 | compoundStmt(s1) -> stmtToIterStmt(s1)

9 | ableC_Stmt { if ($Expr{c}) $Stmt{t} else $Stmt{e} } ->

10 condIterStmt(c, stmtToIterStmt(t), stmtToIterStmt(e))

11 | ableC_Stmt {

12 for ($TypeExpr{t} $Name{i1} = 0;

13 $Name{i2} host::< $Expr{n}; $Name{i3} host ::++)

14 $Stmt{b}

15 } when i1.name == i2.name && i1.name == i3.name ->

16 forIterStmt(t, i1, n, stmtToIterStmt(b))

17 | s -> stmtIterStmt(new(s))

18 end;

19 }

Figure 13: An example use of concrete object syntax patterns in the ableC-Halide extension, translating host Stmt trees into IterStmts. See
ableC-halide/abstractsyntax/IterStmt.sv
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Recognizing and extracting the components of properly-formed for loops is possible with explicit pattern match-
ing, but requires the specification of large and verbose patterns quite similar to the cumbersome and verbose expres-
sions for constructing trees presented previously. An alternative is to use concrete syntax in pattern matching, as
shown in Figure 13 on lines lines 9—15. Patterns may be specified using quote productions (such as ableC_Stmt)
that match on the corresponding term, analogous to quote productions for tree construction.

Pattern anti-quote productions allow for regular Silver patterns to be written within object-language patterns, in
much the same way as regular anti-quote productions allow for the embedding of Silver expressions within object-
language literals. Note that pattern and expression antiquote productions can both syntactically occur within a frag-
ment of object-language code, regardless of whether the fragment is intended to be a pattern or an expression. As the
same syntax is used for both types of antiquotation, this results in an ambiguity, resolved through Copper’s features
for explicit lexical disambiguation. Alternatively a different syntax for pattern antiquotation could have been chosen,
such as @Expr{...}

The pattern translation process is quite similar to that used in term construction as seen in Figure 9, except that
production, constant, and list AST values are translated into Silver’s abstract syntax for patterns that match these
values, rather than their construction expressions.

Some object languages have productions in their abstract syntax that further translate or de-sugar down to core
features of the language. For example in ableC, the parser constructs an abstract syntax tree containing variants of
operator productions that may be overloaded for extension types, which are translated (through forwarding) down to
different type-specific productions. With concrete object syntax constructs, such forwarding productions can show up
in the tree that gets reflected and translated. This isn’t an issue for tree construction as these productions will still be
translated down properly, but this does present an issue for pattern matching as a pattern for the original production
will fail to match an already-translated variant. 8

This can be remedied by introducing additional concrete syntax that directly constructs the non-forwarding vari-
ants of host language productions. This may conflict with the regular concrete syntax for these operators, but conflicts
can be disambiguated when building the extended form of Silver through a mechanism of Copper known as trans-
parent prefixes [21]. For example on line 13 of Figure 13, the (non-forwarding) variants of the < and ++ language
operators corresponding to host-language types are used by specifying the prefix host::. Note that these variants
could also be used in tree construction to build trees specific to host language types, however doing so is not particu-
larly useful as the overloaded variants should translate in the same way.

5.4. Additional Applications and the Issue of Bootstrapping

Utilizing additional extensions. In the discussion above, the object-language for which concrete syntax was used was
the C host language in the ableC system, for the case when new extensions used this to specify how their extension
constructs were to be translated down to plain C code. Sometimes, however, language extensions find it useful to
build on (that is, translate down to) an extended version of C instead of plain C; both ableC and the approach to
object-language concrete syntax support this. An example of this can be seen in the extension that adds inductive data
types and pattern matching [6] of them as found in languages such as OCaml and Haskell. A further extension (e.g.
one for unifying terms represented by inductive data types9) may wish to construct a translation syntax tree containing
match statements from the data type extension, and would like to do so using concrete syntax literals.

There are two steps needed to achieve this. First, the extended Silver compiler needs to be built such that additional
object language extensions, such as the inductive data type extension, are included in the parser, and they are then
able to use the extension concrete syntax. Next, anti-quote notations could be used in pattern concrete syntax if the
developer of the inductive data type extension provides quote and anti-quote productions for the Pattern nonterminal
that it has introduced. These are similar in style to those for expressions seen previously in Figure 10.

Other extensible and monolithic object languages. Although this discussion has focused on Silver-ableC, any object-
language implemented in Silver can easily benefit from the ability to write concrete syntax for constructing trees and

7 See silver/metatranslation/Translation.sv in the Silver grammar.
8Note that the opposite is not the case; pattern matching does look through forwarding, falling back to match against forwarded-to trees.
9Available at https://github.com/melt-umn/ableC-unification, archived at https://doi.org/10.13020/D6VQ25.
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patterns. Adapting this for another object-language amounts to specifying the concrete and abstract (Figure 10)
syntax for quote and antiquote productions for the language, then importing this grammar and the concrete syntax
of the object-language into a new extended instantiation of Silver. Additional languages for which object-language
concrete syntax extensions have been implemented include Silver itself, to enable the easier development of further
extensions to Silver, and the AST nonterminal, to provide less verbose syntax for construction of, and pattern matching
on AST values. We have also added object-language concrete syntax to the Silver implementation of Oberon0, the
language of the 2011 LDTA Tool Challenge [22]. One use here was in the implementation of for-loops as syntactic
sugar that translates to while-loops10.

The Oberon0 specification differs from ableC in that it was not written with the intention of being a host language
to which various extension would be added. This raises an interesting problem: to build an extended Silver compiler
(either Silver-ableC or Silver for Oberon0) a non-extended version of Silver must process at least the concrete
syntax specifications of the object language and, thus, these object language specifications cannot contain any uses
of the extension to provide concrete syntax for that object language. In extensible languages like ableC this is not an
issue as the extensions that require object-language concrete syntax are separate from the host-language defining the
syntax; however, this is not necessarily the case in monolithic languages such as Oberon0. The preferred solution for
monolithic languages is to separate the implementation into a portion defining the core concrete and abstract syntax
of the language, not permitted to use concrete syntax literals, and separate modules containing the implementations
of additional features. The extended meta-language compiler can then be built using only the core language, and the
result is used to build the complete object-language compiler. Note that in the case of our Oberon0 implementation,
the required separation of modules happened to already exist. While this refactoring should be relatively simple
for other monolithic language specifications, it is an unfortunate characteristic of our approach that this might be
necessary.

Similar considerations must be taken for object-language extensions that wish to use the concrete syntax of other
extensions. An extension cannot easily use its own concrete syntax for tree construction, but hierarchies of extensions
can exist that each depend on the previous in this way. A downside of this state of affairs is that multiple compilation
passes are required to initially build the fully-extended meta-language compiler, each pass including additional exten-
sions in the parser. For example our pre-built distribution of Silver-ableC, containing a number of ableC extensions
generally useful in building further extensions, requires 3 passes.

5.5. Parsing and Context-Aware Scanning
Parsing Silver specifications that contain concrete syntax from the object language, such as C, does impose some

challenges to traditional parsing and scanning techniques. For example, in scanning the text in Figure 2, the curly
brackets on lines 3 and 13 must be recognized as symbols from the Silver specification and those on lines 8 and 10
must be recognized as coming from the ableC specification. This challenge is the same one faced in by extensible
languages in which symbols from different extensions, with overlapping regular expressions, must be distinguished.
Silver solves this problem by using context-aware scanning [13] as implemented in the underlying Copper parser and
scanner generator. This approach uses the state of the generated LR parser to determine the set of terminal symbols
that are valid in the current parse state; these are the ones with a shift, reduce, or accept action. The scanner will
then only return tokens from this set. While in a Silver-specific parse state, curly brackets are recognized as Silver
terminal symbols, but in an ableC parse state they are recognized as terminals from that language. Furthermore, the
quote-productions that provide the ableC_Expr syntax (line 6 in Figure 2) form a extension to Silver and the anti-
quote productions that provide the $Expr and $TypeExpr syntax inside the C code (lines 7—9) form an extension
to ableC. Both of these extensions satisfy the composabilty criteria of the modular determinism analysis [21] and are
thus compatible with other independently-developed extensions that also satisfy the criteria. This compatibility means
that the composed context-free grammars are LALR(1) and there are no lexical ambiguities in the lexical specification.

5.6. Discussion
In a non-trivial mainstream language such as C, the use of concrete syntax over abstract syntax is a tremendous

saver of time and effort. Trees can be specified directly and any syntax errors in the object-language concrete syntax

10https://github.com/melt-umn/Oberon0/blob/v0.1.1/grammars/edu.umn.cs.melt.Oberon0/constructs/controlFlow/

abstractSyntax/ForLoop.sv
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1 template <a> a min(a x, a y) {

2 if (x < y) return y;

3 else return x;

4 }

5 ...

6 min <int >(i, j)

=⇒

1 int _template_min_int(int x, int y) {

2 if (x < y) return y;

3 else return x;

4 }

5 ...

6 _template_min_int(i, j)

Figure 14: Instantiating an ableC C++-style template extension (left) into plain C code (right) by substitution.

are detected when the language specification is compiled, with error messages pointing to the precise location in the
Silver specification11. We implemented several extensions to ableC using this new approach, including an embedding
of Prolog and a supporting unification framework. These generate quite a bit of plain C code and we may not have at-
tempted these without being able to use of the Silver-ableC extension to Silver. We did modify the implementation 12

to count the number of characters that are saved by writing in the object-language concrete syntax (Figure 2) instead
of the abstract (Figure 3.) This was done by pretty-printing the abstract syntax generated as the forward of all quote
productions, and comparing it with the size of the quoted syntax literals. For all extensions that use Silver-ableC
these savings are over 775K characters (or almost 18K lines of code based on pretty-printing the generated code with
a maximum line length of 80). This is about 40% of the would-be code base size of 1.92M characters. Note that some
of this saving came from writing new extensions that used this feature from the beginning, not from removing and
replacing specifications with the concrete syntax extension.

