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Abstract

The features available in a programming language affect how easy it is to write programs for

different purposes using it. Extensible languages allow specifications of language features

to be developed independently of one another, then composed to form a new language

containing all the features from all the specifications included. This lets programmers

choose language features they find useful for each program they write.

However, because the specifications of different language features are developed inde-

pendently of one another, we do not know the language resulting from composition is

well-formed in desired ways. In particular, we don’t know what properties should be true of

the language, nor do we have a proof that they are true; that is, we do not have metatheory,

a set of properties proven to be true, for the language. Metatheoretic properties are known

to hold for any program written in the language, providing useful information to program-

mers about what can and cannot happen in a program. For example, the type preservation

property can be stated as terms with a certain type evaluate to values of the same type,

and guarantees well-typed programs cannot encounter type errors during evaluation. In

an extensible setting, proving properties will hold for any composed language is difficult

because the full language is not created until the time of composition.

This thesis develops a modular approach to establishing the metatheory of extensi-

ble languages written using a framework where modules specifying language features may

build on others. In this approach, each specification module independently introduces new

metatheoretic properties expected to hold for any composed language that includes the

module. The work of proving these properties for any composed language is distributed

across modules, with each module contributing proofs for the new properties it introduces

and those of the modules on which it builds. These proofs are written in the limited context

of a single module’s knowledge but need to reason about the larger contexts of composed

languages, which may include constructs unknown to the module writing the proof. To ad-

dress this, we utilize generic reasoning to handle the currently-unknown additions that may
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be present in a composed language. When a language composition is built, the proofs from

each module are then used to create a composed proof for each property. These composed

proofs guarantee each property from each module included in the composition holds for the

composed language, bringing the benefits of metatheory to the extensible setting.

In addition to developing a reasoning framework for modular metatheory, we implement

it in an interactive proof assistant named Extensibella. Extensibella aids users in writing

modular proofs. It does this by adding an extra layer to Abella, an existing proof assistant.

This extra layer checks the proofs are valid in the context of a single module and that generic

reasoning is carried out correctly, then passes proofs to Abella to check their validity in the

logic G in which it constructs proofs. Extensibella also includes functionality to compose the

proofs from individual modules to form full proofs of properties for any composed language.

To support this implementation, we have also implemented the framework for language

specification about which we reason in a system named Sterling. Sterling allows users

to write language specifications and check them for their modular validity, then produces

specifications Extensibella can read and about which it can reason.

Finally, using these implementations, we have developed a set of example extensible

languages and their metatheory. These applications suggest our framework’s structure does

not induce significant limits on what we can prove, so modules can introduce interesting new

syntax, semantics, and metatheoretic properties. They also allow us to examine the trade

offs in our framework between the freedom given to modules to introduce interesting new

syntax and semantics and the ability to introduce and prove new metatheoretic properties.
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Chapter 1

Introduction

Different programming language features are useful in writing programs for different tasks.

For example, some problems are easier to solve using imperative languages, while others

lend themselves well to functional languages. Solutions to some problems benefit from

domain-specific language features targeting niche areas, features that often aren’t included

in general-purpose languages. This leads to using different languages for different tasks,

but sometimes programmers need diverse sets of features for the same task, features not

commonly found together in the same language. One solution is to use extensible languages.

Extensible languages allow composing specifications of language features, written indepen-

dently of one another, from a library of language modules to form a single programming

language that contains the features from all the included modules. This allows program-

mers to pick and choose the language features they want to use just as they might pick and

choose the libraries they want to use.

This general approach to language development has been used in a number of previous

applications. SugarJ [9] lets Java programming libraries introduce new syntax along with

new classes and functions, such as syntax for pairs as part of a package providing a class

implementing pairs, as well as compile-time checking of correctness specific to the new

features being introduced. The JastAdd Extensible Java Compiler [8] also extends Java,

allowing new feature specifications that include both new static checks and new syntax,

such as a non-null annotations and a checker to ensure variables marked as non-null will

never be null. AbleC [17] extends the C programming language, similarly allowing feature

specifications to add new static checks and syntax to the C language. Features added in

1



this way include algebraic datatypes and pattern matching on their constructors and syntax

for regular expressions, along with a static check they are valid regular expressions.

The difficulty with extensible languages such as these is in knowing that languages built

from independent specifications are well-formed in relevant ways. Because the specifications

of the features are developed independently, there is no one to check that all possible

combinations of features work together correctly. This is in contrast to non-extensible

languages, where one set of maintainers develops the full language and ensures all parts

work correctly together.

Perhaps the most important part of a language’s well-formedness, and the one in which

we are primarily interested in this thesis, is its metatheory. Metatheory is the set of prop-

erties proven about a language, and thus known to be true for all programs written in it. A

common metatheoretic property is type preservation, that well-typed expressions evaluate

to values of the same type (e.g., an integer-typed expression evaluates to an integer value),

guaranteeing well-typed programs do not encounter type errors. When a language is built

by composing independent specification modules introducing features, proving something

about the result of composing any set of modules is difficult because what will be included

in the composition is not known until the composition is made. However, we cannot wait

to prove properties until a composition is built as the developers of the modules, who know

their parts of the language best, are no longer involved. We also cannot prove the properties

we want for all possible compositions, as we do not assume all modules are known at any

point; a new one could be written at any time.

In this thesis, we present a solution for modularly developing the metatheory of extensi-

ble languages. Our approach permits any module to introduce new metatheoretic properties

that will hold for any composed language that includes the module. The work of proving

these properties are true is distributed across modules, with a guarantee a full proof of

each property then exists for any composed language, guaranteeing all properties from all

modules included in a language composition are true for the composed language. The distri-

bution of both the introduction and proving of properties creates a truly modular approach

to metatheory for extensible languages.
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1.1 A Vision for Language Extensibility

Let us expand on what we mean by extensible languages and how we envision them being

used. As alluded to above, an extensible language has a library of modules introducing

language features, where sets of modules may be composed to form different languages with

diverse sets of features. While modules may be completely independent of each other, they

may alternatively build on each other, adding to the definitions given by others. A common

structure is to have a host language, a module that forms a base on which other modules

build, and extensions, modules that extend the features given by the host language. Each

module, whether a host language or an extension, should be able to introduce new syntax

and extend existing semantic analyses to that new syntax, as well as introduce new semantic

analyses and define them for the language.

The best way to understand our vision for extensible languages is through an example.

Suppose we have an imperative host language with basic constructs in it. This language

defines static typing as well as evaluation, along with proving type preservation. One

programmer wants to use this language, but he also wants matrices and matrix operations

it does not include. The language library may already contain a module introducing such

features, or he or a friend can write one. This module adds new constructs for creating

matrices and working with them, and it extends the definition of typing to check matrices

used in the same operation contain the same type (e.g., only matrices whose elements are

integers are added to other matrices whose elements are integers) and the definition of

evaluation to carry out the matrix operations. The module author also extends the proof

of type preservation to include the new matrix operations. Our programmer can now write

his program using a language composing both the host language module and the matrix

module, using the matrix features in the same way he uses any other feature in the language.

Another programmer also wants to use our extensible language, but she needs to handle

sensitive data in her program, and she wants the language to check she doesn’t accidentally

leak this data to places that shouldn’t have access to it. This can be accomplished by

labeling variables that hold sensitive data, then having a check that the sensitive data does
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not leak. Such an analysis has been developed [32] and was implemented in the JFlow [31]

modification of Java. As with matrices, a module adding this check as a language feature can

be written. Unlike matrices, this is adding an entirely new semantic analysis to the language.

The matrix module extends the existing semantics by adding new cases to evaluation and

typing specific to matrices, but this information security check is separate from the existing

semantics of the language. The module writer also proves a new metatheoretic property

showing this analysis guarantees no information leaks can occur in programs that pass the

security check. Our programmer can use a language composition including both the host

language module and the security module to get a full language including typing, evaluation,

and information flow security checking with a guarantee that her program does not leak

sensitive information.

Consider a third programmer. He has a programming task where he needs to use matri-

ces but he also needs to handle sensitive data. He can use a composed language including

both the matrix and security modules simply by declaring he wants to use both, with tools

automatically creating a compiler or interpreter with matrices and the security check; no

extra work is needed to build the composition, even though the security and matrix modules

were written independently of one another. In this composed language, the security check

is defined for the matrix operations as well as the host language’s constructs, and it checks

the whole program for leaks of secure information, in addition to typechecking ensuring the

program, including matrix operations, is well-typed. Moreover, the metatheoretic property

about the security check still holds, and the check still guarantees sensitive information does

not leak even though the matrix module that was not known when the security analysis

was written is included in the composed language. Ensuring properties such as this one for

any language composition, especially ones with independent modules like the matrix and

security modules, is the focus of this thesis.

The compositionality we see in this third scenario is the main benefit of extensible

languages relative to other approaches to language construction. While the JFlow imple-

mentation guarantees sensitive information is not leaked, it does not give a way to combine

this with other modifications of Java, such as Coffer [33] that adds resource management
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facilities for ensuring protocols are followed, and thus using both facilities together requires

re-implementing both sets of features in a new, shared implementation.

Note that, in our vision, not only do we have such compositionality of modules, but

each programmer is choosing the modules he or she wants to be included in a composed

language; the compositionality of language features does not depend on a language expert

to put a composition together or test it for correctness. The only part where language

experts may be needed is in writing the modules, not using them. Then anyone can use a

language with the features they want, and with the appropriate metatheoretic guarantees

for those features, as long as each feature independently exists.

1.2 Requirements for Complete Modularity

The vision we have laid out for extensible languages requires complete modularity of the

language. We define this as the language library being open and composition of language

modules being automatic, both of which we discuss below. These requirements can be ap-

plied to all parts of a language’s specification, its concrete syntax, its abstract syntax and

semantic definitions, and its metatheory. Our focus in this thesis will be on metatheory,

with semantics as a secondary focus necessary for considering metatheory. This is different

from most existing extensibility frameworks that only consider concrete syntax or seman-

tics, not metatheory. Most existing frameworks also do not follow both our modularity

requirements for the parts of language specifications they do consider, generally being ei-

ther open or automatic, but not both, rendering them insufficient for realizing our vision

from the previous section.

Our first requirement for complete modularity is that the language library should be

open, allowing anyone to contribute a new language module at any time. We saw this in

the previous section, where the matrix and information flow security extensions could be

written and added to the language library if they were not already present. A language

cannot truly be considered extensible if new modules cannot be added; in that case it

is simply a way for organizing a language’s features. Some prior approaches to making
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extensions or modifications to languages, such as Polyglot [33] for making modified versions

of Java, have been closed, not allowing new additions to existing languages. Qualitatively,

in addition to the library being open, modules should also be able to make meaningful

additions to a language. What are “meaningful” additions cannot be quantified, of course,

but we expect an extensible language to allow module writers some freedom in defining

language semantics. A system of macros that simply expand to set code would not fit our

expectations.

The second requirement for complete modularity is that composition of language mod-

ules should be automatic. Any subset of the modules in the library can be used to create

a composition, modulo a requirement by one module that another be included in the set

(e.g., the security and matrix modules from our example both require the host language

module to be included in a composition with them, as they build on its definitions). This

requirement ensures a language expert is not needed to build a composition, allowing pro-

grammers to create their own languages as we saw with the third programmer choosing

both extensions in the previous section. Many prior frameworks for extensibility require

glue code, modifications and additions that make the specifications from different modules

work together, to form a composition [5, 6, 13, 22]. The necessity of changing or adding def-

initions to make a composition work prevents average programmers from building language

compositions, as they are not experts in languages and cannot make the necessary changes.

Consider especially the JastAdd [13] system for writing extensible languages. JastAdd tries

to accomplish much of what we laid out in our vision: modules may be freely added to

a language library, and they may add new abstract syntax (e.g., the matrix module) and

new semantics (e.g., the security module). However, JastAdd requires glue code to form

a composition in the general case. For example, the definition of the security analysis for

matrix operations would need to be written for the composition, preventing an average

programmer from creating the composition.

The focus of complete modularity is on allowing programmers who are not experts in

programming languages to make languages with the features they want, modulo those fea-

tures being available in a language library, and on allowing anyone with language expertise
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to add a new feature module to the language library. This democratizes language con-

struction, both for language users and language writers. However, this is not the focus of

most existing frameworks, which is why they do not follow our modularity requirements.

If new modules cannot be added, all compositions are known, and that the language is

well-behaved for all compositions can be checked by checking each possible combination. If

composition is not automatic, a language expert can ensure its specification is sensible, and

can directly specify any new pieces needed in the composition, such as the definition of the

security check for matrices. Such systems allow reuse of existing components, reducing the

work required to build a particular composed language, but not necessarily eliminating it.

There are a few extensibility frameworks that fit our view of complete modularity for

some aspects of language specification, but cannot fulfill our vision either due to not allow-

ing extensions to introduce new semantic analyses, such as the aforementioned information

security check, or due to not having a framework for modular metatheory. Modular Struc-

tural Operational Semantics (MSOS) [29] allows modules to extend and to modify existing

semantic analyses, such as relations defining evaluation, but does not allow introducing new

semantic analyses. Thus MSOS is completely modular in extending the existing language

semantics, but not in adding new semantic analyses, and cannot fulfill our vision.

Similarly, a framework we call complementary components [5, 7, 30, 35] has modules

build on a shared set of definitions and is completely modular for extending shared lan-

guage semantics. Approaches exist for developing the metatheory of such languages, but

tend either not to be completely modular because they require glue proofs for metatheory

composition or not to be powerful enough to prove desired properties. As with MSOS,

modules in complementary components also cannot introduce new semantic analyses, and

thus cannot fulfill our vision even with more robust approaches to developing metatheory.

The Silver attribute grammar system [38] has a completely modular extensibility frame-

work for specifying language semantics. In addition to extending the definitions of existing

analyses, this framework supports adding new semantic analyses. In language composition,

missing definitions, such as the definition of the security check for matrices and matrix op-

erations, are created automatically. Silver is paired with the Copper parser generator [25]
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that allows writing completely modular specifications of concrete syntax. However, the ex-

isting metatheory approach for Silver’s extensibility framework [19] is too restrictive, falling

short of the qualitative requirement of modules being able to make meaningful additions.

Thus we see our vision requires a new framework that will be completely modular for both

semantics and metatheory.

1.3 Our Framework for Extensibility

We propose an extensibility framework for language definitions and a reasoning framework

for proving metatheory of languages specified using the extensibility framework. Both fit

our definition of complete modularity, with an open library of modules, as well as automatic

composition of language semantics for the language extensibility framework and automatic

composition of sets of properties and their proofs for language metatheory for the reasoning

framework. We consider each in turn.

1.3.1 Defining Languages

Our extensibility framework for defining language semantics borrows heavily from the one

introduced by Silver [38] mentioned in the previous section, with our changes making it

more general and more useful for reasoning. Individual language modules may introduce

new syntax categories and constructors of them, as well as new semantic relations and define

them. Modules may also build on other modules, extending their semantics. Extension

modules may add new constructors of existing categories and may define existing semantic

relations for them. An example of this would be the matrix module above defining matrices

and matrix operations as constructors of an existing syntax category for expressions, then

defining the existing typing and evaluation relations for them. However, our framework

imposes restrictions on extending the definitions of existing semantic relations in extension

modules. The purpose of this is to maintain exactly the same meanings of existing relations

for existing constructs. This ensures all modules building on an existing one can understand

its constructs in any composition.
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Composition of modules is the union of all syntax categories, constructors, semantic

relations, and rules defining them. Note that this union necessarily may contain holes, how-

ever, as we can have independent modules introduce new constructors for and new relations

over the same syntax category, as in the security and matrix modules. In a composition, the

union of existing definitions will not provide a definition of the security analysis for matrix

operations that we need for using them together in the same program. Whereas many ex-

isting frameworks use glue code to solve this problem, our need for automatic composition

does not allow this. Instead, each relation introduced by an extension module gives a de-

fault rule for itself, which is then used to define it for new constructs from other extensions.

This is how the security analysis is defined for matrix operations, with the security module

giving a default rule and the composition process instantiating the default rule for each new

constructor introduced by the matrix module. Thus we have automatic composition while

also having complete definitions for new semantic analyses in composition.

1.3.2 Modular Metatheory

Our reasoning framework builds on our extensibility one, assuming the language semantics

are given by modules in such a language library. As each module can introduce syntax

categories and semantic relations, so also can they introduce new properties. For example,

the host language from the example above can introduce the type preservation property

and the security extension module can introduce properties showing its analysis guarantees

a program cannot leak sensitive information. Composition of properties is the union of the

properties introduced by all the modules included in a language, so a composition including

the security extension and the host language would be expected to have both the type

preservation and security properties.

Showing a composed language has the expected properties requires proofs. Our proofs

will be derivations in a particular logic. As with all other elements of language specifications,

property proofs will be introduced by modules, then composed to create proofs for the full

language. Just as the full definition of a semantic relation in our extensibility framework is

given by individual modules introducing independent rules, so the proofs of metatheoretic
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properties are given by individual modules writing independent pieces of them. The proof

of a property is broken down into cases that correspond to the rules defining a relation,

with the module introducing either the property or the rule proving each case.

As with language semantic definitions, however, this breakdown necessarily leaves holes.

Some rules are introduced in the composition by instantiating default rules, as with the se-

curity analysis’s default rule being instantiated for matrices. The key to automatic compo-

sition of proofs will be to handle such cases generically. The module introducing a property

knows such cases may exist, and it knows roughly how they will be defined, as it knows the

default rule that will be instantiated for any such cases. For example, the security module

knows what the default rule for the security analysis is, so it can show other constructs will

be secure as well in a general way, even though it does not know them specifically.

In addition to ensuring each rule in the composition has a proof, we also need to know

these proofs written by individual modules will be valid in a composition. In particular,

reasoning by case analysis poses a problem, as it relies on a global closed-world assumption,

that all possible applicable rules, and therefore all possible cases, are known. This is not

so in an extensible setting, as other modules can introduce new rules. However, we can

have a local closed-world assumption, based on the limitations on extending the definitions

of existing semantic analyses that are part of our extensibility framework. Limiting case

analysis to situations where we know other modules cannot add applicable rules ensures the

set of applicable rules in a composed setting is the same as in the setting of the individual

module writing the proof, and thus each case arising from the case analysis in any composed

setting is handled by the proof written by the module.

Proof composition is necessarily more complex than the union of sets used for other

elements, as it needs to create a structure that is valid by the rules of the logic rather

than simply a new set. We will require the basic structure of the modular proofs and the

composed proof to be the same, so all the composition needs is to fill in the proof for each

case. This can be accomplished by taking the proof cases written by the modules and,

for each case for a new construct from a different module, generating a proof from the

generic one. Our requirements of proofs written by modules will ensure proof composition
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succeeds, creating a valid proof in the context of the composed language for each property

from each included module. Thus, having a proof for any composed language for each

expected property, we know all properties hold for any composed language.

1.4 Contributions

In this thesis, we first create an extensibility framework for writing extensible languages

based on that used by Silver [38], but somewhat more general. In particular, whereas

Silver’s model is specific to attribute grammars, our reformulation applies to inference-rule-

based specifications. Furthermore, ours gives more freedom in declaring how the definitions

of new semantic attributes are to be extended to constructs from other modules, such as

how the definition of an information flow security analysis from one extension would be

defined for matrix operations from another.

The main body of this work is the formulation of a framework for understanding

metatheory in the setting of extensible languages that use this extensibility framework.

Metatheoretic properties may be introduced modularly, in the same manner as language

semantics are introduced. These properties may then be proven modularly as well, with

proofs distributed similarly to how the definitions of language semantics are distributed.

The modular proofs written by the designers of individual language modules can then be

used to build proofs of each property for any composed language, guaranteeing each prop-

erty holds for any composed language. Going beyond individual properties, our framework

ensures full sets of properties hold for composed languages, guaranteeing full sets of proofs

do not have circular dependencies between properties used as lemmas.

We have implementations of both the extensibility framework in our new Sterling system

and the reasoning framework in our proof assistant Extensibella. These work together, with

extensible languages being defined and checked for well-formedness in Sterling, and proofs

of their properties being written and checked for modular validity in Extensibella. Beyond

facilitating modular reasoning, Extensibella also includes the capability to take the modular

proofs and combine them to create machine-checkable proofs for any composed language,
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implementing the proof composition that guarantees the modular work is valid.

Finally, we have tested our framework by developing a set of applications written in

Sterling and Extensibella demonstrating the language extensibility framework is useful for

writing languages and the reasoning framework is practical for proving their properties.

These applications also demonstrate the trade-offs in our modular reasoning framework

between the freedom of extension modules in defining the semantics of new constructs and

the ability of extension modules to introduce and prove interesting properties.

1.5 Overview

Chapter 2 presents our language extensibility framework and compares it with the existing

Silver framework on which we have based ours. It also introduces an extensible language

with a host language and three extensions building on it that we will use as a running

example in future chapters.

The next three chapters deal with the foundations of modular metatheory. First Chap-

ter 3 presents the logic with which we will prove metatheoretic properties of languages and

how we encode our languages into the logic. Chapter 4 then uses this logic in presenting

our reasoning framework. We present the requirements for modules in proving both new

properties they introduce and any imported from other modules that they extend. We also

present how these modular proofs may be used to create a full proof of an individual property

for any composed language, demonstrating the reasoning framework is sound for proving

properties modularly. Chapter 5 finishes our presentation of the reasoning framework by

discussing proving sets of properties. The main part of this is how we order properties for

use as lemmas in the context of individual modules to ensure that we do not have circu-

larities in sets of proofs for composed languages. This gives a guarantee that the full set

of properties will hold for any composed language, building on the proofs that individual

properties will hold for any composed language.

The next two chapters focus on the practical aspects of using the reasoning framework.

We present our implementations of the extensibility and reasoning frameworks in Chapter 6,
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discussing their uses and how we implement proof composition. Chapter 7 then discusses

some examples we have developed using our tools, the lessons we have learned from them,

and the trade-offs to be considered for designing extensible languages and their properties

in light of extensibility, especially in light of modular proofs and generic reasoning.

Finally, we close by considering the past and the future. Chapter 8 presents prior

work on modular reasoning for extensible languages, comparing them to our own reasoning

framework. Chapter 9 summarizes our work and discusses possible future directions.
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Chapter 2

A Framework for Language Extensibility

Language specifications define a language’s syntax and semantics. Syntax descriptions

identify a language’s syntax categories, such as a category for expressions, and constructors

for these categories. Having identified the syntax, a language specification may then define

relations over it, often including both static analyses, such as those determining if a term

is well-formed, and dynamic analyses defining notions related to evaluation.

Our extensibility framework organizes these definitions into modules. Each module may

introduce syntax categories, syntax constructors, relations, and rules defining relations, with

a full language being the composition of the pieces introduced by a set of modules. Modules

are further organized into language libraries of modules that may be composed to form full

languages from some subset of the modules in a library. Language libraries start with a

single module, or a small set of modules, often defining a host language. Developers then

write new extension modules building on those already in the library, contributing them

when they are complete. The independent nature of writing extension modules leaves the

language library open to extension anytime, by anyone, as the developer of a new extension

does not need to know the contents of the entire library in writing a new module, only those

parts on which it depends.

Language composition creates a complete language from a set of specification modules,

requiring no work from the programmer creating a composition beyond specifying which

modules to include. The composed language includes all the syntax categories, syntax

constructors, relations, and rules from all the modules included in the composition. Addi-

tionally, it includes rules defining relations introduced by one extension for new constructors
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introduced by another, these rules being created automatically for the composition to com-

plete the definitions of relations. A composed language thus includes all features from all

modules included in the composition.

The framework we present is based on that used by the Silver attribute grammar sys-

tem [38] and the modular well-definedness analysis [18] it uses to check modules are well-

formed, ensuring any composition will be well-formed. We distill the portions of these

existing works that are generally applicable, dropping the portions specific to attribute

grammars.

In the rest of this chapter, we discuss our framework for writing extensible languages.

We start in Section 2.1 with how we define individual modules, then discuss in Section 2.2

the requirements for language modules individually, and language libraries in total, to be

well-formed. We also define, in Section 2.3, how we compose a set of extensible language

modules to form a complete language. Finally, Section 2.4 discusses specifically how our

extensibility framework relates to that used by Silver.

2.1 Defining Language Modules

A module is, informally, a set of syntactic and semantic definitions that may add to the

syntax and semantics already defined by other modules. Formally, a module is an 8-tuple,

written as ⟨B,C ,C,R ,R,T ,T,S⟩. The first item in this tuple is for specifying relation-

ships between different modules, the next two for defining syntax, and the remainder for

introducing and defining relations. Note we will write these with a superscript to identify

the module to which a tuple element belongs. For example, CM is the second element of

the tuple defining the M module. We will look at each portion in turn.

The first element is the set of modules B on which a module builds; this defines the

relationships between different modules in a language library. A module is aware of all

the declarations in the modules on which it builds, both syntax declarations and semantic

declarations, and may add to them. Modules may build on one another freely, other than

a restriction that a module cannot build on itself; we require acyclicity of the builds-on
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relationships of a language library. We say two modules are unrelated if neither builds on

the other. We will sometimes refer to the inclusion of a module in BM as M importing

that module or some element that it introduces. This emphasizes the similarity between

building on an existing set of modules to form a new language module and using libraries,

essentially programs, in writing a new program in standard programming languages such

as Java or Python. We also say a module knows the modules in its builds-on set, and the

syntax and semantics they introduce, to contrast with unknown modules and their syntax

and semantics, those not part of the builds-on set of a module.

Some extensible language systems limit their module structure to a host language and

an open set of extensions to it. This basic structure is subsumed by our structure of modules

building freely on one another, but we will often borrow the terminology of an extension

to refer to a module building on other modules, particularly in situations where we wish to

emphasize a module is adding to an existing set of definitions, or extending the definitions,

given by a module on which it builds.

2.1.1 Specifying Syntax

This work is focused on the semantics of extensible languages, so we are interested only in

the abstract syntax of modules, not concrete syntax. Thus our module tuples include only

descriptions of abstract syntax, not concrete syntax. Prior work has addressed developing

concrete syntax for extensible languages in a comparably extensible manner [36].

In our modules, C is a set of syntax categories and C is a set of constructors. Each

constructor takes arguments of specific syntax categories and builds a term in a specific

syntax category. When a constructor is introduced, its argument syntax categories and the

one it builds must be known categories. The known syntax categories for a module M are

those introduced in CN for a module N ∈ BM ∪ {M}, that is, the known syntax categories

are those from M or one of the modules on which it builds. Some syntax categories will

be extensible and others not, with a category’s extensibility determined by the T element.

We will discuss how this is specified below. What is important to the introduction of

syntax constructors is that introducing a constructor building an expression in an imported
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category is permissible only if that category is an extensible one. New constructors for

non-extensible imported categories are not allowed.

When presenting a language module, we will represent its syntax introductions similarly

to datatype declarations in a functional language such as OCaml. Figure 2.1 shows the

syntax of our example language, with a host language H, an extension introducing list

constructs L, and an extension for information flow security S. Our host language introduces

categories for statements s, expressions e, types ty , variable names n, integers i, typing

contexts Γ, and evaluation contexts γ. Note we do not specify constructors for the n

or i categories in our presentation for simplicity. The categories other than statements,

expressions, and types are non-extensible. This language includes Boolean and integer

types, with values of those types and operations over them in the expressions. It also

includes statements for declaring variables and assigning values to them, conditionals, while

loops, and sequencing statements, as well as a no-op statement (skip).

The list extension adds to the host language by introducing a list type constructor and

expressions for building and deconstructing lists. It also introduces a splitlist statement

form for simultaneous assignment of the head and tail of a list to separate variables. For

example, splitlist(h, t, cons(true,nil)) will result in assigning true to h and nil to t. Note

the extreme simplicity of our language prevents more common but more complex statement

additions by the list extension such as a for-each loop, which is why we choose the splitlist

statement as an example.

Our other extension is the information flow security extension. This extension introduces

the idea that some variables may contain sensitive information that needs to be treated

specially to ensure users of a program do not gain access to it. For example, the encryption

keys used in a program should be considered sensitive and users should not have access

to them. To provide a way to annotate programs with confidentiality levels, the extension

introduces a category sl for security levels with constructors public and private. The secdecl

statement constructor then allows declaring variables with one of these security levels, with

variables declared using private treated as holding information to be kept confidential. The

extension also introduces a category for security contexts Σ associating variable names with
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BH = ∅

CH = {s, e, ty , n, i,Γ, γ}

CH :

s ::= skip e ::= var(n) ty ::= int
| decl(n, ty, e) | intlit(i) | bool
| assign(n, e) | true
| seq(s, s) | false Γ ::= nilty
| ifte(e, s, s) | add(e, e) | consty(n, ty,Γ)
| while(e, s) | eq(e, e)

| gt(e, e) γ ::= nilval
| not(e) | consval(n, e, γ)

BL = {H}

C L = {}

CL:

e ::= nil ty ::= list(ty)
| cons(e, e)
| null(e) s ::= splitlist(n, n, e)
| head(e)
| tail(e)

BS = {H}

C S = {sl ,Σ}

CS :

sl ::= public Σ ::= nilsec s ::= secdecl(n, ty , sl , e)
| private | conssec(n, sl,Σ)

Figure 2.1: Builds-on sets and syntax of the example host language (H), list extension
(L), and security extension (S)
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security levels; we will use security contexts for checking information about the contents of

private variables cannot be leaked to public variables. This extension and its analysis is a

simplification of prior work on security in information flow [32].1

2.1.2 Specifying Language Semantics

We define language semantics via relations, given by the next two elements of a module-

defining tuple ⟨B,C ,C,R ,R,T ,T, S⟩. The set R is the set of relations introduced by a

module. Each relation is given an arity and syntax categories for the types of its arguments.

Just as C defines the categories in C by giving constructors for building them, so R defines

the relations in R by giving rules for deriving them. Also as with constructors, the rules

in RM may define any known relation, and may rely on any known relation as a premise

for the rule, with the set of known relations being those introduced in RN for a module

N ∈ BM ∪ {M}, that is, relations introduced by M or any module on which it builds.

There is a limitation on introducing rules defining imported relations, however. We

want to hold the definitions of imported relations as fixed for imported constructs. This

makes it possible for extensions to understand constructs introduced by the modules on

which they build, as the semantics cannot be changed by other modules in a composition.

As an example of why this is important, consider addition in our example language. Our

host language will define a typing relation Γ ⊢ e : ty relating a typing context assigning

names to variables, an expression, and the type of that expression. It defines addition to

have an integer type when the two expressions being added have integer types (i.e., the

expected rule for typing add). Suppose an extension to our example language introduced

complex numbers and a type complex and added this new rule for typing an addition of

complex numbers:

Γ ⊢ e1 : complex Γ ⊢ e2 : complex

Γ ⊢ add(e1, e2) : complex

T-Add-Complex

1This particular instance is a modification of information flow security as presented by Andrew Myers
at OPLSS in 2019. Lecture recordings and notes can be found online at https://www.cs.uoregon.edu/

research/summerschool/summer19/topics.php#Myers.
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In a non-extensible setting, this rule is fine and does define what we would expect the

typing of adding complex numbers to be. However, the inclusion of this rule would mean

an addition could have a complex number type, not just an integer type as it was defined to

have in the module introducing it. Then other extensions could not rely on addition having

an integer type in defining their own semantic relations for addition. Allowing new rules

of this sort would make defining new semantic relations coherently relative to imported

semantics difficult, as the imported semantics could be changed in a composition.

To ban extensions from introducing rules changing the semantics of established con-

structs, we need to define what it means to do so. We introduce the notion of the primary

component of a relation for this purpose. The primary component may be thought of as

the argument about which the relation tells us something, or as the one around which the

relation is defined. Each relation has a single primary component argument specified when

the relation is introduced. In our specifications, we will mark the primary component argu-

ment of each relation we introduce with ∗. For some relations, such as the typing relation

we will introduce as part of our example language, the argument that should be chosen as

the primary component is clear. Typing is about the expression being typed, rather than

the typing context or type it has, and thus the expression is the primary component. In

other situations, which argument should be the primary component is not as clear. For

example, in a language with a subtyping relation τ1 <: τ2, the relation is truly about the

relationship between the two types, not about one over the other. Thus the choice of the

primary component is arbitrary.

Because a relation is about its primary component, a rule might change the semantics of

an established construct if it can apply to existing constructors of the primary component.

This requires the rules an extension module introduces for imported relations to have a term

built at the top level by a constructor introduced by the extension module as the primary

component of its conclusion. This would ban the above T-Add-Complex rule because

the primary component of its conclusion, add(e1, e2), is built at the top by the imported

add constructor. Then extension modules are free to define imported relations for the new

constructs they introduce, which have no prior definitions, but not to redefine them for
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imported constructs.

This requirement may seem too strict. For example, suppose a module introduces types

a and c and a subtyping relation <:. An extension to this module wants to introduce a

type b such that a <: b and b <: c. One of the rules defining these relationships will be

disallowed, as the primary component of the subtyping relation must be either the first or

second argument, and one of the rules would have an imported construct as that argument.

However, the host language designer can recognize this is a problem and instead introduce

two subtyping relations, <:1 and <:2, the former having the first argument as its primary

component and the latter the second as its primary component, along with rules that

τ1 <:1 τ2 holds when τ1 <:2 τ2 holds and vice versa. Then the extension’s desired rules

can be encoded in the appropriate relations as a <:2 b and b <:1 c, and the two relations

together form the one subtyping relation desired. This approach of auxiliary relations can

be applied to many situations where the restriction on extension-introduced rules would

prevent useful extensions from being written otherwise.

Figure 2.2 gives the full set of relations RH for the host language along with a selection of

the rules defining its relations. The full specification for our example language, including the

host language and extensions, can be found in Appendix A. The host language introduces

relations for looking up types (lkpTy(Γ∗, n, t)) and values (lkpVal(γ∗, n, e)) in their respective

types of contexts, as well as a relation indicating a name is not present in a typing context

(notBoundTy(Γ∗, n)), all defined as expected. Note the context is the primary component

of all these relations, marked with ∗.

Figure 2.2 also contains a selection of the host language’s rules for relations defined

over expressions and statements. Each of these relations is designed to tell us something

about the expression or statement over which it is defined, so the statement or expression

is the primary component of each relation. The value predicate (value(e∗)) identifies some

expression forms as values. We also have a relation vars(e∗,ns) relating an expression to the

set of variables occurring in it. The host language also introduces typing relations for both

expressions and statements. Expression typing, written Γ ⊢ e∗ : ty , indicates the expression

e has the type ty under the typing context Γ assigning types to names. Statement typing,
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RH = {lkpTy(Γ∗, n, ty), notBoundTy(Γ∗, n), lkpVal(γ∗, n, e), value(e∗),
vars(e∗, 2 n), Γ ⊢ e∗ : ty, Γ ⊢ s∗,Γ, γ ⊢ e∗ ⇓ e, (γ, s∗) ⇓ γ}

RH includes

value(e∗)

value(intlit(i))
V-Int

value(true)
V-True

value(false)
V-False

Γ ⊢ e∗ : ty

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ eq(e1, e2) : bool
T-Eq

Γ ⊢ e : bool

Γ ⊢ not(e) : bool
T-Not

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ add(e1, e2) : int
T-Add

Γ ⊢ s∗,Γ

Γ ⊢ e : ty notBoundTy(Γ, n)

Γ ⊢ decl(n, ty, e), consty(n, ty,Γ)
TS-Decl

Γ ⊢ s1,Γ
′ Γ′ ⊢ s2,Γ

′′

Γ ⊢ seq(s1 , s2 ),Γ
′′ TS-Seq

Γ ⊢ e : bool Γ ⊢ s1,Γ
′ Γ ⊢ s1,Γ

′′

Γ ⊢ ifte(e, s1, s2),Γ
TS-If

vars(e∗,ns)

vars(var(n), {n})
VR-Var

vars(intlit(i),∅)
VR-Int

vars(e1 , vr1 ) vars(e2 , vr2 )

vars(eq(e1 , e2 ), (vr1 ∪ vr2 ))
VR-Eq

γ ⊢ e∗ ⇓ e

γ ⊢ e1 ⇓ v1 γ ⊢ e2 ⇓ v2 v1 = v2
γ ⊢ eq(e1, e2) ⇓ true

E-Eq-T

γ ⊢ e1 ⇓ v1 γ ⊢ e2 ⇓ v2 v1 ̸= v2
γ ⊢ eq(e1, e2) ⇓ false

E-Eq-F

γ ⊢ e1 ⇓ intlit(i1) γ ⊢ e2 ⇓ intlit(i2) plus(i1, i2, i)

γ ⊢ add(e1, e2) ⇓ intlit(i)
E-Add

lkpVal(γ, n, v)

γ ⊢ var(n) ⇓ v
E-Var

(γ, s∗) ⇓ γ

(γ, s1) ⇓ γ′ (γ′, s2) ⇓ γ′′

(γ, seq(s1, s2)) ⇓ γ′′
X-Seq

γ ⊢ e ⇓ true (γ, s1) ⇓ γ′

(γ, ifte(e, s1, s2)) ⇓ γ′
X-If-T

Figure 2.2: Relations introduced by the host language (RH) and selected rules defining
them (RH)

22



written Γ ⊢ s∗,Γ′, indicates the statement s is well-typed with the initial typing context

Γ, with any new variable bindings it adds in Γ′. The statement typing relation may be

different in a couple ways than expected due to the simplicity of our language. In the TS-

Decl rule, we check the name being declared is not already present in the typing context

(notBoundTy(Γ, n)). The TS-If rule types both branches, but then throws away the new

variables declared in each, like the branches are scopes in C or Java.

Finally, the host language introduces relations for big-step evaluation for expressions

and statements. Expression evaluation, written γ ⊢ e∗ ⇓ e′, specifies how the primary

component expression evaluates to a value e′, using values from γ for any variables evaluated

in it. We see this in E-Var, where a variable evaluates to the value associated with its name

in γ. Statement evaluation, written (γ, s∗) ⇓ γ′, specifies how the statement updates the

evaluation context, starting with an initial evaluation context γ and updating it through

variable declarations and assignments to get γ′.