The extension to Silver for using Oberon0 concrete syntax in its specification was less dramatic since complex
syntax trees are only built directly in a few places, such as in de-sugaring for-loops into while-loops. While the use
of this feature saved a few lines (11, in fact) in the Oberon0 specification, the specification of the extension used 224
lines, resulting in a net increase in the size of the overall specification. Thus the overhead of writing such an extension
to Silver must be balanced with how much it will be used.

6. Reflection for Term Rewriting

A common problem with processing complex tree-structured data is to update or substitute the value of a particular
sub-term, without introducing large amounts of boilerplate. This sort of problem may arise in a compiler when
implementing a feature such as C++ templates, in which we wish to replace all occurrences of a name with the term
for a particular type or expression. An example of this transformation (shown in Figure 14) comes from ableC in
which a C++-style template extension (left) is instantiated to plain C code (right). This sort of transformation may be
implemented using higher-order attributes, however doing so would require a large amount of boilerplate specification,
specifically, writing an attribute equation for each production in the grammar. More efficient approaches, based on type
classes, have also been proposed [4], but in a system with a less sophisticated type system, such as Silver, substitution
may also be expressed concisely through the use of reflection. In this section we develop a general strategy-based
term-rewriting extension to Silver based on reflection. This is used here to solve the substitution problem in ableC
and to implement a λ-calculus evaluator based on a previous solution encoded in Stratego [10].

It is also possible to directly implement substitution as a library using reflection. In the earlier conference version
of this paper [9] we presented an approach that works by representing substitutions as a list of functions (of type
Maybe<AST> ::= AST), each encoding an attempted transformation on a sub-term. However this approach has
several drawbacks:

• Complexity: Specifying a new kind of substitution requires either matching directly on a complex AST to
determine whether the term is to be substituted, or inefficiently attempting to reify and match on every sub-
term.

11 The source location of a tree in Silver is represented as an annotation. These are extra pieces of information attached to syntax tree nodes, but
are omitted here for clarity as they are handled essentially the same as regular children. Thus location information is preserved in a reflected AST.

12 Available at https://github.com/melt-umn/silver/tree/concrete-object-syntax-stats.
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1 function substTypeExprInDcl

2 Decl ::= n:: String ty:: TypeExpr d::Decl

3 {

4 local substType :: Strategy =

5 allTopDown(

6 rule on TypeExpr of

7 | typedefTypeExpr(_, n1) when n1.name == n -> ty

8 end);

9 return

10 case rewriteWith(substType , d) of

11 | just(d1) -> d1

12 | nothing () -> error("This strategy should always succeed")

13 end;

14 }

Figure 15: A hypothetical function to replace a named type with a type expression within a declaration. The actual implementation of templates is
more complex; see ableC-templating/abstractsyntax

• Lack of generality: Some kinds of transformations, such as capture-avoiding substitution, require more detailed
control over the traversal order.

• Lack of introspection: Functions are “opaque”, thus we can’t print out substitutions for debugging, serialize
them to a file, etc.

Term rewriting [23] is a powerful formalism for generic program transformations that avoids these problems.
The Stratego [24] rewriting system popularized the notion of rewriting strategies, a domain-specific language of
expressions for specifying term transformations. Strategies are built from atomic rewrite rules and a number of
combinators for controlling the traversal order, and when applied to a term can either succeed with a new term or fail
with no value.

Using reflection, we can add features for strategic term rewriting to Silver, taking heavy inspiration from Stratego.
This rewriting system can then be used to solve the substitution problem much more elegantly. Figure 15 shows a
(simplified) example addressing the template substitution problem from Figure 14, in which we wish to replace names
(parsed as references to typedef types) with type expressions. Here we define a strategy (lines 4—8) that performs a
top-down traversal and tries to replace each matching type expression with a new type expression (ty). This strategy
is applied to a tree (line 10) resulting in a Maybe value of just a successful result or nothing in case of failure, however
the allTopDown strategy is defined in such a way that its application will never fail. The actual implementation of
substitution used by the template extension is more complex, constructing strategies separately from where they are
applied, and substituting multiple template parameters in the same rewriting pass.

The term rewriting feature of Silver is divided into two components. First we will look at how reflection may
be used to implement a Silver library for representing rewriting strategies and applying them to terms (Section 6.1.)
We will then present a separate set of language extensions to Silver that provide more convenient (and type-safe)
syntax for specifying and applying strategies (Section 6.2), also examining uses of reflection in the extensions’ im-
plementation. Finally we will explore some more advanced features of rewriting, in conjunction with larger example
applications of the rewriting system (Sections 6.3 and 6.4.)

6.1. Design of the Rewriting Library

In examining the design of the rewriting library, we will use as an example a bottom-up replacement of all oc-
currences of x + 0 with x for any sub-expression x. This transformation is specified by the elimPlusZero strategy
(to be discussed later); we will first analyze the application of this strategy to an Expr term, as shown in Figure 16.
Rewriting is done on terms represented as AST values; the term e being rewritten is first reflected to an AST (line 4) and
the final AST result is reified (line 9.) Applying a strategy to a term may either succeed with a new resulting term or
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1 global elimPlusZero :: Strategy = ...; -- see Figure 17

2 function elimPlusZeroInExpr

3 Expr ::= e::Expr

4 { local a :: AST = reflect(e);

5 return

6 case decorate elimPlusZero with {term = a;}. result of

7 | nothing () -> error("This strategy should always succeed")

8 | just(aRes) ->

9 case reify(aRes) of

10 | left(msg) -> error("Rewriting produced ill -sorted AST: " ++ msg)

11 | right(res) -> res

12 end

13 end;

14 }

Figure 16: The application of strategy elimPlusZero to perform a bottom-up rewrite of x + 0→ x on ableC Expr syntax trees and its definition.

fail with no value. However this example strategy should never fail when applied (line 7), as with the earlier example
of type substitution (line 12 of Figure 15.)

1 global elimPlusZero :: Strategy =

2 sequence(

3 all(elimPlusZero),

4 choice(

5 -- addExpr(a, intExpr (0)) -> a

6 rewriteRule(

7 prodCallASTPattern(

8 "ableC:addExpr",

9 consASTPattern(

10 varASTPattern("a"),

11 consASTPattern(

12 prodCallASTPattern(

13 "ableC:intExpr",

14 consASTPattern(

15 intASTPattern (0),

16 nilASTPattern ())),

17 nilASTPattern ()))) ,

18 varASTExpr("a")),

19 id ()));

Figure 17: The definition of a strategy to perform a bottom-up rewrite of
x + 0→ x on ableC syntax trees.

Strategies such as elimPlusZero, defined in
Figure 17, are represented by the Strategy nonter-
minal. This is defined on line 3 of Figure 18, which
contains part of the term rewriting library. Two at-
tributes, term and result on lines 4—5, on this
nonterminal are used to apply a strategy to a term.
The term attribute passes the AST to be rewritten
down the Strategy tree, while result passes back
up the tree either just a successfully-rewritten AST or
nothing in case of a failure. Thus to apply a strategy
to an AST value, the Strategy is decorated with the
AST as the inherited value for term, and the result
is accessed on the resulting decorated Strategy tree
(line 6 of Figure 16.)

As with Stratego, basic strategies are built from
a number of combinator productions. An example
of strategy construction using them is shown in Fig-
ure 17 for the definition of the elimPlusZero strat-
egy. These are listed in Figure 18 and discussed be-
low. The id() strategy (line 7 of Figure 18) always
succeeds and returns as its result (in the synthesized
result attribute) the input term passed in as the in-
herited attribute term. The fail() (line 11) strategy
always fails by returning a nothing() value, ignor-
ing the input term. The choice (line 15) strategy attempt to rewrite the term with the first strategy s1 and if this
fails,13 uses the result of trying with the second strategy s2. The sequence (line 27) strategy attempts the rewriting
with two strategies in sequence. If the first succeeds, then the result on s2 is returned. The input term to s2 is only
accessed if s1 succeeds. Thus the (standard library) fromJust attribute that unwraps the value under a just in a

13 Our version of choice is deterministic (it does not backtrack and try the try operand if a failure occurs later on after the left operand orig-
inally succeeded.) Stratego offers both deterministic and nondeterministic choice strategy constructors, however nondeterministic choice is not
recommended for use in practice and is mainly used in the translations of other strategy primitives.
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Maybe value (and raises and error in the case of a nothing value) will always succeed here. Note that this idiom is
commonly used and is seen in additional examples in the paper.

Basic strategies. The most fundamental type of strategy is the rewrite rule, which matches a pattern against the current
term and either succeeds and replaces the term with a new term, or fails and does nothing. Rule strategies are built by
the rewriteRule constructor (line 39), parameterized by a pattern and a result expression that should be evaluated
to replace the term when it matches the pattern. Note that the strategies containing these patterns and expressions are
built at runtime, and must operate on the generic AST representation of values. So instead of compiling these patterns
and expressions like the ones built into Silver, we have effectively built an interpreter that operates using AST values
at runtime.

While we could represent the components of rewriteRule by Silver’s own Pattern and Expr nonterminals,
for a few idiosyncratic reasons14 it is simpler to define separate run-time representations. These representations are
provided by the ASTPattern and ASTExpr nonterminals, which have productions corresponding to every basic type
of pattern and expression in Silver. In Figure 17, the rule’s pattern can be seen on lines 7—17, and the expression
on line 18. These correspond to matching the term against the Silver pattern addExpr(a, intExpr(0)) and, if
successful, replacing the term with the value of a.

A definition of the ASTPattern nonterminal and some of it’s productions are given in Figure 19. When eval-
uating a rewriteRule strategy, the pattern must first be unified with the current term. This is done by passing
the term’s AST value down the ASTPattern tree using the inherited matchWith attribute. If the pattern does not
match, the substitution synthesized attribute has the value nothing(). If it does match then a substitution
(wrapped in a just) matching names to terms, represented as a list of String and AST pairs is computed. The
prodCallASTPattern production checks that it is being matched against a nonterminalAST term with the cor-
rect production name (line 13), before recursively supplying its children with the appropriate child AST values of the
given AST (line 9.) Literal patterns such as integerASTPattern must simply check for equality with the AST given
by matchWith (line 23), while variable and wildcard patterns successfully match against anything. When matched
against, varASTPattern will construct a substitution consisting of the variable name and the given AST (line 29.)