The relations introduced by the host language are also defined by the extensions for

their new syntax, with rules found in Figures 2.3 and 2.4 for the list extension and security

extension, respectively. Note in these figures that our extensions obey the requirement

that they may only introduce rules for imported relations where the primary component

of the conclusion is built by a new constructor. Note also this requirement prevents the

extensions from giving new rules for relations with non-extensible primary components, such

as lkpTy(Γ, n, ty), because new constructors of the primary components cannot be given by

extensions. The rules introduced by our extensions are as expected. The list extension

identifies the nil and cons(e1, e2) expression forms as values, with the latter only a value

if both its sub-expressions are values, and all other rules it introduces are as expected.

Similarly, the security extension’s secdecl construct is treated in the same way as the host

language’s decl for typing and evaluation.

The security extension also introduces and defines its own relations intended to check

programs are secure, that is, that information from private variables cannot leak to public

ones in evaluation. In addition to a relation (lkpSec(Σ∗, n, sl)) for looking up the security

level of a variable in a security context, it introduces three other relations. Some rules for
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RL includes

value(e∗)

value(nil)
V-Nil

value(e1 ) value(e2 )

value(cons(e1 , e2 ))
V-Cons

Γ ⊢ e∗ : ty

Γ ⊢ e : list(ty)

Γ ⊢ null(e) : bool
T-Null

Γ ⊢ e : list(ty)

Γ ⊢ tail(e) : list(ty)
T-Tail

vars(e∗, 2 n)

vars(e1 , vr1 ) vars(e2 , vr2 )

vars(cons(e1 , e2 ), (vr1 ∪ vr2 ))
VR-Cons

vars(e, vr)

vars(head(e), vr)
VR-Head

γ ⊢ e∗ ⇓ e

γ ⊢ e1 ⇓ v1 γ ⊢ e2 ⇓ v2

γ ⊢ cons(e1, e2) ⇓ cons(v1, v2)
E-Cons

γ ⊢ e ⇓ cons(v1, v2)

γ ⊢ head(e) ⇓ v1
E-Head

Γ ⊢ s∗,Γ

Γ ⊢ e : list(ty) lkpTy(Γ, nhd, ty) lkpTy(Γ, ntl, list(ty))

Γ ⊢ splitlist(nhd, ntl, e),Γ
TS-Splitlist

(γ, s∗) ⇓ γ

γ ⊢ e ⇓ cons(v1, v2)
nhd ̸= ntl update(γ, nhd, v1, γ

′) update(γ′, ntl, v2, γ
′′)

(γ, splitlist(nhd, ntl, e)) ⇓ γ′′
X-Splitlist

Figure 2.3: Selected rules given by the list extension (RL) for the relations introduced by
the host language (RH)

24



RS includes

Γ ⊢ s∗,Γ

Γ ⊢ e : ty notBoundTy(Γ, n)

Γ ⊢ secdecl(n, ty, sl, e), consty(n, ty,Γ)
TS-Secdecl

(γ, s∗) ⇓ γ

γ ⊢ e ⇓ v

(γ, secdecl(n, ty, sl, e)) ⇓ consval(n, v, γ)
X-Secdecl

Figure 2.4: Rules given by the security extension (RS) for the relations introduced by the
host language (RH)

these are found in Figure 2.5. The first is join(sl∗, sl , sl), which relates two security levels

to the more sensitive of them, that is, the one for information that is more confidential.

This relation is truly about the relationship between the security levels, so there is no clear

choice for the primary component, and we arbitrarily choose one. Note the J-Private-R

rule has a meta-variable for the primary component of its conclusion. Because this rule

is introduced by the same module that introduces the relation, it does not need to give a

specific constructor for the primary component.

The other two relations are the level relation for expressions and the secure relation for

statements. The level relation, written Σ ⊢ level(e∗, sl), determines the maximum security

level of information used to evaluate the expression, where variables are assigned security

levels by the security context Σ; in practice, since our language only contains the public and

private security levels, this determines whether e contains any variables assigned private

in Σ or not. Some rules for this relation are found in Figure 2.5; as seen there, constants

are considered public because they have no private information (L-Int), variables have the

level assigned them in the security context (L-Var), and compound expressions have the

maximum (determined by join) confidentiality level of their sub-expressions (L-Eq).

For statements, Σ sl ⊢ secure(s∗,Σ′) is intended to hold only if the statement will not

leak private information to public variables, with public and private variables determined by

Σ. As with statement typing, Σ′ contains updated security bindings from the declarations
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RS = {lkpSec(Σ∗, n, sl), join(sl∗, sl , sl), Σ ⊢ level(e∗, sl), Σ sl ⊢ secure(s∗,Σ)}

RS includes

join(sl∗, sl , sl)

join(public, public, public)
J-Public

join(private, ℓ, private)
J-Private-L

join(ℓ, private, private)
J-Private-R

Σ ⊢ level(e∗, sl)

Σ ⊢ level(intlit(i), public)
L-Int

lkpSec(Σ, n, ℓ)

Σ ⊢ level(var(n), ℓ)
L-Var

Σ ⊢ level(e1, ℓ1) Σ ⊢ level(e2, ℓ2) join(ℓ1, ℓ2, ℓ)

Σ ⊢ level(eq(e1, e2), ℓ)
L-Eq

Σ sl ⊢ secure(s∗,Σ)

Σ ℓ ⊢ secure(s1,Σ
′) Σ′ ℓ ⊢ secure(s2,Σ

′′)

Σ ℓ ⊢ secure(seq(s1, s2),Σ
′′)

S-Seq

Σ ⊢ level(e, public)

Σ public ⊢ secure(decl(n, ty , e), conssec(n, public,Σ))
S-Decl

Σ ⊢ level(e, ℓ) lkpSec(Σ, n, private)

Σ ℓ′ ⊢ secure(assign(n, e),Σ)
S-Assign-Private

Σ ⊢ level(e, public) lkpSec(Σ, n, public)

Σ public ⊢ secure(assign(n, e),Σ)
S-Assign-Public

Σ ⊢ level(e, ℓ) join(ℓ′, ℓ, ℓ′′) Σ ℓ′′ ⊢ secure(s,Σ′)

Σ ℓ′ ⊢ secure(while(e, s),Σ)
S-While

Σ ⊢ level(e, ℓ)

Σ ℓ′ ⊢ secure(secdecl(n, ty , private, e), conssec(n, private,Σ))
S-Secdecl-Private

Σ ⊢ level(e, public)

Σ public ⊢ secure(secdecl(n, ty , public, e), conssec(n, public,Σ))
S-Secdecl-Public

Figure 2.5: Selected rules in RS for security relations introduced by S (RS).
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within a statement. The sl argument gives the security level of the context in which the

statement is executed. Taking a whole-program view, the context level for a statement is

determined by whether a private variable may have been used in branching to reach the

statement. For example, in the S-While rule, the context level for the body is the more

sensitive of the current context level and the condition’s level. If the condition uses a private

variable, then taking a public action like assigning to a public variable in the loop body

can tell a user whether the loop was taken or not, and thus something about the value

of the private variable in the condition. Consider the S-Assign-Private and S-Assign-

Public rules in Figure 2.5. We may assign to a private variable regardless of the context,

as assigning to a private variable cannot leak information because observers cannot see its

value. However, to assign to a public variable, the expression the value of which is being

assigned to the variable must not contain private variables, and the context in which the

assignment is made must be public as well.

2.1.3 Viewing Extensions via Projection

In our example language, we have both an extension introducing analyses on expressions and

statements to check confidential information does not flow into public variables from whence

it may be leaked to the person running a program, with rules defining these analyses, and an

extension introducing new expression and statement forms for lists. If these two extensions

are used together, how are the security analyses defined for the new list constructs? The

security extension could not introduce rules for them, as it did not know the constructs.

The list extension could not introduce rules for them, as it did not know the relations.

The composition cannot be useful if the security analyses cannot be derived for the list

constructs, as no program using lists could be determined to be secure. We would then

need to choose between checking a program’s information flow and using lists.

To help define new relations for other modules’ new constructs, our framework includes

a method for viewing extension constructs through similar non-extension constructs using

projection relations, introduced in T in the module-defining tuple ⟨B,C ,C,R ,R,T ,T, S⟩.
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Projection relations in T H : {e : proj e(e, e), s : proj s(s, s), ty : proj ty(ty , ty)}

Projection relation rules in TL:

proj e(null(e), e)
P-Null

proj e(head(e), e)
P-Head

proj e(tail(e), e)
P-Tail

proj e(nil , true)
P-Nil

proj e(cons(e1, e2), eq(e1, e2))
P-Cons

proj ty(list(ty), ty)
P-List

nhd ̸= ntl

proj s(splitlist(nhd, ntl, e),
seq(seq(assign(nhd, e), assign(ntl, tail(var(nhd)))),

assign(nhd, head(var(nhd)))))

P-Splitlist

Projection relation rule in TS :

proj s(secdecl(n, ty, sl, e), decl(n, ty, e))
P-Secdecl

Figure 2.6: Projection relations and rules defining them for the host language H and
extensions L and S

Projection relations relate terms built at the top level by constructors introduced by exten-

sion modules to their projections in the same category. A term’s projection can be thought

of as an approximation of the original term and its semantics. Each relation in T M is

mapped by T M to a syntax category in CM . Rules defining projection relations for new

constructors are found in the T element of the module tuple.

Earlier we noted that some syntax categories are extensible and some are not. The exis-

tence of a projection relation for a syntax category is what makes that category extensible,

permitting extension modules to introduce new constructors for it. If T M does not include

a projection relation for a syntax category it introduces, modules building on M may not

contribute new constructors building expressions in that category.

Figure 2.6 shows the projection relations introduced by the host language and rules

defining them for the constructs from the list and security extensions. We only have pro-

jection relations for expressions, statements, and types as the other categories introduced

by the host language (n, i, Γ, and γ) are not extensible. The projection relations in our
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example modules take the most basic form for projection relations, being binary relations

relating a term and its projection. This is due to the simplicity of our language. In general,

projection relations are (n+2)-ary relations for some n ≥ 0. In addition to the term and its

projection, they can have arguments that support projection by giving information about

the context in which the term being projected occurs. For example, a projection relation

might rely on a typing context so expressions can use type information to determine to

what to project, or a list of names known at the current point in a program so statements

can generate fresh names to use as temporary variables. Both of these uses will be seen in

example languages in Chapter 7.

Some of the projections given by the list extension may seem strange; for example,

null(e) projecting to e seems to lose some important information. Our framework for

language extensibility does not require anything particular of projections beyond well-

typedness, that a term projects to a term of the same syntax category. Whether the

chosen term is a reasonable one is left to the judgment of the language designer. The rea-

soning framework we will present in Chapter 4 lets us define what we expect of projections

by introducing properties we expect to be true of them. These properties specify what is

important for projections to preserve about the original term. Our list projections obey the

properties that will be introduced by the language, so the apparent loss of information is

fine; the properties specify this lost information is not important.

When an extension module introduces a relation over an imported syntax category, it

also introduces a default rule, found in the S portion of the module, that will apply only to

terms in the primary component position built by constructs from other extension modules

that could not have the relation defined directly. The only requirement for the form of a

default rule is that its conclusion have a meta-variable as its primary component. That

being said, these rules often have a form similar to

proj τ (xi, y) R(x1, . . . xi−1, y, xi+1, . . . xn)

R(x1, . . . xi−1, xi, xi+1, . . . xn)
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SS includes
proj e(e, e

′) Σ ⊢ level(e′, ℓ)

Σ ⊢ level(e, ℓ)
L-Default

proj s(s, s
′) Σ ℓ ⊢ secure(s′,Σ′)

Σ ℓ ⊢ secure(s,Σ′)
S-Default

Figure 2.7: Default rules given by the security extension (SS) for its relations

proj e(cons(e1, e2), e
′) Σ ⊢ level(e′, ℓ)

Σ ⊢ level(cons(e1, e2), ℓ)
L-Default(cons)

proj e(null(e), e
′) Σ ⊢ level(e′, ℓ)

Σ ⊢ level(null(e), ℓ)
L-Default(null)

proj s(splitlist(nhd, ntl, e), s
′) Σ ℓ ⊢ secure(s′,Σ′)

Σ ℓ ⊢ secure(splitlist(nhd, ntl, e),Σ
′)

S-Default(splitlist)

Figure 2.8: Default rules from the security extension instantiated for some list constructs

where the primary component argument to R, xi, is projected and R is derived for its

projection. With a default rule like this, the definition of R for a term built by a constructor

from another extension module, one unrelated to the module defining R, is given by copying

the definition from its projection.

We see this form of default rule with the security extension’s analyses, found in Fig-

ure 2.7. In a composed language with both the security and list extensions, the definitions

of the level and secure relations would be given for the list extension’s expression and state-

ment constructors by instantiating the L-Default and S-Default rules for them. To

instantiate a rule for a constructor, we replace the primary component argument of the

conclusion with a term built by the constructor with fresh meta-variables as arguments.

Figure 2.8 shows some examples of instantiating the security extension’s default rules for

constructs from the list extension. The L-Default(cons) rule instantiates the default rule

for level for the list extension’s cons constructor, and the L-Default(null) rule instan-

tiates it for the list extension’s null constructor. The S-Default(splitlist) rule similarly

instantiates the S-Default rule for the list extension’s splitlist construct.

While the form given above is a common one, and new semantic relations are often
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defined well by using their projections, sometimes it is useful to use the projection in a

different way, or not to use the projection. As an example, we add an optimization extension

to perform constant folding, with its relations and some rules shown in Figure 2.9. It does

not introduce any new syntax, only new relations and their definitions. The main relations

are opte(e
∗, e) and opts(s

∗, s), relating expressions and statements to their optimized forms,

with auxiliary relations notInt(e∗) and notBool(e∗) that hold when the expression is not

constructed by intlit for the former or true or false for the latter, that is, the expression is

not a value form of the specified type. The default rule for optimizing statements has the

same form as above, but for expressions, our default rule optimizes an expression to itself

(rule OE-Default). Similarly, the default rules for the auxiliary relations define them to

hold for any unknown construct as these cannot be built by the specified constructors.

Consider optimizing an expression

add(add(intlit(3), intlit(4)), head(cons(add(intlit(3), intlit(4)),nil)))

The optimization uses the OE-Add-O-2 rule. The first sub-expression of the top-level

symbol, add(intlit(3), intlit(4)), optimizes to intlit(7) using the OE-Add-I and OE-Int

rules. The second sub-expression, head(cons(add(intlit(3), intlit(4)),nil)), uses the OE-

Default rule instantiated for the list extension’s head construct. This optimizes the whole

expression to itself. The notInt(head(cons(add(intlit(3), intlit(4)),nil))) premise for the

OE-Add-O-2 rule is derived by the NI-Default rule, also instantiated for head . Thus the

whole expression optimizes to

add(intlit(7), head(cons(add(intlit(3), intlit(4)),nil)))

This result seems unsatisfying because it is clear to us that the whole expression must always

evaluate to intlit(14). However, the optimization extension cannot more usefully optimize

the list extension’s constructs. It does not know they exist, so it cannot provide rules specific

to them, including ones that would optimize only sub-expressions. Thus the best it can do
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RO = {opte(e∗, e), opts(s
∗, s), notInt(e∗), notBool(e∗)}

RO includes

opte(e
∗, e)

opte(intlit(i), intlit(i))
OE-Int

opte(var(n), var(n))
OE-Var

opte(e1, intlit(i1)) opte(e2, intlit(i2)) plus(i1, i2, i)

opte(add(e1, e2), intlit(i))
OE-Add-I

opte(e1, e
′
1) opte(e2, e

′
2) notInt(e′1)

opte(add(e1, e2), add(e
′
1, e

′
2))

OE-Add-O-1

opte(e1, e
′
1) opte(e2, e

′
2) notInt(e′2)

opte(add(e1, e2), add(e
′
1, e

′
2))

OE-Add-O-2

opts(s
∗, s)

opte(e, e
′)

opts(assign(n, e), assign(n, e
′))

OS-Assign

opte(c, false)

opts(while(c, b), skip)
OS-While-F

opte(c, c
′) opts(b, b

′) c′ ̸= false

opts(while(c, b),while(c
′, b′))

OS-While-O

SO includes

opte(e, e)
OE-Default

proj s(s, s
′) opts(s

′, s′′)

opts(s, s
′′)

OS-Default

notInt(e)
NI-Default

notBool(e)
NB-Default

Figure 2.9: Relations introduced by the optimize extension (RO) and selected rules defin-
ing them (RO and SO)

32



is not eliminate them, as we see in the OE-Default rule. While this may not reduce all

constant expressions, it also means it does not rewrite away any constructs introduced by

other extensions, which would lose their unique semantics. As we will see in future chapters,

in a property introduced by the optimization extension, its measure of correctness is that

optimization does not change the values in evaluation, a goal accomplished for constructs

from unrelated extensions by using the OE-Default rule.

Our example language consists of the host language and three extensions, the list exten-

sion, the security extension, and the optimization extension. While none of our extensions

build on others, we note that the ability to do so that is part of our framework is useful,

particularly for more complex extensions. An intermediate extension can provide a level of

abstraction somewhere between the new module’s functionality and that of the host lan-

guage, making it easier to ensure the projections of terms are related to the original terms

in expected ways. For example, it would be natural to build an extension introducing ma-

trices on top of one introducing lists, with matrices projecting to nested lists and matrix

operations projecting to sequences of list operations. Allowing modules to build on one

another in arbitrary ways also permits combining the features introduced by independent

modules, as we see with some extensions to the AbleC extensible version of the C program-

ming language [17]. This has an extension introducing regular expressions and matching

strings against them, and another extension, independent of the first, introducing algebraic

datatypes (i.e., datatypes like those in a functional language such as OCaml) along with

pattern matching on them. A third extension module builds on both of these, adding a

construct to include regular expressions in patterns and adding checking if a string matches

a regular expression to the evaluation of pattern matching. This is something that neither

of the other extensions could do on their own.

2.2 Well-Formedness

We have well-formedness requirements to which language modules must adhere. A language

library is well-formed only if each module in it is also well-formed.
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One simple well-formedness requirement, which we will not mention further, is each

rule a module introduces must be well-typed. The specifications of constructors in C and

relations in R and T impose typing constraints by specifying the syntax categories for

their arguments, and these must be maintained. As part of this, we assume all syntax

categories, constructors, and relations that are part of a module specification are known,

being introduced either by the module being specified or one it imports. In typing, we

assume each syntax category, constructor, and relation introduced by each module has a

name unique across all modules in a language library, and thus can be uniquely identified.

In practice, this can be accomplished by qualifying the name of each construct with the

name of the module introducing it, as is accomplished in the Java ecosystem.

Well-formedness for modules has several parts, some of which have been mentioned

above. To summarize them formally, in one place:

• Each projection relation in T M is mapped by T M to a syntax category in CM , and

only one projection relation may map to each category (i.e., the mapping is injective).

Thus each syntax category has at most one projection relation. Furthermore, each

projection relation, projecting a category C, takes at least two arguments of type C,

one for the projecting term and one for its projection.

• For each constructor c ∈ CM building expressions in a syntax category C ∈ CN , N ̸=

M , C has a corresponding projection relation in T N , that is, each new constructor

of a syntax category from a built-on module builds an extensible category.

• Each rule in RM defining a relation from RN , N ̸= M , has as the primary component

argument of its conclusion a term built at the top level by a constructor from CM , that

is, each rule defining a relation from a built-on module defines it for a new constructor.

• Each rule in TM defines a relation from T N , N ̸= M , and has as its primary com-

ponent a term built at the top level by a constructor from CM , that is, each rule

defining a projection relation from a built-on module defines it for a new constructor.

• There is a unique default rule in SM for each relation in RM where the primary
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component category of the relation is a syntactic category from CN , N ̸= M , that is,

the primary component category is from a built-on module.

• Each rule in SM has as the primary component of its conclusion a variable.

• If a module M builds on a module N (N ∈ BM ) and N builds on a module O

(O ∈ BN ), then M must also build on O (O ∈ BM ). This requires the builds-on

relationships to be transitive.

• A module cannot build on itself (M /∈ BM ).

The final two requirements disallow circularity in module dependencies in a language library,

as no individual module may introduce a circularity to it (the final requirement) and all its

dependencies must be known when it is written (the penultimate requirement).

Note we do not require a rule defining the projection for each new constructor building

expressions in an imported syntax category. Choosing not to do so for a new construct

limits extensibility, as the relations introduced by other extensions may then not be defined

for the new construct when the default rule depends on the projection. This is, however, a

choice an extension writer may make, being aware of its possible negative effects.

Well-formedness of an individual module can be checked independently of modules other

than the ones on which it builds. As noted earlier, language libraries start with some small

set of modules, with developers writing new extension modules building on those already

published as part of the library. This allows developers to check their modules are well-

formed before contributing them to the library, as all the modules on which a new one

builds are already known, and a new module can be checked against them. Thus we may

assume all modules in a library are well-formed, as developers can ensure their modules are

well-formed before contributing them.

2.3 Module Composition

An extensible language by itself is not useful, as it cannot be used to write a program, unless

it can be turned into a full language with defined, non-extensible syntax and semantics. A
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full language is a 4-tuple ⟨C ,C,R ,R⟩ containing the language’s syntax categories, syntax

constructors, relations, and rules defining those relations. We will define the composition

of modules to form a full language as the language defined by one module and the modules

on which it builds.

Part of the language of a module will be instantiations of default rules as discussed in

Section 2.1.3. As discussed there, default rules are instantiated for constructs from unrelated

extensions. The set of instantiated rules is how the definitions of extension-introduced

relations are completed in composition. A relation, such as the security extension’s level

relation, is defined for constructs from extensions unknown to it, such as the list extension,

using the default rule; this rule is the default in that any construct for which no other

definition could have been written is given one using it.

Definition 2.1 (Instantiated default rule set). The instantiated default rule set of a set of

modules S , written RS(S ), instantiates each default rule from one module in S with each

constructor from each unrelated module in S . It does this by replacing the meta-variable

in the primary-component position of the default rule’s conclusion with a term whose top-

level symbol is the new constructor, and that has fresh meta-variables for the arguments.

Formally, the set RS(S ) is

{r[c(y)/xi] | Mj ∈ S ∧ Mk ∈ S ∧

Mj /∈ BMk ∧ Mk /∈ BMj ∧ Mj ̸= Mk

r ∈ SMj ∧ c ∈ CMk ∧

defines(r) = R ∧ pc(r) = xi ∧ fresh(y, r) ∧

pc(R) = C ∧ category(c) = C}

where defines(r) identifies the relation defined by rule r

pc(r) identifies the primary component term of the conclusion of rule r

fresh(y, r) means y is a set of variables where none appear in rule r

pc(R) identifies the primary component category of relation R
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category(c) identifies the category for which expressions are built by constructor c

r[c(y)/xi] means replacing each occurrence of xi in r with c(y)

Note the instantiation is only carried out for well-typed pairs of rules and constructors, where

the primary component category of the relation being defined by the default rule matches the

one for which the constructor builds expressions.

The language of a module includes all syntax categories, syntax constructors, and re-

lations, both projection and non-projection relations, of the module and the modules on

which it builds. It also includes all the rules defining the projection and non-projection

relations, as well as the instantiated default rule set for the set of known modules.

Definition 2.2 (Language of a module). Let M be a module in a language library. Let S

be its builds-on set and itself, BM ∪ {M}. Let

• C =
⋃

N∈S CN

• C =
⋃

N∈S CN

• R =
⋃

N∈S (RN ∪ T N )

• R = RS(S ) ∪
⋃

N∈S (RN ∪ TN )

The language of M , written Lang(M), is the full language ⟨C ,C,R ,R⟩.

We do not define the composition of modules into full languages beyond the language

of a single module. This is not limiting, in comparison to a definition of composition

explicitly for a set of modules, as the composition of multiple modules can be accomplished

by creating a module simply building on them without introducing anything new. To get

the composition of our example language’s modules H, L, O, and S, we can build a dummy

module D where BD = {H,L,O, S} and all the other sets in the module tuple are empty.

Then Lang(D) is the composition of all other modules in our example language. Thus

defining only the language of a single module covers any general composition case. The

builds-on structure of all the modules in our example language, including D, is shown in
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H S

L

O

D

Figure 2.10: Structure of modules in our example language

Figure 2.10, with arrows pointing from a module building on another to the one on which

it builds. We elide the arrow from D to H, as that builds-on relationship can be inferred

from the other relationships due to the requirement that builds-on relationships must be

transitive for well-formed modules. For example, because S both builds onH and is built-on

by D, we know D must also build on H.

A summary of the D module and its language is given in Figure 2.11. The language of

D has all the syntax categories introduced by any of the modules, so it includes expressions

e, statements s, and security levels sl , among others. It also has all syntax constructors

introduced by each of the modules, as well as all relations, including projection relations,

introduced by all the modules. Finally, it includes the rules from each module, including

rules defining projections, such as the T-Add and P-Cons rules, and instantiated default

rules (RS({H,L,O, S})) replacing the primary component meta-variable of the default rule

with terms built by new constructors from other extensions. Three instantiated default

rules are shown in Figure 2.11 as examples; note the full language contains many more

rules arising from instantiation. The default rule L-Default is shown instantiated for

the cons and null constructors (L-Default(cons) and L-Default(null)), and the OE-

Default rule is shown instantiated for the cons constructor (OE-Default(cons)). The

instantiation of other default rules and other constructors is similar.
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D = ⟨{H,L,O, S},∅,∅,∅,∅,∅,∅,∅⟩

Lang(D) = ⟨C ,C,R ,R⟩

C = {s, e, ty , n, i,Γ, γ, sl ,Σ}

C = {skip, decl , assign, seq , ifte,while, var , intlit , true, false, add , eq , gt ,not ,
int , bool ,nilty , consty ,nilval , consval ,nil , cons,null , head , tail , list , splitlist ,
public, private,nilsec, conssec, secdecl}

R = {lkpTy(Γ, n, ty), notBoundTy(Γ, n), lkpVal(γ, n, e), value(e), vars(e, 2 n),
Γ ⊢ e : ty, Γ ⊢ s,Γ, γ ⊢ e ⇓ e, (γ, s) ⇓ γ lkpSec(Σ, n, sl), join(sl , sl , sl),
Σ ⊢ level(e, sl), Σ sl ⊢ secure(s,Σ), opte(e, e), opts(s, s), notInt(e),
notBool(e), proj e(e, e), proj s(s, s), proj ty(ty, ty), proj sl (sl , sl)}

R includes

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ add(e1, e2) : int
T-Add

proj e(cons(e1, e2), eq(e1, e2))
P-Cons

proj e(cons(e1, e2), e
′) Σ ⊢ level(e′, ℓ)

Σ ⊢ level(cons(e1, e2), ℓ)
L-Default(cons)

proj e(null(e), e
′) Σ ⊢ level(e′, ℓ)

Σ ⊢ level(null(e), ℓ)
L-Default(null)

opte(cons(e1, e2), cons(e1, e2))
OE-Default(cons)

Figure 2.11: Summary of the module D and its language Lang(D) showing its syntax,
relations, and selected rules
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2.4 Comparison with Silver’s Extensibility Framework

As mentioned earlier, the language extensibility framework we present here is based on

the model for extensibility used by the Silver attribute grammar system [18, 38]. Our

framework, as presented in this chapter, is nearly identical, but reformulated for rule-based

specifications. The logic we will use for our reasoning, discussed in the next chapter, sup-

ports rule-based specifications of systems quite directly, whereas we would need to develop

a more complex encoding to use attribute grammars.

To discuss how we have molded Silver’s framework to our own setting, we must first un-

derstand the basics of attribute grammars. Attribute grammars define language semantics

by associating semantic attributes with nodes in a syntax tree, syntax trees being built by

productions of an underlying grammar. The values of attributes are determined by equa-

tions associated with productions. For example, a production for an addition expression

might have an equation for an attribute giving the expression’s type that checks both of its

sub-expressions have an integer type, and then specify its own type as an integer type as

well.

As in our framework, Silver allows modules to introduce syntax and semantics, the latter

in the form of attributes and equations defining them, with extensions similarly extending

existing syntax and semantics. It also limits how extensions may extend the definitions of

existing semantics, as we do. Our restriction is that new rules defining imported relations

must each have a new constructor, introduced by the extension introducing the rule, as the

primary component of the conclusion. Silver has a corresponding requirement to prevent

extensions from modifying the semantics of existing constructs. Extensions may only in-

troduce new equations for imported attributes associated with new productions (i.e., new

syntax constructors). As is made clear by this correspondence, our notion of a primary

component is inspired by the concept of the nonterminal on which an attribute occurs in

attribute grammars.

Silver does not have a concept of default rules as we use. Instead it uses a concept

called forwarding [39]. When a production does not have an associated equation defining
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an attribute, it copies the attribute’s value from its forward, Silver’s term for what we

introduce as projections. Forwarding is similar to our default rules, as it is how extension-

introduced attributes are defined for constructs from unrelated extensions. However, it

being able only to copy the value from the forward, or projection, can be limiting. As we saw

with the OE-Default rule from the optimization extension, which optimizes expressions

built by constructs from unknown extensions to themselves, copying may not always give

the definitions we want. Sometimes we want this kind of freedom to define our relations

for unknown constructs in ways that are specific to the relation being defined rather than

Silver’s one-size-fits-all approach.

By building our extensibility model on Silver’s extensibility model, we know the language

framework for which we develop our reasoning framework is a useful one in practice. A

number of extensible languages have been developed in Silver. The most significant one is

the aforementioned AbleC [17], an extensible version of the C programming language. AbleC

has a number of interesting extensions, such as one introducing algebraic datatypes and

pattern matching, and another introducing Prolog-style constructs for logic programming.

The remainder of this thesis is dedicated to showing how we can make this framework for

extensible languages more useful by allowing modules to introduce interesting metatheory

along with interesting syntax and semantics.
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Chapter 3

A Logic for Reasoning about Language Properties

In proving our reasoning framework is sound, that proofs written by individual modules

ensure metatheoretic properties will hold for any composed language, we will need to analyze

the structure of proofs. To this end, we choose to write our metatheoretic proofs in the

logic called G [12], which is the basis for the Abella proof assistant [2]. G provides support

for reasoning about definitions over terms, making it easy to reason about the rule-based

definitions of relations in languages written using the extensibility framework from the

previous chapter. Our arguments for the soundness of our reasoning framework will take

the form of constructing metatheoretic proofs in G in the context of a composed language

using parts of the metatheoretic proofs written by modules.

We first introduce the logic G in Section 3.1. We then give an example of proving a

formula using G in Section 3.2. After that, we describe the encoding of languages into G

definitions in Section 3.3. Finally, in Section 3.4 we describe the form of properties and

their proofs that we will consider in the next chapter.

3.1 The Logic G

The logic G is based on the simply-typed lambda calculus and includes support for notions

of binding; however, we are only interested here in a first-order version of it, and elide

the non-first-order portions of it, including this support for bindings. Proofs are written

in a context including a set of sorts, constructors of those sorts, and predicate symbols.

Terms are constructed from these constructors, and atomic formulas from terms by using

predicate symbols. Formulas are constructed from atomic formulas; logical constants ⊤ and
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⊥; logical connectives ∧, ∨, and ⊃; and universal and existential quantification. Formally,

quantification is written as ∀x : τ.F for universal quantification and as ∃x : τ.F where τ is

a sort, with repeated quantification being written as ∀x1 : τ1. . . .∀xn : τn.F for universal

quantification, and similarly for existential quantification. For brevity’s sake, we generally

assume the sort of a bound variable can be determined from its use in the formula and

condense repeated quantifications into a shorthand using a single quantifier to represent the

sequence. Then the above formula can be written as ∀x1, . . . , xn.F with the understanding

it stands for the longer form with appropriate sorts for each bound variable. Formulas

differing only in the names of variables, that is, formulas where renaming their variables

renders them identical, are treated as identical in G.

The proof rules of G will rely on notions of variable substitutions and unification, so we

define these before presenting the proof rules.

Definition 3.1 (Substitution). A substitution is a finite sequence of variables x1, . . . , xn

and terms t1, . . . , tn that are pairwise of the same type. Such a substitution is written as

{⟨x1, t1⟩, . . . , ⟨xn, tn⟩}. We say its domain is the set of variables {x1, . . . , xn} and its range

is the set of terms {t1, . . . , tn}. Applying a substitution θ to a term t or a formula F ,

written t[θ] and F [θ], replaces each occurrence of a variable in the domain of θ with the

corresponding term. In formulas, quantified variables must be renamed to avoid capturing

variables. The composition of two substitutions, written θ2 ◦ θ1, is a substitution such that

e[θ2 ◦ θ1] = e[θ1][θ2] for any e.

Definition 3.2 (Unification). A unification problem is a set of pairs of terms or atomic

formulas, written {⟨e11, e21⟩, . . . , ⟨e1n, e2n⟩}. A unifier for a unification problem is a substitution

θ such that, for each pair ⟨e1i , e2i ⟩ in the unification problem, e1i [θ] = e2i [θ]. A problem is

solvable if a unifier exists. A most general unifier, or mgu, for a unification problem is a

unifier θ where any other unifier θ′ can be written as θ composed with another substitution

ρ (θ′ = ρ ◦ θ). It is a known fact that, in our setting, a unification problem that is solvable

has a most general unifier.

The logic G is presented in the style of a sequent calculus. Sequents have the form
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Σ : Γ, A −→ A
id, A atomic

Σ : Γ −→ B Σ : B,∆ −→ C

Σ : Γ,∆ −→ C
cut

Σ : Γ, B,B −→ C

Σ : Γ, B −→ C
cL

Σ : Γ,⊥ −→ C
⊥L

Σ : Γ −→ ⊤
⊤R

Σ : Γ, B −→ C Σ : Γ, D −→ C

Σ : Γ, B ∨D −→ C
∨L

Σ : Γ −→ Bi

Σ : Γ −→ B1 ∨B2
∨Ri, i ∈ {1, 2}

Σ : Γ, Bi −→ C

Σ : Γ, B1 ∧B2 −→ C
∧Li, i ∈ {1, 2}

Σ : Γ −→ B Σ : Γ −→ C

Σ : Γ −→ B ∧ C
∧R

Σ : Γ −→ B Σ : Γ, D −→ C

Σ : Γ, B ⊃ D −→ C
⊃L

Σ : Γ, B −→ C

Σ : Γ −→ B ⊃ C
⊃R

Σ : Γ, B[{⟨x, t⟩}] −→ C

Σ : Γ, ∀x : τ.B −→ C
∀L

(Σ, x : τ) : Γ −→ B

Σ : Γ −→ ∀x : τ.B
∀R, x /∈ Σ

(Σ, x : τ) : Γ, B −→ C

Σ : Γ,∃x : τ.B −→ C
∃L, x /∈ Σ

Σ : Γ −→ B[{⟨x, t⟩}]
Σ : Γ −→ ∃x : τ.B

∃R

In the ∀L and ∃R rules, the term t must be well-typed with respect to the sequent’s
eigenvariable context Σ and the global constant context

Figure 3.1: Rules in G for the logical symbols

Σ : Γ −→ F where Σ is a collection of typed variables called the eigenvariable context

representing universal quantification over the sequent, Γ is a multiset of assumption formulas

or hypotheses, and F is the sequent’s conclusion or goal formula. As we drop the types on

quantified variables for brevity’s sake when the type is determinable from the formula, so we

drop the types on variables in the eigenvariable context when their types can be determined

from the rest of the sequent, writing it as simply a list of variables. A sequent is well-formed

if F and all the formulas in Γ are well-typed with respect to the eigenvariable context for

the sequent and the types of the constants in the context. We will henceforth assume all

sequents are well-formed.

Proofs in G are derivations of sequents using proof rules interpreting the meaning of

those sequents. The core rules are shown in Figure 3.1. Most of these rules are clear, so
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we comment only on those we believe may need some explanation. First, the ∀L and ∃R

rules instantiate the quantified variable with a term that must be of the same sort as the

variable. Furthermore, the instantiating term may be constructed only from the variables

in the eigenvariable context Σ and the set of constructors in the context in which the proof

is being written. The other set of rules on which we comment are the ∀R and ∃L rules.

These both require introducing new variables. These new variables must be fresh to the

eigenvariable context; if they are not fresh, the variables in the formula may be renamed to

make them fresh.

The logic G allows atomic predicates to be given an interpretation based on fixed-point

definitions. In addition to being parameterized by a context of sorts, constructors, and

predicate symbols, G is also parameterized by a set D of definitional clauses defining the

predicate symbols. Each clause has the form ∀x.H ≜ B where x is a sequence of variables

called the clause’s binder ; H is an atomic formula, called the clause’s head ; and B is an

arbitrary formula,1 called the clause’s body. As with formulas, clauses differing only in

variable names are equivalent, and we call them variants of each other. We say a clause

is named away from a collection of variables Σ if its binder contains names distinct from

those in Σ.

Each clause gives a portion of the definition of an atomic predicate, with the full defi-

nition being given by all the clauses where the head is built by the same predicate. This

interpretation of the clauses is given by the proof rules in Figure 3.2 for using definitions in

rules. The application of a substitution to an eigenvariable context, as seen in these rules,

means removing from it the variables in the domain of the substitution and adding those in

the terms in its range. The defR rule allows us to prove an atomic formula by showing one

of the clauses defining the predicate building it applies. To do so, the atomic goal formula

must be an instance of the clause’s head, and we must prove the clause’s body, appropriately

instantiated. The defL rule goes the other direction, allowing us to prove the sequent by

proving the conclusion holds regardless of how the atomic assumption formula was derived.

1Definitional clauses are expected to obey certain stratification conditions to make the logic consistent.
We will assume all clauses obey this, noting the simple rule form permitted in our language specification
framework is not complex enough to write rules breaking the stratification conditions.
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Σ[θ] : Γ −→ B[θ]

Σ : Γ −→ A
defR

∀x.H ≜ B is a variant of a clause in D and θ is a substitution such that A = H[θ]

{ Σ[θ] : Γ[θ], B[θ] −→ C[θ] | ∀x.H ≜ B is a variant of a clause in D
named away from Σ and θ is an mgu for {⟨A,H⟩} }

Σ : Γ, A −→ C
defL

Figure 3.2: Rules for introducing atomic formulas based on a definition D

Because G uses a fixed-point definition of predicates, we know it was derived using one of the

clauses defining it, so we need to consider only a most-general form of it using each clause.

This rule encodes a case-analysis style of reasoning that shall feature prominently in our

modular reasoning framework. Each premise sequent of this rule is based on one definition

clause defining the relation that is the top-level predicate for A. The definition clause is

named away from the eigenvariables already appearing in the sequent to avoid inadvertent

capture of names, and the head of the clause is unified with the atomic formula. If the

unification succeeds, the atomic formula could have been derived using the rule, and the

proof rule requires showing the conclusion follows if that were the case.

G allows us to use definitions inductively. To do so, we associate a measure with atomic

formulas, marking whether a formula is the original size with which we started or smaller

than it, with the induction hypothesis being valid only for the latter.2 Measures are written

as annotations on formulas, with the annotation for the original size being @i and the

annotation for a smaller derivation being ∗i, where i is a strictly positive natural number,

standing for i repetitions of the annotation (e.g., by ∗3, we mean an annotation ∗ ∗ ∗).

Annotations are introduced to a sequent by the use of the indim rule, seen in Figure 3.3. This

allows us to assume the goal formula for smaller versions of one of its premises, annotated

with ∗i, while proving the formula with the same premise, annotated with @i to mark it as

the original size, in order to prove the original sequent.

2For simplicity in presenting our reasoning framework, we use the implementation of induction in
Abella [2], a proof assistant for writing proofs in G, rather than the one in the original treatment of the
logic [37].
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Σ : Γ, A∗i −→ A∗i
id∗∗

Σ : Γ, A@i −→ A@i id@@

Σ : Γ, A∗i −→ A@i id∗@

Σ : Γ, A∗i −→ A
id∗

Σ : Γ, A@i −→ A
id@

{ Σ[θ] : Γ[θ], (B[θ])∗
i −→ C[θ] | ∀x.H ≜ B is a variant of a clause in D

named away from Σ and θ is an mgu for {⟨A,H⟩} }
Σ : Γ, A∗i −→ C

defL∗i

{ Σ[θ] : Γ[θ], (B[θ])∗
i −→ C[θ] | ∀x.H ≜ B is a variant of a clause in D

named away from Σ and θ is an mgu for {⟨A,H⟩} }
Σ : Γ, A@i −→ C

defL@i

Σ : Γ,∀x1.F1 ⊃ · · · ⊃ ∀xm.A∗i ⊃ F −→ ∀x1.F1 ⊃ · · · ⊃ ∀xm.A@i ⊃ F

Σ : Γ −→ ∀x1.F1 ⊃ · · · ⊃ ∀xm.A ⊃ F
indim, A is atomic

Annotations of the form ∗i and @i must not already appear in the conclusion sequent

Figure 3.3: Induction rule and associated rules for annotated formulas

We have special versions of the id and defL rules to support annotations, also shown in

Figure 3.3; the regular id, defL, and defR rules do not apply to annotated atomic formulas.

The special versions of the id rule ensure annotated formulas match sufficiently with the

goal formulas they are used to prove. In interpreting the meanings of these rules, the

measures can be interpreted as “no larger than”; thus A∗i can be used in the place of A@i

because it is not larger than the measure represented by @i, and it can be used to prove

A without an annotation because un-annotated formulas do not have size restrictions. The

special versions of the defL rule show that unfolding reduces the measure assigned to a

formula, either from @i to ∗i or maintaining ∗i. We write B[θ]∗
i
where B[θ] may not be

an atomic formula to represent appropriately passing the annotation down to the atomic

formulas within it.

We finish this section by defining what we mean by applying a substitution to a proof

and showing that substitution in a sequent does not invalidate previous proofs.
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Definition 3.3 (Proof substitution). Let π be a proof in G and let θ be a substitution.

Applying θ to π, written π[θ], is defined recursively on the structure of π by these two rules:

1. If the last rule in π is the defL rule or one of its variants, suppose the conclusion of

this rule was Σ : Γ, A −→ F where A is a possibly-annotated atomic formula and it

has premise proofs π1, . . . , πn. Each πi arises from a clause of the form ∀xi.Hi ≜ Bi

where there is an mgu θi for the unification problem {⟨A,Hi⟩}. If {⟨A[θ], Hi⟩} has

a unifier, there must be a substitution ρi such that θi ◦ ρi is an mgu for it. The

substituted proof uses the same variant of the defL rule with the conclusion sequent

being Σ[θ] : Γ[θ], A[θ] −→ F [θ] and premise proofs πi[ρi] for each i where {⟨A[θ], Hi⟩}

is solvable.

2. If the last rule in π is not the defL rule or one of its variants, suppose the sequent in its

conclusion is Σ : Γ −→ F and it has premise proofs π1, . . . , πn. Then the substituted

proof π[θ] uses the same rule, but with its conclusion being Σ[θ] : Γ[θ] −→ F [θ] and

with premise proofs π1[θ], . . . , πn[θ].

Theorem 3.4 (Proof substitution validity). Let S be a sequent Σ : Γ −→ F . If S has a

proof π of height h, then, for any substitution θ, π[θ] is a proof of Σ[θ] : Γ[θ] −→ F [θ] of

height at most h.

Proof. We proceed by induction on the structure of π. It is clear the transformation for rules

other than defR or defL and its variants has the desired property. The transformation for

defR also produces a proof that is no taller than the original because, for a clause ∀x.H ≜ B,

if F is an atomic formula such that F = H[ρ], then we know F [θ] = H[ρ][θ], and the two

premise proofs we need are π and π[θ], respectively.

For the defL rule and its variants, as explained in Definition 3.3, some subset of the

same clauses unify, and the induction hypothesis shows the substituted versions of their

original proofs prove the new sequents. It is also clear this is the full set of clauses that

unify; clauses that could not unify with A cannot unify with A[θ]. We note the removal of

some premise proofs might shorten the proof tree, as it might prune the tallest branches,

and so the resulting proof is no taller than the original. ■
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3.2 An Example of Reasoning

To illustrate writing proofs in G, consider proving that appending two lists is unique. We

have lists with two constructors, the nil constructor representing an empty list and the

cons constructor, written infix as ::, creating a list from a head element and a tail list. The

append relation has two clauses, defining appending two lists in the standard way:

∀l.append(nil , l, l) ≜ ⊤

∀h, t, l, t′.append(h :: t, l, h :: t′) ≜ append(t, l, t′)

We will also use a defined equality relation, written infix as =, that relates two terms that

are exactly the same:

∀a.a = a ≜ ⊤

This gives a standard definition of equality.

We can state that the append relation is unique in its first two arguments as a formula:

∀l1, l2, r1, r2.append(l1, l2, r1) ⊃ append(l1, l2, r2) ⊃ r1 = r2

To prove this, we prove the sequent

∅ : ∅ −→ ∀l1, l2, r1, r2.append(l1, l2, r1) ⊃ append(l1, l2, r2) ⊃ r1 = r2

This specifies we are proving this formula with no pre-existing eigenvariables and no pre-

existing hypotheses. We will induct on the first derivation of append (append(l1, l2, r1)), so

we use the ind11 rule. This gives us the sequent

∅ : ∀l1, l2, r1, r2.append(l1, l2, r1)∗ ⊃ append(l1, l2, r2) ⊃ r1 = r2 −→

∀l1, l2, r1, r2.append(l1, l2, r1)@ ⊃ append(l1, l2, r2) ⊃ r1 = r2

The first premise in the conclusion is annotated with @ to mark it as having the original
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size of the derivation, and the induction hypothesis has its first premise annotated with ∗

to mark it as being applicable only to a smaller derivation than the original one. We can

use the ∀R rule four times and the ⊃R rule twice, so we need to prove

l1, l2, r1, r2 : (∀l1, l2, r1, r2.append(l1, l2, r1)∗ ⊃ append(l1, l2, r2) ⊃ r1 = r2),

append(l1, l2, r1)
@, append(l1, l2, r2) −→ r1 = r2

To do so, we can use the defL@ rule to analyze the append(l1, l2, r1)
@ hypothesis. Both

definition clauses unify with this, giving us two premise sequents to prove.

The first premise sequent is for the first definition clause, where l1 is nil and the other

two lists must be the same, so r1 is unified with l2:

l2, r2 : (∀l1, l2, r1, r2.append(l1, l2, r1)∗ ⊃ append(l1, l2, r2) ⊃ r1 = r2),

⊤, append(nil , l2, r2) −→ l2 = r2

We also have an added assumption of ⊤ from the body of the clause. We can apply the

un-annotated defL rule to append(nil , l2, r2). Only the first definition clause can apply to

this assumption because its first argument list is nil , so we have one premise sequent:

l2 : (∀l1, l2, r1, r2.append(l1, l2, r1)∗ ⊃ append(l1, l2, r2) ⊃ r1 = r2),⊤,⊤ −→ l2 = l2

Because this definition clause requires the latter two arguments to be the same, we have

unified r2 and l2, and we can complete the proof of this sequent with the defR rule and the

clause defining equality, and the ⊤R rule to prove its body.

The other premise sequent from the initial case analysis is for the other definition clause,

where the first list’s top-level symbol is the cons constructor:

h, t, l2, t
′, r2 : (∀l1, l2, r1, r2.append(l1, l2, r1)∗ ⊃ append(l1, l2, r2) ⊃ r1 = r2),

append(t, l2, t
′)∗, append(h :: t, l2, r2) −→ h :: t′ = r2
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The original l1 list is unified with h :: t in this sequent, and r1 is h :: t′ for some list t′.

We also have a hypothesis append(t, l2, t
′)∗ from the body of the clause, annotated with ∗

because, being a sub-derivation of the original one, it is a derivation smaller in size than

the original. We want to use the induction hypothesis with this premise, but to do so we

need to break down the second derivation of append as we did in the previous case, which

we can do using the un-annotated defL rule. As in the prior case, only one clause applies,

so we have one premise sequent, where r2 is unified with h :: t′′ for some list t′′:

h, t, l2, t
′, t′′ : (∀l1, l2, r1, r2.append(l1, l2, r1)∗ ⊃ append(l1, l2, r2) ⊃ r1 = r2),

append(t, l2, t
′)∗, append(t, l2, t

′′) −→ h :: t′ = h :: t′′

Having two derivations of append with the same first two arguments, one of which is an-

notated with ∗, we can use the induction hypothesis. To do so, we apply the ∀L rule four

times and the ⊃L rule twice, once each with the annotated id∗∗ rule and un-annotated id

rule, the former for the annotated premise and the latter for the un-annotated premise.

This gives us a sequent

h, t, l2, t
′, t′′ : (∀l1, l2, r1, r2.append(l1, l2, r1)∗ ⊃ append(l1, l2, r2) ⊃ r1 = r2),

append(t, l2, t
′)∗, append(t, l2, t

′′), t′ = t′′ −→ h :: t′ = h :: t′′

The hypothesis from this application, t′ = t′′, can be analyzed with the un-annotated defL

rule, showing that t′ and t′′ are the same and unifying them, so the conclusion of the premise

sequent is h :: t′ = h :: t′. Then the defR and ⊤R rules can be used to complete the proof

of the sequent as in the previous case. Because we have proven all the sequents needed, this

also completes the proof of the original formula overall.
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3.3 Encoding Languages into the Logic

Recall from Section 2.3 that a full language is a 4-tuple ⟨C ,C,R ,R⟩ containing the syntax

categories, syntax constructors, relations, and rules for the full language. It is this 4-tuple

we encode to G creating the context of sorts, constructors, and predicates, as well as the

set D of clauses defining the predicates. We will say we are reasoning in the context of a

language Lang(M) when we are using the context and set of clauses D corresponding to

the tuple ⟨C Lang(M),CLang(M),RLang(M),RLang(M)⟩.

The first three elements of the tuple become, respectively, the sorts, syntax constructors,

and predicate symbols in G. The correspondence is immediate, so we will use the same

syntax for terms and relations in the context of G as we used in Chapter 2.

Each rule in R becomes a clause in D. For a rule

B1 . . . Bm

R(t1, . . . , tn)

in R, there is a corresponding clause

∀x.R(t1, . . . , tn) ≜ ∃y.B1 ∧ . . . ∧Bm

in D where x contains all the variables in t1, . . . , tn and y contains all the variables in

B1, . . . , Bm not in x. Furthermore, these are the only rules in D, so there is a perfect corre-

spondence between the clauses used for reasoning and the rules in the language definition.

Consider our example language from the previous chapter. The host language introduces

a rule for evaluating addition:

γ ⊢ e1 ⇓ intlit(i1) γ ⊢ e2 ⇓ intlit(i2) plus(i1, i2, i)

γ ⊢ add(e1, e2) ⇓ intlit(i)

E-Add
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We can encode this into a definition clause in D as

∀γ, e1, e2, i.(γ ⊢ add(e1, e2) ⇓ intlit(i)) ≜

∃i1, i2.(γ ⊢ e1 ⇓ intlit(i1)) ∧ (γ ⊢ e2 ⇓ intlit(i2)) ∧ plus(i1, i2, i)

The variables γ, e1, e2, and i found in the rule’s conclusion are universally quantified at the

beginning, over the whole rule, while the variables i1 and i2 that occur only in the body

are existentially quantified in the body.

We can similarly encode the typing rule for addition, T-Add:

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ add(e1, e2) : int

T-Add

When translated into a definition clause, this becomes

∀Γ, e1, e2.(Γ ⊢ add(e1, e2) : int) ≜ (Γ ⊢ e1 : int) ∧ (Γ ⊢ e2 : int)

Unlike in E-Add, we don’t have any variables occurring in the premises that aren’t in the

conclusion, so we have no quantifier in the rule’s body.

3.4 Metatheoretic Properties in the Logic

The properties we will prove about encoded languages in our framework will be written

as formulas in G using the vocabulary of the language of some module M , Lang(M). The

properties we will consider will have the form

∀x.R(t) ⊃ F

where R is a relation, t is a set of terms given to R as arguments, and F is an arbitrary

formula. The terms in t are built using the variables in x and the constants in Lang(M).
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This form is equivalent to the more general form

∀x1.F1 ⊃ ∀x2.F2 ⊃ . . . ⊃ ∀xn.Fn

where some Fi, i ̸= n, is R(t). We restrict the form for simplicity in discussion to highlight

the first premise. In a property of this form, we will call R the key relation, and we will

orient our proof around its definition.

Consider some examples of properties that are introduced by the modules in our language

from Chapter 2. First, the host language introduces the property of type preservation, that

if a well-typed expression evaluates to a value with related typing and evaluation contexts,

that value has the same type as the expression had:

∀Γ, γ, e, ty , v.γ ⊢ e ⇓ v ⊃ Γ ⊢ e : ty ⊃

(∀x, tyx, vx.lkpTy(Γ, x, tyx) ⊃ lkpVal(γ, x, vx) ⊃ nilty ⊢ vx : tyx) ⊃ nilty ⊢ v : ty (3.1)

The key relation of this property is expression evaluation.

The optimized evaluation property introduced by the optimization extension module

states that optimizing an expression does not change whether it evaluates or the value to

which it evaluates:

∀e, e′, γ, v.opte(e, e′) ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v (3.2)

The key relation of this property is the opte relation introduced by the optimization exten-

sion module.

Finally, the security extension module introduces a property that its analysis guaran-

tees information from private variables does not leak into public variables in evaluating a
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statement:

∀s,Σ, sl ,Σ′, γ1, γ
′
1, γ2, γ

′
2.(γ1, s) ⇓ γ′1 ⊃ (γ2, s) ⇓ γ′2 ⊃ Σ sl ⊢ secure(s,Σ′) ⊃

eqpublicvals(Σ, γ1, γ2) ⊃ eqpublicvals(Σ′, γ′1, γ
′
2) (3.3)

Here eqpublicvals(Σ, γ1, γ2) stands for the formula

∀x.lkpSec(Σ, x, public) ⊃ (∀v.lkpVal(γ1, x, v) ⊃ lkpVal(γ2, x, v))∧

(∀v.lkpVal(γ2, x, v) ⊃ lkpVal(γ1, x, v))

This property states that when a statement judged secure is evaluated under two different

evaluation contexts that have the same values for all variables considered public but that

may differ in values for private variables, the resulting evaluation contexts also have the same

values for all public variables. This formalizes the notion of not leaking private information,

as it ensures the values of private variables cannot have any effect on the values of public

variables. The key relation here is the statement evaluation relation. Note there are two

derivations of this relation, evaluating s under γ1 and γ2. When discussing the key relation

of a property, we mean also the specific derivation of it that is the first premise of the

property.

We introduce the canonical form of a proof of a metatheoretic property. As we saw

in Section 3.2, a proof of a formula F is a proof of a sequent ∅ : ∅ −→ F . In the

same way, our proofs of properties of the form ∀x.R(t) ⊃ F will be proofs of sequents

∅ : ∅ −→ ∀x.R(t) ⊃ F . The canonical form of a proof ends with some uses of the indim

rule, including a use of the indi1 rule to induct on the derivation of the key relation. The

proof of the premise sequent of these induction rules applies the ∀R and ⊃R proof rules to

move between eigenvariables and bindings and between premises of the property, including

the key relation, and hypotheses of the sequent to prove. These rules have a premise sequent

where the key relation’s derivation is a hypothesis annotated with @i, allowing us to use

the defL@i
proof rule to carry out the case analysis on the key relation. We call this the

55



top-level case analysis because it is the only one in the shared part of the proof of the

whole property; any other case analyses occur within the cases resulting from this one. The

premises of the top-level case analysis are sequents for the various language rules that unify

with the derivation of the key relation.

Consider a canonical-form proof of Property 3.2. The sequent we want to prove for this

property is

∅ : ∅ −→ ∀e, e′, γ, v.opte(e, e′) ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v

For the canonical-form proof of this property, we have only one induction, which is on the

key relation. We use the ∀R rule four times to introduce eigenvariables for the four bound

variables, and the ⊃R rule twice to introduce the first two premises as hypotheses. The

premise sequent of these rules, abbreviating the induction hypothesis as IH, is

e, e′, γ, v : IH, opte(e, e
′)@, γ ⊢ e ⇓ v −→ γ ⊢ e′ ⇓ v

To prove this, we use the defL@ rule for the top-level case analysis to analyze the derivation

of opte(e, e
′). This leads to a number of premise sequents and proofs of them, one for each

language rule defining opte.

As the final piece of our discussion of generally proving metatheoretic properties in G,

it is common when proving metatheoretic properties of languages to use some properties

as lemmas in proving others. The logic G does not explicitly consider proving properties

using a set of known lemmas. However, using previously-proven properties as lemmas is

permitted by the cut rule. A lemma, stated as a formula F , is assumed to have been proven

already, so we have a proof of the sequent ∅ : ∅ −→ F . Then we can use the cut rule as

...

Σ : ∅ −→ F

...

Σ : Γ, F −→ C

Σ : Γ −→ C

cut

We reuse the earlier proof of F , renaming it away from Σ if necessary, and then may use the
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lemma’s formula to prove the conclusion C. Thus it is valid to refer to writing proofs with

sets of lemmas that may possibly be used in the proof, as long as those lemmas already

have proofs. We will do so throughout the next chapter where we discuss our reasoning

framework.
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Chapter 4

A Modular Proof Structure for Metatheoretic Properties

Our goal is to permit the metatheory of extensible languages to be developed modularly,

with any module in a language library able to introduce new metatheoretic properties

and guarantee they hold for any composed language that includes the module. To show

a property holds for any composed language, we need a proof of the property for each

composed language. Our notion of the canonical form of a proof calls for a top-level case

analysis on a premise of the property, the derivation of the key relation. However, knowing

only part of the language, the module introducing a property does not know all the cases

resulting from this top-level case analysis that may be part of a composed language. Then

the author of the module introducing the property cannot write a proof of it for an arbitrary

composed language.

We address these issues by distributing proofs across modules and restricting case anal-

ysis. First, we distribute the proofs of the cases from the top-level case analysis across

modules that know the property, both the one introducing the property and those that

build on it. This mitigates part of the problem of the introducing module’s limited knowl-

edge of the language for the top-level cases, as other modules that know the property can

prove it for the cases they introduce. However, there can be modules that don’t know the

property but can still contribute rules defining its key relation to a composed language,

rules that may create top-level cases, and there can be instantiations of the default rule in a

composition that do the same. For example, both the optimization extension’s Property 3.2

and the security extension’s Property 3.3 will have cases in a composed language for list

constructs, even though the list extension does not know either of these properties, nor

58



do the modules introducing the properties know the list extension. Our novel approach to

solving this problem is to have the module introducing a property handle these cases gener-

ically. This seems difficult to do for interesting properties, as the constructs about which we

want to reason generically are by definition not known. However, we know some relations

will be defined for them by instantiating default rules, and we know other properties will

hold for them. In particular, we introduce the concept of projection constraints, a set of

properties relating the semantics of extension-introduced constructs with the semantics of

their projections. These give a way of understanding unknown constructs introduced by

other modules. In a composition, a generic proof can be specialized to the actual rules from

unknown modules, since the unknown modules also must have proven the properties on

which the generic proof relies.

While this approach ensures every case in a composition has a proof for a corresponding

case from some module, the limited knowledge available to individual modules is also a

problem for using case analysis in proving top-level cases that are known, as other modules

might add applicable rules. Specifically, further case analyses within the top-level cases rely

on having a closed-world assumption that we do not have. We solve this by limiting the

application of case analysis, other than the top-level case analysis, to situations where a local

closed-world assumption holds. In these situations, all the rules that might be applicable

in any composed language are known to the module writing the proof. Then the fact that

only a portion of the language is known does not matter, as the known portion contains all

the rules that matter. This approach will allow us to compose proofs written by individual

modules to form full proofs of properties for composed languages.

We start this chapter by further addressing the difficulties in the modular setting, as

well as further laying out our approach to solving the problem, in Section 4.1. As men-

tioned above, we distribute the proof of a property across the modules that are aware of the

property. We discuss the details of writing the proofs for specific modules for both modules

importing a property and the module introducing a property in Sections 4.2 and 4.3 respec-

tively. In Section 4.4 we explain how these proofs can be used to create a full proof of the

property for any composed language, and prove this full proof will be valid in the context
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of the composed language. Specifically, we will prove that, if all modules in a composed

language that know a property write valid proofs for it as required of the module based

on its relationship to the one introducing the property, whether the module introduces the

property or imports it, then there is also a canonical-form proof of the property for the

composed language. This proof of the soundness of composition will be constructive, giving

us a concrete method for building a full proof of a metatheoretic property for any composed

language out of the modular proofs written for each module. Finally, in Section 4.5 we

discuss how to extend these ideas to proofs of properties using mutual induction. The ideas

in this chapter are a generalization of the approach we presented in a prior paper [27].

4.1 A Structure for Modular Reasoning

To understand our approach to overcoming the difficulties of reasoning in an extensible

setting, let us consider how the modules relevant to the introduction of a property can be

structured. Specifically, these are the modules introducing the property itself, the property’s

key relation, and the primary component category of the key relation. Note that the module

introducing a property must know its key relation, and the module introducing a relation

must know its primary component category, limiting the possible relationships between

the modules introducing the elements to four. These are shown in Figure 4.1, along with

the ways other modules may build on the modules introducing the three elements. In

this figure, arrows point from a module to one on which it builds, with further builds-on

relations determined transitively (e.g., the X module in the B scenario also builds on the

pc module). The modules introducing a property P , its key relation R, and R’s primary

component pc are drawn with solid lines and are labeled with the parts they introduce.

Note these modules may build on others introducing other parts of the language than these

three key elements; we do not show any such modules to simplify the diagrams. Dashed

circles are modules not known to the module where the property is introduced, but which

may be written separately from it. These are labeled with categories X, Y, and Z according

to which of P , R, and pc are known by each module. Specifically, modules labeled X know
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A: All Introduced
Together

pc, R,
P

X

B: Relation and
Property Together

R, P

pc

X

Y

C: Primary Component
and Relation Together

P

pc, R

X

Z

D: All Introduced
Separately

P

R

pc

X
Z

Y

Property P , its key relation R, R’s primary component category pc

Figure 4.1: Diagrams of the four possible module relations for properties

P , R, and pc; modules labeled Y know pc but not R or P ; and modules labeled Z know pc

and R but not P .

Consider our three example properties from the previous chapter. Type preservation,

Property 3.1, is introduced by the host language module from Chapter 2. Its key relation,

expression evaluation, and the primary component category of this relation, e, are also

introduced by the host language. Since all three elements are introduced together in the

same module, this fits scenario A. The optimization extension’s property for the correctness

of its opte relation for expressions, Property 3.2, has the property and its key relation

introduced in the same module. The primary component category e is introduced by the

host language module on which it builds, making it fit scenario B. Finally, the security

extension introduces Property 3.3 specifying that statements passing its analysis do not

leak private information. This has the host language’s statement evaluation as its key

relation, making it fit scenario C where the property is introduced in a separate module

from the one introducing its key relation and the primary component category. We do not

have a property for scenario D as our example language does not have an extension module

building on another extension, so it does not have the right structure to introduce one.

Our goal is to ensure a proof, specifically a canonical-form proof, will exist for each

property introduced by any module for any composed language in which the module is
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included. We have each module introducing a property also declare the specific set-up steps

for a canonical-form proof for the property (e.g., specifying on which premises to induct

in addition to the key relation). This set-up portion of the canonical proof structure has

a top-level case analysis on the key relation, creating proof cases for each language rule

defining the key relation. To complete the proof for a composed language, we need a proof

for the proof case for each rule.

We can break the set of rules defining a property’s key relation in a composed language

down into four classes, with a rule’s class being determined by how the module introducing

it relates to the one introducing the property, its key relation, and the key relation’s primary

component. We list the four classes here, with discussions of how they are handled in proofs

and examples of such rules relative to our language’s properties to follow:

• Known rules are from modules known when the property is introduced, including

both the module introducing the property and those on which it builds. These are

introduced by modules drawn with solid lines in Figure 4.1.

• New rules are from modules that build on the one introducing the property. These

are introduced by modules labeled X in Figure 4.1.

• Instantiated default rules arise from modules knowing the primary component

category but not the key relation. These are associated with modules labeled Y in

Figure 4.1.

• Independent rules are from modules knowing the key relation but not the property.

These are introduced by modules labeled Z in Figure 4.1.

Other modules, ones that do not know even the primary component category, cannot con-

tribute rules to the definition of the key relation in a composed language, so these are all

the possibilities.

Our approach distributes the proof cases for language rules across modules. Each module

knowing a property will write its own canonical-form proof for it using the portion of the

language that it knows. Note that only two types of modules can write such proofs, the one
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introducing the property and those that build on it, as these are the only types of modules

knowing the property. Keep in mind that whether a module is an introducing module or an

extension one is relative to a particular property, not a characteristic of the module itself; the

same module may take on both roles but for different properties. While these are the only

two types of modules knowing a property, only known rules and new rules are known to these

modules. Instantiated default rules do not exist until a composition, and independent rules

are introduced by modules that are independent of the module introducing the property,

and, in general, also independent of those that build on it. While the particulars of these

rules are not known, the fact such rules might be part of a composed language is known

to the introducing module, and thus we can have it reason generically about them as part

of the proof it writes. Then the module introducing a property is responsible for proving

the cases for known rules, instantiated default rules, and independent rules, while modules

extending it are only responsible for proving the cases for new rules they introduce. In the

setting of a composed language, the canonical-form proof of a property takes the proof for

each case arising from its top-level case analysis from the corresponding case in the proof

written by one of the modules included in the composition. We turn now to discussing the

particulars of how each class of rules is handled by the proofs written by the modules.

The first class of rules, known rules, are those known to the module introducing a

property. These rules are introduced by the module introducing the property or those on

which it builds, the modules drawn with solid lines in Figure 4.1. Proof cases for known

rules are part of the proof written by the module introducing the property. For the host

language’s type preservation property, Property 3.1, rules introduced by the host language,

such as E-Add for evaluating additions, are of this class because they are known to the

host language when it introduces the property. Section 4.3 describes the proofs introducing

modules must write, including the cases for known rules.

The next class of rules are those from modules building on the module introducing the

property; that is, they are introduced by extensions to the one introducing the property.

We call these new rules because the property already exists in another module, but the

rules are new relative to it. These are from modules labeled X in Figure 4.1. Proof cases
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for new rules are proven by the modules introducing them. For type preservation, rules

introduced by our extension modules, such as E-Head from the list extension, are of this

class because the module introducing the rules imports the property. We discuss proving

properties for new rules in Section 4.2.

Our third class of rules are instantiated default rules. Modules labeled Y in Figure 4.1

know only the primary component category, not the key relation, so they cannot introduce

rules for the key relation directly. In a composed language, the key relation is defined for

new constructs introduced by these modules by instantiating its default rule. For example,

the optimization expression’s Property 3.2 that fits scenario B in the figure, where the

optimization expression is the module introducing R and P , has the list extension as a Y

module. Its key relation, opte, is defined for the list extension’s constructs, such as cons, in

a composed language by instantiating its default rule for them. The module introducing a

property is expected to provide a generic proof that can apply to any instantiated default

rule. This module knows such cases might exist, depending on the module structure for

the property, but not exactly what they are because the constructs are from independent

modules. However, it does know the form of the default rule, and that any construct for

which it will be instantiated will be introduced by a module not knowing the key relation.

This knowledge gives it information it can use to write the requisite generic proof, the

details of which are discussed in Section 4.3.

The final class of rules are introduced by modules knowing the property’s key relation

but not the property itself, those created by modules labeled Z in Figure 4.1. We call these

independent rules because they are introduced by modules that are completely independent

of the one introducing the property. The security extension’s Property 3.3, which corre-

sponds to scenario C in the figure with the security extension being the module introducing

P , has the list extension being a Z module relative to it, so the X-Splitlist rule from the

list extension is a rule of this class relative to the security property. As with instantiated

default rules, the module introducing a property knows based on the module structure that

Z modules, and thus independent rules, can exist, and is required to provide a generic proof

for them as well. Unlike instantiated default rules, it does not know the form these rules
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will have. Proving cases for independent rules relies on them being restricted in some ways,

a topic we discuss further in Section 4.3.

Thus far we have laid out, at a high level, our scheme for ensuring all proof cases in

the composition resulting from a top-level case analysis on the key relation will be handled

in the proofs written by the module introducing a property and extensions to it. However,

this is not the only problem with case analysis and the closed-world assumption in the

extensible setting. Within the proof case for a particular rule resulting from the top-level

case analysis, analyzing a premise might prevent the modular proof from being valid in the

composed setting, as there could be more rules unifying with it in the composition. The

new sub-cases would not have proofs, as they were not known when the modular proof was

written. Thus our reasoning framework also circumscribes case analysis within modular

proofs, ensuring it is used only when it will not result in missing cases in any composed

language. It does this by identifying the situations in which other modules cannot add rules

that might be used to derive the atomic formula being analyzed due to our restrictions on

the rules extensions may introduce and how languages are composed.

The remainder of this chapter further develops these ideas, describing how proofs are

written and circumscribed in both extensions to the module introducing a property and in

the introducing module itself. We also prove the soundness of our approach, showing how

these proofs can be used to create a proof for any composed language, and how we can

extend it to account for mutually-inductive properties.

4.2 Proofs in Extension Modules

We start with proofs written by modules extending the one that introduces a property (i.e.,

modules labeled X in Figure 4.1). While it might seem strange to start with extensions

rather than the module introducing a property, the requirements for extensions are simpler

than for those written by modules introducing properties. The next section extends these

requirements to the situation for modules introducing properties.

A module has a responsibility to write its own proofs for the properties it imports.
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While we define this as a full proof, in practice, this responsibility extends only to the cases

for its own, new rules; as noted in the previous section, other modules will be responsible

for proving the cases for the rules it imports.

Definition 4.1 (Modular proofs in extension modules). Let N be a module building on a

module M introducing a property P = ∀x.R(t) ⊃ F constructed using the vocabulary of

Lang(M). A modular proof for P relative to module N is a canonical-form proof for P

in the language Lang(N) using as lemmas the properties in L where the use of the defL

rule and its annotated variants are used to analyze premises of the form R′(t′) in only the

following situations:

• the primary component argument of R′(t′) is built by a constructor or

• the primary component category of R′ is a non-extensible category.

These are the only restrictions on proofs.

The limitations placed on case analysis in this definition ensure any analysis, other than

the top-level one producing the distributed cases, cannot have any applicable rules in a

composed language that are added by other modules unknown at the time the proof is

written. Having new rules applicable to a case analysis would lead to holes in the composed

proof. We will take up the proof of the sufficiency of these restrictions in Section 4.4, but

the intuition behind them is that a module can add a new rule for a relation it imports only

for a new constructor of the relation’s primary component. Then if a premise’s primary

component is built by a known constructor or if new constructors, and thus new rules,

cannot be added by other modules, all applicable rules are known.

As an example of writing a proof for a case while obeying these restrictions, consider

showing Property 3.1, type preservation, for the list module’s head constructor. If IH refers

to the induction hypothesis formula

∀Γ, γ, e, ty , v.(γ ⊢ e ⇓ v)∗ ⊃ Γ ⊢ e : ty ⊃

(∀x, tyx, vx.lkpTy(Γ, x, tyx) ⊃ lkpVal(γ, x, vx) ⊃ nilty ⊢ vx : tyx) ⊃ nilty ⊢ v : ty

66



then the initial sequent to prove for this property is

Γ, γ, e′, ty , v1, v2 : IH , (γ ⊢ e′ ⇓ cons(v1, v2))
∗,Γ ⊢ head(e′) : ty ,

∀x, tyx, vx.lkpTy(Γ, x, tyx) ⊃ lkpVal(γ, x, vx) ⊃ nilty ⊢ vx : tyx −→ nilty ⊢ v1 : ty

Note that the original expression e has been replaced by head(e′) and the original value v

has been replaced by v1, the value to which head(e′) evaluates. Our restrictions on case

analysis prevent us from analyzing the new evaluation derivation for e′ any further, as its

primary component is unstructured. We can, however, analyze the typing derivation, as its

primary component is the structured head(e′). Doing so yields a sequent

Γ, γ, e′, ty ′, v1, v2 : IH , (γ ⊢ e′ ⇓ cons(v1, v2))
∗,Γ ⊢ e′ : list(ty ′),

∀x, tyx, vx.lkpTy(Γ, x, tyx) ⊃ lkpVal(γ, x, vx) ⊃ nilty ⊢ vx : tyx −→ nilty ⊢ v1 : ty
′

This has the necessary premises for using the induction hypothesis, and doing so gives us a

premise sequent

Γ, γ, e′, ty ′, v1, v2 : IH , (γ ⊢ e′ ⇓ cons(v1, v2))
∗,Γ ⊢ e′ : list(ty ′),

∀x, tyx, vx.lkpTy(Γ, x, tyx) ⊃ lkpVal(γ, x, vx) ⊃ nilty ⊢ vx : tyx,

nilty ⊢ cons(v1, v2) : list(ty
′) −→ nilty ⊢ v1 : ty

′

We can analyze the new typing derivation for cons(v1, v2). This gives us new hypotheses

nilty ⊢ v1 : ty ′ and nilty ⊢ v2 : list(ty ′). The former is exactly the conclusion we want, so

we can us the id rule to complete the proof.

An obvious question to ask is if the restrictions on case analysis in a modular proof

from Definition 4.1 make it too difficult to prove cases for interesting properties. We have

found this not to be the case, for two apparent reasons. First, the induction hypothesis

often obviates a second-level case analysis. Unifying the key relation with a particular rule

generally unifies the primary component and some other arguments with terms built at the
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top level by constructors. This also generally structures the primary components of other

relations, allowing case analysis on them. In turn, thus usually gives us the premises we

need for using the induction hypothesis with sub-derivations of the key relation. We see this

in our example of proving a case for type preservation above, as the top-level case analysis

structures the primary component of the typing derivation, allowing us to analyze it and

then apply the induction hypothesis.

The second apparent reason the limitations on case analysis are not too restrictive is

that we can use other properties as lemmas. In particular, when we want to use a second

case analysis on a premise with an unstructured primary component argument, we can often

create another property that specifies what we want. We can then prove this property in

an extensible fashion, with the second case analysis we wanted as its top-level one, which is

not restricted by the primary component argument being unstructured. Then we can use

the lemma to show what we wanted in the original proof rather than using the disallowed

case analysis.

4.3 Proofs in Introducing Modules

Recall from above that the module introducing a property is responsible for proving the

property for the rules it knows and those introduced by other modules that do not know the

property, the latter being instantiated default rules and independent rules. To accomplish

this, we create a composed language that includes the introducing module and the modules

on which it builds, as well as two modules modeling those that do not know the property.

These allow us to carry out the generic reasoning required of the introducing module.

The first generic module models modules knowing the primary component category of

the property’s key relation, but not the property or the key relation. This module introduces

a generic constructor for which the key relation’s default rule will be instantiated in the

composed language used for reasoning. Because the default rule will also be instantiated

for constructors from the modules it models, this exactly matches the definition of the key

relation for the cases it models. Because it represents modules where the key relation will
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be defined by the default rule, we call it the default rule generic module.

The other generic module represents modules knowing the property’s key relation, and,

therefore, also knowing its primary component category, but not knowing the property

itself. This module also introduces a generic constructor, as the modules it represents may

introduce new constructors. However, the form of the rules introduced by these modules

is not known, since they are introduced by the unknown modules themselves. The module

introducing the key relation will introduce a proxy rule, a rule meant to approximate the

behavior of any rule introduced by an extension to the module introducing the relation.

The generic module instantiates this proxy rule for its generic constructor, thus giving it a

definition of the key relation that approximates the independent rules for which it stands.

We call this the proxy rule generic module because it uses the proxy rule to represent the

rules from other extensions.

While these two generic modules give us the cases for the generic proofs, what makes

them possible are projection constraints. Projection constraints are properties that define

how the semantics of a term must relate to the semantics of its projection. Because default

rules and proxy rules almost always use projections, projection constraints let us relate the

semantics of these projections to those of the original term. This often enables creating the

appropriate hypotheses for using the induction hypothesis, as well as lifting the conclusion

we get from using the induction hypothesis with the projection back to the original term,

the key steps in most generic proofs.

In this section, we first describe the module for creating instantiated default rules for

generic reasoning. We then describe the module that uses the proxy rule to represent

independent rules. After this, we discuss how the introducing module writes its proof,

including the restrictions on the proof rules it uses. Finally, we discuss projection constraints

and their use in writing generic proofs.

4.3.1 Default Rule Generic Module

The module introducing a property needs to prove the property holds in cases arising from

the default rule for the key relation being instantiated for constructs from modules knowing
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the primary component category of its key relation but not the key relation itself (i.e., those

labeled Y in Figure 4.1). We introduce the default rule generic module to allow it to do so.