When the match succeeds the rule’s expression must then be evaluated using the substitution; this is done with the
inherited substitutionEnv and synthesized value attributes on the ASTExpr nonterminal, as shown in Figure 20.
On prodCallASTExpr a nonterminalAST is built from the recursive results of evaluating the children in the same
substitution environment (line 11.) Evaluating a varASTExpr requires looking up a name from the environment
(line 24), and operators such as addition require matching on the values of the children (lines 36—40.) Note that
a fatal run-time error is raised if an unbound variable or type error is encountered; these are considered bugs in the
definition of the strategy, rather than cases that might result in a rewriting failure such as rule failing to match.

Generic traversal strategies. Recursive transformations across a tree may be accomplished using generic traversal
strategies such as all, some and one. For example, in Figure 17, the all strategy is used to apply elimPlusZero to
all children of the current term, succeeding only in case of success for all children, on line 3; note that this strategy
is constructed recursively as an infinite term by taking advantage of Silver’s laziness. Similarly, some succeeds if
at least one child succeeds, and one applies its argument to one child at a time and succeeds after the first child’s
success. This is done in a deterministic fashion - one does not backtrack and try rewriting additional children if a
failure occurs later on.

The implementations of these strategies are all quite similar, but the implementation of all can be seen in Fig-
ure 21. Here instead of threading the term through the strategy with attributes, we pass the strategy into the term with
the givenStrategy inherited attribute. This is because traversal strategies must behave differently depending on the
structure of the term, as opposed to strategies such as choice and sequence that only affect the control flow and do
not inspect the current term.

Most AST productions, such as integerAST have no AST children; for these productions successfully applying
a strategy to all children (of which there are none) amounts to doing nothing. This default behavior is specified on

14 Some of the Silver abstract syntax uses forwarding to de-sugar constructs to a core syntax, and this process requires providing inherited
attributes to that syntax. Additionally terms in Silver’s syntax trees are annotated with information about the locations from which they were
parsed in the source file, which is not required at runtime. This makes the chosen approach easier to manage.
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1 grammar silver:rewrite;

2
3 nonterminal Strategy with term , result;

4 inherited attribute term::AST;

5 synthesized attribute result ::Maybe <AST >;

6
7 abstract production id

8 top:: Strategy ::=

9 { top.result = just(top.term); }

10
11 abstract production fail

12 top:: Strategy ::=

13 { top.result = nothing (); }

14
15 abstract production choice

16 top:: Strategy ::= s1:: Strategy s2:: Strategy

17 {

18 s1.term = top.term;

19 s2.term = top.term;

20 top.result =

21 case s1.result of

22 | just(a) -> just(a)

23 | nothing () -> s2.result

24 end;

25 }

26
27 abstract production sequence

28 top:: Strategy ::= s1:: Strategy s2:: Strategy

29 {

30 s1.term = top.term;

31 s2.term = s1.result.fromJust;

32 top.result =

33 case s1.result of

34 | just(_) -> s2.result

35 | nothing () -> nothing ()

36 end;

37 }

38
39 abstract production rewriteRule

40 top:: Strategy ::= pattern :: ASTPattern result :: ASTExpr

41 {

42 pattern.matchWith = top.term;

43 result.substitutionEnv = pattern.substitution.fromJust;

44 top.result =

45 case pattern.substitution of

46 | just(_) -> just(result.value)

47 | nothing () -> nothing ()

48 end;

49 }

Figure 18: The implementations of some of the basic strategy constructors. See silver/rewrite/Strategy.sv
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1 grammar silver:rewrite;

2 nonterminal ASTPattern with matchWith <AST >, substitution;

3 inherited attribute matchWith <a>::a;

4 synthesized attribute substitution ::Maybe <[Pair <String AST >]>;

5
6 abstract production prodCallASTPattern

7 top:: ASTPattern ::= prodName :: String children :: ASTPatterns

8 {

9 children.matchWith = -- Only demanded when we have a nonterminalAST

10 case top.matchWith of nonterminalAST(_, c) -> c end;

11 top.substitution =

12 case top.matchWith of

13 | nonterminalAST(otherProdName , _) when prodName == otherProdName ->

14 just(childrenSubstitution );

15 | _ -> nothing ()

16 end;

17 }

18 abstract production integerASTPattern

19 top:: ASTPattern ::= i:: Integer

20 {

21 top.substitution =

22 case top.matchWith of

23 | integerAST(i1) when i == i1 -> just ([])

24 | _ -> nothing ()

25 end;

26 }

27 abstract production varASTPattern

28 top:: ASTPattern ::= n:: String

29 { top.substitution = just([pair(n, top.matchWith )]); }

30
31 abstract production wildASTPattern

32 top:: ASTPattern ::=

33 { top.substitution = just ([]); }

Figure 19: Some of the productions and attribute equations for ASTPattern. See silver/rewrite/ASTPattern.sv

line 17 using a aspect default production, indicating that every production on AST lacking an equation for allResult
should define its value to be just the AST value unchanged. On nonterminalAST, we thread the strategy down to
the children and attempt to apply it to each child (lines 30—45.) If all succeed, we return just the rewritten children
wrapped in nonterminalAST with the same production, or otherwise fail with nothing (lines 24—27.)

6.2. Extensions to Silver for Rewriting

As seen above, using the term rewriting system through the Silver library API is verbose and provides no assur-
ances of type-safety with respect to the syntax of the object language. Since Silver is itself an extensible language we
have extended it with new syntax and static semantics to address these concerns.

6.2.1. Infix operators and their use in library strategy productions
One such useful extension provides new infix operators to make strategy construction easier. The s1 <+ s2 infix

operator is an alternative notation for choice(s1, s2), the same as in Stratego. Similarly, the s1 <* s2 infix
operator is an alternative notation for sequence(s1, s2). This differs from the ; sequence operator syntax provided
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1 grammar silver:rewrite;

2
3 nonterminal ASTExpr with substitutionEnv , value;

4 inherited attribute substitutionEnv ::[Pair <String AST >];

5 synthesized attribute value ::AST;

6
7 abstract production prodCallASTExpr

8 top:: ASTExpr ::= prodName :: String children :: ASTExprs

9 {

10 children.substitutionEnv = top.substitutionEnv;

11 top.value = nonterminalAST(prodName , children.values );

12 }

13
14 abstract production integerASTExpr

15 top:: ASTExpr ::= i:: Integer

16 {

17 top.value = integerAST(i);

18 }

19
20 abstract production varASTExpr

21 top:: ASTExpr ::= n:: String

22 {

23 top.value =

24 case lookupBy(stringEq , n, top.substitutionEnv) of

25 | just(a) -> a

26 | nothing () -> error("Unbound variable " ++ n),

27 end;

28 }

29
30 abstract production plusASTExpr

31 top:: ASTExpr ::= a:: ASTExpr b:: ASTExpr

32 {

33 a.substitutionEnv = top.substitutionEnv;

34 b.substitutionEnv = top.substitutionEnv;

35 top.value =

36 case a.value , b.value of

37 | integerAST(x), integerAST(y) -> integerAST(x + y)

38 | floatAST(x), floatAST(y) -> floatAST(x + y)

39 | _, _ -> error("Invalid values")

40 end;

41 }

42
43 -- Represents other kinds of literals , e.g. functions

44 abstract production anyASTExpr

45 top:: ASTExpr ::= x::a

46 {

47 top.value = reflect(x);

48 }

Figure 20: Some of the productions and attribute equations for ASTExpr. See silver/rewrite/ASTExpr.sv
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1 grammar silver:rewrite;

2
3 abstract production all

4 top:: Strategy ::= s:: Strategy

5 {

6 local term::AST = top.term;

7 term.givenStrategy = s;

8 top.result = term.allResult;

9 }

10
11 inherited attribute givenStrategy :: Strategy occurs on AST , ASTs;

12 synthesized attribute allResult <a>::Maybe <a>;

13 attribute allResult <AST > occurs on AST;

14
15 aspect default production

16 top::AST ::=

17 { top.allResult = just(top); }

18
19 aspect production nonterminalAST

20 top::AST ::= prodName :: String children ::ASTs

21 {

22 children.givenStrategy = top.givenStrategy;

23 top.allResult =

24 case children.allResult of

25 | just(a) -> just(nonterminalAST(prodName , a))

26 | nothing () -> nothing ()

27 end;

28 }

29
30 attribute allResult <ASTs > occurs on ASTs;

31 aspect production consAST

32 top::ASTs ::= h::AST t::ASTs

33 {

34 t.givenStrategy = top.givenStrategy;

35 top.allResult =

36 case decorate top.givenStrategy with { term = h; }.result ,

37 t.allResult of

38 | just(hResult), just(tResult) -> consAST(hResult , tResult)

39 | _, _ -> nothing ()

40 end;

41 }

42
43 aspect production nilAST

44 top::ASTs ::=

45 { top.allResult = just(top); }

Figure 21: A portion of the implementation of the all traversal strategy. Equations for listAST are hidden for clarity.
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by Stratego, as ; in Silver is used to terminate expressions and would be syntactically ambiguous; instead <* is the
sequence operator used in the strategic rewriting portion of the Kiama [1] language processing system. Example uses
of these operators can be found in the rewriting library, where a number of commonly-useful patterns are included as
Strategy productions that translate to their implementations:

• The try :: (Strategy ::= s::Strategy) strategy translates to s <+ id(); it simply tries applying its
parameter strategy, but always succeeds.

• repeat :: (Strategy ::= s::Strategy) translates to try(s <* repeat(s)); this strategy tries apply-
ing its argument repeatedly until the first failure, and then succeeds.

• bottomUp :: (Strategy ::= s::Strategy) translates to all(bottomUp(s)) <* s; it applies a strategy
once to every sub-term of the term, beginning from the leaf members of the term, and fails if any sub-term
application fails. A similar topDown strategy is also provided.

• allTopDown :: (Strategy ::= s::Strategy) translates to s <+ all(allTopDown(s)); it applies a
strategy once to every sub-term of the term, beginning from the top term, but stopping in a sub-term after
the first success. This strategy never fails. A similar allBottomUp strategy is also provided.