This module introduces a generic constructor to represent those introduced by modules of

the type it represents. When writing a proof of the property, the introducing module will

use a language composition that includes the default rule generic module. In this language,

the default rule for the key relation will be instantiated for this generic constructor, giving

the module’s proof a generic proof case corresponding to instantiations of the default rule

in any composed language. In creating the composed proof for a composed language, the

proof for the case of the default rule being instantiated for the generic constructor can then

be used as a proof for the case of the default rule being instantiated for a constructor from

another module. This is done by replacing the generic constructor in the proof with a term

built by the new constructor.

As an example of what we want from this generic module, consider Property 3.2, intro-

duced by the optimization extension O. This property states that the optimized version of

an expression evaluates if the original did, and to the same value. Because its key relation

opte is introduced by the O extension, but the primary component category is introduced

by the host language H, there can be modules knowing the primary component category

but not the key relation. For example, this is the list extension’s knowledge. Then the

O module must prove the property will hold when the default rule for opte is instantiated

for the list extension’s constructs, but without knowing those constructs. The default rule

generic module allows it to do so, introducing a generic constructor to represent them. In

the language composition used for the O module to write its proof, the default rule is in-

stantiated for this generic constructor, as it would be in a composition containing the list

extension for the list extension’s constructors. In creating the composed proof for a language

containing both the O and L modules, each case for opte’s default rule being instantiated

for one of the list constructs is proven by taking the generic proof and replacing the generic

construct with a term built by the list extension’s construct.

Definition 4.2 (Default rule generic module). For a property introduced by module M with

key relation R, the default rule generic module is written I(M,R). It builds on the modules

70



on which M builds that do not also build on the module introducing R, MR:

BI(M,R) = {N |N ∈ BM ∧MR /∈ BN}

This is the maximal subset of the modules on which M builds that do not know the key

relation. This extension does not introduce any rules, syntax categories, or new relations.

It adds one constructor, ι, that takes no arguments and builds expressions in the primary

component category of R. Then we have I(M,R) = ⟨BI(M,R),∅, {ι},∅,∅,∅,∅,∅⟩.

We can write the default rule generic module for module O’s Property 3.2. The module

I(O, opte) introduces a constructor ι constructing expressions in the category e. Its builds-

on set BI(O,opte) is {H}, as that is the only module on which O builds and H does not

introduce the key relation, so we have I(O, opte) = ⟨{H},∅, {ι},∅,∅,∅,∅,∅⟩. Because

the generic module builds on H but not O, the default rule for opte will be instantiated for

ι in a language composition including H, O, and I(O, opte), such as the composition O will

use for writing its proof of Property 3.2.

4.3.2 Proxy Rule Generic Module

In addition to the cases for rules it knows and instantiated default rules, the module in-

troducing a property also needs to prove the property holds in cases for independent rules,

those introduced by extensions knowing the key relation but not the property itself (i.e.,

those labeled Z in Figure 4.1). As for reasoning about instantiated default rules, we intro-

duce a generic module with a generic constructor to permit it to do so, and will include

this module in the language composition used for reasoning. Unlike in reasoning about

instantiated default rules, we do not know the form of the rules here. Consider the secu-

rity extension in proving Property 3.3 that it introduces, which has the host language’s

statement evaluation as its key relation. It needs to prove the property will hold for the

list extension’s X-Splitlist rule, but without knowing about the list extension’s splitlist

construct. Furthermore, the same proof must apply to any rules introduced by any other

extensions. If another extension introduced a repeat-while loop, the same proof would need
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to apply to the cases for its evaluation rules as applies to the case for the list extension’s

X-Splitlist rule, even though these rules would have very different forms.

To reason in such cases, we will need a way to view the semantics of such constructs

without truly knowing them, one general enough to fit anything another extension might

introduce. We introduce the set of proxy rules Q, a set of rules for the relations a module

introduces, for this purpose. The way to understand proxy rules is that, by introducing a

proxy rule for a relation, a module is promising any actual rules introduced by extensions

building on it will be subsumed by the proxy rule, which places a constraint on the behavior

of extension-introduced rules. Because any actual rules from other extensions are subsumed

by the proxy rule, any conclusion derived by an actual rule introduced by an extension may

also be derived by the proxy rule. This subsumption of any extension-introduced rule by the

proxy rule makes it possible to reason generically using the proxy rule and have the proof

apply to cases for rules introduced by extension modules. We will discuss in Section 4.4.3

how extensions ensure this promise is true, trusting the promise for now.

The proxy rule set Q is similar to the default rule set S in that it gives us a view of the

semantics of constructs we do not know, even though the view given by proxy rules is only

an idea, not the actual definition as default rules give. The well-formedness requirements

for Q are also similar to those for S. The proxy rule set for a module may only introduce

rules defining new relations introduced by the module, and it may only give one rule for

each relation. We also require all the arguments to the conclusion of a proxy rule to be

meta-variables so its form fits any conclusion an extension might introduce, even though

those conclusions can use new constructs unknown to the module introducing the relation,

and therefore unknown to the proxy rule. We can formalize this as a definition of well-

formedness for a proxy rule set.

Definition 4.3 (Well-formed proxy rule set). A proxy rule set Q for a module M is well-

formed if it satisfies two criteria. First, for each rule in the set, its conclusion must be of the

form R(x) where x is a set of unique meta-variables and R is introduced by M (R ∈ RM ).

Second, there is at most one rule in the set defining each relation.
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Not only are proxy rules similar to default rules in giving a view of the semantics of

unknown constructs and in their well-formedness requirements, but also in the forms they

often take. Just as it is common for default rules to use the projection of the conclusion’s

primary component, so it is also common for proxy rules to do likewise. For example, the

rule introduced by the host language in QH for statement evaluation is

proj s(s, s
′) (γ, s′) ⇓ γ′′

(γ, s) ⇓ γ′
X-Q

This rule tells us a statement’s evaluation terminates whenever the statement projects

and its projection’s evaluation terminates, mimicking the common form of default rules of

copying the definition from the projection. However, note our rule here does not copy the

definition from the projection, instead permitting different evaluation contexts as results of

the evaluations. By not fully copying the definition from the projection, the host language

gives more freedom to extensions in writing their rules that must be subsumed by this one.

The generic extension we introduce for reasoning about rules from independent exten-

sions introduces a rule that is the proxy rule instantiated for a generic constructor it also

introduces. The proof the introducing module writes for the case when the key relation is

derived by the instantiated proxy rule is used in creating a composed proof for the cases

for rules introduced by extensions knowing the key relation but not the property, that is,

independent rules. This is similar to how we use the proof for the case for the default rule

instantiated for ι in the composition for other instantiations of the default rule. As there,

we replace this generic extension’s generic constructor with the primary component term

of the actual rule in the composition, but the particular details are more complicated.

We can now define the generic module:

Definition 4.4 (Proxy rule generic module). For a property introduced by module M with

key relation R, the proxy rule generic module is written K(M,R). It builds on the same

modules as M (BK(M,R) = BM ). It does not introduce any new syntax categories or rela-

tions. It introduces one constructor, κ, taking no arguments and building expressions in
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the primary component category of R. It introduces one rule, which is the proxy rule r

for the relation R that was introduced by MR (r ∈ QMR) instantiated for κ (r[κ/x] where

pc(r) = x). Thus we have K(M,R) = ⟨BM ,∅, {κ},∅, r[κ/x],∅,∅,∅⟩.

In proving the security extension S’s Property 3.3, which has the host language’s state-

ment evaluation as its key relation, we have a proxy rule generic module K(S,⇓). This has

the same builds-on set as the security extension itself, which is {H}, and it introduces a con-

structor κ building expressions in the syntax category s for statements. It also introduces

one rule for κ:

proj s(κ, s
′) (γ, s′) ⇓ γ′′

(γ, κ) ⇓ γ′
X-Q(κ)

This rule instantiates the one from the proxy rule set for statement evaluation for the generic

constructor κ. Then we have K(S,⇓) = ⟨{H},∅, {κ},∅, {X-Q(κ)},∅,∅,∅⟩.

4.3.3 Writing Modular Proofs

The modular proof written by a module for a property it introduces needs to prove the

cases it knows, as well as those it will handle generically. Thus its modular proof will be

written for the language of a module combining it and the generic extensions.

Definition 4.5 (Modular proof composition module). For a property introduced by module

M with key relation R, the modular proof composition module is written M(M,R). This

module does not introduce any new syntax categories, constructors, relations, or rules of

any class. It builds on the same modules as M and M itself (BM ∪ {M}), and possibly the

two generic modules.

• If R and its primary component category are introduced by different modules, it builds

on I(M,R) as well.

• If R is introduced by a module other than M , it builds on K(M,R) as well.

Then we have M(M,R) = ⟨BM(M,R),∅,∅,∅,∅,∅,∅,∅⟩.
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Note we can have BM(M,R) be BM ∪ {M}, BM ∪ {M, I(M,R)}, BM ∪ {M,K(M,R)}, or

BM ∪{M, I(M,R),K(M,R)}, depending on the relationships between modules. If there can

be modules knowing R’s primary component category but not R itself, that is, the property

fits scenarios B or D in Figure 4.1, it will include I(M,R) that represents such modules. If

there can be modules knowing R but not building on M , that is, not knowing the property

introduced by M for which we want to write a proof, fitting scenarios C or D in Figure 4.1,

it will include K(M,R) that represents such modules. In any case, it includes M and all

the modules on which M builds.

In Lang(M(M,R)), the relation R is defined by rules known to M , those introduced by

M itself and the modules on which it builds; the default rule for R instantiated for ι from

the default rule generic module; and the proxy rule for R instantiated for κ from the proxy

rule generic module. Then a canonical-form proof of a property using R as its key relation

has cases for the known rules, the instantiated default rule, and the instantiated proxy rule

arising from its top-level case analysis, or as many of these as can be relevant to a composed

proof. This is one for each case which the introducing module is responsible for proving.

Recall the purpose of a module introducing a property writing a proof for Lang(M(M,R))

is to use sub-proofs in creating a proof of the property for any composed language. A com-

posed language will have different rules than the language for which the module’s proof is

written, as new rules can be added by the inclusion of other modules in a composition. To

make the sub-proofs valid in a composed language, we need to ensure the language rules

used in them correspond to ones that will be in a composed language where we use the

sub-proofs. One way we do this is by restricting case analysis to situations where we know

all the rules that may apply. As in modular proofs for imported properties (Definition 4.1),

we allow case analysis if the primary component of the derivation being analyzed has a

known constructor as its top-level symbol, or if the relation’s primary component category

is non-extensible. Because new rules introduced by extensions cannot have existing con-

structors as the top-level symbol of the conclusion’s primary component, no rules can be

added in a composition and all applicable rules are known in these cases.

The situation is a bit more complicated for the generic constructors. Consider the
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generic constructor ι from the default rule generic module. The proof for the default rule

instantiated for it is to be used for other constructs for which the key relation’s default rule

is instantiated in a composition by replacing ι with terms built by the other constructs.

Then the language rules used in the proof for this case need to correspond to ones that

will exist for any of the constructs for which it stands. We have ensured this for the defR

proof rule by having the generic module build on all modules not knowing the key relation

R. By using this maximal builds-on set, we ensure the only default rules instantiated for

ι, and thus the only rules defining any relations for it, will also be instantiated for any

construct for which it stands in a composition. This is because any module for which it

stands also cannot build on the one introducing R, and thus the default rules from R’s

module and any that build on it must be instantiated for constructs for which ι stands. We

can similarly limit case analysis to situations where these instantiated default rules, and any

rules known to M with meta-variables as their primary component arguments, are the only

ones applicable. Specifically, this means case analysis is only allowed on derivations with

the generic constructor ι as the primary component argument if the relation being derived

is introduced by a module not in the builds-on set of the default rule generic constructor,

as its relation must be defined for such constructs by instantiating default rules.

The situation for the κ generic constructor from the proxy rule generic module is very

similar to that for the ι generic constructor from the other generic module. By using the

maximal set of modules not knowing the one introducing the property as the builds-on

set of the generic module (i.e., all the modules on which M builds), we have ensured only

default rules introduced by M are instantiated for κ. These will also be instantiated for

any constructor for which κ stands, as the modules introducing them must be unrelated to

M . Case analysis on hypotheses with κ as the primary component argument is limited to

situations where the relation being analyzed must be defined by instantiating the default

rule, as for ι. This means the relation must be introduced by M itself, as this is the only

module guaranteed not to be known by modules for which the proxy rule generic module

stands. We must also disallow using the instantiated proxy rule with the defR proof rule.

Unlike the default rules instantiated for ι and κ, which correspond exactly to rules that
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will be part of a composed language for any constructs for which the generic constructors

stand, this rule will not have an exact corollary. For example, the proof for the proxy rule

instantiated for κ for the security extension’s property will be used for the list extension’s

splitlist construct and the X-Splitlist rule, but X-Q(splitlist), the proxy rule instantiated

for splitlist , will not be part of a composed language including both extensions. However,

the default rule for the security extension’s secure relation instantiated for splitlist will be

part of a composed language including both extensions, as the default rule instantiated for

any construct for which κ stands will be, and thus using the default rule instantiated for κ

is fine.

One final consideration for the proof written by the module introducing a property is

the use of the generic constructors in cases other than those for the rules defining the key

relation for the generic constructors. If we used, say, ι with the ∀L proof rule in a case for a

rule introduced by the host language in proving a property introduced by the optimization

extension, a composition containing only the host language and optimization extension

would not necessarily have a corresponding construct to use in the composition, one with

the same rules. Thus we limit using the generic constructors to situations where we know

a composed language will include corresponding constructs, those for the rules defining the

key relation specifically for the generic constructs.

We can now define modular proofs written for properties by the modules introducing

them, formalizing the restrictions given in the preceding paragraphs.

Definition 4.6 (Modular proof in introducing module). Let M be a module and let P =

∀x.R(t) ⊃ F be a property introduced by M , constructed using the vocabulary of Lang(M).

Let L be a set of lemmas in which ι and κ do not appear. A modular proof for P relative

to its introducing module M is a canonical-form proof for P using as lemmas the properties

in L , written in the language Lang(M(M,R)) where, in the proofs of each premise sequent

of the top-level case analysis, the instantiated proxy rule introduced by K(M,R) is not used

with the defR proof rule and the defL proof rule and its annotated variants are used to

analyze hypotheses of the form R′(t′) in only the following situations:
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• the primary component argument of R′(t′) is built by a constructor other than ι or κ,

• the primary component category of R′ is a non-extensible category,

• the primary component argument of R′(t′) is ι and R′ is a relation introduced by a

module not in BI(M,R), or

• the primary component argument of R′(t′) is κ and R′ is a relation introduced by M

( i.e., R′ is introduced by a module not in BK(M,R)).

Furthermore, ι and κ may only be used as the terms, or as sub-terms of the terms used,

in the premises of the ∀L and ∃R rules if they are present in the conclusion sequent of the

rule.

An obvious concern is whether a module can introduce interesting properties when it

needs to write a modular proof according to Definition 4.6. In Section 4.2, we argued

the restrictions imposed on modular proofs for imported properties (Definition 4.1) do not

make proofs difficult. The restrictions imposed on modular proofs for introducing modules

include those for modular proofs of imported properties, with the addition of restrictions

specific to generic reasoning. The concern, then, is whether generic reasoning, where we do

not know the specifics of the constructs about which we are reasoning, allows us to prove

interesting properties.

Consider the proof for the generic case for instantiated default rules for Property 3.2,

that optimized expressions evaluate to the same value as their unoptimized versions. Due

to the simplicity of the default rule for opte, the proof is immediate. Recall that the

default rule OE-Default “optimizes” expressions from other modules to themselves to

avoid erasing special behavior. Then the definition of opte for ι that creates the generic

case in the modular proof is opte(ι, ι). Thus we need to show γ ⊢ ι ⇓ v, but we also have

an assumption of γ ⊢ ι ⇓ v, so we can use the id rule to complete the proof immediately.

This is an extremely simple case. In general, generic cases are more complex than this

because the default and proxy rules defining the cases are more complex than the OE-

Default rule. To prove the generic cases, we usually need some more knowledge about

78



the constructs for which the generic ones stand. We can get some such knowledge through

allowed case analyses, such as on derivations of relations with the generic constructor as

the primary component argument that must be defined by instantiating their default rules.

A source of knowledge equally as important, if not more so, is the set of other properties

available to use as lemmas. Since default rules and proxy rules often use projections, a

particularly important subset of lemmas are those we identify as projection constraints.

4.3.4 Projection Constraints and Generic Proofs

Projection constraints are a loosely-defined subset of a language’s properties defining re-

lationships between the semantics of constructs and their projections. They constrain the

ways in which extensions can define imported relations for new constructs relative to their

projections. As an example of a projection constraint, our host language introduces a prop-

erty requiring a statement’s projection to evaluate under the same evaluation context if the

statement itself evaluates:

∀s, s′, γ, γ′.proj s(s, s′) ⊃ (γ, s) ⇓ γ′ ⊃ ∃γ′′.(γ, s′) ⇓ γ′′ (4.1)

The host language also introduces other projection constraints requiring the evaluation

results for a statement and its projection to contain the same values for all names, and that

any two projections of the same statement are equal.

Projection constraints fulfill what we noted in Section 2.1.3, that the reasoning frame-

work lets us define what we expect of projections, and what it is important for them to

preserve about the original term. By limiting how extensions define imported relations,

they make it possible for other extension modules to define default rules using projections

that will have the properties they want, this being formalized by writing generic proofs for

either kind of generic case.

Consider the proof for the generic case representing independent rules, those introduced

by modules knowing the key relation but not the property, for Property 3.3 from the security
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extension. We repeat the property here for convenience:

∀s,Σ, sl ,Σ′, γ1, γ
′
1, γ2, γ

′
2.(γ1, s) ⇓ γ′1 ⊃ (γ2, s) ⇓ γ′2 ⊃ Σ sl ⊢ secure(s,Σ′) ⊃

eqpublicvals(Σ, γ1, γ2) ⊃ eqpublicvals(Σ′, γ′1, γ
′
2)

In this case, we assume that the statement s is built by κ and the first evaluation is

derived using X-Q(κ), so we have (γ1, κ) ⇓ γ′1, proj s(κ, s
′), and (γ1, s′) ⇓ γ′′1 . We

cannot analyze the derivation of evaluation under γ2 (i.e., (γ2, κ) ⇓ γ′2) because evalu-

ation is introduced by the host language, but we can use Projection Constraint 4.1 with

it to get a derivation of evaluation for s′ under γ2, (γ2, s′) ⇓ γ′′2 . We can analyze the

derivation of Σ sl ⊢ secure(κ,Σ′), finding it is defined by S-Default instantiated for

κ, so, as any two projections must be the same according to one of our projection con-

straints, we have a derivation of Σ sl ⊢ secure(s′,Σ′). The induction hypothesis shows

that eqpublicvals(Σ′, γ′′1 , γ
′′
2 ) holds. Because γ′1 and γ′′1 must have the same values for each

variable due to a projection constraint introduced by the host language, and the same for

γ′2 and γ′′2 , we also have eqpublicvals(Σ′, γ′1, γ
′
2), our required conclusion, finishing the proof

of the generic case.

This proof would not be possible without projection constraints. Without them, we

would not have the premises to use the induction hypothesis, nor would we be able to lift

the result back from the evaluation results for the projections to the evaluation results for

the original term. It is also made possible by being able to analyze the derivation of the

secure relation, which we know must be defined by instantiating the default rule. Thus we

see that we are able to prove interesting properties when we need to write generic proofs for

them, as we know new relations are defined by default rules and imported relations obey

the existing properties, including especially projection constraints.
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4.4 Proof Composition

In this section, we demonstrate the modular proofs specified in the previous two sections,

those for a module introducing a property and those for modules importing the property,

are sufficient to guarantee a proof of the property exists for any composed language. We

do this by showing how, using these modular proofs, we can construct a composed proof of

the property for a composed language.

The composed proof we will build will have the canonical form of a proof for the property.

This means it has a top-level case analysis creating proof cases for the four classes of rules we

identified in Section 4.1, known rules, new rules, instantiated default rules, and independent

rules. We break down our discussion of building the full proof by these classes of rules.

Section 4.4.1 handles both known rules, those known to the module introducing a prop-

erty, and new rules, those introduced by modules building on the one introducing a property.

The key insights for these rule classes are that the modular proofs had a proof case for each

rule directly, and that the restrictions on modular proofs mean the move to a composed

language cannot affect the rules used in the proofs of those cases.

Section 4.4.2 shows how we can use the generic proof for the key relation’s default

rule instantiated for a generic constructor to prove proof cases for instantiations of the

default rule in a composed language. Because of how we defined the default rule generic

module, the definitions of relations for the generic constructor in the language used for

writing the modular proof correspond to those for the constructs for which the default rule

is instantiated in a composed language. This allows us to use the generic proof with the

generic constructor replaced by an appropriate new term.

The remaining case is for independent rules, rules introduced by modules knowing the

key relation but not the property. We intend to use the generic proof for the rule from the

proxy rule generic module for these, but this is dependent on the proxy rule subsuming the

actual rules unrelated modules will introduce. How we can show this subsumption, and how

we can use it to prove the relevant cases in a composed proof, is discussed in Section 4.4.3.

Finally, Section 4.4.4 takes the pieces of the proof construction for all the rule classes
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and pulls them together, showing how the full proof of any property can be constructed for

any composed language from the modular proofs of it.

4.4.1 Constructing Proofs for Known and New Rule Cases

Both known rules, introduced by the moduleM introducing a property or a module on which

it builds, and new rules, introduced by modules building on M , are known to some module

that writes a modular proof. Furthermore, these modular proofs include cases coming from

the top-level case analysis specific to each of these rules. Intuitively, the same rule giving

rise to the proof case in the modular proof will be present in the composed language and

create the same sequent from the top-level case analysis in the composed proof. Also, both

Definitions 4.1 and 4.6 restrict case analysis to situations where other modules cannot add

rules unifying with the premise being analyzed, so the same language rules are applicable

to case analyses in the modular and composed settings. Thus we can use the exact same

proof, though ranging over a different underlying language, to prove the sequent in the full

proof as we did in the modular one. We formalize this in Lemma 4.9. First, we show that

while we write some modular proofs in the context of Lang(M(M,R)) that may contain

both ι and κ, our restrictions on modular proofs prevent them from appearing in proofs of

sequents in which they are not initially present, a fact we will need for lifting proofs to the

composed language.

Lemma 4.7 (Non-introduction of ι). Let M be a module, R be a relation, L be a set

of lemmas in which ι and κ do not appear, S be a sequent, and π be a proof of S in the

language Lang(M(M,R)) possibly using lemmas in L respecting the restrictions given in

Definition 4.6. Then ι does not occur in any sequent in π if it does not occur in S.

Proof. We proceed by induction on the height of π, considering the last rule used in it. Most

cases are clear. The ∀R and ∀L rules are not permitted to use terms containing ι if it is not

already present in the conclusion sequent. The only cases requiring careful examination are

the cases for defR and defL rules, including defL variants. For the defR rule to introduce

ι into the proof would require a definition clause ∀x.H ≜ B where the consequent of S is

82



an instance of H and B contains ι. However, the only rules in Lang(M(M,R)) in which ι

appears are instantiated default rules, so ι is also the primary component argument in H

in each such rule. Then the defR rule cannot introduce ι.

Consider when analyzing a premise R′(t′) with the defL rule is allowed. First, we may

analyze it if its primary component is built by a constructor other than ι or κ. The only

applicable rules in this case are those that are part of Lang(M) and cannot contain ι.

The mgu also cannot introduce ι. Next, we may analyze R′(t′) if the primary component

category of R′ is not extensible. The only rules defining R′ are then part of Lang(M) and

cannot contain ι. Finally, we may analyze R′(t′) if its primary component is κ and R′ is

introduced by M . The applicable rules may be those introduced by M or the default rule

for R′ instantiated for κ. In either case, the rules cannot contain ι. Then ι can only be

present in π if it is present in the sequent S it proves. ■

Lemma 4.8 (Non-introduction of κ). Let M be a module, R be a relation, L be a set

of lemmas in which ι and κ do not appear, S be a sequent, and π be a proof of S in the

language Lang(M(M,R)) possibly using lemmas in L respecting the restrictions given in

Definition 4.6. Then κ does not occur in π if it does not occur in S.

Proof. Similar to Lemma 4.7. ■

Lemma 4.9 (Lift known case proofs to composition). Let S be a sequent using the vocab-

ulary of Lang(M) and let π be a proof of S using as its set of definitions Lang(M) and

possibly using lemmas from L that contains lemmas built using the vocabulary of Lang(C).

Furthermore, let π be a proof obeying the restrictions given by Definition 4.1 or Defini-

tion 4.6. Let C be a module such that M ∈ BC . Then π is a proof of S using as its set of

definitions Lang(C) and possibly using lemmas from L .

Proof. We begin by noting the restrictions in Definition 4.1 are really a subset of those in

Definition 4.6, so we can consider both cases together. Also note Lemmas 4.7 and 4.8 mean

ι and κ cannot appear in any sequents in the original proof, as S does not contain either

originally. Thus a modular proof of a sequent written using Lang(M(M,R)) rather than
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Lang(M) as its set of definitions is also one using only Lang(M) because it cannot use the

rules arising from the generic extensions.

We proceed by induction on the height of π, and case analysis on the last rule used in

the proof. For rules other than defL and its variants and defR, it is clear the same proof

rule will apply in both languages. Then the induction hypothesis applies to the proofs of

the premise sequents.

If the last rule is the defR rule, the rule it used in the context of Lang(M) is also present

in Lang(C). Then the induction hypothesis shows the premise sequent can be proven by

the same proof.

The final case is that where the last rule is the defL rule or one of its variants. Note it

does not matter here which particular version of the defL rule is used; any annotations do

not affect the argument. Because ι and κ are not present, we have but two possibilities for

the case analysis. The first possibility is that the primary component of the premise being

analyzed is a constructor present in Lang(M). Recall well-formed modules introducing

new rules defining imported relations define those new rules so they apply to only new

constructors of the primary component. Thus no new rules applicable to the case analysis

could have been introduced by other modules. Similarly, instantiated default rules cannot

apply, as they also have new constructors for the primary component. The other possibility

is that the relation being analyzed is defined over a non-extensible type. Such a relation

cannot have new rules added, as new constructors of the primary component cannot be

introduced by well-formed modules. Then in both cases we have corresponding premise

sequents of both case analyses, and the induction hypothesis allows us to show the premise

sequents in the extended context are also proven by the same proofs as in the limited

context. ■

Consider lifting the example proof we wrote in Section 4.2 for the case arising from

the E-Head rule for Property 3.1 from the language of the list extension, Lang(L), to the

composed language containing all modules in our running example, Lang(D). In this proof,

we analyzed the typing derivation Γ ⊢ head(e′) : ty . There was one rule applicable to this,
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T-Head. This rule is present and applicable in Lang(D), and is the only applicable rule,

and it gives us the same typing derivation Γ ⊢ e′ : list(ty ′). Using the induction hypothesis

with this to get nilty ⊢ cons(v1, v2) : list(ty ′) is a step that is also valid in the larger

language. Finally, analyzing this new typing derivation for cons(v1, v2) uses the T-Cons

rule, and only the T-Cons rule, in both Lang(L) and Lang(D). In both languages, this

gives us the conclusion we want, and we can use the id proof rule to complete the proof in

both contexts.

In addition to showing the same proof will prove the same sequents in the two languages,

we can also show the same sequent will appear in the proof in the setting of writing a

modular proof whenever it appears in the proof for a composed language containing the

module writing the modular proof.

Lemma 4.10 (Existence of modular known cases). Let M be a module and C be a module

building on M . Let S be a sequent Σ : Γ, R(t)@
i −→ F . If, in case analysis with the defL@i

rule on R(t)@
i
in the context of the language Lang(C), a rule defining R introduced by a

module on which M builds or by M itself unifies with R(t) and creates a premise sequent,

then the same rule unified with R(t) in the context of Lang(M(M,R)) and created the same

premise sequent, and also in the context of Lang(M).

Proof. We have the same rule in all three settings as the set of rules is created by gathering

all rules from all included modules. Then the rules have the same mgu in each setting, and

thus create the same premise sequent. ■

Lemmas 4.9 and 4.10 together guarantee the cases in a full proof for known and new rules

can be proven based on the modular proofs written by modules included in the language

composition.

4.4.2 Constructing Proofs for Instantiated Default Rule Cases

A composed language may include instantiations of the key relation’s default rule for con-

structs introduced by relations knowing the key relation’s primary component category but

not the key relation itself. These instantiations of the default rule may produce proof cases
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in the top-level case analysis for our full proof. These cases correspond to the one for the

default rule instantiated for the generic constructor ι from the default rule generic module.

We show here how we can use the generic proof written for this rule by the module intro-

ducing the property to prove the proof case for any instantiation of the default rule in a

composed language.

Clearly the two sequents, that proven for the default rule instantiated for ι in the

modular proof and that for a new constructor in a composed language, differ. We start

by defining the relationship between them, which requires defining the replacement of one

term by another.

Definition 4.11 (Term replacement). Let c be a constructor, t be a term of the same type

as c builds, and let s be another term. Replacing the constructor c with t in s, written sJt/cK,

is defined as replacing each sub-term of s built by the constructor c with t. We extend the

definition, and its notation, to formulas, contexts, unification problems, and substitutions

in the obvious manner, noting quantified variables in formulas must be renamed to avoid

variable capture.

Definition 4.12 (Instance of ι sequent). A sequent S ′ is an ι-instance of a sequent S as

determined by a term t, written S ∼ι
t S ′, if S is Σ : Γ −→ F and S ′ is Σ′ : ΓJt/ιK −→ F Jt/ιK,

where Σ′ is Σ extended with the new variables in t.

To illustrate this definition, consider instantiating the sequent for the generic proof case

for Property 3.2 from the optimization extension for the new cons constructor introduced

by the list extension. The initial sequent S for the generic case is

γ, v : (∀e, e′, γ, v.opte(e, e′)∗ ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v), γ ⊢ ι ⇓ v −→ γ ⊢ ι ⇓ v

We have another sequent S ′ to prove in the composed language:

γ, v, e1, e2 : (∀e, e′, γ, v.opte(e, e′)∗ ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v),

γ ⊢ cons(e1, e2) ⇓ v −→ γ ⊢ cons(e1, e2) ⇓ v
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We have S ∼ι
cons(e1,e2)

S ′ because each occurrence of ι in S has been replaced by cons(e1, e2)

in S ′ and the new variables e1 and e2 have been added to the eigenvariable context, but

nothing else has changed.

We can now show how to change a proof from one for a sequent using ι to one for a

sequent replacing ι with a term built by a new constructor introduced by a module knowing

the key relation’s primary component category but not the key relation itself.

Lemma 4.13 (Lift generic ι proof to composition). Let M be a module and R be a relation

in Lang(M). Let S be a sequent with a proof relative to Lang(M(M,R)) possibly using

lemmas from L following the restrictions in Definition 4.6. Assume κ does not occur in S

and ι and κ do not appear in L . Let C be a module building on M . Let t = c(y) be a term

where y is a set of variables and c is a constructor introduced by a module N building on the

module introducing the primary component of R but not building on the module introducing

R itself where C builds on N . Let S ′ be a sequent such that S ∼ι
t S ′ holds. Then there is a

proof of S ′ relative to Lang(C) and possibly using lemmas from L .

Proof. Because κ does not appear in S, it cannot appear anywhere in the proof by Lemma 4.8,

so this is maintained by each proof step.

We proceed by induction on the height of the proof of S, considering cases for the last

rule used. It is clear the same rule can apply to both S and S ′ for all rules other than id

and those for definitions. For the id rule, any occurrences of ι in S’s consequent and the

corresponding premise have been replaced in S ′ by the same term t. Thus the id rule also

applies to S ′.

The remaining cases are those for the defR and defL rules, and the variants of the

defL rule. These cases require more careful consideration as the set of language rules has

changed from Lang(M(M,R)) to Lang(C). We may have added new relations introduced

by other modules and rules for them. We may also have added new rules for existing

relations, but the well-formedness of modules ensures these apply to only new constructors

also introduced by new modules. Finally, we have replaced default rules instantiated for

ι with default rules instantiated for new constructors introduced by other modules. For
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a default rule r defining a relation with x as its primary component, we had r[ι/x] in

Lang(M(M,R)). In Lang(C), we instead have r[c(y)/x] for each constructor c building

the primary component category and introduced by a module unrelated to the module

introducing the relation being defined, for variables y fresh in r. In terms of the reasoning

logic G, rather than a single definition clause ∀x.H[ι/x] ≜ B[ι/x], we have a family of

clauses of the form ∀x, y.H[c(y)/x] ≜ B[c(y)/x] for various new constructors c. This final

category of changed rules will be important in our proof.

Consider the case where the last proof rule in the proof of S is the defR rule. Then

S must have the form Σ : Γ −→ A for some atomic formula A, derived from a sequent

Σ′ : Γ −→ B[θ] using a definition clause ∀x.H ≜ B. Also, the sequent S ′ must have the

form Σ′′ : ΓJt/ιK −→ AJt/ιK. We can assume the domain of θ is disjoint from the variables

in t; if it is not, Theorem 3.4 lets us replace it with one that is. Theorem B.1 shows that,

because A = H[θ], we also have AJt/ιK = HJt/ιK[θJt/ιK]. Consider whether ι was in the

original definition clause:

• If ι was not in the original definition clause, the rule to which it corresponds is part of

Lang(C) and HJt/ιK = H, so AJt/ιK = H[θJt/ιK]. Then the defR rule applies, and we

have a premise sequent Σ′′′ : ΓJt/ιK −→ B[θJt/ιK]. By Theorem B.1 this is equivalent

to Σ′′′ : ΓJt/ιK −→ B[θ]Jt/ιK, which is related to the premise sequent in the proof of

S, so the induction hypothesis applies.

• If ι was in the original definition clause, it was an instantiated default rule, and

there is now an instantiation of the default rule for the constructor building t. Then

∀x, y.HJt/ιK ≜ BJt/ιK is in Lang(C). The sequent consequent AJt/ιK is an instance

of the head of this clause, with θJt/ιK as an mgu. The premise sequent to prove

for using the defR rule is Σ′′′ : ΓJt/ιK −→ BJt/ιK[θJt/ιK], which is equivalent to

Σ′′′ : ΓJt/ιK −→ B[θ]Jt/ιK by Theorem B.1. This is related to the premise sequent in

the proof of S by ∼ι
t, so the induction hypothesis applies to show we have a proof of

S ′.

In either case the defR rule applies to S ′, and we have a proof of the premise sequent.
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If the last rule in the proof was the defL rule or one of its annotated variants, there are

three possibilities for why the case analysis was allowed on a premise R′(t′). We consider

each in turn.

• The primary component argument of R′(t′) may have been built by a constructor other

than ι. The primary component of R′(t′)Jt/ιK is still built by the same constructor.

As noted above, well-formed extension modules cannot add new rules pertaining to

preexisting constructs, and instantiated default rules cannot apply to preexisting con-

structs either. Then the only rules that might apply in the context of the composed

language Lang(C) are the rules from Lang(M), which were the same ones considered

in the original proof. Consider one of these clauses, ∀x.H ≜ B. Because it is from

Lang(M), ι cannot appear in it, so HJt/ιK is the same as H. Theorem B.7 shows

{⟨R′(t′)Jt/ιK, HJt/ιK⟩} has a unifier only when {⟨R′(t′), H⟩} has a unifier. Then each

rule unifying with R′(t′) also unifies with R′(t′)Jt/ιK and vice versa. If such a rule uni-

fied, it would have an mgu θ, and a premise sequent Σ[θ] : Γ[θ], B[θ] −→ F [θ]. By The-

orems 3.4 and B.7, we may assume θJt/ιK is an mgu for {⟨R′(t′)Jt/ιK, H⟩}. We can then

choose a premise sequent Σ′[θJt/ιK] : ΓJt/ιK[θJt/ιK], BJt/ιK[θJt/ιK] −→ F Jt/ιK[θJt/ιK]

as the premise for this clause in the new proof. By Theorem B.1 this is equivalent to

Σ′[θJt/ιK] : Γ[θ]Jt/ιK, B[θ]Jt/ιK −→ F [θ]Jt/ιK, which is related to the premise sequent

in the original proof by ∼ι
t, and thus the induction hypothesis applies to show it can

be proven. We can apply this argument to each clause, completing the proof in this

case.

• The primary component category of R′ may be a non-extensible category. As no new

rules may be added, since no new constructors of the primary component may be

added, the same argument applies as in the previous case.

• The primary component argument of R′(t′) may have been ι with R′ being introduced

by a module not in BM(M,R). In this case, the primary component of R′(t′)Jt/ιK is now

t. There are two types of rules that may be relevant here. First, there could be rules

that were part of Lang(M) defining R′. To be applicable, such a rule would need a
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schematic variable for its primary component, as no constructor known in Lang(M)

could unify with t built by a constructor from an at-the-time unknown extension.

These rules are also part of Lang(C), and the same argument as above applies. The

other possible type of rule is an instantiated default rule. Then a clause ∀x.H ≜ B

from the original language setting has a corresponding rule ∀x, y.HJt/ιK ≜ BJt/ιK in

the new language setting. We can then use a similar argument to the one above to

show this clause with ι replaced by t unifies if and only if the original rule unified,

and that we have premise sequents related by ∼ι
t if it does unify. Then the induction

hypothesis applies to show the premise sequent may be proven as well.

Then there is a proof for the new sequent in the new language setting regardless of which

case we have for allowed use of the defL proof rule, and thus for any proof rule. ■

Lemma 4.13 proves that if we have a proof of a sequent for the default rule instantiated

for ι in the modular proof written by the module introducing the property, we can use it to

build a proof of a sequent for an instantiation of the default rule in the composed language.

However, this is only useful if we know that such a proof will exist when we need it for a

composition, which we show in Lemma 4.14.

Lemma 4.14 (Existence of generic ι case). Let M be a module and C be a module building

on M . Let S be a sequent Σ : Γ, R(t)@
i −→ F . If, in case analysis with the defL@i

rule

on R(t)@
i
in the context of Lang(C), the default rule for R instantiated for a constructor

c from a module unrelated to M unifies with R(t)@
i
and creates a premise sequent, then

Lang(M(M,R)) contains a generic constructor ι and the default rule for R instantiated for

it, and case analysis with the defL@i
rule on R(t)@

i
in the context of Lang(M(M,R)) has

this instantiated default rule unify with R(t)@
i
and creates a premise sequent. Furthermore,

the two premise sequents are related by ∼ι
c(y) for appropriate variables y.