• innermost :: (Strategy ::= s::Strategy) translates to bottomUp(try(s <* innermost(s))); it
repeatedly applies a strategy to the innermost, leftmost expression in a term, only moving up the tree once all
sub-terms are fully reduced.

• The rec :: (Strategy ::= ctr::(Strategy ::= Strategy)) strategy is useful in constructing recur-
sive strategies in-line. When given a function ctr (usually defined as a lambda), it forwards to the result of
applying ctr with itself as the parameter. Recursive strategies can also be defined directly through the use of
laziness, as seen in some of the above utility strategies such as repeat, or in Figure 17 on line 3.

Using these library strategies, the elimPlusZero strategy from Figure 17 could be defined as

global elimPlusZero::Strategy = bottomUp(try(rewriteRule(..., ...)));

instead of directly specifying a recursive traversal.
We also provide convenience syntax rewriteWith(STRATEGY, TERM) as a shorthand for applying a strategy

to a term (lines 6—13 of Figure 16.) This syntax was also previously seen on line 10 of Figure 15 to apply the
substType strategy to a TypeExpr term.

6.2.2. Specifying rewrite rules
While it is possible to directly construct rule strategies using rewriteRule, doing so has a number of drawbacks:

such strategies are verbose and hard to read (as seen in the definition of elimPlusZero in Figure 17) as well as
lacking any type checking. Type errors can arise in a number of ways when creating ASTExprs and ASTPatterns
directly - the types of the rule and pattern in a rule can differ, a production can be called with the wrong number or
type of arguments, an undefined variable may be referenced, etc.

These problems are addressed by an additional language extension to Silver, providing better syntax for specifying
rewrite rules. This extension reuses the syntax and semantics of ordinary pattern matching in Silver for parsing
and type checking, but transforms the component patterns and expressions into ASTPattern and ASTExpr trees for
evaluation. For example, the rewriteRule on lines 6—18 of Figure 17 can be replaced by

rule on Expr of addExpr(a, intExpr(0)) -> a end

While this instance of the rule construct provides only one rewrite rule for expressions it does allow a sequence
of rewrite rules to be specified over a nonterminal type, just like the clauses in a typical Silver case expression for
matching patterns against a value. More generally, the expression

rule on TYPE of MATCH_RULES end
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1 grammar silver:extension:rewriting;

2 imports silver:metatranslation;

3 concrete production ruleExpr

4 top::Expr ::= ’rule’ ’on’ ty:: TypeExpr ’of’ ’|’ ml:: MatchRuleList ’end’

5 { forwards to reflect(ml.transform ). translation; }

6
7 synthesized attribute transform <a>::a;

8
9 attribute transform <Strategy > occurs on MatchRuleList , MatchRule;

10 aspect production oneMatchRule

11 top:: MatchRuleList ::= m:: MatchRule

12 { top.transform = m.transform; }

13
14 aspect production consMatchRule

15 top:: MatchRuleList ::= h:: MatchRule ’|’ t:: MatchRuleList

16 { top.transform = h.transform <+ t.transform; }

17
18 aspect production matchRule

19 top:: MatchRule ::= pt:: Pattern ’->’ e::Expr

20 { top.transform = rewriteRule(pt.transform , e.transform ); }

21
22 attribute transform <ASTPattern > occurs on Pattern;

23 aspect production prodPattern

24 top:: Pattern ::= prod:: QualifiedName ’(’ ps:: Patterns ’)’

25 { top.transform = prodCallASTPattern(prod.fullName , ps.transform ); }

26
27 aspect production intPattern

28 top:: Pattern ::= num:: Int_t

29 { top.transform = integerASTPattern(toInteger(num.lexeme )); }

30
31 aspect production varPattern

32 top:: Pattern ::= n::Name

33 { top.transform = varASTPattern(n.name); }

34
35 attribute transform <ASTExpr > occurs on Expr;

36 aspect production productionCall

37 top::Expr ::= prod:: QualifiedName es:: Decorated AppExprs

38 { top.transform = prodCallASTExpr(prod.fullName , es.transform ); }

39
40 aspect production intConst

41 top::Expr ::= i:: Int_t

42 { top.transform = integerASTExpr(toInteger(i.lexeme )); }

43
44 aspect production lexicalLocalReference

45 top::Expr ::= n::Name

46 { top.transform = varASTExpr(n.name); }

47
48 aspect production plus

49 top::Expr ::= e1::Expr ’+’ e2::Expr

50 { top.transform = plusASTExpr(e1.transform , e2.transform ); }

Figure 22: A (simplified) portion of the implementation for the rule strategy constructor. All code related to type checking is omitted for clarity.
See silver/extension/rewriting 28
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constructs a strategy that, when applied to a term of the specified type, will perform the first rewrite corresponding to
a succeeding match rule.

A simplified implementation of rule is shown in Figure 22. The production for a rule, ruleExpr, specifies the
type (ty) of term to which the collection of rewrite rules (ml, of type MatchRuleList) will be applied. The nontermi-
nal MatchRuleList is used in the core Silver pattern matching construct and derives a list (via oneMatchRule and
consMatchRule productions) of the clause form (matchRule) that is reused here for term rewriting. By the concrete
syntax of pattern matching and expressions any valid Silver pattern or expression can be written in a rule body.
Each match rule then becomes a rewriteRule strategy (line 20). The rules in the sequence are combined, in the
transform attribute on the aspect productions oneMatchRule and consMatchRule, into a single strategy using the
choice combinator (line 16.) Patterns and expressions are also transformed into the corresponding ASTPatterns and
ASTExprs. For each production that would ordinarily be compiled to operate or match on an ordinary Silver value,
we instead transform it to the equivalent ASTPattern or ASTExpr that will be interpreted on an AST value at run
time. For example a Silver prodPattern becomes a prodCallASTPattern (line 25), and a Silver plus expression
becomes a plusASTExpr (line 50.)

The top-level ruleExpr production (line 3) must forward to a Silver Expr that constructs the desired Strategy

term value when the program is run, however the translation code in Figure 22 constructs this value at compile time.
We can perform the required meta-translation using reflection by reusing the machinery developed for translating
embedded object-language literals into meta-language code, from Section 5. This is done on line 5 by reflecting the
Strategy constructed by ml.transform into an AST, and computing the translation attribute from the meta-
translation library on the result to obtain the desired Silver Expr term.

Note that we could have alternatively had transform directly build the Silver Expr needed to construct the
desired Strategys, ASTPatterns and ASTExprs. However this implementation would be less maintainable as type
errors in the translation would show up when using Silver to build programs including rule expressions, rather than
immediately when building the Silver compiler.

Lambda calculus example. A more interesting example involving the use of rule is given in Figure 23. This is
an implementation of the λ-calculus15 based on an implementation of the same in Stratego [10], with a rule for let-
elimination (line 38) taken from a similar example in Kiama 16. Lambda abstraction (line 10), application (line 14),
and variable (line 6) terms are represented here as productions of a Silver nonterminal Term. The synthesized attribute
freevars collects the free variables in a Term.

We can use strategies to express evaluation via β-reduction of λ-terms (line 24.) This involves performing a
capture-avoiding substitution over a term. Performing this sort of operation with rewriting presents a challenge, as
unlike the ableC template extension, we cannot just perform a single top-down pass that replaces all instances of the
variable.

Instead, following the Stratego specification, we can introduce an additional kind of term, letT (line 18, named
as such to avoid conflicting with the let keyword in Silver), that only exists during the rewriting process. Let terms
are introduced by β-reduction (line 24) of the application of an abstraction. Additional rules (line 30) distribute the
introduced lets, pushing them down until reaching a variable or an abstraction that shadows the bound name. This can
be seen, for example, on line 34 where the letT term is pushed down into a app term.

This example utilizes several additional Silver features that must be translated into Strategy, ASTPattern,
and ASTExpr values. Guarded when patterns evaluate an expression to determine whether the pattern matches. The
translation of these involves the require strategy, shown in Figure 24. Like rewriteRule, require matches the
term against a pattern and (if the match succeeds) evaluates an expression in the resulting substitution environment.
The result of this expression should be a Boolean; if true the strategy succeeds and does not modify the term, otherwise
the strategy fails. The require strategy can then be used in the translation of when, by producing a sequence of a
require and a rewriteRule, both with the same pattern - thus the match is performed twice. For example,

rule on Integer of a when a != 42 -> a + 1 end

15 Version 0.1.1, available at http://melt.cs.umn.edu/ and https://github.com/melt-umn/lambda-calculus, archived at https:
//doi.org/10.13020/xcfv-5k29.