Proof. The existence of a constructor from another module for which the default rule is

instantiated means the relation R and its primary component category were introduced

in separate modules. Then I(M,R) is included in the builds-on set for M(M,R) and the
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default rule for R is instantiated for ι because c builds R’s primary component type and

the modules introducing R and ι are unrelated.

Let ∀x.H ≜ B be the clause for the default rule instantiated for ι. Then the de-

fault rule instantiated for c is ∀x, y.HJc(y)/ιK ≜ BJc(y)/ιK where y is appropriate vari-

ables fresh to the rule. By Theorems B.6 and B.7, {⟨R(t), H⟩} has an mgu if and only

if {⟨R(t), HJc(y)/ιK⟩} has an mgu. Furthermore, by Theorem B.6, we can assume the

mgu θ for the problem containing ι is such that θJc(y)/ιK is an mgu for the problem

replacing ι with c(y). Then the premise sequents are Σ[θ] : Γ[θ], B[θ]∗
i −→ F [θ] and

Σ[θJc(y)/ιK] : Γ[θJc(y)/ιK], B[θJc(y)/ιK]∗i −→ F [θJc(y)/ιK]. By Theorem B.1, we can rewrite

the second sequent as Σ[θJc(y)/ιK] : Γ[θ]Jc(y)/ιK, B[θ]Jc(y)/ιK −→ F [θ]Jc(y)/ιK. It is then

clear the two premise sequents are related by ∼ι
c(y). ■

With Lemmas 4.13 and 4.14, we can show that any cases for instantiations of the default

rule for the key relation in a full proof of a property with canonical form are provable in

the context of the full language.

4.4.3 Constructing Proofs for Independent Rule Cases

We have shown thus far how the modular proofs written in limited contexts can prove the

corresponding cases in a proof for a composed language, both for rules directly introduced

by some module knowing the property and thus present in a composed language and for

instantiations of default rules. However, this is more difficult for independent rules, rules

written for a property’s key relation without knowledge of the property. We propose the

proxy rule generic module as the key to these proofs, with the case for the rule it introduces,

which defines the key relation for κ, as a modifiable proof for the new cases. This is similar

to how the case for the key relation’s default rule instantiated for ι is a modifiable proof for

all instantiations of the default rule.

The ways we use the two cases are a bit different due to how the rules defining the generic

cases relate to those present in the composition. The two instantiations of the default rule,

the modular one for the generic constructor ι and one in the composed language, are related
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simply by replacing the generic constructor with a term built by a new constructor. In the

situation we are currently considering, the rules are not related in this way. The proxy rule

defining the key relation in Q used to construct the proxy rule generic module K(M,R) is

generally not related to those other extensions will introduce by direct term replacement.

To close the gap, we introduce the proxy version of a relation. The proxy version of

a relation will incorporate both the true definition of the relation and the proxy rule for

it. By using the proxy version of the key relation in the place of the key relation, we can

use the generic proof case from the modular proof, which assumed the proxy rule defined

the relation, to show the property holds for the true definition. To do this, however, we

must show the proxy version of the key relation is a true model of the key relation, that it

fulfills the promise of the module introducing the proxy rule that the proxy rule subsumes

all extension-introduced rules. In the rest of this subsection, we formally define the proxy

version of a relation, describe how we use it to build proofs for composed languages from

modular proofs, and discuss showing its equivalence to the original relation.

Proxy Version of a Relation

The proxy version of a relation incorporates the proxy rule from Q into rules introduced by

modules extending the one introducing the relation. It does this by adding the proxy rule’s

premises to the extension-introduced rules.

Definition 4.15 (Proxy version of a relation). Let M be a module introducing a relation

R that is not defined mutually-recursively with any other relation and a proxy rule for R in

QM . Let C be either M itself or a module building on M . The proxy version of R, written

RP , is defined for Lang(C) by making a modified version of each rule in Lang(C) defining

R. There are two classes of rules:

• For a rule in RM or a default rule in SM of the form

R(s) U

R(t)
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where R(s) denotes a set of premises built by R and U denotes a set of premises of

other forms, we have a rule defining RP as

RP (s) U

RP (t)

in the same rule set ( e.g., RM ). This is an identical rule other than replacing R with

RP .

• Suppose we have a rule in RN for a module N building on M of the form

R(s) U

R(t1, . . . , tn)

where R(s) denotes a set of premises built by R and U denotes a set of premises of

other forms. Suppose we also have a rule in QM of the form

R(v) W

R(x1, . . . , xn)

where each xi is a distinct variable, R(v) is a set of premises built by R, and W is a

set of premises of other forms. We have a rule

RP (s) U RP (v)[θ] W [θ]

RP (t1, . . . , tn)

in RN defining RP where θ is the substitution {⟨x1, t1⟩, . . . , ⟨xn, tn⟩}. This rule in-

cludes both the premises of the rule defining R and those of the proxy rule, but appro-

priately instantiated for the new conclusion.

These are the only rules in the definition of RP .

Figure 4.2 shows a few of the rules for statement evaluation and the corresponding
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(γ, s1) ⇓ γ′ (γ′, s2) ⇓ γ′′

(γ, seq(s1 , s2 )) ⇓ γ′′
X-Seq

(γ, s1) ⇓P γ′ (γ′, s2) ⇓P γ′′

(γ, seq(s1 , s2 )) ⇓P γ′′
XP -Seq

γ ⊢ e ⇓ cons(v1, v2) nhd ̸= ntl update(γ, nhd, v1, γ
′)

update(γ′, ntl, v2, γ
′′)

(γ, splitlist(nhd, ntl, e)) ⇓ γ′′
X-Splitlist

γ ⊢ e ⇓ cons(v1, v2) nhd ̸= ntl update(γ, nhd, v1, γ
′)

update(γ′, ntl, v2, γ
′′) proj s(splitlist(nhd, ntl, e), s

′) (γ, s′) ⇓P γ′′′

(γ, splitlist(nhd, ntl, e)) ⇓P γ′′
XP -Splitlist

γ ⊢ e ⇓ v

(γ, secdecl(n, ty , sl , e)) ⇓ consval(n, v, γ)
X-Secdecl

γ ⊢ e ⇓ v proj s(secdecl(n, ty , sl , e), s
′) (γ, s′) ⇓P γ′

(γ, secdecl(n, ty , sl , e)) ⇓P consval(n, v, γ)
XP -Secdecl

Figure 4.2: Example rules for statement evaluation and its proxy version

rules in the proxy version of it. The X-Seq rule introduced by the host language has

the corresponding XP -Seq rule for the proxy version. This does not add any premises

as the original rule is introduced by the module introducing the relation, only changing

the existing premises to use the proxy version. The other two rules shown for the proxy

version of evaluation, XP -Splitlist and XP -Secdecl, keep their existing premises but

add those from the proxy rule for statement evaluation, the X-Q rule from Section 4.3.2.

XP -Splitlist adds premises for a projection of the splitlist and evaluation of the projection,

while XP -Secdecl adds the same premises but projecting the secdecl term.

We use the proxy version of the key relation of a property in its place in building a

full proof for a composed language. The restriction limiting the proxy version to relations

not defined mutually-recursively with others will ensure the key relation remains the proxy

version as we work our way through composed proofs, as we shall see in Lemma 4.17 below.

Essentially, if a relation is defined mutually-recursively with another, they are in spirit two

parts of the same relation. Then creating the proxy version of one of the mutually-recursive
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relations is not truly creating the proxy version of the full relation, and the modular proof’s

reasoning in terms of the relation itself is reasoning about a relation with more rules than

the proxy version of it.

Additionally, in order to use the proxy version in place of the key relation itself, we need

two properties about it. The first we call the dropP(R) property, that any derivation of the

proxy version of a relation can be used to produce an equivalent one of the relation itself:

∀x.RP (x) ⊃ R(x)

This is clearly true, as both classes of rules in the definition of the proxy version of the

relation contain premises corresponding to those for a rule defining the relation itself. A

proof of it may be constructed mechanically. The second property we call the addP(R)

property, going the opposite direction of dropP(R). This has the form

∀x.R(x) ⊃ FR ⊃ RP (x)

where FR is a formula specific to proving addP(R) for a particular relation R. We will

discuss the role of FR in proving addP(R) below, for now accepting that it is important to

include. The addP(R) property, in contrast to the dropP(R) property, requires an explicit

proof. We will assume it is true in describing how we use the proxy version of a relation to

prove properties, then return to how we can prove it holds after seeing its use.

Lifting Proofs to the Proxy Version of a Relation

When we want to build a composed proof of a property of the form ∀x.R(t) ⊃ F where

unrelated modules may introduce new rules defining the key relation R, that is, a property

fitting scenario C or scenario D in Figure 4.1, we will do so by proving another property

using the proxy version of the key relation. Specifically, we will use the modular proofs to

construct a proof of ∀x.RP (t) ⊃ F , then use the addP(R) property with this to prove the

property we want about the relation R. By using the proxy version of the key relation in

place of the key relation itself, we ensure the cases for independent rules in the composition
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have the hypotheses of the proxy rule used in writing the generic proof, as the rules for the

proxy version of the key relation include them.

To build a proof of the modified property from the modular proofs, we will need to

transform proofs over the key relation itself into proofs over the proxy version of it. We

define a relation on sequents to relate sequents where certain occurrences of R, specifically

those with annotations @i or ∗i for some i, are replaced by RP .

Definition 4.16 (Proxy version of a sequent). Let S = Σ : Γ −→ F and S ′ = Σ′ : Γ′ −→ F ′

be sequents. We say S ′ is an R-i-proxy version of S, written S ⊑i
R S ′, if there is a subset

Γ′′ of Γ′ such that each formula in Γ maps to one in Γ′′ and F maps to F ′ by replacing each

formula of the form R(t)@
i
with RP (t)

@i
and each formula of the form R(t)∗

i
with RP (t)

∗i.

In the security module’s modular proof of its Property 3.3, we have a case for the E-Seq

rule. Its initial sequent S is

s1, s2,Σ, sl ,Σ
′, γ1, γ

′
1, γ

′′
1 , γ2, γ

′
2 :

(∀s,Σ, sl ,Σ′, γ1, γ
′
1, γ2, γ

′
2.((γ1, s) ⇓ γ′1)

∗ ⊃ (γ2, s) ⇓ γ′2 ⊃ Σ sl ⊢ secure(s,Σ′) ⊃

eqpublicvals(Σ, γ1, γ2) ⊃ eqpublicvals(Σ′, γ′1, γ
′
2)),

((γ1, s1) ⇓ γ′′1 )
∗, ((γ′′1 , s2) ⇓ γ′1)

∗, (γ2, seq(s1, s2)) ⇓ γ′2,

Σ sl ⊢ secure(seq(s1, s2),Σ
′), eqpublicvals(Σ, γ1, γ2) −→ eqpublicvals(Σ, γ′1, γ

′
2)

We have a corresponding sequent S ′ that replaces each evaluation derivation with a ∗

annotation with its proxy version:

s1, s2,Σ, sl ,Σ
′, γ1, γ

′
1, γ

′′
1 , γ2, γ

′
2 :

(∀s,Σ, sl ,Σ′, γ1, γ
′
1, γ2, γ

′
2.((γ1, s) ⇓P γ′1)

∗ ⊃ (γ2, s) ⇓ γ′2 ⊃ Σ sl ⊢ secure(s,Σ′) ⊃

eqpublicvals(Σ, γ1, γ2) ⊃ eqpublicvals(Σ′, γ′1, γ
′
2)),

((γ1, s1) ⇓P γ′′1 )
∗, ((γ′′1 , s2) ⇓P γ′1)

∗, (γ2, seq(s1, s2)) ⇓ γ′2,

Σ sl ⊢ secure(seq(s1, s2),Σ
′), eqpublicvals(Σ, γ1, γ2) −→ eqpublicvals(Σ, γ′1, γ

′
2)
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Note that this leaves the unannotated derivations of evaluation alone, not changing them

to the proxy version. Then we have S ⊑1
⇓ S ′.

We can now show we can build a proof of the proxy version of a sequent if we have a

proof of the original sequent, both proofs being for the same language.

Lemma 4.17 (Lift proof to proxy version of a sequent). Let M be a module and S be a

sequent. Let S ′ be a sequent such that S ⊑i
R S ′ holds. Assume S has a proof in Lang(M)

possibly using lemmas from the set of lemmas L including dropP(R). Then S ′ also has a

proof in Lang(M) possibly using lemmas from the set of lemmas L .

Proof. We proceed by induction on the height of the original proof, considering cases on

the last rule used in the proof. The cases for rules other than those using definitions or the

id rule and its variants are simple. The related formulas in the two sequents have the same

form, so the same proof rule applies in S ′ as in S, and the induction hypothesis applies to

the premise sequents.

If the last rule used in the proof was the id rule or one of its variants, consider which

one. If it was the basic id rule, neither the consequent nor the hypothesis with which it is

used can have been replaced with the proxy version of R, so the id rule still applies. The

same is true if it was a version of the id rule with a different annotation number than i. If

the last rule was id∗∗, id@@, or id∗@, both the consequent and the hypothesis have replaced

R with RP , and the same version of the id rule applies. Finally, suppose the last rule was

id∗ or id@. Then the hypothesis has replaced R with RP , but the consequent has not. We

can apply the dropP(R) lemma to the premise in S ′, then apply the id rule to complete the

proof.

If the last rule in the original proof was the defR rule, note the consequent of S must

be atomic and cannot have been of the forms R(t)@
i
or R(t)∗

i
. Then the consequent of

S ′ is the same as that of S, and the same definition clause can be applied. The induction

hypothesis then shows the premise sequent can also be proven.

Finally, suppose the last rule was the defL rule or one of its annotated variants. If it

was the basic defL rule or an annotated variant with a different annotation number, the
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same language rules apply, creating related premise sequents, and the induction hypothesis

can be used to show they can also be proven. Suppose the last rule was the defL∗i rule.

Then the premise being analyzed in the proof for S had the form R(t)∗
i
or Q(t)∗

i
for some

relation Q. If it had the form R(t)∗
i
, then the corresponding hypothesis in S ′ has the form

RP (t)
∗i . The rules defining the proxy version of R have the same conclusions, modulo

replacing R with RP , as those for R. Therefore corresponding rules for R and RP either

both unify or fail to unify with R(t)∗
i
and RP (t)

∗i . Furthermore, those that unify have the

same mgu and produce premise sequents related by ⊑i
R, since the rules for RP have premises

related to those for the corresponding rules for R, only possibly more premises. Then the

induction hypothesis applies to the premise sequents to finish the proof. If the analyzed

premise had the form Q(t)∗
i
, the same hypothesis is in S ′. Note no rule defining Q can have

premises using R, as Definition 4.15 requires R not to be defined mutually-recursively with

any other relation. Then a similar argument applies for the new premise sequents from the

case analysis in the composition being related by ⊑i
R to the sequents in the original proof,

and the induction hypothesis applies to the premise sequents to finish the proof. The case

for when the last proof rule is defL@i
is similar, but only requires considering the premise

being analyzed being constructed by the key relation R. ■

Lemma 4.17 will permit us to lift proofs for cases for known rules, new rules, and

instantiated default rules into proofs for related sequents using the proxy version of the key

relation instead. In building the proof of the modified property using the proxy version of

the key relation, we will use Lemmas 4.9 and 4.13 to lift the proofs to the full composed

language first, then Lemma 4.17 to lift them to the proxy version.

We will take a slightly different approach for cases for independent rules, that is, rules

represented by the rule from the proxy rule generic module. We will first lift the generic

proof to the projection relation in Lang(M(M,R)), then lift that proof to the composed

language for the actual rule for RP present in the composition. Lemma 4.18 specializes

Lemma 4.17 to accomplish the first step.

Lemma 4.18 (Lift proof to proxy version of a sequent with restrictions). Let M be a
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module and S be a sequent. Let S ′ be a sequent such that S ⊑i
R S ′ holds. Assume S has

a proof in Lang(M) possibly using lemmas from the set of lemmas L including dropP(R)

where the proof obeys the restrictions from Definition 4.6. Then S ′ also has a proof in

Lang(M) possibly using lemmas from the set of lemmas L obeying the restrictions from

Definition 4.6.

Proof. The proof is similar to that of Lemma 4.17. Note that, in building the proof of

that lemma in the case for the defL rule and its variants, the case analysis is either on

a premise with exactly the same form, or one where a relation has been exchanged for

its proxy version. In either case, the restrictions, which depend on where a relation was

introduced and its primary component argument, are still obeyed. ■

The above lemma takes a proof of a sequent for the generic case from the proxy rule

generic module for a key relation R and lifts it to one for the proxy version of this relation

while remaining in the same language Lang(M(M,R)). The next step is to eliminate the

generic constructor, replacing it with a term built by a constructor from a module repre-

sented by the proxy rule generic extension. We define this replacement for a sequent, which

is very similar to replacing ι as defined in Definition 4.12, then prove we can build a proof

for the replaced sequent in a composed language from the proof we get from Lemma 4.18.

Definition 4.19 (Instance of κ sequent). A sequent S ′ is a κ-instance of a sequent S as

determined by a term t, written S ∼κ
t S ′, if S is Σ : Γ −→ F and S ′ is Σ′ : ΓJt/κK −→

F Jt/κK, where Σ′ is Σ extended with the new variables in t.

Lemma 4.20 (Lift generic κ proof to new constructors in composition). Let M be a module

and R be a relation in Lang(M). Let S be a sequent with a proof relative to Lang(M(M,R))

possibly using lemmas from L following the restrictions in Definition 4.6, and assume ι does

not occur in S. Let C be a module building on M . Let t = c(y) be a term where y is a

set of variables and c is a constructor introduced by a module N building on the module

introducing the key relation R but not building on the module M itself where C builds on

N . Let S ′ be a sequent such that S ∼κ
t S ′ holds. Then there is a proof of S ′ relative to

Lang(C) and possibly using lemmas from L .
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Proof. Note the similarities between Definition 4.19 and Definition 4.12. Due to these

similarities, the proof here is also very similar to the proof of Lemma 4.13; in fact, the two

proofs are nearly identical. Therefore we rely on the proof of that lemma for most of the

details, mentioning here only the relevant changes for case analysis due to the presence of

κ rather than ι.

If the last rule in the proof of S is the defR rule, consider whether κ was in the definition

clause used. If it was not, the same rule is also part of Lang(C), and the same argument

from Lemma 4.13 applies. If κ was in the clause, the ban on using the rule from K(M,R)

with the defR rule means it must be a default rule instantiated for κ, and this default rule

must be from the default rule set SM . As the module introducing the constructor c that is

the top-level constructor of t is not related to M , the same default rule is instantiated for

c in Lang(C), and the argument from Lemma 4.13 applies.

If the last rule in the proof was the defL rule or one of its annotated variants, there are

three possibilities for why the case analysis on R′(t′) was allowed. If the primary component

of R′(t′) was built by a constructor other than κ, or if the primary component category of

R′ is non-extensible, the argument for the same cases from Lemma 4.13 applies. The case

analysis may also have been allowed because the primary component argument of R′(t′) is

κ and R′ is a relation introduced by M . As in Lemma 4.13, the relevant rules are rules in

Lang(M) and the default rule instantiated for κ. Then the same argument from Lemma 4.13

applies. ■

Using Lemmas 4.18 and 4.20, we can lift the proof of the generic case from the modular

proof written by the module introducing a property into one for a sequent using RP in the

context of a composed language, where the primary component, formerly the generic κ, is

built by a constructor from another module with arguments that are variables fresh to the

sequent. The last change we will need to use the modified proof for the case for the rule in the

composition is to fill in the other arguments for the relation, and possibly other arguments

to the top-level constructor of the term with which we replaced the generic construct. Recall

the rules for RP are built from those for R, and the rules for R may have any terms as
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arguments, including the constructor having other terms as its arguments. For example,

the XP -Secdecl rule has the conclusion (γ, secdecl(n, ty , sl , e)) ⇓P consval(n, v, γ), but

our lemmas so far have only lifted the generic proof to (γ, secdecl(n, ty , sl , e)) ⇓P γ′.

To complete the process, we can use Theorem 3.4 to build a proof of the sequent with a

substitution filling in the expected terms for the arguments, completing the transformation

of the proof written as part of the modular proof into one for the sequent we will need

to prove in a composed proof. We formalize the complete transformation in Lemma 4.21,

along with showing there will be an original proof to lift.

Lemma 4.21 (Existence and lifting of generic κ cases to composition). Let M be a module,

C be a module building on M , and N be a module unrelated to M but on which C builds.

That is, we have M ∈ BC , N ∈ BC , M /∈ BN , and N /∈ BM . Assume the module introducing

R introduces a proxy rule for it. Let S ′ be a sequent Σ′ : Γ′, RP (t)
@i −→ F in the language

of Lang(M) and S be a sequent Σ : Γ, R(t)@
i −→ F such that S ⊑i

R S ′ holds. If, in case

analysis with the defL@i
rule on RP (t)

@i
in S ′ in the context of the language Lang(C), a

rule defining RP corresponding to a rule defining R introduced by module N unifies with

RP (t) and creates a premise sequent S ′′, then

1. K(M,R) is in BM(M,R) and its rule unifies with R(t) in case analysis with the defL@i

proof rule in the context of Lang(M(M,R)) for S creating a premise sequent S0

2. and if there is a proof π of S0 in the context of the language Lang(M(M,R)) and

possibly using lemmas in the set L , where each lemma uses the vocabulary of Lang(M)

and where π obeys the restrictions from Definition 4.6, there is a proof of S ′′ in the

context of Lang(C) possibly using lemmas in L .

Proof. Assume the relation R was introduced by a module MR on which both M and N

built. This must be the module structure in order for N to introduce a rule for R. Then

K(M,R) is included in the builds on set of M(M,R), and it introduces a rule defining R

for κ, the instantiation of the proxy rule for R.

To show the rule from K(M,R) unifies, we work backward from the unification of the rule

from N . This rule has as its conclusion RP (s1, . . . , sm). The primary component argument
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sj is built by a constructor c introduced by N , since N is a well-formed module that does

not introduce R. Since RP (t) is built by the vocabulary of Lang(M), the constructor c does

not occur in it. Then, since RP (t) = R(t1, . . . , tm) and RP (s1, . . . , sm) unify, tj unifies with

sj , and thus tj must be a meta-variable. Since the conclusion of the rule from K(M,R) must

have the form R(x1, . . . , xj−1, κ, xj+1, . . . , xm) where each xk is a distinct variable (this is

a requirement for a well-formed proxy rule set Q), this unifies with R(t). Then we have a

premise sequent S0 for the case analysis in S. This completes the proof of the first part.

The clause in Lang(M(M,R)) for the rule from QMR instantiated for κ has the form

∀x1, . . . , xj−1, xj+1, . . . , xm.R(x1, . . . , xj−1, κ, xj+1, . . . , xm) ≜ ∃y.U ∧R(q)

where U is premises not built by R. One mgu for unifying this with R(t) is

ϕ = {⟨x1, t1⟩, . . . , ⟨xj−1, tj−1⟩, ⟨tj , κ⟩, ⟨xj+1, tj+1⟩, . . . , ⟨xm, tm⟩}

We can assume π and S0 use this mgu; if they don’t, Theorem 3.4 lets us produce a sequent

and proof that do. Then S0 is Σ[ϕ] : Γ[ϕ], (∃y.U ∧R(q)@i)[ϕ] −→ F [ϕ]. Using Lemma 4.18,

we can get a proof of a sequent S1 = Σ′[ϕ] : Γ′[ϕ], (∃y.U ∧ RP (q)@
i)[ϕ] −→ F [ϕ] in the

context of Lang(M(M,R)) and possibly using lemmas from L . Note we now have Σ′ and

Γ′ from S ′ instead of Σ and Γ from S. We have assumed the new variables from ϕ are

distinct from those in Γ′. Because S and S ′ were originally related by ⊑i
R, S0 and S1 are

now related by ⊑i
R.

Let S2 be a sequent Σ[ϕ], z : Γ′[ϕ]Jc(z)/κK, (∃y.U∧RP (q)@
i)[ϕ]Jc(z)/κK −→ F [ϕ]Jc(z)/κK

where z is a set of variables fresh to the sequent. Thus we have S1 ∼κ
c(z) S2. Lemma 4.20

gives us a proof of S2 in the context of Lang(C) and possibly using lemmas from L . Note

that, because our original sequents S and S ′ are built by the vocabulary of Lang(M), of

which κ is not part, the only appearances of κ in the sequent before replacing κ are from

ϕ. Then S2 can be rewritten using ϕ′ = ϕJc(z)/κK, that is,

ϕ′ = {⟨x1, t1⟩, . . . , ⟨xj−1, tj−1⟩, ⟨tj , c(z)⟩, ⟨xj+1, tj+1⟩, . . . , ⟨xm, tm⟩}
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giving us Σ[ϕ′] : Γ′[ϕ′], (∃y.U ∧ RP (q)@
i)[ϕ′] −→ F [ϕ′]. Note that ϕ′ is an mgu for the

unification problem {⟨RP (t), RP (x1, . . . , xj−1, c(z), xj+1, . . . , xm)⟩}.

Let θ be an mgu for RP (s1, . . . , sm) and RP (t). This unifies {⟨s1, t1⟩, . . . , ⟨sm, tm⟩}. Let

ρ be a substitution {⟨x1, s1⟩, . . . , ⟨xm, sm⟩}, that is, a substitution that will change the con-

clusion of the proxy rule for R into the conclusion of the particular rule the module N intro-

duced for R in which we are interested (i.e., turn R(x1, . . . , xm) into R(s1, . . . , sm)). Com-

posing ρ and θ gives us another unifier for {⟨RP (t), RP (x1, . . . , xj−1, c(z), xj+1, . . . , xm)⟩}.

Then we can write θ ◦ ρ as ω ◦ ϕ′ for some substitution ω.

The definition clause in Lang(C) for the rule from N has the form

∀v.RP (s1, . . . , sm) ≜ ∃y, w.U [ρ] ∧RP (q)[ρ] ∧W ∧RP (r)

where the variables in y and w are distinct and W and U are premises not containing R or

RP . This incorporates the premises of the rule for R introduced by N (W and R(r) using

variables in v and w) and those of the proxy rule for R (U and R(q) using variables in x

and y) appropriately substituted with the substitution changing the conclusion of the rule.

One possible premise sequent for this clause in the case analysis for S ′ is

Σ′[ρ][θ] : Γ′[θ], (∃y, w.U [ρ] ∧ (RP (q)[ρ])
@i ∧W ∧RP (r)@

i)[θ] −→ F [θ]

We can assume the variables in θ are disjoint from those in y and w and propagate the

substitution inward over the clause body to get

Σ′[ρ][θ] : Γ′[θ],∃y, w.U [ρ][θ] ∧ (RP (q)[ρ][θ])
@i ∧W [θ] ∧RP (r)@

i [θ] −→ F [θ]

Note that the variables in x cannot occur in F or Γ′; if they did, we could rename away

from them. Then this sequent is equivalent to

Σ′[ρ][θ] : Γ′[ρ][θ], ∃y, w.U [ρ][θ] ∧ (RP (q)[ρ][θ])
@i ∧W [θ] ∧RP (r)@

i [θ] −→ F [ρ][θ]
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Because θ ◦ ρ is equivalent to ω ◦ ϕ′, we can rewrite this using ϕ′ and ω instead of ρ and θ

when the two are used together:

Σ′[ϕ′][ω] : Γ′[ϕ′][ω], ∃y, w.U [ϕ′][ω] ∧ (RP (q)[ϕ
′][ω])@

i ∧W [θ] ∧RP (r)@
i [θ] −→ F [ϕ′][ω]

Finally, via appropriate proof circumlocutions,1 we find we have a proof of this sequent if

we have one of the sequent

Σ′[ϕ′][ω] : Γ′[ϕ′][ω], (∃y, w.U ∧ (RP (q)
@i

))[ϕ′][ω] −→ F [ϕ′][ω] (4.2)

But this is S2, for which we have a proof, with the substitution ω applied to it. Then

Theorem 3.4 guarantees we have a proof of this sequent as well in the context of the

language Lang(C) and possibly using the lemmas in L .

This argument applies to any mgu θ, so it applies to the one used to create the premise

sequent S ′′, finishing our proof. ■

Having shown we can build a proof for any case for an independent rule, we lay aside

these ideas as somewhat completed for now, taking them up again in Section 4.4.4 where we

describe how to build a composed proof of any property from the modular proofs written

for it. We turn first to showing the addP(R) property holds for a relation, a necessary

component for the soundness of proofs using the proxy versions of their key relations.

Showing the Proxy Rule Subsumes Extension-Introduced Rules

As mentioned previously, a module introducing a proxy rule in Q is promising any actual

rules introduced by modules building on it will be subsumed by it. This promise is fulfilled

by introducing and proving the addP(R) property, which each extension module adding to

the definition of R must then prove holds for its new rules by writing a modular proof.

1The proof can end with the cut rule. The left branch of this proof rule uses a single formula as the

context for the sequent, ∃y, w.U [ϕ′][ω] ∧ (RP (q)[ϕ
′][ω])@

i

∧W [θ] ∧ RP (r)@
i [θ], the actual instantiated rule

body formula, to derive the expected rule body formula ∃y, w.U [ϕ′][ω] ∧ (RP (q)[ϕ
′][ω])@

i

. This can be
accomplished via appropriate uses of the ∃L, ∃R, ∧L, and ∧R rules. The right branch of the cut rule is
then Sequent 4.2.
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We introduced the addP(R) property above, specifying it has the form

∀x.R(x) ⊃ FR ⊃ RP (x)

where FR is a formula specific to the addP(R) property for the particular relation R. This

formula describes the conditions under which a derivation of the proxy version of a relation

is expected to exist. These are generally well-formedness conditions for the arguments to

R. For example, if the proxy rule uses a projection of R’s primary component and that

projection relation can depend on typing, FR might include a condition that R’s primary

component be typable. By limiting the situations where R and RP are expected to be

equivalent, requiring equivalence only when FR holds, we free extensions to write rules

defining R more naturally, without building in the side conditions found in FR that are

required to show RP will hold.

Any proof of the addP(R) property will suffice for building full proofs of properties. We

present a specific approach here to demonstrate how it might be done in common cases, as

an appropriate proof can be subtle when the proxy rule contains a projection. Consider a

common form of the proxy rule:

U proj (t, xi, y) R(s1, . . . , si−1, y, si+1, . . . , sn)

R(x1, . . . , xn)

This rule uses a projection (proj ) with some arguments t and projects the primary compo-

nent xi of the conclusion to a fresh variable y and has a derivation of R for the projection

y, in addition to some other premises U not using R. The most obvious approach to prov-

ing the addP(R) property is to induct on R(x); however, this does not generally give us a

handle for demonstrating the proxy version of the relation will hold for the projection of

the primary component.

While the language for our running example does not include a construct where induction

on R alone would be a problem for proving addP(R), there is another simple construct

an extension might add that does demonstrate the issue. Consider a repeat-while loop
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repeatWhile(b, c) repeating the body b of the loop while the condition c is true. This may

project to a sequence of the body followed by a while loop for the remaining executions

(i.e., seq(b,while(c, b))). If we want to show the proxy version of statement evaluation holds

for this, we find we need to show the proxy version of evaluation for the projection of the

repeat-while holds. This is not a sub-derivation of the evaluation of the repeat-while loop,

so a proof by induction on R alone would not be helpful.

We propose utilizing another relation, built based on R in a way similar to how the

proxy version of R is built, with this new relation building in an induction measure we can

use for projections. We can then split the proof into two pieces, one building a derivation

of the new relation from the derivation R(x), and one building a derivation of RP (x) from

the new relation. We call this new relation the extension size version of the relation, as it

builds in a count of the number of places in the derivation where the rule used corresponds

to one introduced by an extension module. Inducting on both the derivation of R and this

count will generally give us a way to use the induction hypothesis for the projection as well.

Definition 4.22 (Extension size version of a relation). Let M be a module introducing a

relation R and let C be either M itself or a module building on M . The extension size

version of the relation R, written RES, is defined by making a modified version of each rule

defining R. There are two classes of rules:

• For a rule in RM or a default rule in SM of the form

R(s) U

R(t)

where R(s) denotes a set of premises built by R and U denotes a set of premises of

other forms, we have a rule defining RP as

RP (s, ni) U n = Σni

RES(t, n)

in the same rule set. This rule replaces R with RES and sums the sizes of the premises.
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• Suppose we have a rule introduced by RN , where N builds on M , of the form

R(s) U

R(t)

where R(s) denotes a set of premises built by R and U denotes a set of premises of

other forms. We have another rule

RES(s, ni) U n = 1 + Σni

RES(t, n)

in RN . This rule replaces R with RES and sums the sizes of the premises, adding one

as this is another extension-introduced rule.

These are the only rules in the definition of RES.

We can split the proof of addP(R) into proofs of two separate formulas:

∀x.R(x) ⊃ ∃n.RES(x, n)

∀x, n.RES(x, n) ⊃ FR ⊃ RP (x)

The first formula clearly holds, as we are basically adding summations to the existing rules

for R to create RES . We can build an inductive proof of it mechanically. The second part is

similar to the addP(R) property itself, but the use of the extension size version of R instead

of R itself allows us to induct on not only the structure of the derivation, but the extension

size n of it as well.

We propose modularly proving this property by a nested induction on the extension size

n and its derivation RES(x, n), with the latter as its key relation. This induction structure

will allow the induction hypothesis to be applied to sub-derivations of RES(x, n) with an

extension size no larger than n, as well as to derivations of RES with an extension size

less than n, even those that are not sub-derivations of the original, and that might have an

actual height larger than the original derivation. In writing modular proofs of this property,
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specifically in those cases for rules for the proxy version of the relation incorporating a

proxy rule with a projection, the latter use of the induction hypothesis allows constructing

a derivation of the extension size version of the relation for a projection, then converting it

to a derivation of the proxy version of the relation. Intuitively, we can see a derivation of R

for a projection of the primary component should have a smaller extension size, as we have

projected away the top-level constructor introduced by an extension, making this induction

structure useful.

Consider again proving addP(R) for a repeat-while loop. Because we are inducting on

the extension size of the evaluation in addition to the derivation of evaluation itself, we can

show the while loop to which it projects has an extension size that is strictly smaller than

that of the repeat-while. The extension size is smaller because each use of the evaluation

rules for the repeat-while loop that incremented the size, of which there must be at least one,

has been replaced by uses of the rules for evaluating seq and while that do not increment the

size. Then, because the size is smaller, we can use the induction hypothesis for the smaller

size to show we have a derivation of the proxy version of evaluation for the projection.

Thus induction on the extension size of the derivation of R along with induction on the

derivation of R itself may allow us to prove addP(R) in some situations where induction on

the derivation alone does not.

Full Requirements for Modularly Proving Properties

We have seen certain situations will require us to use the proxy version of a relation in

building a full proof, which means the proxy version of the relation must exist and it must

hold when the preconditions of the property are met. This means, in certain situations,

the key relation of a property must have a proxy rule in the set of proxy rules given by the

module introducing the key relation. In those same situations, the set of lemmas available

for use in the proof must also include the addP(R) and dropP(R) properties. Additionally,

the addP(R) property must be applicable to the assumptions of the property to be proven,

as we will need to use it to lift the derivation of the key relation to its proxy version. We

formalize these requirements with Definition 4.23.
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Definition 4.23 (Valid lemma sets and proxy rule sets for properties). Let M be a module

introducing a property P with key relation R. If M introduces R as well as P , any set

of lemmas L and set of proxy rules QMR is valid. If M does not introduce R, that is, if

M imports the relation R from a module MR (scenarios C and D in Figure 4.1), a set of

lemmas L and a set of proxy rules QMR are valid for proving P only if the following three

conditions hold. First, there must be a rule defining R in QMR . Next, both addP(R) and

dropP(R) must be in L . Finally, the addP(R) property must be applicable. That is, if P

has the form ∀x.R(t) ⊃ ∀x1.F1 ⊃ . . . ⊃ ∀xn.Fn ⊃ F then there is a proof of the sequent

x, x1, . . . , xn : R(t), F1, . . . , Fn −→ RP (t) assuming the variables in x, x1, . . . , xn are unique

to avoid inadvertent capture, with this proof possibly using the lemmas in L .

4.4.4 Completing the Proof Composition

Thus far, in this section we have described how we can use proofs of cases from the modular

proofs to prove corresponding cases in the context of a composed language. Using our work

thus far, we can describe our full proof composition. We split this into two separate cases, as

the compositions have mildly different details. The first is that for properties where the key

relation and its primary component category are introduced by the same module (scenarios

A and B in Figure 4.1). These are the properties for which we use the key relation directly

in the composed proof. The other is for properties where the key relation and its primary

component category are introduced in separate modules (scenarios C and D in Figure 4.1).

These are the properties for which we will use the proxy version of the key relation.

Theorem 4.24 (Basic proof composition soundness). Let M be a module introducing a

property P = ∀x.R(t) ⊃ F and its key relation R. Let C be a module building on M . Assume

M has written a modular proof according to Definition 4.6 and each module N ∈ BC ∪ C

that also builds on M has written a modular proof according to Definition 4.1, with each

modular proof possibly using lemmas in L . Then there is a proof of P in Lang(C) possibly

using lemmas in L .

Proof. The proof of P in Lang(C) will have the canonical form of a proof for P . Note this
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means we end the proof with the same uses of indim rules, as well as the same top-level

case analysis on the key relation, as in writing the modular proofs. Each premise sequent

from the top-level case analysis corresponds to a rule defining R in Lang(C). Because the

key relation R is introduced by the same module introducing the property, there are three

possibilities for whence each rule came: it may have been introduced by M , it may have

been introduced by a module building on M , or it may be an instantiation of the default

rule from SM for a constructor introduced by a module unrelated to M .

Lemma 4.10 tells us a rule introduced by M that unifies in the top-level case analysis in

the context of Lang(C) also unifies in the context of Lang(M(M,R)), and that we have the

same premise sequent corresponding to the rule in both contexts. Then we have a proof π

of the same sequent as part of the modular proof written by module M . Lemma 4.9 lets

us use this same proof π as our proof of the sequent in the context of Lang(C). The same

reasoning applies to sequents for rules introduced by modules building on M .