16 https://github.com/inkytonik/kiama/blob/master/extras/src/test/scala/org/bitbucket/inkytonik/kiama/

example/lambda/Lambda.scala
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1 grammar lambdacalc;

2
3 nonterminal Term with freeVars;

4 synthesized attribute freeVars ::[ String ];

5
6 abstract production var

7 top::Term ::= id:: String

8 { top.freeVars = [id]; }

9
10 abstract production abs

11 top::Term ::= id:: String body::Term

12 { top.freeVars = removeBy(stringEq , id, body.freeVars ); }

13
14 abstract production app

15 top::Term ::= t1::Term t2::Term

16 { top.freeVars = unionBy(stringEq , t1.freeVars , t2.freeVars ); }

17
18 abstract production letT -- Name avoids conflict with Silver let keyword

19 top::Term ::= id:: String t::Term body::Term

20 { top.freeVars =

21 unionBy(stringEq , t.freeVars , removeBy(stringEq , id , body.freeVars )); }

22
23 -- Beta reduction with explicit substitution

24 global beta:: Strategy =

25 rule on Term of

26 | app(abs(x, e1), e2) -> letT(x, e2, e1)

27 end;

28
29 -- Let distribution

30 global letDist :: Strategy =

31 rule on Term of

32 | letT(x, e, var(y)) when x == y -> e

33 | letT(x, e, var(y)) -> var(y)

34 | letT(x, e0, app(e1, e2)) -> app(letT(x, e0, e1), letT(x, e0, e2))

35 | letT(x, e1, abs(y, e2)) ->

36 let z:: String = freshVar ()

37 in abs(z, letT(x, e1 , letT(y, var(z), e2))) end

38 | letT(x, _, e) when !containsBy(stringEq , x, e.freeVars) -> e

39 end;

40
41 -- Full eager evaluation , including reduction inside lambdas

42 global evalInnermost :: Strategy = innermost(beta <+ letDist );

Figure 23: An implementation of the λ-calculus based on rewriting. See lambdacalc/term rewriting/Eval.sv
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1 grammar silver:rewrite;

2 abstract production require

3 top:: Strategy ::= pattern :: ASTPattern cond:: ASTExpr

4 {

5 pattern.matchWith = top.term;

6 cond.substitutionEnv = pattern.substitution.fromJust;

7 top.result =

8 case pattern.substitution of

9 | just(_) ->

10 case cond.value of

11 | booleanAST(b) -> if b then just(top.term) else nothing ()

12 | _ -> error("require condition should return a boolean")

13 end

14 | nothing () -> nothing ()

15 end;

16 }

Figure 24: The require strategy constructor.

translates as

sequence(

require(varPattern("a"), eqeqASTExpr(varASTExpr("a"), integerASTExpr (42))) ,

rewriteRule(varPattern("a"), plusASTExpr(varASTExpr("a"), integerASTExpr (1))))

Both require and rewriteRule match the same pattern (varPattern("a")). This inefficiency could potentially
be removed by introducing a second form of rewriteRule that includes this guard.

6.2.3. Dealing with nontrivial expressions in rules
Occasionally expressions may occur on the right side of a rule that cannot be directly translated as ASTExprs.

For example on line 38 of Figure 23, we call a function (containsBy) and access an attribute (freeVars.)17 This
presents two problems:

1. The abstract syntax of ASTExpr can’t represent references to functions or other values that are not either pro-
ductions or variables provided by the corresponding pattern - in Figure 22 only references to pattern variables
(line 44) can be translated as a varASTExpr, while an alternative solution is needed to translate other sorts of
references. A similar problem exists for λ-expressions occurring on the right side of a rule.

2. It is impractical to interpret complex operations (such as decoration and attribute access) on AST values, as this
is a generic representation of undecorated terms that does not involve attributes. Thus we require some sort of
escape hatch back to actual Silver values and expressions when evaluating the right side of a rule.

To solve the first problem, the Silver Expr into which the rule is translated must contain, besides calls to Strategy /

ASTPattern / ASTExpr constructors, some direct references to variables and functions - things that cannot be directly
represented within the Strategy term value that we construct at compile time in Figure 22.

A solution involves leveraging the antiquotation feature of the meta-translation mechanism from Section 5. We
add a new production antiquoteASTExpr (Figure 25) wrapping a Silver Expr that should be directly incorporated
into the final translation. A reference to a function can then transform into, for example,

17 Although a rule may access attributes on a tree during rewriting, rewriting is still only done on undecorated terms and not on trees that have
been decorated with attributes. In the case of such an attribute access, all required inherited attributes must be supplied by the rule expression (in
the case of freeVars there are none) and the decorated tree is immediately discarded after the evaluation of the rule.
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1 grammar silver:extension:rewriting;

2 abstract production antiquoteASTExpr

3 top:: ASTExpr ::= e::Expr

4 { forwards to error("no forwarding"); }

5
6 aspect production nonterminalAST

7 top::AST ::= _ _ _

8 { directAntiquoteProductions <-

9 ["silver:extension:rewriting:antiquoteASTExpr"]; }

Figure 25: Antiquotation for ASTExpr.

1 antiquoteASTExpr(

2 silver:applyExpr(

3 silver:varExpr("silver:extension:rewriting:anyASTExpr"),

4 silver:consExpr(

5 silver:varExpr("core:containsBy"),

6 silver:nilASTExpr ())))

which will become anyASTExpr(containsBy) in the final meta-translation. When interpreted, such ASTExprs will
become anyASTs wrapping function values.

The second problem, of evaluating expressions that cannot be easily evaluated on AST, can be dealt with by wrap-
ping the ordinary Silver expressions for these operations inside λ-expressions (introduced using antiquoteASTExpr)
that are immediately applied.

This leaves us with the task of interpreting ASTExprs expressing the application of arbitrary functions. We must
apply a function, wrapped in anyAST, to a list of arguments also represented as AST values. This isn’t directly possible
using reflect and reify, because we must check that the arguments match the type of the function, and we don’t
statically know the function type.

The solution involves a new primative function

applyAST :: (Either<String AST> ::= fn::AST args::[Maybe<AST>])

that (partially) applies an AST function value (fn) to a list of possibly present arguments (args), resulting in either
a type error message or AST value. This function is part of the reflection library, as it requires a dynamic type check
between the function and its arguments that cannot be performed in ordinary Silver code (reify only compares
the type of an AST with the statically-inferred type of an expression.) The applyAST function does use reify

internally, with the associated slight performance penalty. However in practice most rewrite rules don’t require the
use of applyAST. The applyAST function is also of more general utility, as it allows us to effectively “downcast” an
AST value to a type that is only determinable at runtime, as opposed to reify which requires a specific result type to
be inferred at compile-time.

6.2.4. Dealing with polymorphism in patterns
The matching that we perform on AST values only considers the structure of the term and not its type. For example,

consider the following (admittedly strange) rule:

rule on Expr of a -> addExpr(a, a) end

The left side of the pattern will match even if the term being rewritten is not an Expr (e.g. a Stmt). This means
that we would erroneously replace a Expr with a Stmt and the final AST would fail to reify, which is clearly not
the desired behavior. Similar issues can also arise in cases involving generalized algebraic data type productions in
abstract syntax (which Silver supports.)

More generally, this is a problem when the structure of a pattern does not constrain the type of a pattern variable
(i.e. the pattern is polymorphic, matching more than one type of term.) However the rule is still specified for a
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1 grammar silver:rewrite;

2 abstract production requireType

3 top:: Strategy ::= fn:: ASTExpr

4 {

5 top.result =

6 case applyAST(fn.value , [just(top.term )]) of

7 | left(msg) -> nothing ()

8 | right(_) -> just(top.term)

9 end;

10 }

Figure 26: The requireType strategy constructor.

particular type (Expr in this example), against which the pattern and expression have been statically type checked. In
most cases, the outermost production in the pattern will fail to match against any type of term but the specified one,
however in these uncommon cases we must take a different approach to ensure that the rule fails for other types of
terms.

Our approach introduces another strategy requireType (Figure 26) for the translation of such rules, used to
perform a run-time type check of the current term (rules whose type is precisely constrained by the structure of the
left hand side pattern can skip this check for better performance.) This strategy is constructed from a λ-expression of
one argument represented as ASTExpr (the body does not matter, it can return unit().) When applied requireType

attempts to apply the function using applyAST, succeeding only if the call does not result in a type error.

Type safety of rewrite rules. Note that performing these added checks means that all rewrite rules specified with
the rule expression are type-safe: applying a strategy where all rules are defined in this way is guaranteed to not
suffer a reification error. This differs from some systems such as Stratego where type preservation is (optionally)
checked at run time. This does mean that some applications of rewriting, such as translations from one terms of
one language to terms of another, are less straightforward to implement with rewriting in Silver; doing so requires
introducing additional productions to bridge between nonterminals of the different languages, that only exist during
the rewriting process. However this is not a great loss since language translation and other such operations can
typically be expressed more conveniently using higher-order attributes.

6.3. Congruence Traversal Strategies
In the lambda calculus example from Figure 23, the evalInnermost strategy on line 42 performs a full innermost

rewrite over the entire tree. This is not a correct evaluation strategy since it also reduces inside abstraction bodies
before they are applied to some argument. This may result in non-termination for otherwise-terminating expressions.
More precise control over the traversal of the tree is needed than what is possible with generic traversal strategies
like all and one. This is possible through the use of congruence traversals, also introduced by Stratego [24] and
implemented in the Silver rewriting system.

Such strategies are built by the constructor traverse PROD_NAME(S1, S2, ...), where PROD NAME is the
name of a production.18 When applied to a term with a different production this strategy will always fail, otherwise it
will apply each argument strategy to the corresponding child term, and if all succeed, construct a new term from the
child results with the same production. For example, a lambda calculus term can be converted to weak head normal
form with the following strategy, which does not normalize under abstractions:

1 global evalWHNF :: Strategy =

2 try(traverse app(evalWHNF , evalWHNF) <+

3 traverse letT(id(), evalWHNF , evalWHNF )) <*

4 try((beta <+ letDist) <* evalWHNF );

18 The initial traverse keyword is not present in Stratego’s syntax; since strategies are constructed by ordinary expressions in Silver, this has
been added to avoid an ambiguity with function/production application.
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The congruence traversal strategy constructor is implemented by the Strategy production

traversal :: (Strategy ::= String [Strategy])

The implementation is somewhat similar to that of all in Figure 21, except that the name of the production and the
particular strategy for each child is passed into the AST using inherited attributes.

6.4. Rewriting with Concrete Object-Language Syntax

Since the rewriting extension reuses Silver’s Pattern and Expr nonterminals, object-language concrete syntax
(as described in Section 5) can be used to specify rules without any additional implementation effort. An example of
this can be found in Figure 27. Here term rewriting is used to normalize for-loops for the Halide extension to ableC
that do not fit the exact form recognized by the pattern matching on line 11 of Figure 13. This normalization requires
a sequence of strategies, which demonstrate a number of the previously-discussed features.

First, all loop expressions involving constants are simplified by the simplifyLoopExpr strategy (line 2 of Fig-
ure 27.) This uses a traversal strategy to apply the simplifyExpr strategy (lines 4—3) only within the loop expres-
sions, and not within the loop bodies. The preprocessLoop strategy (lines 12—21) is used to fully expand operators
such as <= such that the test and update expressions only involve <, >, +, - and =. Finally the loops are transformed
by the transLoop strategy (lines 27—46) such that all loops range from 0 and increment by 1. This may involve
introducing new local variables and renaming references to the loop variable accordingly. This is done using the
rename strategy (line 25.)