Lemma 4.14 ensures that if an instantiation of the default rule unifies with the hypothesis

for the top-level case analysis in the composition, the default rule instantiated for ι unifies

with it in the context of Lang(M(M,R)), and with premise sequents S and S ′ such that

S ∼ι
c(y) S

′ holds for the constructor c for which the default rule is instantiated. Then we

must have a proof of S as part of the modular proof written by M , and Lemma 4.13 tells

us we can then build a proof of S ′ as well in the context of Lang(C), as required for the full

proof.

Since we can prove a premise sequent for each rule unifying with the key relation’s deriva-

tion in the top-level case analysis, we have completed building our proof of the property for

Lang(C). ■

Theorem 4.25 (Proxy version proof composition soundness). Let M be a module intro-

ducing a property P = ∀x.R(t) ⊃ F but not its key relation. Let C be a module building on

M . Assume M has written a modular proof according to Definition 4.6 and each module

N ∈ BC ∪C that also builds on M has written a modular proof according to Definition 4.1,

with each modular proof possibly using lemmas in L . Further assume the requirements in
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Definition 4.23 are satisfied. Then there is a proof of P in Lang(C) using lemmas in L .

Proof. The proof of P in Lang(C) will be split into two parts, a proof of the modified

property P ′ = ∀x.RP (t) ⊃ F and a proof of the original property using the modified one.

The proof of P ′ will have the canonical form of a proof for P . We end the proof with the

same uses of indim rules as the modular proofs, but the top-level case analysis is now on the

proxy version of the key relation. Note the sequent that is the conclusion of the defL@i
rule

is related by ⊑i
R to the one for conclusion of the defL@i

rule in a canonical form proof of P

itself. The premise sequents from the top-level case analysis can be split into two groups.

The first group is for known rules, new rules, and instantiated default rules, that is,

all the rules other than rules introduced by modules knowing the key relation but not the

property. The conclusions of these rules have the form RP (s) where the original rules to

which they correspond have the form R(s). It is clear the former form unifies with RP (t)

in exactly the same cases the latter unifies with R(t), and with the same mgu. The rules

for RP are such that corresponding premise sequents are related by ⊑i
R. Then Lemma 4.17

tells us there is a proof of the sequent for analysis on RP (t) if there is one for the sequent

resulting from case analysis on R(t). Depending on the provenance of the rule, whether or

not it is an instantiated default rule, we can use either Lemma 4.10 or Lemma 4.14 to show

a proof of the sequent exists in a modular proof, and either Lemma 4.9 or Lemma 4.13

to get a proof of the sequent for R(t) in Lang(C). Therefore we can build a proof for the

premise sequents for rules from these sources.

The second group is rules corresponding to rules defining R introduced by modules

unrelated to M . The condition that there must be a rule defining the key relation R in

the proxy rule set, part of Definition 4.23, guarantees a rule for κ was introduced as part

of K(M,R) for the modular proof. Then Lemma 4.21, part 1, shows the modular proof

written by module M must contain a proof π of a premise sequent for the rule introduced

by K(M,R), since such a premise sequent will result from the top-level case analysis. Part

2 of Lemma 4.21 then gives us a proof of the sequent that appears in the proof in Lang(C).

Having proven P ′, we can use it to prove P . Specifically, we can use the proof that
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addP(R) is applicable to the premises of this property, guaranteed to exist by Defini-

tion 4.23, to build a derivation of RP (t). With this we can apply P ′ to complete the

proof. ■

Having proven we can build a full proof of a property based on modular proofs in either

case, we can combine these two facts into one as a formality.

Theorem 4.26 (Unified proof composition soundness). Let M be a module introducing a

property P = ∀x.R(t) ⊃ F and let C be a module building on M . Assume M has written a

modular proof according to Definition 4.6 and each module N ∈ BC ∪C that also builds on

M has written a modular proof according to Definition 4.1, with each modular proof possibly

using lemmas in L . Further assume the requirements in Definition 4.23 are satisfied. Then

there is a proof of P in Lang(C) possibly using lemmas in L .

Proof. If M also introduces the property’s key relation R, we can apply Theorem 4.24 to

build a proof of P . If R is introduced separately, we can apply Theorem 4.25 to build a

proof of P . ■

4.5 Mutual Induction

Theorem 4.26 shows it is possible to create a composed proof of a property of the form

∀x.R(t) ⊃ F for any language composition if each module in the composition gives an

appropriate modular proof. However, proving properties individually is often not sufficient

for the properties we want to prove for complex languages. In some languages we need to

prove the properties we want by mutual induction, using the induction hypotheses from a

set of properties to prove each property. The logic G supports mutual induction, so we can

prove a set of n mutually-inductive properties by proving a formula of the form

(∀x1.R1(t1) ⊃ F1) ∧ . . . ∧ (∀xn.Rn(tn) ⊃ Fn)

A proof of a formula like this using mutual induction permits us to use the induction

hypothesis for any of the properties while proving each one of them.
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However, proving mutually-inductive properties that are declared together in the same

module is not always sufficient. Extension modules may find properties they want to prove

need to be part of existing mutually-inductive groups as well. This might be the case if

an extension introduces a new relation that is defined mutually recursively with existing

relations. Then what we want is, if a module imported a mutually-inductive set of properties

proven as P1∧. . .∧Pn, for it to be able to provide a modular proof of P1∧. . .∧Pn∧P ′
1∧. . .∧P ′

m

for new properties P ′
1, . . . , P

′
m. Furthermore, we want a guarantee that a composed proof

proving all the properties in this set, including also any introduced by other extension

modules to be added to this set, exists for any composed language.

We consider both these scenarios in this section. We first consider lifting our concepts of

modular proofs and composition from the preceding sections to the situation where a single

module introduces a set of mutually-inductive properties. After that, we further lift our

framework to the situation where extension modules may add new properties to preexisting

sets of mutually-inductive properties. Both situations proceed much as expected. As seen

in Theorems 4.24 and 4.25, what is important in constructing a composed proof from

modular proofs is the proofs of individual cases from the top-level case analysis. The same

is true in the mutually-inductive setting. At a high level, modular proofs for mutually-

inductive properties are written in the same way as for individual properties, and under the

restrictions of Definitions 4.1 and 4.6; the main difference is the presence of more than one

induction hypothesis. The composition process then has proofs of the necessary proof cases

to construct a full proof of the full set of properties.

There are some technical subtleties in extending our framework. These are primarily

due to the possible inclusion of more generic constructs in the language used to write a

modular proof for a property in a mutually-inductive set than if it were written alone,

since the generic modules needed for all properties must be included in the language. The

use of the proxy version of the key relation for lifting properties in the mutually-inductive

setting is also slightly more complex than we saw in the previous section. All properties

in a mutually-inductive set must use the proxy version of their key relations if one does,

whether they would need to use it as an individual property or not. We sketch the changes
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Σ : Γ, ∀x11.F 1
1 ⊃ · · · ⊃ ∀xm1.(A1)∗

i ⊃ F 1, . . . ,

∀x1n.Fn
1 ⊃ · · · ⊃ ∀xmn.(An)∗

i ⊃ Fn −→
(∀x11.F 1

1 ⊃ · · · ⊃ ∀xm1.(A1)@
i ⊃ F 1) ∧ . . .∧

(∀x1n.Fn
1 ⊃ · · · ⊃ ∀xmn.(An)@

i ⊃ Fn)

Σ : Γ −→ (∀x11.F 1
1 ⊃ · · · ⊃ ∀xm1.A1 ⊃ F 1) ∧ . . .∧

(∀x1n.Fn
1 ⊃ · · · ⊃ ∀xmn.An ⊃ Fn)

mutindim, each Aj is atomic

Annotations of the form ∗i and @i must not already appear in the conclusion sequent

Figure 4.3: Generalized induction rule for mutual induction

to the framework and proofs of its correctness in the remainder of this section.

4.5.1 Modularly Proving Mutually-Inductive Property Sets

To prove mutually-inductive property sets, we must first understand mutual induction in

G. The logic G has a generalized version of the indim rule from Figure 3.3, mutindim, shown

in Figure 4.3.2 As in the general indim rule, the mutindim rule uses @i and ∗i annotations

to mark derivations of the original size and smaller sizes respectively. The difference is we

now have n induction hypotheses generated, one for each mutual theorem, rather than a

single one. Reasoning about sequents in proofs ending with the mutindim rule is the same as

reasoning about any other sequent. Note that all our earlier results, including Theorem 3.4,

are still valid with mutual induction included in the logic.

For individual properties, in Section 3.4, we saw the canonical form of a proof ends at

the root with some uses of the indim rule to induct on the key relation and other premises,

uses of the ∀R and ⊃R rules to introduce eigenvariables and turn premises into hypotheses,

and a use of the defL@i
rule for the top-level case analysis. We need to modify this slightly

for situations using mutual induction. Instead of using the indim rule, the canonical form

of a proof of mutually-inductive properties uses the mutindim rule, once again using it to

induct on as many premises as it wants. The premise sequent of the uses of the induction

rule will have a conclusion of the form P1∧. . .∧Pn. We use the ∧R rule to split this into one

2For simplicity of presentation, we assume induction on the mth premise in each property. This may be
generalized to different premise indices for different properties in the set.
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sequent for proving each individual property. The proofs of these property-specific sequents

then use the ∀R and ⊃R rules, followed by the defL@i
rule for the property’s top-level case

analysis.

We can distribute the cases from the top-level case analysis for each property in the set

as if we were proving each property individually. For modular proofs written by modules

building on the one introducing the set of properties, the modular proof in a module M

can be written for Lang(M), as specified in Definition 4.1. The situation for modules in-

troducing sets of properties is a bit more complicated. In a set of properties, we can have

properties with different key relations, and thus properties from different scenarios illus-

trated in Figure 4.1. For example, we could introduce a property with a key relation and

primary component category introduced by the current module, scenario A in Figure 4.1,

along with a property fitting scenario B, where the primary component category is intro-

duced by an imported module. Thus there is no relation R such that Lang(M(M,R)) is

valid for proving a set of properties introduced by module M , as different properties might

require different generic constructors. However, we can appropriately satisfy the require-

ments of Definition 4.6 if we prove each case from each property’s top-level case analysis,

obeying the appropriate restrictions on the proofs, with a language that includes the pre-

scribed language for it, having all the constructors and rules expected. Thus we can write

our modular proof for a set of mutually-inductive properties with a set of key relations S

for the language ⋃
R∈S

Lang(M(M,R))

where the union of languages is the union of the individual sets in the 4-tuples defining

them. This language includes the required generic constructors for the modular proof

cases for each property. The restrictions on proofs imposed by Definition 4.6 ensure the

extra generic constructors and rules for them cannot affect the proofs of cases needed for a

composed proof, so we are able to use the proof of each case in constructing the composed

proof for the set as we can for individual properties.

While the extra generic constructors and rules cannot affect the proofs of necessary
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cases, they may introduce cases from the top-level case analysis on R that would not be

present in the context of Lang(M(M,R)) alone. For example, suppose we have modules M

and N where M builds on N . Suppose N introduces a relation R and M introduces R′,

both having the same primary component category. Module M then introduces mutually-

inductive properties P with key relation R and P ′ with key relation R′. Property P has

the key relation introduced in the same module as its primary component category, fitting

scenario C in Figure 4.1, and P ′ has them introduced in different modules, fitting scenario

B. Because P fits scenario C, the language Lang(M(M,R)) has a generic constructor κ.

The default rule for relation R′ is instantiated for this generic constructor, and thus we

have an extra case from the top-level case analysis for proving P ′, one which is not needed

for any composition. In this situation, it is equivalent to the case for the generic case for

instantiating the default rule of R′ for ι, which is needed for the composition, and thus can

be given the same proof. However, because such a case is unnecessary, in practice we may

skip proving it, giving us a modular partial proof that may have unneeded cases skipped.

Recall from Section 4.4.3 that we need to use the proxy version of a relation for con-

structing the compositions of some properties, those where a property is introduced in a

different module than its key relation (scenarios C and D in Figure 4.1). In order to use the

proxy version of a relation in a mutually-inductive setting, we need to modify its definition

slightly. In Definition 4.15, we identified the proxy version of a relation R, written RP , as

having rules corresponding to those for R, but with premise derivations of R changed to

be premise derivations of RP . Additionally, rules introduced by extensions to the module

introducing R have the premises of the proxy rule for R added to them, these premises also

being modified to use RP . For mutual induction, we define the proxy version of a set of

relations. We add the premises of the proxy rule as in Definition 4.15, but now we modify

premises deriving any relation in the set to use their proxy version. We relax the restriction

from Definition 4.15 that a relation R for which we define the proxy version is not defined

mutually-recursively with any other relation for sets. Each relation in a set must be defined

mutually-recursively only with others in the set; the restriction for a single relation R is

exactly the case where the set is {R}. We similarly expand the definition of the extension
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size version of a relation, RES , to sets of relations.

The purpose of the proxy version of a relation is to make the proof of the generic case

using the proxy rule for a relation in the modular proof correspond to the actual cases

that occur in a composed proof. In our proof of composition soundness for individual

properties using the proxy version of the key relation, we defined the proxy version of

a sequent (Definition 4.16) to have each annotated derivation R(t)∗
i
or R(t)@

i
replaced

with its proxy version, RP (t)
∗i or RP (t)

@i
. This ensures the induction hypothesis in the

composed language, using RP , can be used with the hypotheses corresponding to those with

which it could be used in the modular proof.

In the mutually-inductive setting, where we can have multiple induction hypotheses, we

need to ensure the same thing for all of them. If some properties used the proxy version of

their key relations and some didn’t, in the composition, we could end up with an induction

hypothesis for RP (t)
∗i but a hypothesis to which we want to apply it of the form R(t)∗

i
.

Then some uses of the induction hypothesis from the modular proof might fail, and the

composed proof would also fail. Thus, in creating the composed proof of the properties, we

have all properties use the proxy versions of their key relations if one does. Additionally,

these proxy versions must all be defined together, using the same set of relations to determine

which premises must be modified to their proxy versions.

We can now sketch a proof of the existence of a composed proof for a set of mutually-

inductive properties.

Theorem 4.27 (Mutual proof composition soundness). Let M be a module introducing

a set of mutually-inductive properties {P1, . . . , Pn}, with key relations in the set S. Let

C be a module building on M . Assume M has written a modular proof according to the

restrictions in Definition 4.6 and using language
⋃

R∈S
Lang(M(M,R)), with the proof possibly

using lemmas in L . Assume also each module N ∈ BC ∪ C that builds on M has written

a modular proof for the set according to Definition 4.1, also possibly using lemmas in L .

Further assume the requirements in Definition 4.23 are satisfied for each property in the set

if any one uses an imported key relation. Then there is a proof of P1 ∧ . . .∧Pn in Lang(C)

possibly using lemmas in L .
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Proof. As in Theorem 4.26, we can split the proof depending on whether we need to use

the proxy version of the key relations, that is, whether any one of the properties in the set

has an imported key relation.

If all the key relations are introduced by M , we do not need the use the proxy version

of the key relations. In this case, the proof is similar to Theorem 4.24. The composed proof

will have the canonical form used for the modular proofs, so each property needs a proof

for the cases arising from its top-level case analysis. Because the modular proofs contain

the same proof cases as if we were proving properties individually, there is a corresponding

modular case, either known or generic, for each case in the composed proof. As noted

above, the restrictions on the modular proof in the introducing module ensure the addition

of other generic constructors in the language used for writing the modular proof cannot affect

property proofs, so we can lift the cases to the composed language as in Theorem 4.24. Then

each case in the composed proof has a corresponding sub-proof of a modular proof, and we

can complete the construction.

If one of the properties is imported, the proof is similar to Theorem 4.25. As there, we

split the proof into two parts, proving the properties using the proxy versions of their key

relations, then using the modified properties to prove the ones we want. This proof has the

canonical form for the property set, but with the top-level case analysis for each property

being on the proxy version of its key relation. As in the previous case, each sequent in the

composed proof has a corresponding one in some modular proof, and we can use the same

arguments as in Theorem 4.25 to lift them to the composed language. Then we have a proof

for each case in the composed proof, completing it. ■

We can see that Theorem 4.26 is a corollary of Theorem 4.27 where the set of properties

being proven contains a single property.

4.5.2 Extending Mutually-Inductive Sets of Properties

As in the previous situations, both for individual properties and for mutually-inductive sets

all introduced by the same module, what matters most for crafting a composed proof when
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properties may be added to existing mutually-inductive sets is that each proof case arising

from the top-level case analysis in the composition has a corresponding proof case proven

in some modular proof. To see how this works, we need to consider the canonical form of

a proof of a set of properties, the languages in which modular proofs are written, and the

proxy versions of relations and their use in proofs.

If an extension module adds new properties, the existing canonical form for the proof

will not work. In proving P1 ∧ . . . ∧ Pn, the canonical-form proof ends with some uses of

the mutindim rule, uses of the ∧R rule to split the properties, and property-specific uses

of the ∀R, ⊃R, and defL@i
rules. However, in proving P1 ∧ . . . ∧ Pn ∧ P ′

1 ∧ . . . ∧ P ′
m,

the exact same structure doesn’t work because the splitting of the conjunctions with the

existing ∧R rules doesn’t split them all. To modify the set-up for the canonical-form proof

to accommodate added properties, we add extra applications of the ∧R rule sufficient to

split all the properties, as well as property-specific uses of the ∀R, ⊃R, and defL@i
for the

new properties. Using this modified proof form, the sequent for the proof of each property

has the same form as under the unmodified one, but with more induction hypotheses.

When writing a modular proof for a set of properties imported into a module M , we

write it in the context of Lang(M). However, when proving a set of newly-introduced

properties with key relations in S in a module M , we write the modular proof in the

context of
⋃

R∈S
Lang(M(M,R)). When we add new properties to an existing set, we write a

modular proof in the language

Lang(M) ∪
⋃
R∈S

Lang(M(M,R))

where the new properties have key relations in S. Note that Lang(M) is included in

Lang(M(M,R)) for any relation R; by including it separately, we generalize this to subsume

the case where no new properties are added. This new language includes all the constructs

and rules from the language expected for individual modular proofs both for the imported

properties and for the new ones.

The modular proof for a set of properties with new additions follows the restrictions
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in Definition 4.6, which are a superset of those in Definition 4.1. As noted previously, the

restrictions in these definitions prevent using rules from generic extensions not part of the set

needed for proving an individual property in the set. As in the case for mutually-inductive

properties without extension additions, using a language with extra generic constructs can

create unneeded cases from the top-level case analysis, but skipping these and creating

modular partial proofs is still sound for creating the composition.

When one property in a mutually-inductive set uses an imported key relation, meaning it

needs to use the proxy version for constructing the composed proof, all properties in the set

need to use the proxy versions of their key relations in the composition. This then imposes a

requirement for all properties to satisfy the requirements of Definition 4.23. This is also true

when we can add new properties to a set: all properties, both new and imported, need to

satisfy the requirements of Definition 4.23. Because of this, we only allow adding a property

that uses an imported key relation to an existing property set if a property already in the

set was introduced in a different module than its key relation (i.e., an existing property used

an imported key relation when it was introduced). In that case, we know all properties in

the set in a composed language will satisfy Definition 4.23, since each extension module that

may add properties will know it must satisfy it. If some extension imposed the necessity

of Definition 4.23 for a set of properties by introducing a property with an imported key

relation in an extension, other extensions would not prove it for their properties, and the

composition would fail.

Having discussed the changes necessary for handling the addition of properties to existing

sets, we can now prove a composed proof of the full set from all included modules exists for

a composed language.

Theorem 4.28 (Added properties composition soundness). Let M be a module introducing

a set of mutually-inductive properties P with key relations in S and let C be a module

building on M . Assume M has written a modular proof according to the modified version

of Definition 4.6 using
⋃

R∈S
Lang(M(M,R)). Assume also that each module N ∈ BC ∪

{C} building on M adds a (possibly empty) set of properties PN to the set P , the new

properties having key relations in SN , and writes a modular proof for the combined set using
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Lang(M)∪
⋃

R∈SN

Lang(M(M,R)) as the language obeying the restrictions of Definition 4.6,

using a canonical form for the proof that extends module M ’s canonical form as specified

above. Assume all modular proofs are written possibly using lemmas in L . Assume also

the requirements of Definition 4.23 are satisfied for each property. Then there is a proof of

the full set of mutually-inductive properties P ∪ (
⋃

N∈BC∪{C}
PN ) in Lang(C) possibly using

lemmas in L .

Proof. The proof is similar to that of Theorem 4.27. As noted above, the modifications to

the canonical form for the proof leave the sequents for each property the same, other than

adding new induction hypotheses. Also, the addition of extra generic constructs to the lan-

guages used for writing modular proofs don’t affect the proof cases needed for constructing

a composed proof. Then the reasoning from Theorem 4.27 applies here as well. ■

As Theorem 4.26 is a corollary of Theorem 4.27, so Theorem 4.27 is a corollary of

Theorem 4.28 in the case where no module adds to the set of properties.

This concludes our discussion of proving individual properties and mutually-inductive

sets of properties in a modular fashion. We have shown how modules can declare properties,

specifying the canonical forms their proofs must take. We have also shown that, when each

module included in a composition that knows a property, or set of properties, writes a

modular proof of this form, we can construct a composed proof for the composed language,

demonstrating the property, or set of properties, hold for the composed language. Thus

we see that modular proofs can be used to guarantee metatheoretic properties hold for any

composed language.
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Chapter 5

Composing the Metatheory of Modules

In the previous chapter, we discussed proving individual properties and sets of mutually-

inductive properties using sets of lemmas assumed to be true. However, we are interested in

proving full sets of metatheoretic properties, not individual properties or mutually-inductive

groups of them alone. In proving a set of properties soundly, property P1 may be used freely

as a lemma in proving property P2 only if P1 can be proven without knowing P2 holds. If

the proofs of P1 and P2 both depend on the other holding, we have implicitly assumed each

is true, without evidence, in proving it is true.

Formally, in proving a set of properties in a sound manner, we need an order on the

properties that is asymmetric and irreflexive, where, when proving a property P , we may use

as a lemma any property P ′ where P ′ comes before P in the order. Recall from Chapter 3

that lemma use is justified by the cut rule, and that using a lemma with a formula L requires

a derivation of ∅ : ∅ −→ L. Only using a property as a lemma when an asymmetric and

irreflexive order specifies it is less than the current one ensures such a derivation exists.

The difficulty in the extensible setting is in ensuring we can compose all the modular

proof orders to form a single asymmetric, irreflexive order for any composed language, and

that the composed order reflects the modular ones used in writing all the modular proofs

from all included modules. This is necessary for creating full sets of proofs for full sets of

properties for a composed language. Consider the module structure shown in Figure 5.1. We

have a host language module H with modules A and B building on it independently of one

another. We then have two modules C and D both building on A and B, but independent

of one another, and a final module E building on all of them. As in prior diagrams, we
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B
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Figure 5.1: Module structure example for order composition

elide the transitive builds-on arrows. Suppose module A introduces a property PA and

module B introduces a property PB. Suppose also we want to compose the metatheory of

Lang(E) to create full proofs of all properties from all modules in the figure. Whether this

is possible depends on how C and D treated PA and PB in ordering. If C used PA as a

lemma in proving PB, and D used PB as a lemma in proving PA, we cannot compose the

proofs. Both C’s modular proofs and D’s modular proofs can be valid in the context of

their individual modules, but their orderings of the imported properties are incompatible

when put together, as both PA must be proven before PB and PB must be proven before

PA.

The key to a completely modular solution to this problem will be having aspects of the

ordering dictated by choices made by H, A, and B, the modules on which C and D build.

These choices can specify whether PA can be used as a lemma in proving PB, PB can be

used as a lemma in proving PA, or neither. Having the relative ordering of the properties

decided by the modules on which C and D, the modules bringing the properties together,

build ensures they must agree on an ordering. If both modules C and D can be written

respecting this ordering, then module E can combine them. If not, at least one of them is

ruled out because it cannot prove what it wants to prove, if not both being ruled out for

that reason. In this case, the impossibility of writing C or D as desired is known at the

time of attempting to write the module, so it cannot be contributed to the language library

when it cannot compose with other modules. Thus all modules that are part of a library

can be composed, even if ones we might wish to write cannot be part of the library.
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In the rest of this chapter, we address the problem of composing property orders and

ensuring an asymmetric and irreflexive order exists for any composition of modules, and

how we can use this to ensure all properties hold for a composed language. We first explain

the requirements for sound, completely modular property order composition schemes in

Section 5.1. We also prove we can build full sets of sound property proofs for all properties

of a composed language if the property order composition follows the requirements we

lay out. We then look at two different schemes fulfilling these requirements and discuss

their benefits and drawbacks in Sections 5.2 and 5.3. These schemes permit H, A, and

B to dictate the relative ordering of PA and PB, even though the modules A and B that

introduce them are unrelated, thus ensuring C and D cannot disagree on the ordering.

Finally, Section 5.4 looks at a scheme that does not guarantee any arbitrary set of modules

is composable, but which may still be desirable in some situations, and discuss this as an

alternative to the other choices that are completely modular.

5.1 Requirements for Sound Metatheory Composition

In our reasoning framework, we have ametatheory description tuple ⟨P , <,Q⟩ for a module,

where P contains the properties known to the module, < is an order for those properties,

and Q is the set of proxy rules as described in Section 4.3.2. Formally, P is a set of sets of

one or more mutually-inductive properties. We will require a well-formed property set to

have disjoint sets within it, that is, P cannot contain sets S and S′ such that S ∩S′ is not

the empty set. Furthermore, unlike what we saw with elements of the language specification

tuple, PM contains not only properties M introduces, but also those M imports from the

modules on which it builds.

Sound metatheory composition requires that the set of sets of mutually-inductive prop-

erties for a module be compatible with those it imports. We define the notion of a property

composition, combining the property sets from the modules on which one builds, that cre-

ates a new set of property sets fulfilling these desiderata. Property composition combines

corresponding mutually-inductive sets of properties from different modules in such a way
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that the composition contains all the properties from all the modules being composed. It

also ensures properties that were in the same mutually-inductive set in one of the modules

being composed are also in the same mutually-inductive set in the composition. We will

require a module’s property set to include the composed one, meaning it has a superset of

each mutually-inductive set from the composition.

Definition 5.1 (Property set composition). The composition of the sets of properties from

modules on which a module M builds, written propertyCompose(M), is a set of sets of

modules produced by the following algorithm. Start with C := ∅. For each set S ∈ PN , for

each module N ∈ BM , consider whether S intersects with any set in C.

• If there is a set S′ ∈ C such that S ∩ S′ ̸= ∅, update C := (C \ S′) ∪ {S′ ∪ S}.

• If not, update C := C ∪ {S}.

Then propertyCompose(M) is the final set C after going through all mutually-inductive

property sets from all the modules on which M builds.

Note that if the sets in each property set being composed (i.e., all the sets in each

PN for N ∈ BM ) are disjoint, then propertyCompose(M) identifies a unique set of sets of

properties, and all its element sets are disjoint as well.

The property order <M relates the sets of sets of properties in PM , giving us an order

in which we may prove the sets of properties, using properties from earlier sets as lemmas

in proving later ones. We require a well-formed order to be asymmetric and irreflexive,

which makes using it for writing proofs sound. A module’s property order is the one used

for determining which properties may be used as lemmas in writing its modular proofs.

Before discussing more about the specifics of property orders and their composition, we

define a convenient notion we will use in further definitions. While an order < relates sets

of properties, we often want to refer to orders between particular properties in sets. We can

extract an ordering directly for properties from one for sets of properties.

Definition 5.2 (Extracted direct property order). Let < be an order on sets of properties.

Its extracted direct property order is written <P . We have P <P P ′ if and only if there are
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sets S and S′ such that P ∈ S, P ′ ∈ S′, and S < S′ holds.

The composition of a set of property orders does not have only one choice for how

to create it. Rather, we have requirements for what forms a good composition, which

many schemes may satisfy. Each language library may choose one that all modules in the

library use. Intuitively, what we want of a composition of property orders is for it to be

asymmetric and irreflexive so it is sound for proving properties, and for it to maintain the

relative orderings of properties from modules that are included in the composition so we

have the same lemmas available when moving from modular proofs to composed ones. By

the latter desideratum we mean that if we had P <N
P P ′ and < is an order composed from

several including <N , then we should also have P <P P ′. In this section, we describe

what is required of a scheme for composing property orders and what is required of the

metatheory of modules relative to metatheory compositions of the modules on which they

build. Based on these requirements, we prove modular proofs guarantee all properties, from

all modules included in a composed language, hold for the composed language.

Similar to how we composed the property sets of the modules on which another builds,

we can compose the property orders of the modules on which another builds. We will write

orderCompose (M) to signify the composition of the property orders <N for each module

N ∈ BM . This order will relate the sets of properties in propertyCompose(M). We define

here what is required for a module’s property order to be well-formed relative to an order

composition scheme orderCompose (). The important point in this definition is that, in

creating a module’s property order, the module’s author must maintain the relationships

from the composition of the orders from the modules on which it builds. Essentially this

requires using the composed order as a starting point, and possibly adding new relationships

between sets of properties to it, but without adding any to make it symmetric or reflexive.

Definition 5.3 (Property order well-formedness). Let M be a module and orderCompose ()

be the order composition scheme its language library uses. For M ’s property order <M to

be well-formed, the order must be asymmetric and irreflexive. It must also include all the

relationships of the composed order of the modules on which M builds; that is, if < is the
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composed order orderCompose (M) of the modules on which M builds and P <P P ′, it must

be that P <M
P P ′.

Note that this defines a minimum requirement for order well-formedness; particular

composition schemes may add more requirements, as we shall see in Section 5.2.

The definition of order well-formedness does not yet address the issue of compositionality

of module orders. Both modules C and D in our ordering example, shown in Figure 5.1, can

have well-formed property orders by this definition, even if they order PA and PB differently.

As long as their orders are asymmetric and irreflexive, and they respect the composed order

of <H , <A, and <B, they are well-formed. They could still order PA and PB differently

if the order of these two properties is not somehow specified by the composition scheme

used in the language library, the one relative to which C’s and D’s orders are well-formed.

The solution to ensuring composability of any property orders for a language library, which

will allow us to prove all properties from any module hold for a composed language, lies in

our requirements on ordering schemes. These requirements specify compositions must be

asymmetric and irreflexive, as well as maintain the orders included in them, as discussed

as a desideratum of composition above. Finally, order composition must be total when

the orders being composed are well-formed. This is the criterion that ensures the orders

specified by C and D must compose.

Definition 5.4 (Completely modular order composition scheme). An order composition

scheme orderCompose () is completely modular if it satisfies three criteria. In these, assume

M is a module where each module N on which M builds (N ∈ BM ) has a well-formed

property order <N relative to orderCompose (), the ordering scheme used by the language

library of which the modules are members.

1. The order composition orderCompose (M) is an asymmetric and irreflexive order.

2. For a module N included in the composition (N ∈ BM ), if we have P <N
P P ′ and

orderCompose (M) is <, we also have P <P P ′.

3. The order composition orderCompose (M) exists.
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The first and final criteria ensure any module can have a well-formed property order

by Definition 5.3. The requirements for a module’s order to be well-formed are that it be

asymmetric and irreflexive, and that it maintains the composed order of orders from the

modules on which it builds. The final criterion ensures the required composed order exists,

and the first one ensures the composed order itself is asymmetric and irreflexive. Then all

a module’s author needs to do to have a well-formed property order is not add any new

relationships between sets of properties that make the order symmetric or reflexive. Note

this does not mean any module can have the property order its author wants, necessarily,

just that a valid one exists. A completely modular ordering scheme will prevent at least

one of modules C and D from having the order of properties it wants, and they may not

be able to write their required modular proofs using it, but the composed order itself is

well-formed for both C and D.

The second criterion for a property order composition scheme to be completely modular,

that it maintains the relative ordering of properties from orders included in the composition,

ensures the proof composition for Lang(M) is sound for all the properties when using the

well-formed order <M to order the use of lemmas, if each module used its own property order

in writing modular proofs. Because each included order is maintained by the composition,

and the composition is maintained by M ’s order, the properties available as lemmas in

proving a property in each modular proof are then also available as lemmas using M ’s

order. We can formalize this intuition in a theorem, but first we define well-formedness of

a module’s metatheory description tuple to utilize in stating the theorem.

Definition 5.5 (Metatheory description tuple well-formedness). Let M be a language mod-

ule with metatheory description tuple ⟨PM , <M ,QM ⟩. This is well-formed if the following

criteria hold:

• For each set S of properties in propertyCompose(M), there is a set S′ ∈ PM such

that S ⊆ S′. Furthermore, each set of properties in propertyCompose(M) is disjoint

from all the other sets.

• For each property P introduced by M ( i.e., P is in a set in PM but not in any set in
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propertyCompose(M)), the requirements of Definition 4.23 are satisfied for P with

the set of proxy rules introduced by the module introducing its key relation and the set

of lemmas being properties in sets S′ in PM where S′ <M S ( i.e., the set of lemmas

is {P |P ∈ S′ ∧ S′ ∈ PM ∧ S′ <M S}).

• The property order <M is well-formed by Definition 5.3 relative to the order compo-

sition scheme used by the language library.

• For each set of properties S in PM , there exists a valid modular proof according to

Definition 4.1 or Definition 4.6 as appropriate, with modifications to extend these to

full sets of proofs as given in Section 4.5. Furthermore, this modular proof uses as its

set of lemmas properties in sets S′ in PM where S′ <M S ( i.e., its set of lemmas is

{P |P ∈ S′ ∧ S′ ∈ PM ∧ S′ <M S}).

• The set of proxy rules QM is well-formed by Definition 4.3.

Using this definition of well-formedness for metatheory description tuples, we can fulfill

our intuition from above, showing that all properties from all modules included in a com-

position hold for modules with well-formed metatheory descriptions that use a completely

modular ordering scheme.

Theorem 5.6 (Metatheory composition soundness). Let M be a module with builds-on set

BM . Let each module N ∈ BM ∪ {M} have a well-formed metatheory description tuple

⟨PN , <N ,QN ⟩, and let orderCompose () be a completely modular ordering scheme used by

the language library. Then all properties introduced by the modules BM ∪ {M} have proofs

for Lang(M).

Proof. Because <M is well-formed, it is asymmetric and irreflexive, and thus sound for prov-

ing properties. The first requirement for the well-formedness of M ’s metatheory description

tuple ensures PM contains each property from any module included in the composition.

Then what needs to be shown is that we can prove each property in PM using <M as the

lemma order.
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Consider a property set S in PM . Theorems 4.26, 4.27, and 4.28 show we can construct

a full proof for the properties in S from the modular proofs written by the modules knowing

it. These theorems rely on the modular proofs using the same lemma set as is used in the

composition. Because the logic is monotonic, what is actually required is that the lemma

set in the composition must be a superset of the one used for each modular proof. What

we need to show to use these theorems then is that the necessary modular proofs exist,

Definition 4.23 is satisfied when needed, and <M maintains the lemma sets used by each

modular proof.

The first two parts come directly from the definition of well-formedness of the metatheory

description tuples. Each module N must have the appropriate modular proofs for the sets

of properties in PN . Each property in PM also must be introduced by M or some module

on which it builds, and that module must ensure the requirements of Definition 4.23 are

satisfied for it with the set of lemmas used for its modular proof. Note Definition 4.23

requires certain properties be present in the set of lemmas, so it is also valid if we add more

lemmas to the set.

All that remains then is showing the sets of lemmas used by each modular proof are

maintained. That is, we need to show that for each module N ∈ BM , if a property P ′ known

toN is a member of a set S′ ∈ PN and S′ <N S, then there is a set S′′ ∈ PM where P ′ ∈ S′′

and S′′ <M S. This comes from the requirement that <M maintain the relationships

between properties from orderCompose (M) as part of its well-formedness requirements, and

the second requirement for a completely modular ordering scheme, that <N be similarly

maintained in orderCompose (M). Then the lemma set an arbitrary module used for proving

the properties in S is a subset of the one used in the composition. We can then apply

the appropriate theorem from Chapter 4 to build a proof of the mutually-inductive set of

properties S for Lang(M) using <M as the property order.

This reasoning applies to all sets of properties in PM , so all properties from any module

included in the composition have proofs for Lang(M). ■

We turn now to look at two completely modular ordering schemes for properties, one
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using partially-ordered sets of properties and one where we order properties via ordered

tags. We close this chapter by looking at what happens if we do not require totality in an

ordering scheme, the third requirement for completely modular ordering schemes, and why

this might sometimes be desirable.

5.2 Partially-Ordered Property Sets

One approach to order composition is to have each module’s order be a strict partial order

over its known property sets. The composition, written orderComposePO(M), is essentially

the transitive closure of the union of the orders being composed. The formal definition is

slightly more complicated, as the composed order relates elements in the composed property

set, which may have changed from those in individual modules by other modules adding

new properties to them.

Definition 5.7 (Partially-ordered property order composition). Let < be a property order

such that we have S < S′ for sets S and S′ in propertyCompose(M) if and only if there

are sets S0 and S′
0 in PN for some module N on which M builds (N ∈ BM ) and S0 <

N S′
0.

Then orderComposePO(M) is the transitive closure of <.

The order composition scheme orderComposePO() clearly satisfies the latter two re-

quirements to be completely modular. As the union of the existing orders, it maintains the

relative ordering between existing properties. It is also clearly total. The first requirement

of complete modularity, that composing well-formed orders creates an asymmetric and ir-

reflexive order, requires an expanded definition of well-formedness for orders. Specifically,

it prevents a module from adding a new dependency between existing properties, one that

isn’t induced by the composed ordering.

Definition 5.8 (Partially-ordered property set order well-formedness). In addition to the

requirements in Definition 5.3, if a module M ’s property order <M using the partially-

ordered property scheme relates property sets PA and PB (PA <M
P PB) where both PA

and PB are not introduced by M (PA ∈ SA, SA ∈ propertyCompose(M), PB ∈ SB, and
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SB ∈ propertyCompose(M)), then PA and PB must be related by the composed ordering

orderComposePO(M) ( i.e., if orderComposePO(M) is <, PA <P PB).

Since preexisting properties cannot be newly related in any module, symmetry and

reflexivity cannot be introduced in a composition. Thus orderComposePO() is a completely

modular ordering scheme when using the expanded definition of well-formedness for the

property orders of modules.