6.5. Discussion

The original implementation of the ableC substitution library was defined using a substituted attribute and
equations for every production in the ableC abstract syntax. These all follow the same pattern and were replaced by
this term-rewriting-based implementation of substitution, replacing over 2,500 lines of boilerplate code 19 in the ableC
specification (11.8% of the code base), in addition to numerous similar equations on ableC extension productions.

Unlike Stratego, our system does not support non-linear patterns in rewrite rules. This is primarily a limitation
of ordinary pattern matching in Silver, the semantics of which are reused for specifying rules in the rewrite rule
extension portion of the system; adding non-linear pattern support to the rewriting library would be straightforward.
However this does not pose a particularly significant burden, as such cases can be dealt with using multiple variables
and when-clauses, as seen for example on line 32 of Figure 23.

7. Reflection for Implementing Evaluators for Staged Languages

Here we provide a final example of the use of reflection in attribute grammars. We implement an evaluator for a
simple staged programming language, a subset of MetaOCaml [25]. Staged programming is a programming paradigm
in which fragments of code may be constructed at runtime, passed around as values, and eventually executed, all in
a type-safe manner. Examples of such languages include MetaML [26] and MetaOCaml. This paradigm can provide
performance improvements by generating a specialized piece of code that is used more than once. The canonical
example in this area is a staged power function to efficiently compute an exponent xn by generating code specialized
for a given value of n; a MetaOCaml implementation of this is shown in Figure 28. Such languages use strong typing
to allow well-defined semantics when running generated code [27]. Calcagno et al. [28] describes an approach to
implementing staged languages by translation to a lower-level language containing constructs for reflection and term
construction. One can also build a direct evaluator for a staged language, the approach we have chosen to demonstrate.

In addition to all the standard functional programming constructs, MetaOCaml has 3 new operators: quote
(.< >.), escape (.~) and run (.!). Quote constructs a value of type ’a code, where ’a is the type of the quoted
expression, corresponding to a fragment of code being constructed. For example, .<1>. on line 3 has the type
int code. The escape operator can be written inside of a quoted expression, indicating that the escaped expres-
sion, when evaluated, will yield a piece of code that should be plugged into the result. The run operator executes

19See ableC/grammars/edu.umn.cs.melt.ableC/abstractsyntax/substitution in ableC 0.1.2
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1 global simplifyLoopExpr:Strategy =

2 traverse forDeclStmt(simplifyExpr , simplifyExpr , simplifyExpr , id());

3 global simplifyExpr :: Strategy = innermost(simplifyExprStep );

4 global simplifyExprStep :: Strategy =

5 rule on Expr of

6 -- Simplify expressions as much as possible

7 | ableC_Expr { $Expr{intExpr(a)} + $Expr{intExpr(b)} } -> intExpr(a + b)

8 ...

9 | ableC_Expr { $Expr{intExpr(a)} / $Expr{intExpr(b)} }

10 when b != 0 -> intExpr(a / b)

11 end;

12 global preprocessLoop :: Strategy =

13 rule on Stmt of

14 -- Normalize condition operators

15 | ableC_Stmt {

16 for ($Decl{init} $Name{i} <= $Expr{limit }; $Expr{iter}) $Stmt{b}

17 } -> ableC_Stmt {

18 for ($Decl{init} $Name{i} < $Expr{limit} + 1; $Expr{iter}) $Stmt{b}

19 }

20 ...

21 end;

22
23 function rename

24 Strategy ::= n1:: String n2:: String

25 { return topDown(try(rule on Name of name(n) when n == n1 -> name(n2) end )); }

26
27 global transLoop :: Strategy =

28 rule on Stmt of

29 -- Normalize loops with nonstandard initial or step values

30 | ableC_Stmt {

31 for ($TypeExpr{t} $Name{i1} = $Expr{initial };

32 $Name{i2} < $Expr{limit }; $Name{i3} += $Expr{step}) $Stmt{b}

33 } when i1.name == i2.name && i1.name == i3.name ->

34 let newName :: String = freshVarName ()

35 in ableC_Stmt {

36 for ($TypeExpr{t} $Name{i1} = 0;

37 $Name{i2} < ($Expr{limit} - $Expr{initial }) / $Expr{step};

38 $Name{i3}++) {

39 typeof($Name{i1}) $name{newName} =

40 $Expr{initial} + $Name{i1} * $Expr{step};

41 $Stmt{rewriteWith(rename(i1.name , newName), b). fromJust}

42 }

43 }

44 end

45 ...

46 end;

47 global normalizeLoop:Strategy =

48 bottomUp(try(simplifyLoopExprs <* repeat(preprocessLoop ))) <*

49 topDown(try(transLoop <* simplifyLoopExprs ));

Figure 27: Some of the rewrite rules used to normalize loops in the Halide extension. See ableC-halide/abstractsyntax/IterStmt.sv
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1 nonterminal Expr with env , value;

2 synthesized attribute value ::Value;

3
4 abstract production quoteExpr

5 top::Expr ::= e::Expr

6 { local a::AST = reflect(e);

7 a.env = top.env;

8 top.value =

9 codeValue(a.evalNestedEscapes );

10 }

11 abstract production escapeExpr

12 top::Expr ::= e::Expr

13 { top.value = error("undefined"); }

14 abstract production runExpr

15 top::Expr ::= e::Expr

16 { local trans ::Expr =

17 case reify(case e.value of codeValue(a) -> a end) of

18 | right(e) -> e

19 | left(msg) -> error("Interpreter bug! " ++ msg)

20 end;

21 trans.env = top.env;

22 top.value = trans.value;

23 }

24 nonterminal Value;

25
26 abstract production intValue

27 top:: Value ::= i:: Integer

28
29 abstract production boolValue

30 top:: Value ::= b:: Boolean

31
32 abstract production codeValue

33 top:: Value ::= a::AST

34
35 abstract production closureValue

36 top:: Value ::=

37 id:: String body::Expr

38 env::[Pair <String Value >]

Figure 29: A (simplified) portion of the implementation of a staged interpreter using reflection. Standard expression productions for operators,
conditionals, lambda, etc. are not shown. Static type checking is also ignored, and value is actually monadic in the full implementation for
run-time errors handling. See metaocaml/abstractsyntax/Value.sv and Expr.sv

a code value. Static typing ensures that no run-time type errors occur in evaluating quoted code, although run-
time checking is required to ensure that some corner cases involving free variables are not evaluated. For example,
.<fun x -> .~(.! .<x>.)>. is well-typed but in constructing this functional value the argument x to the function
should not be evaluated, as would happen here.

1 let square = fun x -> x * x

2 in let rec spower = fun n x ->

3 if n = 0 then .<1>.

4 else if n mod 2 = 0

5 then .<square .~( spower (n/2) x)>.

6 else .<.~x * .~( spower (n-1) x)>.

7 in let power7 =

8 .! .<fun x -> .~( spower 7 .<x>.)>.

9 in power7 2

Figure 28: An example use of staged programming to dynamically gen-
erate an efficient power function.

The reflection system provides what is needed to
elegantly implement our subset of MetaOCaml using
attribute grammars20. A simplified portion of the im-
plementation is shown in Figures 29 and 30. Phrases
in the language are represented by the Expr nontermi-
nal on line 1 in Figure 29. In addition to the usual
productions for expressions (not shown), there are
productions quoteExpr, escapeExpr and runExpr,
each of which wraps a single expression. Evaluation
is done by the synthesized value attribute of type
Value, which is defined by the nonterminal defined
on line 24. Values can integer values (intValue), clo-
sures (closureValue), or code values (codeValue)
represented by an AST value. An inherited attribute
env on Expr passes down the value environment map-
ping names to values in the expected way.

20 Available at http://melt.cs.umn.edu/ and https://github.com/melt-umn/meta-ocaml-lite, archived at https://doi.org/
10.13020/z10a-7g60.
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1 synthesized attribute evalNestedEscapes ::Value occurs on AST;

2 attribute env occurs on AST;

3
4 aspect production nonterminalAST

5 top::AST ::= prodName :: String children ::ASTs

6 {

7 local escape ::Expr =

8 case children of

9 -- Only demanded when this is an escapeExpr

10 | consAST(a, nilAST ()) -> reify(a). fromRight

11 end;

12 escape.env = top.env;

13
14 top.evalNestedEscapes =

15 if prodName == "metaocaml:escapeExpr"

16 then

17 case escape.value of

18 | codeValue(a) -> a

19 | _ -> error("Escaped expression should evaluate to a code value")

20 end

21 else nonterminalAST(prodName , children.evalNestedEscapes );

22 }

Figure 30: The use of attributes on AST to evaluate contained escape productions. See metaocaml/abstractsyntax/Value.sv

To evaluate a quoted expression– the e child in quoteExpr on line 4 – the wrapped Expr e is first reflected. On the
resulting AST we want to replace all escapeExpr constructs with the value of the code they contain. This done using
a synthesized attribute evalNestedEscapes of type Value, declared on line 1 of Figure 30. If the AST is a reflection
of an escapeExpr production (checked on line 15) then we get reified Expr that was wrapped up under escapeExpr
(lines 7—11) and evaluate it using the environment (line 12). This will result in a codeValue (lines 17—18) value,
which is stored in the attribute evalNestedEscapes. This process is somewhat similar to the previously described
process of translating object-language literals or performing substitutions. Finally to evaluate a run expression, the
operand is evaluated, the AST is extracted from the resulting codeValue, reified, and itself evaluated (lines 16—22 of
Figure 29.) Note that this reify operation should always succeed as any ill-formed code values should have been
caught by the MetaOCaml type checker.

This approach to implementing staged languages is primarily designed as a demonstration of the capabilities of
the reflection system presented here, and is not intended to maximize performance as with more traditional compiled
implementations [28]. We have not analyzed the difference in performance between these approaches.

Also of note is the recurring pattern of an escape production whose content is reified directly rather than being
further analyzed. This is analogous to the antiquote productions encountered in Sections 5 and 6.2.

8. Reflection and Extensible Language Specifications

In Section 6, an earlier implementation of substitution using attributes was mentioned. This approach relied on
what is called a functor transformation attribute named substitutedResult on all nonterminals. On each production
is an equation for reconstructing the same tree using the value of substitutedResult on the children, except for
those few productions for which the substitution is to be performed. Besides requiring a large amount of boilerplate
specification, this approach is also flawed for a more subtle reason.

Consider the example in Figure 31, based on the template extension previously introduced in Figure 14. At the
top of Figure 31 is shown a simplification of the templateTypeExpr production, which forwards to a reference
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1 abstract production typedefTypeExpr

2 top:: TypeExpr ::= n:: String

3 { top.pp = n;

4 top.substitutedResult =

5 if n == top.substName then top.substTypeExpr else top;

6 ...

7 }

8 abstract production templateTypeExpr

9 top:: TypeExpr ::= n:: String args:: TypeExprs

10 { top.pp = n ++ "<" ++ args.pp ++ ">";

11 top.substitutedResult = templateTypeExpr(n, args.substitutedResult );

12 forwards to typedefTypeExpr("_template_" ++ n ++ "_" ++ args.mangledName );

13 }

1 template <a> struct foo {

2 a *ptr;

3 };

4 template <a> void f() {

5 foo <a> x;

6 }

7 ...

8 f<int >();

=⇒

1 typedef struct {

2 int *ptr;

3 } _template_foo_int;

4 void _template_f_int () {

5 _template_foo_int x; // foo <int > x;

6 }

7 ...

8 _template_f_int ();

Figure 31: An example of the derived names problem occurring in the template extension. Top: simplified versions of the typedefTypeExpr and
templateTypeExpr productions. Not shown is code to construct the instantiated implementation of the type and lift it to the global level. Bottom
left: a fragment of code utilizing the template extension. Bottom right: the desired translation of this code fragment.

to a name, typedef’ed to the instantiated implementation of the type. For example, the code fragment in the lower
left of the figure should forward to the fragment on the lower right. Note that the templateTypeExpr production
forwards to a tree containing a type name derived from args. If a substitution is performed on templateTypeExpr

by accessing substitutedResult, we wish to produce a templateTypeExpr parameterized by the substituted
args. If instead we computed substitutedResult on the forwarded-to tree, we would incorrectly get a reference
to _template_foo_a, an undefined type name. In the bottom of Figure 31 we see the correct result computed on
the original forwarding tree which produces _template_foo_int on line 5. Thus we must provide the explicit
substitutedResult equation defined on line 11 to get the desired behavior.

The modular well-definedness analysis, which checks that all attributes have defining equations, would not catch
the need for this equation as an (incorrect) equation for this attribute is already provided by the forward. In fact
the presence of this equation violates a non-interference notion of coherence [29], which states that attribute values
defined by a production should be equivalent, in some semantic way, to the values obtained by forwarding. When
all equations are coherent, composed extensions will not interfere with each other in unexpected ways (such as by
causing errors in generated code); for this attribute we can make no such guarantees. We can, however, circumvent
this problem by using reflection, as it operates on a syntactic level, before the introduction of semantic operations
performed with attributes, as we have done above.

Another example of the trade-offs involved with syntactic vs. semantic operations may be seen with the ableC-
Halide extension. Consider an independently-created forall extension that provides cleaner syntax for multiple
nested loops (used on line 5 of Figure 32 along with the Halide transform extension). Let us assume that this
forall construct forwards to the equivalent long-form for loops that are shown in the comment on line 4. Pattern
matching in Silver takes forwarding into consideration; if a pattern in a case expression does not match the tree
being inspected, then the pattern matching will be done on the tree that the inspected tree forwards to. Consequently
loops specified with forall will be handled like any other for-loop by transform statements, since the pattern on
lines 11—15 in Figure 13, will look through this new forall construct to see the host-language for-loops that it
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1 void matmul(unsigned m, unsigned n, unsigned p,

2 float a[m][p], float b[p][n], float c[m][n]) {

3 transform {

4 // for (unsigned i = 0; i < m; i++) for (unsigned j = 0; j < n; j++) {

5 forall (unsigned i : m, unsigned j : n) {

6 c[i][j] = 0;

7 for (unsigned k = 0; k < p; k++) {

8 c[i][j] += a[i][k] * b[k][j];

9 }

10 }

11 } by { ... }

12 }

Figure 32: An example of the forall extension applied to the matrix multiplication example from Figure 12. A new statement (line 5) forwards
to an equivalent set of nested loops (line 4.)

forwards to.
However, this nice behavior is rather brittle. Instead of translating loops as seen on line 4, forall could hypo-

thetically forward to a slightly different tree, for example translating this as

for (unsigned i = 0; m > i; i += 1) for (unsigned j = 0; n > j; j += 1)

Such loops could ordinarily be handled by the rewriting described in Section 6.4. However in this scenario the ableC-
Halide extension would not successfully rewrite and recognize the loops, as reflection (and thus term rewriting)
operates syntactically on terms and thus does not respect forwarding.

These issues raise a more general question: if extensions can introduce new analyses (such as the above trans-
formations) using reflection/rewriting instead of through attributes and forwarding, how can we ensure that these
analyses will be well-defined [19] and non-interfering [29] when composed with other extensions? Well-definedness
essentially boils down to ensuring that any new analysis always has some sensible default available, whether this is
a forward equation in the case of attributes, or a general equation on nonterminalAST for any reflected production.
Non-interference is concerned with the semantics of decorated trees, while reflection is typically applied to trees that
are never directly decorated. However this isn’t necessarily always the case; more research is needed to address this
problem.

9. Implementing the Reflection System

This section provides a brief discussion of the implementation of the Silver reflection system. Silver is imple-
mented by translation to Java. Basic types (such as strings and integers) all have concrete Java equivalents. For terms
there is a Java abstract class Node that represents all nonterminals; every nonterminal type is represented by an ab-
stract subclass of Node, and every production of a nonterminal is a concrete subclass of that nonterminal’s class. In
this way, the Java type system encodes the syntax of the object-language being defined in Silver. Node contains a
number of abstract methods, such as one to get the Silver name of a production or iterate over its children. Since no
extra type-level information is required, reflect is a Silver foreign function that calls a recursive Java function to
walk a Node, calling the appropriate constructors corresponding to AST productions.

The implementation of reify is significantly more complex due to its run-time type-dependent nature; reify
is thus a language construct in Silver (as opposed to being a foreign function as in the case of reflect). reify

does run-time type checking in constructing a Silver tree to ensure that it is well-sorted. To do this, reify requires
the run-time representation of the type of the tree it is to produce; this type is provided by Silver’s type inference
system. For AST trees representing integers or strings, the reification into a Silver-value of type Integer or String
is straightforward. For a nonterminalAST-constructed tree, reify gets the production name (the first child of
production nonterminalAST) and uses Java reflection to determine if that production exists. If so, gets the Java
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Class object implementing that Silver production. On this object it then calls a static reify method (generated as
a part of the class), parameterized by the expected return type it is to construct and the array of child AST trees yet to
be reified. It checks that the appropriate number of children were provided, unifies the given expected type with the
actual production left-hand-side nonterminal type, then reifies the children using the corresponding right-hand-side
types. Finally, it constructs and returns a new production object with the results.

To support this, runtime type information, as an object of a new Java TypeRep class, is stored on each tree node.
Because Silver supports parametric polymorphism, a runtime type unification process was also added, to mirror the
compile-time type unification process. This is used when checking that types are compatible when constructing new
trees. If not, reify returns an error. All Silver value classes implement a Typeable interface with a getType

function returning a TypeRep value. Any type, e.g. Silver functions, or other new foreign type to be reflected into an
AST tree, using the type-parametric anyAST production must implement this interface.

10. Related Work

Below we discuss related work on reflection and also work related to the examples uses of reflection described
above: object-language concrete syntax, term-rewriting, and staged programming languages.

10.1. Reflection

Smith [30] introduced the notion of reflection and it has been widely used and discussed in many contexts in
computer science. Demers and Malenfant [5] provide a more precise definition of reflection and also distinguish
between structural reflection in which the language provides introspection of the program being executed and its
abstract data types, and behavioral reflection in which the language can affect its own semantics. Our work is more
closely related to structural reflection, as we are primarily focused on exposing data in Silver for generic introspection.
A more formal view of reflection is given by Clavel and Meseguer [31] in which they define reflective languages as
ones in which there is a mapping between certain data types in the language and a portion of the language’s semantics.

Reflection is common in object-oriented languages such as Java [32]. In these contexts reflective operations are
often tightly coupled to the objects under consideration. For example, it is possible to use reflection to get the value
of a field based on a string representation of its name; this results in another object that can be cast to the expected
type or to be reflected again. This differs from the notion of reflection used in this paper. Instead, a term composed
of many nodes of various nonterminal types is reflected in its entirety into a distinct AST representation upon which
further operations may be performed. In our experience this approach is a better fit for language meta-programming,
as any operation on terms is primarily either structural, like serialization (and thus best implemented by attributes on
AST), or semantic, like type checking (and thus best implemented by attributes on the nonterminals in question.)

10.2. Generic Programming using Type Classes and Object Algebras

A family of approaches to operating generically on well-sorted data are based on type classes. Numerous problems
related to performing generic operations on algebraic/inductive datatypes, including substitution and serialization, are
described in the scrap-your-boilerplate papers [4, 33]. This is mostly achieved through the use of a more sophisticated
type system (e.g. type classes), but an approach based on reflection to a generic DataType representation is also
described. This is similar to our AST, (representing inductive data type values, lists, constants etc.) however operations
on DataType are expressed using recursive functions and type classes rather than attributes.

GHC.Generics [34] is another library for generic programming in Haskell, based around an automatically-derivable
type class Generic that defines an alternative generic representation for algebraic data types, with constructors for
sums, products, and type-level metadata. The Generic type class includes functions from and to for transforming
between arbitrary values and this generic representation, similar to our reify and reflect. New generic opera-
tions (such as serialization) are defined as type classes with default method implementations that work on this generic
representation. This representation differs from our approach as it only goes one level deep, consisting of generic
sum and product constructors that ultimately wrap ordinary values corresponding to the children of a data constructor,
while our approach deeply transforms a term to and from the AST generic representation all at once.