Consider modules C and D from Figure 5.1 again. Under this definition of well-

formedness of property orders, module C having PA <C
P PB is disallowed because PA and

PB are imported but unrelated, being from independent modules. Module D introducing

the ordering PB <D
P PA is also disallowed. Thus we cannot have the problem of C and D

introducing conflicting orders for PA and PB that makes the composition for E impossible.

The potential difficulty with using partial orders lies in our inability to add new depen-

dencies between preexisting properties. Module C cannot use PA as a lemma in its modular

proof of PB. Such a dependency might be desirable if C defined the key relation of PB

using the key relation of PA, as PA might give information useful for proving PB. Because

these dependencies cannot be introduced, C either needs to find a different way to prove

its properties, or it cannot introduce them. The same is true for D.

5.3 Ordering via Tags

Another completely modular ordering scheme relies on associating a tag with each property

set, where each tag must be unique in the language library. Under this scheme, P for each

module is a set of pairs of tags and sets of properties, with well-formed modules required

to maintain the tags of imported properties (e.g., if P is in a set associated with tag T in

PN and M builds on N , P must still be in a set associated with tag T in PM ). Similar

to names of syntax categories, constructors, and relations, the uniqueness of tags may be

accomplished in practice by qualifying each tag with the name of the module introducing

it.

Tags are drawn from a set with an asymmetric and irreflexive order ≺. The order for
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property sets, <T , is defined so S <T S′ if and only if we have T ≺ T ′ for the tags T and

T ′ associated with S and S′ respectively. Each module uses this order as its own order,

and order composition orderComposeT (M) is always this same order as well. The order

<T is clearly a well-formed order, as the tag order is asymmetric and irreflexive, and it

includes all relations in the composed order, as it and the composed order are the same.

The composition scheme orderComposeT () is a completely modular ordering scheme, as it

clearly satisfies the three criteria of being asymmetric and irreflexive, maintaining the same

ordering as the modules it composes, and always existing.

If using this scheme, a module designer reads the properties his module imports and

their tags, decides what lemmas his new properties need to use and which properties need

his new properties as lemmas, and gives them tags that will satisfy the necessary ordering.

When using tags, it is best to have a tag set and an ordering relation where there is always

another tag available between two others. For example, using rational numbers as tags

ensures a new property can always be added between two existing ones, as there will always

be a tag that fits.

If our example language library from Figure 5.1 uses tags, module A assigns a tag TA

to the set containing its property PA. Module B assigns a tag TB to the set containing its

property PB. These tags then determine the ordering of the property sets. Since C and D

both see the same tags, they both see the same order for the properties, and thus modules

C, D, and E, all agree on the order.

This scheme also has the difficulty we saw with partially-ordered sets, that C and D may

not have the ordering of PA and PB that they want. We can have PA <T
P PB, PB <T

P PA, or

them being unrelated if the tag order ≺ that creates the property order is not total. Then

either module C or D might have the order it wants based on the tags assigned to PA and

PB when they are introduced, but not both. This is better for the module authors than the

partially-ordered set scheme, as there is a chance the two properties are ordered the way

they want, whereas there was no chance in the previous approach. However, at least one of

C and D must find another way to write its modular proofs, as the shared order of PA and

PB will not permit both of them to be used as lemmas in proving the other.
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5.4 Not-Completely-Modular Ordering

All three criteria for completely modular ordering schemes are necessary to ensure all prop-

erties hold for any composition of modules. However, it may be that we sometimes do not

care if any arbitrary set of modules can be composed, and would settle for limitations on

which modules we may include in a composition in exchange for other benefits. Thus it

might be that we would want to drop the totality criterion for ordering schemes, the one

requiring a composition of well-formed orders always to exist. This criterion does not affect

soundness, only guaranteed composability.

A more laissez-faire option than the previous two is to allow each module writer to

build his own composed order from those of the modules on which his module builds. This

order would need to obey the first two criteria from Definition 5.4, that a composed order is

asymmetric and irreflexive, and that it respects the orders of the modules being composed

by maintaining the relative order of all properties in the new order. Because Theorem 5.6

relies on only the second criterion directly, and the first through the requirement that a

well-formed property order for a module is also asymmetric and irreflexive, an order built

arbitrarily in this way would still produce valid proofs of all properties.

Arbitrarily ordering properties would solve the difficulty mentioned for the completely

modular ordering schemes in both Sections 5.2 and 5.3, that modules may not be able to

have the property orders they want even though those orders may be fine in the context of

the module. Without restrictions on the order to maintain arbitrary composition, module

C can create an order with PA <C
P PB as it wants, and module D can create an order

with PB <D
P PA as it wants. Both modules can then prove their properties as they want.

However, module E cannot make a well-formed order, as the orders from C and D are

incompatible, and thus cannot have metatheory developed for it. Then, while C and D can

both be written and prove all the properties they want in the way they want, they cannot

be composed.

Under this approach, we cannot assume all properties from all modules included in a lan-

guage composition are true for the composed language. We first must check an asymmetric,
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irreflexive order for all the properties exists, one that respects all the property orders from

modules included in the composition, that is, to compose the metatheory for Lang(M), we

must check a well-formed property order exists for the module M . If such an order exists,

Theorem 5.6 tells us all the properties will hold.

Using this scheme for order composition makes the dummy module approach we used to

compose our example language’s independent extensions, seen in Section 2.3, possibly not

succeed. Under a completely modular ordering scheme, a dummy module has no obligations

for metatheory. It introduces nothing in the language nor any new properties, having only

the imported properties but nothing new to write for modular proofs. It can then use the

composed module ordering directly, giving the programmer creating a composition using

a dummy module the language’s metatheory completely free. When a composed ordering

is not guaranteed to exist, a programmer using a dummy module for composition must

try to create one to ensure the language’s metatheory is what he expects. This can be

accomplished using the orderComposePO() ordering scheme and checking if the resulting

order is asymmetric and irreflexive. Thus this scheme reduces, but does not completely

eliminate, the work a programmer must do for composed metatheory.

It is clear there is no perfect scheme for composing property orders. Either we may

find properties we want to use as lemmas are not available due to a quirk of composition

but any modules will compose, as we see in using partially-ordered sets or tags, or we may

find some modules do not compose but we can order lemmas in whatever way we want, as

long as it does not contradict imported orders or break asymmetry or irreflexivity. It is

not immediately clear whether one or the other of these is a more significant problem in

practice, and thus which approach library originators should take. In our tools, discussed

in the next chapter, we have chosen to use a tag ordering. However, more research into

examples of the use of our reasoning framework, examples that contain large numbers of

modules building on one another in interesting ways, is needed to identify how common

each problem is and to give recommendations on which strategy to use.
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Chapter 6

An Implementation of the Proof System

In addition to developing a framework for reasoning about languages, this thesis also ex-

amines the use of this framework in practice. To support the practical use of the reasoning

framework for the purposes of this thesis and beyond, we provide implementations of both

the language extensibility framework, allowing us to write specifications for extensible lan-

guage modules as described in Chapter 2, and the reasoning framework, allowing us to de-

clare and modularly prove metatheoretic properties about those specifications as described

in Chapters 4 and 5.

These implementations comprise two separate systems. The Sterling system implements

the language extensibility framework, permitting users to write module specifications and

check they are well-formed. The Extensibella system then permits users to reason about

such specifications, introducing metatheoretic properties and writing modular proofs of

them. Additionally, both systems support the forms of composition relevant to them, with

Sterling supporting the composition of module specifications to form full languages and

Extensibella supporting the composition of modular proofs to form full, independently-

checkable proofs of all properties included in a composition.

In this chapter we first look at how we specify language modules in Sterling and how

it creates composed languages from module specifications in Section 6.1. We then look at

declaring and writing modular proofs in Extensibella, followed by how Extensibella builds

composed proofs for composed languages from the modular ones in Section 6.2.
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6.1 Writing Extensible Languages in Sterling

The Sterling system implements our extensibility framework for defining languages from

Chapter 2. Its design is inspired by the design of the Silver attribute grammar system [38]

used for writing extensible languages with an extensibility framework similar to our own.

6.1.1 Language Specification

Sterling module specifications correspond quite directly to the language-specification 8-

tuple ⟨B,C ,C,R ,R,T ,T,S⟩ defining modules described in Chapter 2. Users specify the

modules on which a new module builds (B). They also declare new syntax categories (C )

and introduce constructors (C) both for new syntax categories and ones from the modules

on which they build. Specifications also include declarations of relations (R), giving their

argument types and marking which argument is the primary component, and rules (R)

defining both new and imported relations. Some rules are marked as default rules (S).

Finally, specifications also declare projection relations (T ) and rules defining them (T).

The one part of a Sterling module specification that is not part of the 8-tuple is a

module name, which we assume to be unique in the language library. These names are

used in builds-on declarations to specify the modules on which a new one builds. They are

also used for ensuring compositions do not encounter name problems. Since modules are

assumed to be written independently, we could have, say, two constructors with the same

name in a composition. To identify them uniquely, Sterling qualifies all names introduced in

a module by the module name. For example, if the name of the host language module from

Chapter 2 is H, the add constructor it introduces would actually have the name H:add ,

and the vars relation would actually have the name H:vars. Using fully-qualified names

when writing rules would become quite tedious, so Sterling permits users to use short names

when no other construct with the same short name is known. Thus we can write

vars(e1, vr1) vars(e2, vr2)

vars(add(e1, e2), (vr1 ∪ vr2))

VR-Add
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and have Sterling treat it as if we had written

H:vars(e1, vr1) H:vars(e2, vr2)

H:vars(H:add(e1, e2), (vr1 ∪ vr2))

H:VR-Add

giving us the benefits of unique names for composition but without the drudgery of fully

writing them out each time we use them.

Once a Sterling module specification is written, the Sterling system checks it for well-

formedness. To do this, Sterling reads the specification of the module and those of the ones

on which it builds, gathering information about the declarations in each module. Once it

knows all the declared constructs, it can proceed with checking the full set of modules is

well-formed. One aspect of this check is that all the rules are well-typed, using relations

and constructors with the types declared for them; this is no different from checking typing

for a non-extensible system.

The more interesting parts of Sterling’s checking of modules are for the well-formedness

conditions in Section 2.2. One such condition is checking that a module does not build

on itself. This could happen either by a direct declaration or transitively through another

module, one on which it builds, also building on it. In gathering the declarations, Sterling

checks it does not require a module it has already read, which would show a circularity in

the module dependencies.

Most of the well-formedness checks relating to modularity depend on whether something

is imported or new in a module. For example, Sterling checks that new rules defining

imported relations have the primary component argument of the rule’s conclusion built by

a new constructor. In gathering declarations Sterling also tracks which module created each

declaration. This allows it to check if a relation is imported and if the constructor in a rule’s

conclusion’s primary component argument position is new. Sterling also checks each new

relation with an imported primary component category has a default rule defined for it,

and that each default rule has an unstructured primary component.
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6.1.2 Language Composition

In addition to checking modules are well-formed, Sterling implements the composition into

full languages described in Section 2.3. Most aspects of this composition are simply the

union of the elements of the tuple to get full sets of syntax categories, syntax constructors,

and relations for the full language. The interesting part of composition is in the instanti-

ation of default rules for new constructors. Recall that a default rule from one module is

instantiated for a constructor from another when the two modules are unrelated, that is,

neither builds on the other. Sterling finds this set by finding all pairs of unrelated modules,

then taking each new relation’s default rule from one module and each new constructor

building expressions in the relation’s primary component category from the other to instan-

tiate it. In our example language from Chapter 2, one pair of unrelated modules is the list

module and the security module. Thus we take the default rule for the security module’s

level relation and instantiate it for each of the list module’s new expression constructors,

nil , cons, null , head , and tail .

We have two types of composed specifications that Sterling can output for use with

Extensibella, one for modular reasoning and one for proofs for full languages. The modular

reasoning specification incorporates the generic modules used in reasoning in Chapter 4.

Recall that we have two generic modules that we use in reasoning, defined relative to a

module M and a relation R. The default rule generic module I(M,R) introduces a generic

constructor ι, and the proxy rule generic module K(M,R) introduces a generic constructor

κ and the proxy rule for R instantiated for κ. These modules are used to write generic

cases in proofs. Sterling creates the appropriate constructors and rules for the generic

modules we might need in reasoning in the context of a specific module and adds them

and any appropriate instantiations of default rules for them to the other rules it has for a

composition.

The specification Sterling writes combines all the generic extensions we might need for

proving any property the module might introduce. It does this since there is only one spec-

ification for reasoning in Extensibella, and we might need any of these generic extensions in
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reasoning. Thus the language present for proving properties is actually larger than the one

for which our theory calls. For example, in the context of the security extension S, we in-

troduce and prove Property 3.3 that secure programs do not leak information. Our proof of

this property, per Definition 4.6, is to be written for a language including the host language

H, the security extension S, and the proxy rule generic module relative to the security

extension and the property’s key relation of statement evaluation, K(M,⇓). However, the

specification Sterling writes, and thus the one present for reasoning in Extensibella, will

also include the proxy rule generic module for the statement typing relation, K(M, typeS ).

Extensibella will handle the inclusion of these extra generic modules in the language specifi-

cation used for reasoning so each property is proven as if it were using exactly the language

expected.

In order to generate the proxy rule generic modules for the specification, Sterling needs

to know the proxy rules for relations, the set Q in the metatheory description tuple. Because

they are needed to generate the language specification for reasoning, we include their dec-

larations in Sterling along with the language specification, even though they conceptually

belong to the metatheory description. Module writers can declare proxy rules for each new

relation a module introduces. These are then used to produce the composed specification,

being instantiated for the generic constructor when they might be needed for reasoning.

If a relation is not given a proxy rule in the module specification, Sterling automatically

generates one of the form

R(x)

Having a proxy rule for every relation simplifies the implementation of Extensibella, and

such a rule, if used to build the proxy version of the relation, does not impose any require-

ments on extension writers creating new rules.

The other type of composed specification Sterling can write for Extensibella to use is for

full language proofs. These contain only the elements in the language of the module being

composed as defined in Section 2.3, not anything from generic modules. When Extensibella
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builds a composed set of proofs, it uses the full language specification instead of the modular

reasoning one.

6.2 Modular Metatheory in Extensibella

In our reasoning framework, modules write proofs of metatheoretic properties in the logic

G under restrictions on exactly how they may use its proof rules, with these modular

proofs then used to construct composed proofs for composed languages. To implement this

framework, we use the Abella proof assistant [2] that constructs proofs in G. Specifically,

Extensibella is a wrapper around Abella, taking proof commands from the user and check-

ing their modular validity under our framework’s restrictions, then passing them to Abella

to apply the reasoning steps. Extensibella’s implementation of proof composition takes the

modular proofs and uses them to create Abella proofs of each metatheoretic property ex-

pected of a language composition. The result is an Abella development with declarations for

the composed language’s syntax and semantics and proofs of all its properties. This Abella

development can be checked independently from our extensibility tools, demonstrating that

all expected properties hold for the composed language.

Because Extensibella is a wrapper around Abella, its reasoning style is closely based on

that of Abella. Thus we introduce Abella’s reasoning style before discussing how we have

implemented our reasoning framework, both the construction of modular proofs and proof

composition, in Extensibella.

6.2.1 Introduction to Abella Reasoning

Abella reasoning developments consist of declaring theorems and proving them. Each the-

orem is a formula declared with a name. For example, the property that optimizing an

expression does not change its evaluation result, Property 3.2, would be declared as

Theorem opt expr correct : ∀e, e′, γ, v.opte(e, e′) ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v
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Once a theorem is declared, the user gives a proof of a sequent with the formula as the

conclusion and no hypotheses. For Property 3.2, this would be

∅ : ∅ −→ ∀e, e′, γ, v.opte(e, e′) ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v

After the proof is completed, the formula may be used as a lemma for proving future

theorems, referring to it by name.

In proving theorems, Abella does not construct G proofs directly using the proof rules

presented in Chapter 3. Rather, it uses tactics, commands that correspond to applying one

or more proof rules. For example, the search tactic applies the defR, ∃R, ∧R, and ∨R

rules, as well as the id rule and its annotated variants, to show the conclusion of the sequent

being proven, applying as many of these rules as it takes to complete the proof. Tactics

may also apply different proof rules depending on the hypotheses to which they are applied.

As an example of a tactic that applies different proof rules in different situations, the case

tactic applies the defL rule if it is applied to a hypothesis such as opte(e, e
′), its annotated

variants if applied to an annotated hypothesis, the ∨L rule if applied to a hypothesis of the

form F1 ∨ F2, and the ∧L and ∃L rules if applied to hypotheses of the appropriate forms

for them. Note that tactics may also include terms in them, a fact that will be relevant

in building composed Abella proofs. For example, the exists tactic implements the ∃R

rule more directly than search, allowing the user to specify a particular witness term for a

conclusion formula ∃x.F .

Abella proofs are lists of tactics applying to the current sequent to prove in the proof

state. The proof state is a list of sequents that need to be proven to complete the structured

proof of the current theorem in G but have not yet been proven. Abella builds proofs

through proof search, starting with the list being the sequent we want to end the G proof,

then working backward to the leaves of the proof tree. In this process, each tactic removes

the first sequent from the list, applies some proof rules to it that then require zero or more

premise sequents to be proven, and adds those new premise sequents to the front of the list

to be proven further. Once the list is empty, it means the full G proof has been constructed,
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as all premise sequents of all proof rules used in it have also been given proofs, and the

theorem is proven.

Consider proving Property 3.2 shown above, that optimizing expressions does not change

their evaluation results. Initially our proof state is a single sequent

∅ : ∅ −→ ∀e, e′, γ, v.opte(e, e′) ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v

We first apply the ind11 rule using the induction tactic, giving a new single-sequent list

∅ : IH −→ ∀e, e′, γ, v.opte(e, e′)@ ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v

where we abbreviate the induction hypothesis as IH . We then apply the intros tactic

that applies the ∀R and ⊃R rules to the conclusion formula as long as they are applicable,

getting a new singleton sequent list

e, e′, γ, v : IH , opte(e, e
′)@, γ ⊢ e ⇓ v −→ γ ⊢ e′ ⇓ v

We follow this by analyzing opte(e, e
′)@ with the case tactic, applying the defL@ rule,

giving us a long list of sequents, one for each unifying rule:

γ, v, e1 : IH , opte(e1, false)
∗, γ ⊢ not(e1) ⇓ v −→ γ ⊢ true ⇓ v

γ, v, e1 : IH , opte(e1, true)
∗, γ ⊢ not(e1) ⇓ v −→ γ ⊢ false ⇓ v

γ, v, e1, e
′
1 : IH , opte(e1, e

′
1)

∗,notBool(e′1), γ ⊢ not(e1) ⇓ v −→ γ ⊢ not(e′1) ⇓ v

...

For space reasons, we only show the first three here, for the OE-Not-T, OE-Not-F,

and OE-Not-O rules, seen in Section A.4.2, handling the cases where the expression is

constructed by not and the sub-expression optimizes to a constant false, constant true,

and non-boolean-constant expression, respectively. The next tactic will apply to the first

sequent, the one arising from the OE-Not-T rule. We can use the case tactic to analyze

the evaluation derivation for not(e1), giving us two new sequents, one for if it was derived
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using the E-Not-T rule and the other for if it was derived using the E-Not-F rule. Both

are added to the start of the list of sequents, giving us

γ, e1 : IH , opte(e1, false)
∗, γ ⊢ e1 ⇓ false −→ γ ⊢ true ⇓ true

γ, e1 : IH , opte(e1, false)
∗, γ ⊢ e1 ⇓ true −→ γ ⊢ true ⇓ false

γ, v, e1 : IH , opte(e1, true)
∗, γ ⊢ not(e1) ⇓ v −→ γ ⊢ false ⇓ v

γ, v, e1, e
′
1 : IH , opte(e1, e

′
1)

∗,notBool(e′1), γ ⊢ not(e1) ⇓ v −→ γ ⊢ not(e′1) ⇓ v

...

The first sequent can be proven by the defR proof rule, which we can apply in Abella with

the search tactic. This produces zero new sequents, so we move to the next sequent in the

list. Here we can use the induction hypothesis to get a derivation of γ ⊢ false ⇓ true. To

use the induction hypothesis, we use the apply tactic that combines the ∀L and ⊃L rules,

giving us a new sequent

γ, e1 : IH , opte(e1, false)
∗, γ ⊢ e1 ⇓ true, γ ⊢ false ⇓ true −→ γ ⊢ true ⇓ false

No language rules unify with evaluating false to true (i.e., such an evaluation is impossible),

so case analysis via the case tactic, implementing the defL proof rule, has no premise

sequents, completing the proof of this sequent. That leaves us with the remainder of the

list of sequents to prove:

γ, v, e1 : IH , opte(e1, true)
∗, γ ⊢ not(e1) ⇓ v −→ γ ⊢ false ⇓ v

γ, v, e1, e
′
1 : IH , opte(e1, e

′
1)

∗,notBool(e′1), γ ⊢ not(e1) ⇓ v −→ γ ⊢ not(e′1) ⇓ v

...

The proof continues, applying tactics, until the list of sequents is empty, showing the original

formula has been proven.

Since the proof is a flat list of tactics and the remaining sequents are also a flat list,

it appears the branching structure of the G proof is lost in the Abella proof. Not having

the branching structure would be a problem for us in proof composition, as we need to be

144



1

2.1

2.2.1.1

2.2.1.1 2.2.1.2

2.2.1 2.2.2

2.2

2

3.1.1 3.1.2

3.1 3.2

3

3

·
·

Figure 6.1: Demonstration of how subgoal numbers align with the proof structure

able to pull apart the modular proofs into the different top-level cases that are branches in

the G proof. Fortunately, Abella maintains a record of the branching structure by pairing

each sequent with a subgoal number that maintains a record of to which branch in a proof

structure a particular sequent belongs. When writing proofs in Abella, seeing both the

sequents to prove and their associated subgoal numbers helps track one’s progress through

the branches of the proof. Extensibella then uses the subgoal numbers Abella gives for the

same purpose, bringing the structure it needs to the flat list of tactics.

Subgoal numbers are multi-part numbers, with a new part added to the number when

a proof rule is applied that requires multiple premise sequents to be proven. For example,

case analysis with the defL rule with multiple premise sequents adds a new part to the

subgoal number, and the ∧R rule that requires proving both conjuncts adds a new part

to the subgoal number for each conjunct. The parts of the subgoal number are sequential,

representing a path from the root of the proof through branching points. For example, the

subgoal number 3.1.2 means a sequent belongs to the proof of the third premise sequent

of the first branching point, the proof of the first premise sequent of the first branching

point within that proof, and the proof of the second premise sequent of the first branching

point within that proof. A proof starts with the special subgoal number ·, showing it has

not had a branching point yet. Figure 6.1 shows a possible proof structure and the subgoal

numbers that would be associated with each sequent in it, demonstrating how the subgoal

numbers correspond to the proof structure. By combining the subgoal numbers for each
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sequent with the tactics being applied to them, we can rebuild the G proof tree structure

with its branching from the flat Abella proof.

Considering our start to a proof of Property 3.2 above, the initial sequent would be

associated with subgoal number ·, as would the ones after the induction and intros tactics.

Applying the case tactic to opte(e, e
′)@ gives us a long list of new sequents. Associating

them with their subgoal numbers, we get

1 : γ, v, e1 : IH , opte(e1, false)
∗, γ ⊢ not(e1) ⇓ v −→ γ ⊢ true ⇓ v

2 : γ, v, e1 : IH , opte(e1, true)
∗, γ ⊢ not(e1) ⇓ v −→ γ ⊢ false ⇓ v

3 : γ, v, e1, e
′
1 : IH , opte(e1, e

′
1)

∗,notBool(e′1), γ ⊢ not(e1) ⇓ v −→ γ ⊢ not(e′1) ⇓ v

...

Applying the case tactic again, this time to γ ⊢ not(e1) ⇓ v, gave us two new sequents as

premises of the proof of the first sequent. Since the first sequent has subgoal number 1, the

new premise sequents have subgoal numbers 1.1 and 1.2:

1.1 : γ, e1 : IH , opte(e1, false)
∗, γ ⊢ e1 ⇓ false −→ γ ⊢ true ⇓ true

1.2 : γ, e1 : IH , opte(e1, false)
∗, γ ⊢ e1 ⇓ true −→ γ ⊢ true ⇓ false

We prove the first sequent with a single search, then prove the second by using apply with

the induction hypothesis and analyzing the produced hypothesis with case. The sequent

resulting from the use of apply also has subgoal number 1.2 because the apply does not

require proving multiple premise sequents.

6.2.2 Modular Reasoning

In our reasoning framework, each module introduces a set of properties and an order of them

to determine what properties may be used as lemmas in proving another in its metatheory

description tuple, along with a set of proxy rules. A module both proves its own properties

in restricted ways, possibly in the context of a language including some generic modules, and

proves imported properties. These provide proofs of sequents that are sufficient to use to
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Figure 6.2: Workflow for communication between a user, Extensibella, and Abella

build a composed proof for any language. As mentioned earlier, our implementation requires

the proxy rules to be declared by Sterling so it can create the specifications for modular

reasoning. Extensibella implements the other portions of the metatheory description tuple

and the proofs of the properties using Abella. The workflow for communication between

a user, Extensibella, and Abella is shown in Figure 6.2. The user issues commands (e.g.,

declaring the next property) and tactics to Extensibella, which it checks are valid according

to its restrictions. Extensibella turns these into corresponding lists of commands and tactics

for Abella. Abella processes the result of applying them and outputs the proof state, which

Extensibella reads. It processes the sequents in the proof state, then presents the state to

the user.

The first command a user gives to Extensibella for reasoning is a declaration of the

language module about which a session will reason. Extensibella reads the specification

Sterling wrote for modular reasoning, the one that includes any generic modules that could

be needed for reasoning, and sends this specification to Abella as a set of G definitions.

Because Abella doesn’t have the type of language modularity our framework uses, the G

definitions use fully-qualified names encoded into single names Abella can accept. However,

Extensibella allows using unqualified names as Sterling does. Thus, whenever Extensibella

reads a name from user input, it turns it into the intended fully-qualified name and encodes

it to send to Abella. Similarly, when reading a proof state from Abella, which contains only

fully-qualified names, Extensibella checks whether there are conflicts between the unquali-

fied names, translating the conflict-free ones into the unqualified versions before presenting

the proof state to the user, making it easier to read the proof state.

Consider proving Property 3.2 from the previous section, but now as a property in
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Extensibella instead of a plain Abella theorem. The first sequent in the proof state we read

back after the top-level case analysis is

γ, v, e1 : (∀e, e′, γ, v.H:opte(e, e
′)∗ ⊃ γ ⊢ e (H:⇓) v ⊃ γ ⊢ e′ (H:⇓) v),

O:opte(e1, H:false)∗, γ ⊢ H:not(e1) (H:⇓) v −→ γ ⊢ H:true (H:⇓) v

As none of the unqualified names have conflicts, Extensibella displays the sequent to the

user as

γ, v, e1 : (∀e, e′, γ, v.opte(e, e′)∗ ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v),

opte(e1, false)
∗, γ ⊢ not(e1) ⇓ v −→ γ ⊢ true ⇓ v

Because module names in actual developments are much longer than a single character, this

becomes quite important in practice for making the proof state comprehensible.

Once we have our module specification, we can start declaring properties. In Exten-

sibella, the user declares named properties with their formulas. As with elements from

language specifications, Extensibella qualifies the names of properties, ensuring they are

unique in a library. Property declarations are turned into Theorem declarations, with all

names appropriately qualified, and sent to Abella. Extensibella property declarations also

include information about the intended inductions for the canonical-form proof of the prop-

erty so all proofs, both those given by the module introducing the property and those given

by modules building on it, use the same form, ensuring their proofs will fit together in

building a composition.

Recall from Chapter 4 that the canonical form of a property’s proof is used by all

modules to set up the top-level case analysis used in the modular proofs, and that it has

the form of some uses of the indim rule at the end, with its premises being uses of the ∀R

and ⊃R rules, with the defL@i
rule for the top-level case analysis for the property. In

Abella, this turns into a list of tactics implementing the proof rules, specifically uses of the

induction, intros, and case tactics.
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When we have a mutually-inductive property set, the canonical form of the proof for the

group is more complicated, as discussed in Section 4.5. It still ends with uses of the indim

rule, but the premises of these are uses of the ∧R rule to split the individual properties,

then property-specific ∀R, ⊃R, and defL@i
rule uses for each property. This canonical form

cannot be implemented simply as a list of tactics, since, in proving P1 ∧ P2, Abella expects

the full proof of P1 to be given before the proof of P2 is started. Then we need to save the

intros and case tactics that are specific to P2 until after P1 has been proven. Fortunately,

the regularity of the canonical form means we know the subgoal number each property will

have in its Abella proof, so we can recognize when the proof of one property is finished and

the proof of the next one starts. Thus we know we are starting the proof of P2 when Abella

tells us the next sequent has subgoal number 2, and issue the canonical form’s tactics then

to carry out P2’s top-level case analysis.

Once the tactics for the canonical form of a property’s proof have been passed to Abella,

its proof state has a list of the sequents for the top-level cases. Each sequent corresponds

to a rule Abella knows that has a conclusion unifying with the key relation. Extensibella

then provides proofs for these sequents by reading tactics from the user and sending them

to Abella. However, tactics read from the user cannot be sent straight to Abella. Our

reasoning framework imposes restrictions, specified in Definitions 4.1 and 4.6, on using

some proof rules, and Extensibella must check these restrictions are obeyed.

One such restriction is on case analysis with the defL rule and its annotated variants.

Analyzing a hypothesis is allowed if its primary component is built by a constructor, if the

primary component category is not extensible so no new rules can be added, or if the primary

component is a generic constructor and the relation must be defined for it by instantiating

the relation’s default rule. In Abella, the defL rule and its variants are implemented by

the case tactic. Extensibella checks each use of the case tactic to ensure the hypothesis

it attempts to analyze can be analyzed without contravening these restrictions. In reading

the specification Sterling wrote, Extensibella gathers information about the relations and

their primary components, as well as the builds-on structure of the set of modules known.

This lets it determine which argument to an atomic hypothesis is its primary component
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to determine if it is built by a constructor. For example, in reading the specification for

reasoning about the optimization module, it learns the primary component argument of

opte(e, e
′) is the first one and the primary component argument of γ ⊢ e ⇓ v is the second

one. Thus it can tell case analysis is allowable on γ ⊢ not(e1) ⇓ v but is not allowable on

opte(e1, e
′
1)

∗.

Modular proofs are also not allowed to use the defR proof rule with language rules

introduced by any of the proxy rule generic modules K(M,R). Recall from above that

the defR rule is implemented in Abella as part of the search tactic that also implements

several other proof rules, including the id rule and its annotated variants. We encode this

ban into the language specification written by Sterling. When instantiating a proxy rule

for a generic constructor κ as part of a proxy rule generic module, Sterling adds an extra

false premise to the rule. Thus the proxy rule for statement evaluation, introduced as

proj s(s, s
′) (γ, s′) ⇓ γ′′

(γ, s) ⇓ γ′
X-Q

is instantiated for κ in Sterling as

proj s(κ, s
′) (γ, s′) ⇓ γ′′ ⊥

(γ, κ) ⇓ γ′
X-Q(κ)

This extra premise of the rule prevents using it with defR in the proof unless ⊥ is provable,

in which case the proof can be completed with the ⊥L rule rather than the disallowed use

of the defR rule.

While this approach solves the problem of using the generic-instantiated proxy rule with

the defR proof rule, it introduces another one. The top-level case analysis for a property

will produce a case for this rule that will include ⊥ as a hypothesis, making the ⊥L rule

applicable when it should not be. Consider the security property guaranteeing programs
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passing the security extension’s analysis do not leak information, Property 3.3:

∀s,Σ, sl ,Σ′, γ1, γ
′
1, γ2, γ

′
2.(γ1, s) ⇓ γ′1 ⊃ (γ2, s) ⇓ γ′2 ⊃ Σ sl ⊢ secure(s,Σ′) ⊃

eqpublicvals(Σ, γ1, γ2) ⊃ eqpublicvals(Σ, γ′1, γ
′
2)

The top-level case analysis on the key relation for this property produces a sequent for the

X-Q(κ) rule:

Σ, sl ,Σ′, γ1, γ
′
1, γ2, γ

′
2, s

′, γ′′ : IH, (γ2, κ) ⇓ γ′2,Σ sl ⊢ secure(κ,Σ′), eqpublicvals(Σ, γ1, γ2)

proj s(κ, s
′), (γ1, s′) ⇓ γ′′,⊥ −→ eqpublicvals(Σ, γ′1, γ

′
2)

This sequent would be the correct one if it did not include the ⊥ assumption. In reading

a specification, Extensibella gathers information on the rules defining the relations, so it

knows which one is the instantiated proxy rule that will have this extra, unwanted premise.

From this, it can determine which subgoal number will be associated with the sequent

and, just as tactics that are conceptually part of the canonical form are saved to be issued

when certain subgoal numbers are reached, Extensibella can save a clear tactic, a tactic

to remove hypotheses the user no longer wants, to remove the ⊥ assumption before the

user writes the generic proof. In proving the security property, Extensibella determines the

generic case will be subgoal number 10, and thus when the proof reaches subgoal number

10 it issues a command to clear the ⊥ assumption. This leaves us with only the hypotheses

our theory expects, and thus a proof that will be valid for use in the composition.

Abella reasons about a single language specification in each development. It is for this

reason that Sterling creates a single language specification including all the generic modules

we might need, as it guarantees each modular proof has all the cases that will be needed

for building a composed proof. Recall the proxy rule generic module relative to a module

M and a relation R, K(M,R), introduces a new generic constructor κ that is specific to the

relation R. Then a Sterling-created language specification often contains multiple different

such constructors for different relations. The specification for the optimization extension
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includes six such generic constructors, one each for expression typing, statement typing, the

vars relation for the variables in an expression, the value predicate, expression evaluation,

and statement evaluation. Each generic constructor has default rules from other modules

instantiated for it as appropriate by the definition of language composition, so specifications

often contain more rules for relations, and thus more cases from the top-level case analysis

for a property, than are needed to fulfill the module’s proof obligations. We can see this

with Property 3.2, that optimizing an expression does not change its evaluation result, as,

in addition to the rules for optimizing an expression in RO and the default rule instantiated

for ι that the reasoning framework expects to be proven, Abella also presents cases for the

default rule instantiated for the generic constructors from the proxy rule generic modules

for vars, value, and expression typing and evaluation. Just as Extensibella can determine

with which subgoal number a needed generic case for an instantiated proxy rule will be

associated, so it can determine which subgoal number will be associated with unneeded

cases. It can then issue a skip tactic, an unsound Abella tactic that treats a sequent

as solved to ease proof exploration, when that subgoal is reached. This means the user

needs to prove only the cases that would be part of a proof in the language specified by

Definition 4.1 or Definition 4.6, meaning Extensibella’s use of skip is sound for modular

reasoning purposes. Note that these extra cases, which Extensibella clears before the user

sees them, are the only ways the extra constructs could affect proofs. As explained in

Section 4.5, having extra generic constructors and rules cannot affect the proofs of needed

cases. Then the potentially-over-sized Sterling specification for modular reasoning does not

have an impact on what the user actually needs to prove in Extensibella.

In reasoning, a user declares the properties he wants in the order he wants them, this

order determining which properties may be used as lemmas in proving others. Once a

module’s full set of properties and proofs are written, the user compiles the reasoning

module to allow other reasoning modules to build on it. This compilation assigns each

property a tag that is used for a tag-based ordering scheme for composing property orders,

as described in Section 5.3, creating the order in the metatheory description tuple. The

tags Extensibella uses are pairs of a rational number and the module name, making them
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unique across all modules. For example, our host language’s type preservation property

might be tagged as (152 , H).

Recall that extension modules have obligations for extending the proofs of properties

introduced by the modules on which they build. Modules building on others determine the

property order for the imported properties by the tags assigned in compilation. Extensions

additionally may introduce their own new properties, so, when reasoning about an extension

module’s specification, an Extensibella user both introduces new properties and declares

when he is ready to write an extended proof for an imported one. Extensibella checks the

declarations for extending imported properties come in the order their tags specify. The

full set of proofs for an extension module is only accepted as complete once all the imported

properties have had their proofs extended as needed. For example, the security extension

from Chapter 2 must fulfill its obligations in proving the host language’s properties, such

as the statement version of type preservation, for its new secdecl construct in addition to

proving its new properties for its Extensibella development to be complete.

Once all the required modular proofs have been written, the extension reasoning module,

too, can be compiled, to allow other modules to build on it. Imported properties are assigned

the same tags they already had, but new properties are assigned tags corresponding to

their placement relative to the existing properties. For example, a module M might import

properties with tags (1, H) and (3, H). It then might introduce a new property ordered

between them. The Extensibella compilation of the new module then assigns the tags (1, H)

and (3, H) to the imported properties as in the imported module, but it also generates a

new tag for the new property. This tag must fall between (1, H) and (3, H), so it may be the

new property is given the tag (2,M), reflecting the intended order of the three properties.

6.2.3 Proof Composition

Recall from Section 4.4 that proof composition involves taking the G proofs of sequents

written as part of modular reasoning and using them to build a complete G proof of a

property for a full language. Implementing this in Extensibella means taking the underlying

Abella proofs of sequents from the Extensibella proofs for each module and using them
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to build a complete Abella proof of each property for a full language. Moreover, as per

Chapter 5, we want to create a full Abella development, one that has a specification of the

language and proofs of all the metatheoretic properties from all the modules. This can be

accomplished by writing the composed proofs of the properties in the order specified by their

tags, ensuring all properties needed as lemmas are proven before being used. The produced

proofs can be checked by Abella independently of our extensible tools, demonstrating the

composed language does have the expected properties.

We build the composed proof for a property as a canonical-form proof for it, starting

with the same indim, ∀R, ⊃R, and defL@i
rules as were used to set up the proof written by

each module. As discussed in the prior section, this canonical-form proof structure turns

into a list of Abella tactics, giving us a list of sequents to prove, the same sequents that are

expected as premises of the defL@i
rule from the G canonical-form proof. The main work

in the composition is supplying the proofs of these sequents arising from the top-level case

analysis using the modular proofs.