A powerful approach to representing data such as abstract syntax trees in object oriented languages is object
algebras [35]. This is done by defining interfaces with methods corresponding to various data constructors, and classes
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that implement these interfaces corresponding to various operations (such as evaluation or pretty-printing.) Like
attribute grammars, this pattern allows for extensibility with both new data variants and new analyses by extending
interfaces with additional constructor methods and defining additional implementation classes. Using this approach it
is possible to express generic, scrap-your-boilerplate-style traversals and operations on abstract syntax trees. This is
done in the Shy framework [36] by using Java 8 default methods in interfaces to provide default implementations
of traversal operations for otherwise-untouched data variants.

10.3. Object-Language Concrete Syntax
As we have seen above, writing object-language concrete syntax in a meta-language with quote and antiquote

operators dramatically simplifies language specifications by avoiding a tremendous amount of boilerplate code. This,
of course, has been noted previously and seen in tools such as ASF+SDF [37] and Stratego [24, 7]. The approach
used in Stratego is particularly relevant here and how it it differs from our approach. In Stratego the transformation
from embedded object-language abstract syntax to meta-language abstract syntax is done incrementally through term
rewriting, during which ill-sorted intermediate trees composed of both meta- and object-language abstract syntax
exist. Thus, ill-sorted trees must be represented. The TypeSmart feature in Stratego [38] can (optionally) be used to
dynamically disallow ill-sorted trees; when a constructor is applied TypeSmart checks that the arguments are of the
required sort. However TypeSmart is not compatible with Stratego’s object-language to meta-language translation
strategies [39].

In our reflection-based approach, dynamic type checking is only needed in the limited use of reify for handling
antiquote productions, since the rest of the translation process is checked statically. This comes at the cost of the
added complexity of a separate AST representation, not required in a rewriting approach. Instead of having the reify
operation dynamically type-check the AST, we could have the AST constructors check the types of their represented
argument values, as done with the TypeSmart feature of Stratego. However this would require a mechanism to access
(in Silver specifications, not just in its runtime as reify does) the types of productions by name.

Squid quasiquotes [40, 41] provide concrete object-language syntax embedding for syntax tree construction in
Scala. These bear some resemblance to our AST-based approach, most notably by allowing introspection via pattern
matching of quoted Code values, but Squid provides stronger type safety guarantees about quoted fragments by track-
ing their types as in staged languages. Conversely, the variety of type systems used by object languages implemented
in Silver effectively preclude a similar approach to static type safety in concrete syntax patterns and literals.

10.4. Term Rewriting
The term rewriting system presented is very similar to Stratego, providing many of the same primitive and library

strategy constructors. It is in many ways an implementation of Stratego features in an attribute grammar setting.
The primary differences arise because Stratego is a standalone language, while our reflection-based approach is
embedded within Silver. This allows for the use of Silver features in the definitions of rules and strategies. For
example, strategies can be created as local variables within functions or productions, and expressions on the right
sides of rules can use parameters of the enclosing function or access attributes. These features arguably provide a
cleaner alternative to some of Stratego’s, such as dynamic rule creation.

Another significant difference from Stratego is that (as described at the end of Section 6.2) in our system all rules
defined using the rewriting extension are statically type-checked, instead of optionally at run-time with TypeSmart.
Static type checking is generally less error-prone but at the cost of flexibility; some rewriting idioms, such as trans-
lations from one sort of tree to another, would require additional boilerplate productions bridging between different
sorts of trees. However such translation rewrites can arguably be done in a cleaner and safer way using attributes.

TOM [42] is an extension to Java for algebraic data types and term rewriting that bears some similarities to our
system. In TOM strategies are built from rules and applied to terms using features of the Java host language; the
right side of a rule is ordinary Java code in much the same way as the right side of a rule in Silver is an ordinary
Silver expression. Additionally all rules are statically checked and guaranteed to be type-preserving. However the
implementation differs as instead of operating on a separate, generic term representation, rules work directly on the
well-sorted representation. The generic view needed for traversal combinators such as All is provided by the object-
oriented nature of the language, with algebraic data types being compiled into classes sharing a common superclass.

JastAdd [2] is another attribute grammar system that integrates features for rewriting [43]. However these features
differ significantly from rewriting in Silver and other strategic rewriting systems. In JastAdd rewriting is done on
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trees that have already been decorated with attributes (as opposed to terms in our approach), and all rewrite rules are
applied in a global, innermost order with no notion of strategies to control the order of rewriting. The use of rewriting
in JastAdd also differs significantly from rewriting in Silver in that it is more closely related to forwarding [8] in
Silver. The typical use-case for both is to translate language constructs down to some canonical or core form in the
language. In Silver this is used to translate language extension constructs into the representation in a host language.
In the JastAdd extensible Java compiler [44], the rewriting is used to specialize different uses of the generic dot-
notation (e.g. A.b) into forms specific to the cases when item being accessed (A) is a package, class, or object. This
depends on a typing context and thus attributes must be present to guide the rewriting. Both of these use cases can
be carried out in either tool since both use attribute values in the transformation and the transformation is carried out
automatically; there is no specific operation to forward or rewrite that can be invoked. In JastAdd this rewriting is
done when an attribute is first accessed on a tree, causing the transformation to be made. The rewritten tree then
replaces the original and attribute values are retrieved from it. With forwarding, the original tree is not replaced by
the transformed (forwarded-to) tree; instead the original forwarding tree has a link to the new tree.

Kiama [1] is a language processing system written as an embedded DSL in Scala that incorporates both attribute
grammars and term rewriting. Of special interest here is that Kiama also takes inspiration from Stratego and provides
strategy combinators like those discussed above. Since Scala is also strongly and statically typed, Kiama also needs
some way to manipulate well-sorted syntax trees in a generic manner. This is primarily achieved by the sub-classing
afforded by the object-oriented nature of Scala. In Kiama productions are represented using case-classes, a form of
sub-classing that exposes the structure of a tree so that pattern matching can be performed. A nonterminal type is
thus a sub-class of the product type in Scala and this type provides generic access to the name of the tree constructor
and the list of its children. This provides an interface not unlike that of the nonterminalAST production in our AST
representation as seen on line 4 in Figure 5. Thus for most activities, there is no need for reflection. It is used in one
way however. The Scala copy-constructor, which would be used to reconstruct a tree with its rewritten children, cannot
be used in a generic manner and thus a bit of Java reflection is used in this instance to get access to the constructor
class and to rebuild the tree with a generic constructor in the reflection library.

We have recently developed an alternative notion of rewriting in Silver known as strategy attributes [45] that
operates on trees that have been decorated with attributes rather than on undecorated terms. This approach works by
translating strategy expressions into higher-order attributes and equations instead of using reflection. Doing so allows
contextual information in the form of inherited attributes to be utilized in rewrite rules, and forwarding is respected,
addressing issues with the use of reflection-based rewriting as outlined with the ableC-Halide extension in Section 8.
Additionally this approach of statically compiling strategies seems to have better performance than the reflection-
based implementation presented here, however the compiled approach somewhat limits flexibility in comparison to
reflection, as strategies can no longer be constructed dynamically.

10.5. Staged Programming Languages

A definition of staged programming and the MetaML language is given by Sheard [26]. Calcagno et al. [28]
introduces the MetaOCaml language and describes an approach to implementing staged languages by translation to
a target language containing constructs for reflection and abstract syntax tree manipulation. This differs from our
design, in which a meta-language supplying such constructs is used to build a direct interpreter for evaluating a staged
language.

Our approach is primarily motivated as a demonstration of the capabilities of reflection, and is likely not appro-
priate for applications where performance is a primary concern. Other implementations of staged languages, such as
the compilation approach described by Calcagno et al. [28] are probably much more efficient, however we have not
done any performance analysis.

11. Discussion and Conclusion

This paper integrates a form of reflection into attribute grammars with a reflect construct of turning well-sorted
terms (syntax trees yet to decorated with attribute values) into a generic representation and an inverse reify operation.
In meta-programming systems, such as Silver, in which the type system of the the specification language enforces the
well-sortedness of terms, writing analyses and transformations of such trees can involve writing a significant amount
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of boilerplate specifications. We have shown how reflection lets the language developer reflect a term into a generic
form, process or analyze it in a convenient generic way, and then, in some applications, reify the tree back to the well-
sorted form. In the example applications, many lines of boilerplate Silver specification were eliminated from existing
applications or were avoided from the beginning. In our experience, even though well-sortedness is not guaranteed by
the type system in the AST form we rarely found this to be problem; it is easily outweighed by the savings in lines of
specifications written. However, we recognize that this evaluation may not be case for all users, especially those new
to Silver and reflection.

There are many additional uses of reflection in attribute grammars beyond those discussed here. Examples include
writing visitor-pattern-style traversals over trees, mechanisms for (runtime) type-safe casts, and implementation of
generic map and reduce operations over arbitrary trees. Reflection opened up the possibility of building the term-
rewriting extension to Silver, something that was not covered in the original conference version of this paper [9]. One
area of future work includes improving the performance of the processing of Silver interface files by replacing the
text-based serialization system with one that generates more compact binary representations.

Another potential future area of improvement involves the type-checking behavior of reify. It is not possible
for a library function (such as for de-serialization) to construct a result with polymorphic type by using reify, as
the expected type against which to check the AST depends on the context in which the function is called, and cannot
be determined statically. Instead such operations must be implemented as language extensions to Silver, such that
the call to reify in their translation is type checked and translated specifically for the desired type. This could be
avoided by introducing a built-in type class to track the specific run-time types with which polymorphic functions are
called.

The design and applications of reflection presented here, while presented in the context of attribute grammars,
are not limited to such. Other functional languages (such as ML, that lacks type classes needed for “scrap-your-
boilerplate”-style generic programming [4]) could benefit from a similar approach of transforming to and from a
generic view of data. In such a scenario the applications presented here, such as serialization and de-serialization,
could be translated rather directly with attributes on AST being replaced by recursive functions.
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