The first problem to solve in this respect is identifying the proofs of different cases from

the modular proofs. Whereas the modular G proofs used in building composed proofs in

Section 4.4 have the branching structure built into them, the modular proofs written by

Extensibella are flat lists of tactics to be applied, which do not tell us when one case is

done and the next begins. However, as discussed in Section 6.2.1, the subgoal numbers that

were associated with the sequents being proven by each tactic let us rebuild the structure,

showing when each case begins and ends. Then in proving Property 3.2, where our top-level

case analysis produces the proof state

1 : γ, v, e1 : IH , opte(e1, false)
∗, γ ⊢ not(e1) ⇓ v −→ γ ⊢ true ⇓ v

2 : γ, v, e1 : IH , opte(e1, true)
∗, γ ⊢ not(e1) ⇓ v −→ γ ⊢ false ⇓ v

3 : γ, v, e1, e
′
1 : IH , opte(e1, e

′
1)

∗,notBool(e′1), γ ⊢ not(e1) ⇓ v −→ γ ⊢ not(e′1) ⇓ v

...

we know that any tactics proving a sequent associated with a subgoal number starting with

1 (e.g., 1.1, 1.2, 1.2.1) are associated with the first case in the proof. The Extensibella
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composition process thus starts by taking each modular proof and annotating each tactic

command in it with the first subgoal number and sequent in the Abella proof state in

checking the proof. It then builds the composed proof using these annotated tactic lists,

where the subgoal numbers provide the structure needed for the composition.

In Section 4.4, we split the proof of the existence of a composed proof into two parts,

one for when the composed proof did not need to use the proxy version of its key relation

(Theorem 4.24) and one when it did (Theorem 4.25), which depend on whether the key

relation and its primary component category were introduced in the same module or not.

These correspond, respectively, to scenarios A and B and scenarios C and D in Figure 4.1.

We do the same here in discussing Extensibella’s proof composition, considering first the

case where we do not need to use the proxy version.

Compositions Not Using the Proxy Version of the Key Relation

If we are using the key relation directly in the composed proof, rather than its proxy version,

it must be that the property and key relation are introduced by the same module. Then the

only types of rules defining the key relation that can be in the composed language are those

from the module introducing the property (known rules in the terminology of Section 4.1)

and modules building on it (new rules in the terminology of Section 4.1), and instantiations

of the default rule. The former two categories are rules for which some module included in

the composition wrote a proof directly. In Lemma 4.9, we showed the G proofs of such cases

can be used directly in the composition proof. The list of Abella tactics corresponding to

the Extensibella proof can similarly be used directly in the composed proof, as they will

apply the same G proof steps as in the modular proof.

The latter category, instantiated default rules, are more complex. As in Lemma 4.13,

the generic constructor ι has been replaced by a term built by a new constructor from

another extension. While the structure of the proof for the composed language stays the

same as the one used for the generic proof, there are two changes we need Extensibella

to make to it. First, we need to replace any occurrences of the generic constructor ι in

the proof, such as witnesses with the exists tactic, with the new term for which the
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default rule was instantiated. Second, as the new term replacing ι has meta-variables as

its arguments, it may be that Abella generates different names for existing meta-variables

as we move through the proof than it did in the modular context. To solve both of these

problems, Extensibella gives the commands for the composed proof to Abella as it is built

so it has access to the proof state for the composition. It then maps the first sequent in the

proof state for the composed proof onto the first sequent in the proof state for the generic

proof. This mapping produces a substitution for variables in the generic proof’s sequent,

mapping them to the corresponding variable names in the composed proof’s sequent, as

well as mapping the generic constructor ι to the new term replacing it. For example, the

sequent for the generic proof for Property 3.2 is

γ, v : ∀e, e′, γ, v.opte(e, e′)@ ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v, γ ⊢ ι ⇓ v −→ γ ⊢ ι ⇓ v

The sequent for the composed proof for the case where the default rule is instantiated for

the list extension’s cons constructor is

γ, v, e1, e2 : ∀e, e′, γ, v.opte(e, e′)@ ⊃ γ ⊢ e ⇓ v ⊃ γ ⊢ e′ ⇓ v,

γ ⊢ cons(e1, e2) ⇓ v −→ γ ⊢ cons(e1, e2) ⇓ v

Because the variable names e1 and e2 for the new term do not conflict with existing ones, the

mapping of the old variable names to the new ones is identity. We also have a mapping of

the generic term ι to the new term cons(e1, e2). With such a mapping in hand, Extensibella

can modify each tactic in the list-of-tactics proof for the generic case to fit each case for

an instantiation of the default rule that occurs in the composition. For each case in a

composed proof, Extensibella either applies the corresponding modular proof directly or

the appropriately-modified generic one, thus completing the proof.
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Compositions Using the Proxy Version of the Key Relation

If the property and its key relation were introduced in separate modules, we need to use

the proxy version of the key relation to create the proof for the composed language. As in

Theorem 4.25, Extensibella splits the proof into two parts, providing a proof of

∀x.RP (t) ⊃ F

using the proofs written by each module, then using this as a lemma along with addP(R)

to prove the actual property

∀x.R(t) ⊃ F

The latter part is simple and straight-forward, so we discuss only the former part here.

Such a property potentially has four types of cases that arise in a composed proof. There

may be cases from the same three categories as we saw with properties not using the proxy

versions of their key relations. The fourth type of case, and the one that is new here, is for

rules introduced independently of the property by modules that do not know the property

(independent rules in the terminology of Section 4.1), and thus do not provide proofs for it

for their rules. We consider the first two types of cases together, then look at the third.

For those cases we saw when not using the proxy version of the key relation, we have

the same considerations as there, plus handling the change of formulas of the form R(t)∗
i

into formulas of the form RP (t)
∗i , and the same change for those annotated with @i. In

Lemma 4.17, we saw the essential change here was in the annotated versions of the id

rule, where the modular proof might have used a hypothesis of the form R(t)∗
i
or R(t)@

i

to prove an un-annotated conclusion. In the composition, these hypotheses now have the

form RP (t)
∗i and RP (t)

@i
. The solution in the direct G proofs was to apply the dropP(R)

property whenever we used such a rule. Extensibella uses the same idea, but has to do

so somewhat indirectly. Abella, and therefore Extensibella, implements the id rule and

its annotated variants as part of the search tactic, so Extensibella does not know which

premises using the proxy version of the key relation, if any, are being used with an annotated
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version of the id rule. However, Extensibella knows the search tactic might need the non-

proxy-version of any hypotheses using the proxy version and it knows what those hypotheses

are. Thus, in building the composition, Extensibella proactively applies the dropP(R)

property to all hypotheses that might need it, adding this to the steps for using the proofs

written by modules discussed for properties that don’t use the proxy version of the key

relation.

Consider the case for the X-Seq rule in proving Property 3.3, that secure programs do

not leak private information. The proof proceeds by analyzing the second evaluation that

uses γ2, then by analyzing the derivation of Σ sl ⊢ secure(seq(s1, s2),Σ
′), and applying the

induction hypothesis to the evaluations of s1 and s2. In the modular proof given by the

security extension, this leaves us with a sequent

Σ, sl ,Σ′, γ1, γ
′
1, γ2, γ

′
2, s1, s2, γ

′′
1 , γ

′′
2 ,Σ

′′ : IH , eqpublicvals(Σ, γ1, γ2),

((γ1, s1) ⇓ γ′′1 )
∗, ((γ′′1 , s2) ⇓ γ′1)

∗, (γ2, s1) ⇓ γ′′2 , (γ
′′
2 , s2) ⇓ γ′2,

Σ sl ⊢ secure(s1,Σ
′′),Σ′′ sl ⊢ secure(s2,Σ

′),

eqpublicvals(Σ′′, γ′′1 , γ
′′
2 ), eqpublicvals(Σ

′, γ′1, γ
′
2)

−→ eqpublicvals(Σ′, γ′1, γ
′
2)

where IH is the induction hypothesis. At this point, the proof can be completed by the

search tactic, since the conclusion is exactly the same as one of the hypotheses. In building

the composed proof, we can apply the same line of reasoning, bringing us to a sequent

Σ, sl ,Σ′, γ1, γ
′
1, γ2, γ

′
2, s1, s2, γ

′′
1 , γ

′′
2 ,Σ

′′ : IH P , eqpublicvals(Σ, γ1, γ2),

((γ1, s1) ⇓P γ′′1 )
∗, ((γ′′1 , s2) ⇓P γ′1)

∗, (γ2, s1) ⇓ γ′′2 , (γ
′′
2 , s2) ⇓ γ′2,

Σ sl ⊢ secure(s1,Σ
′′),Σ′′ sl ⊢ secure(s2,Σ

′),

eqpublicvals(Σ′′, γ′′1 , γ
′′
2 ), eqpublicvals(Σ

′, γ′1, γ
′
2)

−→ eqpublicvals(Σ′, γ′1, γ
′
2)
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where IH P is the induction hypothesis using the proxy version of the key relation. Be-

fore applying the search tactic, Extensibella sees the two evaluation derivations using the

proxy version and uses the dropP(eval) property to produce hypotheses (γ1, s1) ⇓ γ′′1 and

(γ′′1 , s2) ⇓ γ′1 before using the search tactic. Note this is not necessary in this case, as

those hypotheses cannot be used to prove the conclusion, but Extensibella applies dropP(R)

liberally to be conservative with respect to its necessity.

The last remaining piece of the proof composition is the handling of the proof cases

for rules introduced by modules that don’t know the property exists. The rule for each of

these cases in the composition combines the actual rule given by the module and the proxy

rule given by the module introducing the relation. For example, in the composed proof of

Property 3.3, there is a case for the XP -Splitlist rule:

γ ⊢ e ⇓ cons(v1, v2) nhd ̸= ntl update(γ, nhd, v1, γ
′)

update(γ′, ntl, v2, γ
′′) proj s(splitlist(nhd, ntl, e), s

′) (γ, s′) ⇓P γ′′′

(γ, splitlist(nhd, ntl, e)) ⇓P γ′′
XP -Splitlist

This combines the premises of the X-Splitlist rule, the first four premises, with the

premises of the X-Q proxy rule for statement evaluation, the projection and evaluation of

the projection. The intuition behind proving such cases is that the module introducing the

property provided a generic case for the proxy rule instantiated for a generic constructor κ.

Since the sequent in the composed language includes the premises of the proxy rule, we can

use the proof of the generic case to create a proof of the composed cases for the new rules.

To use the generic proof for the new cases in the composition, we need to map the

generic proof state’s first sequent to the first sequent in the composition’s proof state. This

is similar to the mapping we saw above for mapping the generic case for the default rule

instantiated with ι to the composed proof’s sequent. However, this mapping maps the

variables in the original to terms, which could be variables or structured terms; maps the

generic κ constructor to a term instead of mapping ι to a term; and it must account for the

change from the key relation to its proxy version and added hypotheses in the new sequent
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Generic proof sequent: Composed proof sequent for XP -Splitlist

Σ, sl ,Σ′, γ1, γ
′
1, γ2, γ

′
2, s, : Σ, sl ,Σ′, γ1, γ

′
1, γ2, γ

′
2, s, , nhd, ntl, e, v1, v2, γ

′ :
IH , IH P ,
(γ2, κ) ⇓ γ′2, (γ2, splitlist(nhd, ntl, e)) ⇓ γ′2,
Σ sl ⊢ secure(κ,Σ′), Σ sl ⊢ secure(splitlist(nhd, ntl, e),Σ

′),
eqpublicvals(Σ, γ1, γ2), eqpublicvals(Σ, γ1, γ2),

γ1 ⊢ e ⇓ cons(v1, v2),
nhd ̸= ntl,
update(γ1, nhd, v1, γ

′),
update(γ′, ntl, v2, γ

′
1),

proj s(κ, s
′), proj s(splitlist(nhd, ntl, e), s

′),
(γ1, s′) ⇓ γ′1 (γ1, s′) ⇓P γ′1
−→ eqpublicvals(Σ′, γ′1, γ

′
2) −→ eqpublicvals(Σ′, γ′1, γ

′
2)

Figure 6.3: Mapping between hypotheses in a generic proof’s sequent and a corresponding
sequent in a composed proof

that were not present in the original. Figure 6.3 shows how the sequent from the generic

proof (left) maps to the sequent in the composed proof for XP -Splitlist (right) by aligning

the mapped hypotheses. Note the four hypotheses corresponding to the premises of the X-

Splitlist rule do not have hypotheses from the sequent for the generic proof mapping to

them, as they are specific to the list extension’s splitlist construct. What is required of

the mapping is that each hypothesis in the sequent for the generic proof correspond to one

in the sequent for the composed proof, as these are the hypotheses that may be used in

the generic proof, and thus that may be used in the composed proof. Extensibella uses

this mapping in building the composed proof as it did for the generic proof written for the

default rule instantiated for ι, replacing the variables from the original proof with the terms

to which they map in the new sequent and replacing the generic constructor κ with the

term to which it maps.

The one remaining issue in using generic proofs written for the proxy rule instantiated for

the generic constructor κ for the rules written by other extensions is that certain branches

of the proof may be pruned by replacing variables in the original proof with structured

terms; this was noted also in the proof of Theorem 3.4. Extensibella can recognize that a

case from the original proof has been pruned by checking if the generic proof’s sequent for
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the branch maps to the composed proof’s sequent. If it does not map, the branch has been

pruned, and the rest of the tactics in the branch, as determined by the subgoal numbers with

which they are associated, can be dropped. If it does map, the branch is still present in the

composed proof, and its tactics can be applied, once appropriately substituted according to

the mapping found. In this way, the generic proof can be used to complete the proof of a

sequent in the composition.

Thus, by applying the correct portions of the modular proofs from each Extensibella

development, we can complete the proof of each property for the composed language. While

we have implicitly couched our discussion here in terms of proving individual properties,

it applies to full sets of mutually-inductive properties as well. Then we can produce a full

Abella development demonstrating all the properties hold for a composed language.
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Chapter 7

Using the Framework in Practice

In this chapter, we examine the practical application of our framework, looking at how our

proof restrictions and the module structure of specifications affect the proofs of properties,

both in how we write the proofs and what properties are provable, as well as how modular

metatheory influences language specifications themselves. We do this by looking at several

example languages we have developed using our Sterling and Extensibella implementations

of our extensibility and reasoning frameworks.

Overall, we have found our framework is quite effective, proving a number of properties

for several different languages. These include properties such as progress and type preserva-

tion for the lambda calculus and type and evaluation uniqueness for imperative languages.

The Sterling and Extensibella code for our examples can be found on our website [26]. The

proofs of many metatheoretic properties naturally follow the restrictions on case analysis

imposed by Definitions 4.1 and 4.6, so the approaches used in non-extensible settings can

often be imported directly to the extensible one. We have found generic cases also often

fit into the natural way of structuring the proofs of properties that would be used in a

non-extensible setting.

Not all proofs work out as naturally in the extensible setting as in non-extensible settings,

however, and we consider some such cases by example in the remainder of this chapter. First,

extensibility does occasionally cause problems in writing proofs, either due to wanting to

use a disallowed case analysis or wanting to introduce a property in an extension, but

where we cannot prove the generic case. We consider how we overcome such problems in

specific circumstances in Sections 7.1 and 7.2 as a model for how they might be overcome
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in general. We further consider how extensibility affects language metatheory, specifically

how it relates to introducing properties in extensions in the next two sections. Section 7.3

considers how relations and properties about them differ when introduced by extensions as

opposed to being introduced by the module introducing the relation’s primary component

category. Section 7.4 then considers how choices the designer of the host language makes

regarding constructs to include in the language and projection constraints to introduce affect

the constructs and properties extensions may introduce. Section 7.5 closes by laying out

considerations language designers should bear in mind when writing language specifications

and property sets for modules, gleaned from our experiences in writing these and other

examples, to help them in creating modules on which it is easy for others to build.

7.1 Overcoming Restrictions on Case Analysis

We start by considering a situation where our restrictions on case analysis from Defini-

tions 4.1 and 4.6 prevent us from proving what we want in the most direct way. Suppose

we want to prove equality is decidable for expressions in the language from Chapter 2. This

property can be expressed by the formula

∀e1, e2.e1 = e2 ∨ (e1 = e2 ⊃ ⊥)

Proving this statement depends on analyzing the structures of e1 and e2 to see if they are the

same or not. We cannot do this in G directly as its types do not provide information about

structure. In Abella, this limitation is commonly addressed by introducing is relations,

relations that encode the structure of all constructors of a type. These are commonly given

names starting with “is”, hence the name of the class of relations. They are so common that

Sterling automatically introduces such a relation for each syntax category in a specification.

For expressions in our example language, we can have a relation is e, some of the rules for

which are shown in Figure 7.1. The formula for decidable equality then becomes

∀e1, e2.is e(e1) ⊃ is e(e2) ⊃ e1 = e2 ∨ (e1 = e2 ⊃ ⊥)
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is e(true)
IsE-True

is e(false)
IsE-False

is n(n)

is e(var(n))
IsE-Var

is i(i)

is e(intlit(i))
IsE-Intlit

is e(e1) is e(e2)

is e(add(e1, e2))
IsE-Add

is e(e1) is e(e2)

is e(eq(e1, e2))
IsE-Eq

is e(e1) is e(e2)

is e(gt(e1, e2))
IsE-Gt

is e(e)

is e(not(e))
IsE-Not

Figure 7.1: Rules in the host language for the is relation for expressions

This we can prove in G, since we can analyze both is e(e1) and is e(e2) to get information

about the expressions’ structures, finding each is either built by the same constructor and

their sub-expressions are either equal or not, or they are built by different constructors and

thus are not equal.

This proof structure does not work in the extensible setting, however. Considering this

as a property introduced by our host language, the derivation of the key relation in this

property is is e(e1), so our top-level case analysis gives us cases for when e1 is constructed

by the var constructor, the intlit constructor, and so on. However, once we know the

structure of e1, we cannot then examine the structure of e2 by analyzing is e(e2) because

its primary component is unstructured; this is the very reason we want to analyze it, to

give it structure.

To get around this restriction, we can prove separate properties to use as lemmas in the

main proof that will allow us to specify whether or not e2 has a particular form. For each

constructor it introduces, the host language also introduces and proves a property stating

an expression’s top-level symbol is that constructor or not. For the true constructor, we

have

∀e.is e(e) ⊃ e = true ∨ (e = true ⊃ ⊥)

For the add constructor, we have

∀e.is e(e) ⊃ (∃e1, e2.e = add(e1, e2)) ∨ ((∃e1, e2.e = add(e1, e2)) ⊃ ⊥)
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These properties are easily provable in our framework.

The host language’s modular proof that equality is decidable then applies the appro-

priate lemma in each case to check whether e2 is built by the same constructor as e1. For

example, if e1 is built by the add constructor, we apply the above property that states any

expression is either built by the add constructor or not to is e(e2). If it is not built by the

add constructor, e1 and e2 are not equal and we can easily finish the proof. If e2 is built

by the add constructor, e2 is actually add(e′1, e
′
2), and the derivation of is e(e2) is actually

a derivation of is e(add(e′1, e
′
2)). Since the primary component of this is now structured,

we can analyze it with the defL rule to get is e(e′1) and is e(e′2) for use with the induction

hypothesis with is e derivations for the sub-expressions of e1.

The list extension must also provide a new modular proof of each of these properties for

the constructs it introduces. For the form lemmas introduced by the host language, such

as that an expression is built by add or not, the proof for each new construct is simple, as

the new constructors like cons cannot be equal to the constructors introduced by the host

language. For decidable equality itself, we need to apply the same strategy as in the host

language, creating new form lemmas for the list constructs, such as

∀e.is e(e) ⊃ (∃e1, e2.e = cons(e1, e2)) ∨ ((∃e1, e2.e = cons(e1, e2)) ⊃ ⊥)

that we can use in the same manner as in the host language. As long as the host language

proved addP(is e), allowing us to use the host language’s is e relation as the key relation

for extension-introduced properties, these extension-introduced form lemmas can be proven

as easily as those introduced by the host language. The proofs for cases for known con-

structors are easy, and the generic constructor in the generic case is not equal to any known

constructor, so the generic case is easily provable as well.

Thus we see that, while our restrictions on proofs prevent proving the decidability of

equality directly as we would in a non-extensible setting, we can use auxiliary properties as

lemmas to replace the disallowed second case analysis. This is a strategy that can similarly

be applied in other situations, introducing lemmas to specify what we would use a second
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case analysis to show in a non-extensible setting.

7.2 Simply-Typed Lambda Calculus

Our next example examines how a property might not be provable when introduced by a

module other than the one introducing its primary component category and key relation

because its generic case has no proof, and how we might overcome this difficulty in some

cases. The language we consider here uses as its host language the simply-typed lambda

calculus with numbers and addition.1 This module introduces categories for terms and

types, with the syntax shown in Figure 7.2. The host language’s module also defines typing,

small-step evaluation, and substitution of a term for a name, with rules as expected. Finally,

it introduces a predicate for determining whether a term is a value. Rules for evaluation

and identifying values are also shown in Figure 7.2.

Term projection is defined with an extra argument of a type context, allowing projections

to be based on the types of terms. We have two extensions, both of which take advantage of

this extra argument to use types in projection. The first extension introduces let bindings

that project to applications of abstractions, with the type of the bound variable being

the type of the term bound by the let. This is the P-Let rule in Figure 7.3. The other

extension we write introduces syntax for pairs of terms of the same type, projecting the

first and second elements out of pairs, and pair types. Pairs of terms of type τ project

to functions taking a selector of type τ → τ → τ that chooses either the first or second

element out of the pair, with the projections of the fst and snd selectors applying the pairs

to such selectors. These rules are also shown in Figure 7.3. In addition to defining new

syntax and projections for it, both of these extensions also define the relations from the host

language for their new syntax, with rules as one would expect for the constructs. The only

new construct identified as a value is the pair construct, which is a value if both elements

of the pair are also values.

Our host language introduces a number of properties, most of which we will not discuss

1Sterling and Extensibella code available online at https://mmel.cs.umn.edu/extensibella/examples/
stlc/description.html
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tm ::= λx : τ.tm τ ::= intTy
| tm tm | τ → τ
| x
| tm + tm
| int(i)

eval(tm∗, tm)

eval(t1, t
′
1)

eval(t1 t2, t
′
1 t2)

E-App-Step1
value(t1) eval(t2, t

′
2)

eval(t1 t2, t1 t′2)
E-App-Step2

value(t2) subst(x, t2, t1, t)

eval((λx : τ.t1) t2, t)
E-App-Subst

eval(t1, t
′
1)

eval(t1 + t2, t
′
1 + t2)

E-Plus-Step1
value(t1) eval(t2, t

′
2)

eval(t1 + t2, t1 + t′2)
E-Plus-Step2

i1 + i2 = i

eval(int(i1) + int(i2), int(i))
E-Plus-Add

value(tm∗)

value(λx : τ.t)
V-Abs

int(i)
V-Int

Figure 7.2: Syntax for our lambda calculus host language, its evaluation relation and rules
defining it, and its predicate and rules defining value forms

Let extension:
Γ ⊢ t1 : τ

proj tm(Γ, let(x, t1, t2), (λx : τ.t2) t1)
P-Let

Pair extension:

Γ ⊢ t1 : τ

proj tm(Γ, pair(t1, t2), (λa : τ.λb : τ.λs : τ → τ → τ.s a b) t1 t2)
P-Pair

Γ ⊢ t : pairTy(τ)

proj tm(Γ, fst(t), t (λa : τ.λb : τ.a))
P-Fst

Γ ⊢ t : pairTy(τ)

proj tm(Γ, snd(t), t (λa : τ.λb : τ.b))
P-Snd

proj ty(pairTy(τ), (τ → τ → τ) → τ)
P-PairTy

Figure 7.3: Projection rules for extensions to the simply-typed lambda calculus
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in detail, such as that typing, substitution, and evaluation are unique; terms identified as

values cannot take an evaluation step; type preservation for evaluation and substitution; and

totality of substitution. All of these proofs proceed as one would expect in a non-extensible

setting, with the only difference being the distribution of the proof cases across the three

modules. We will focus on one property introduced by the host language and the lemmas

necessary for proving it that cannot be proven exactly as in a non-extensible setting. The

property is progress, that terms well-typed with an empty typing context are either values

or can take an evaluation step:

∀t, τ.· ⊢ t : τ ⊃ (∃t′.eval(t, t′)) ∨ value(t) (7.1)

The lemmas are canonical form lemmas, that values with particular types have particular

forms. One such lemma our host language can introduce and prove is

∀t.· ⊢ t : intTy ⊃ value(t) ⊃ ∃i.t = int(i) (7.2)

stating that the form of a term identified as a value and that has an integer type is that of

a numeric constant using the constructor int .

The proof of progress typically proceeds by induction and case analysis on the typing

derivation, in each case either noting the term is a value form or applying the induction hy-

pothesis to its sub-terms and checking whether they are values or can take evaluation steps.

If one of the sub-terms can take a step of evaluation, the appropriate rule for evaluating

the whole term by that sub-term stepping can be used. If not, all sub-terms are values, and

we use the appropriate canonical form lemma to show the values are the right shape to use

another rule. For example, in proving progress for an addition t1+ t2, we use the induction

hypothesis to show that either t1 or t2 steps, or they are both values. If t1 steps to t′1, we

can use the E-Plus-Step1 rule from Figure 7.2 to find t1+ t2 steps to t′1+ t2, and similarly

use the E-Plus-Step2 rule if t2 steps. If both are values, our canonical form lemma for

integers, shown above, tells us both t1 and t2 must be numeric constants because they both

168



Let:

eval(t1, t
′
1)

eval(let(x, t1, t2), let(x, t
′
1, t2))

E-Let-Step
value(t1) subst(x, t1, t2, t)

eval(let(x, t1, t2), t)
E-Let-Subst

Pair:

eval(t1, t
′
1)

eval(pair(t1, t2), pair(t
′
1, t2))

E-Pair-Step1
eval(t2, t

′
2)

eval(pair(t1, t2), pair(t1, t
′
2))

E-Pair-Step2

eval(t, t′)

eval(fst(t), fst(t′))
E-Fst-Step

value(pair(t1, t2))

eval(fst(pair(t1, t2)), t1)
E-Fst-Pair

eval(t, t′)

eval(snd(t), snd(t′))
E-Snd-Step

value(pair(t1, t2))

eval(snd(pair(t1, t2)), t2)
E-Snd-Pair

Figure 7.4: Evaluation rules from the let and pair extensions

have type intTy . We can then use the E-Plus-Add rule from Figure 7.2 to evaluate the

addition.

The proof of progress for the let extension proceeds similarly to that of the host language.

For let(x, t1, t2), either t1 steps to t′1, giving us let(x, t′1, t2) by the E-Let-Step rule in

Figure 7.4, or t1 is a value, in which case we use the E-Let-Subst rule, substituting t1 into

t2 for x. Note we do not care what value form t1 has; it could be a numeric constant, an

abstraction, or a pair as introduced by the other extension. That it does not care about the

form is a key reason why the let extension does not encounter any problems in its proof.

The pair extension, in contrast, does have rules that depend on a particular value

form, specifically the new value form it introduces, and thus it does encounter problems in

proving progress. The evaluation rules for the pair extension are also shown in Figure 7.4.

The evaluation rules for fst(t) either step t to t′ (E-Fst-Step) or, if t is a value, expect it to

have the form pair(t1, t2) (E-Fst-Pair); the rules for snd are similar. The proof of progress

for fst(t) uses the induction hypothesis to show that either t steps, in which case we can use

the E-Fst-Step rule, or it is a value. If t is a value, we need it to be constructed by the

pair constructor in order to apply the E-Fst-Pair rule, just as we needed the sub-terms

to be numbers to apply the E-Plus-Add rule for the host language’s add constructor. To
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show t must be pair -shaped, we need a canonical form lemma for the pair type:

∀t, τ.· ⊢ t : pairTy(τ) ⊃ value(t) ⊃ ∃t1, t2.t = pair(t1, t2) (7.3)

Note that such a property must be introduced by the pair extension, since it mentions

the pair and pairTy constructors introduced by it; the host language does not know these

constructors, and thus cannot introduce this property.

Unfortunately, whether we use the value predicate or the typing relation as our key

relation for this canonical form lemma, we must prove a case for a generic constructor κ

due to the key relation being an imported one, and we cannot. In the generic case, we assume

κ has type pairTy(τ) and that it is a value. Because the generic constructor, standing in for

a term built by a new constructor from another extension, cannot have pair as its top-level

symbol, the proof requires showing this combination of assumptions is impossible, but we

have no way to show this. The projection of κ does not need to have the same type, nor

does it need to be a value, so we cannot prove the lemma in the generic case, leaving the

pair extension’s proof of progress stuck.

Without extensions being able to introduce new canonical form lemmas, it appears our

language library cannot support both extensions introducing new value forms and the host

language introducing the progress property. Fortunately, the host language designer can

recognize the problems that will arise for extension modules introducing new canonical form

lemmas and introduce a solution before any extensions are written. Rather than having

each module introduce a new canonical form lemma specific to each of its new types, the

host language declares an extensible canonical form relation canon, shown in Figure 7.5,

relating a type to terms of the form expected for its values. The unified canonical form

lemma introduced by the host language then states a value-identified, typable term has the

canon relation hold for its type and itself:

∀t, τ.· ⊢ t : τ ⊃ value(t) ⊃ canon(τ, t)
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canon(ty∗, tm) ∈ Rhost

Rhost :

canon(intTy , int(i))
C-Int

canon(τ1 → τ2, λx : τ1.t)
C-Arrow

Rpair :

canon(pairTy(τ), pair(t1, t2))
C-Pair

Figure 7.5: A canonical form relation to define one overarching canonical form lemma

We can see how this corresponds to the forms of Properties 7.2 and 7.3 for integers and

pairs. When the type τ is an integer type, the term must have an integer form, as specified

by the C-Int rule, and when the type is a pair type, the term must have a pair form, as

specified by the C-Pair rule. Because it is introduced by the host language, which also

introduces its key relation and the primary component category thereof, we do not need to

prove a generic case as we would need to do for the pair-specific version introduced by the

pair extension, avoiding the difficulties we saw there.

Consider proving progress for addition again. If both sub-terms of t1+ t2 are values, we

can use the unified canonical form lemma and the fact that both must have type intTy to

get canon(intTy , t1) and canon(intTy , t2). Because the type is the primary component of

canon, we can analyze these to find both t1 and t2 are numeric constants by the C-Int rule,

and thus we can use the E-Plus-Add rule to evaluate the original addition. Similarly, for

fst(t) from the pair extension, if t is a value, it must have type pairTy(τ), and our unified

canonical form lemma gives us canon(pairTy(τ), t). Case analysis on this shows t has a

pair shape by the C-Pair rule, and we can apply the E-Fst-Pair rule to evaluate fst(t).

We choose the type as the primary component of the canon relation both because this is

how we need to use it, to find the form of terms when the type is known, and because the

purpose of the relation is to tell us something about the type, namely what forms values for

it might take.
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By the host language designer recognizing the difficulties extensions will face with canon-

ical form lemmas and introducing a relation and property to alleviate them, we are able to

have both the progress property and freedom for extensions to introduce new value forms.

This approach could be adapted to other situations where the host language can antici-

pate a certain form of lemma, where different constructs need the same type of information

but the details are specific to each construct, is needed by extensions to support the host

language’s properties, allowing it to unify all the lemmas into one that it introduces itself.

We also see in this example how extensibility can affect both language specifications

and property statements. In a non-extensible setting, there would not be a reason to have

the canon relation, as all canonical form lemmas could be written and proven directly. It

is only in the extensible setting that we need to encapsulate them so.

7.3 Lambda Calculus with Typing Extension

Next we consider a language library with a different version of the lambda calculus, one

where typing is introduced by an extension, and examine how this change of module struc-

ture affects what we may prove about typing. The new host language is similar to that

from the previous section, just without typing.2 The new language library includes a pair

extension, similar to the one from the language library of the previous section, allowing

programmers using a language to use pair syntax. As mentioned, it also includes an ex-

tension introducing typing to the language. Including typing as an extension instead of as

part of the host language allows users to choose whether they want static typing to give

them some safety or would prefer the freedom to use any term the syntax allows, not just

typable ones. This change allows us to consider the effects of introducing a relation in an

extension, instead of in the host language that introduces its primary component category,

on its definition and on what may be proven about it. Specifically, this change means the

typing relation will be defined in some cases by a default rule, and properties about it will

have generic cases to be proven.

2Sterling and Extensibella code available online at https://mmel.cs.umn.edu/extensibella/examples/
lambda_calculus/description.html
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tm ::= λx.tm
| tm tm
| x
| tm + tm
| int(i)

eval(tm∗, tm)

eval(λx.t, λx.t)
E-Abs

eval(int(i), int(i))
E-Int

eval(t1, λx.t
′
1) eval(t2, t

′
2) subst(x, t2, t

′
1, t

′) eval(t′, t)

eval(t1 t2, t)
E-App

eval(t1, int(i1)) eval(t2, int(i2)) i1 + i2 = i

eval(t1 + t2, int(i))
E-Plus

Figure 7.6: Syntax and evaluation rules for the untyped lambda calculus

As in the previous section, the host language defines syntax for terms and a substitution

relation, with the syntax shown in Figure 7.6. Note that we no longer have syntax for types,

nor does the abstraction have a type annotation for its argument, as the host language does

not introduce typing. The host language introduces substitution for variables (relation

subst), with the rules being as expected, and big-step evaluation, with rules shown in

Figure 7.6. It introduces a projection relation for the tm syntax category that takes no

extra arguments. Using this projection relation, it defines a proxy rule for the evaluation

relation:

proj tm(t, t0) eval(t0, t
′′)

eval(t, t′)

E-Q

This allows extensions introducing properties with evaluation as the key relation to assume,

in the generic case, that the term being evaluated projects and its projection also evaluates.

The host language introduces properties that substitution is total and evaluation and

substitution are unique, with these proofs proceeding as in non-extensible settings. It

also introduces projection constraints about evaluation and substitution. The projection

constraints this host language introduces are that substitution and evaluation are exactly
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the same for a construct and its projection, stated as

∀x, r, t, t′, t0.subst(x, r, t, t′) ⊃ proj tm(t, t0) ⊃ subst(x, r, t0, t
′)

for substitution and

∀t, v, t0.eval(t, v) ⊃ proj tm(t, t0) ⊃ eval(t0, v)

for evaluation, that a term t’s projection t0 evaluates to the same value and substituting

for a variable in t and t0 produces the same substituted term. Finally, the host language

introduces the addP(eval) property without any extra premises (i.e., in the terminology of

Section 4.4.3, Feval is empty).

We introduce a pair extension as in the previous section, with constructors for building

pairs and selecting elements from them (i.e., the same constructors as in the previous

section other than the pairTy constructor). The rules from this extension are shown in

Figure 7.7. The projection for each constructor is the same as in the previous section, but

without types for the abstractions. Looking at rules S-Pair, S-Fst, and S-Snd that define

substitution for the pair extension’s constructs, the definitions appear a bit peculiar. Rather

than substitution in a pair pair(t1, t2) resulting in a pair pair(s1, s2) where substitution

in t1 gives s1 and substitution in t2 gives s2, we instead find the substitution results in

applications of an abstraction. This is because the host language’s projection constraint for

substitution requires the pair’s substitution give exactly the same term as the substitution

in its projection. We can see the result has the same structure as the pair’s projection, but

with the substituted sub-terms replacing the original ones, and that the same is true for the

rules for substitution in fst and snd . The evaluation relation is similarly constrained, and

the pair extension’s rules defining it take a more direct approach to showing the correlation,

defining the evaluation of pair constructs directly as the evaluation of their projections. Thus

we see the host language’s projection constraints are very strict, eliminating the freedom of

extensions to introduce their own value constructors and thus requiring odd definitions.
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proj tm(tm∗, tm)

proj tm(pair(t1, t2), (λa.λb.λs.s a b) t1 t2)
P-Pair

proj tm(fst(t), t (λa.λb.a))
P-Fst

proj tm(snd(t), t (λa.λb.b))
P-Snd

subst(x, tm, tm∗, tm)

subst(x, r, t1, s1) subst(x, r, t2, s2)

subst(pair(t1, t2), (λa.λb.λs.s a b) s1 s2)
S-Pair

subst(x, r, t, s)

subst(x, r, fst(t), s (λa.λb.a))
S-Fst

subst(x, r, t, s)

subst(x, r, snd(t), s (λa.λb.b))
S-Snd

eval(tm∗, tm)

eval((λa.λb.λs.s a b) t1 t2, t)

eval(pair(t1, t2), t)
E-Pair

eval(t (λa.λb.a), t′)

eval(fst(t), t′)
E-Fst

eval(t (λa.λb.b), t′)

eval(snd(t), t′)
E-Snd

Figure 7.7: Rules introduced by the pair extension
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The benefit of these strict constraints is that they allow other extensions to understand

evaluation very well, as we shall see in considering another extension, this one introducing

typing to the language. It gives a new syntax category for types and constructors arrowTy

and intTy for it, as well as a syntax constructor for abstractions with their variables anno-

tated with types (i.e., abstractions as we see in the simply-typed lambda calculus) project-

ing to the host language’s untyped abstractions, and defines evaluation and substitution for

it. Most importantly, it introduces a typing relation, giving rules for the host language’s

constructs and its own typed abstraction, which are as expected, with the default rule

proj tm(t, t′) Γ ⊢ t′ : τ

Γ ⊢ t : τ

T-Default

This copies the type for an unknown construct, such as the pair extension’s pair constructor,

from its projection.

This extension also introduces several properties about typing, culminating in a proof

of type preservation with evaluation as its key relation:

∀t, τ, t′.eval(t, t′) ⊃ · ⊢ t : τ ⊃ · ⊢ t′ : τ

The cases for known rules proceed as in non-extensible settings, noting each sub-term

evaluates to a value of the correct type, and thus the whole term evaluates to the correct

type. In the generic case, which is for the proxy rule E-Q for evaluation instantiated for the

generic constructor κ, we know that κ evaluates to t′, κ projects to t0 and that t0 evaluates

to t′′. We can analyze the typing derivation, which must be derived by the T-Default

rule instantiated for κ, to find t0 has the same type, then use the induction hypothesis to

find the projection’s value t′′ has the same type as well. Since both the original term and

its projection are required by the host language’s projection constraint to evaluate to the

same value (t′ = t′′), this completes the proof in the generic case.

In the relationship between the projection constraints, the definitions given by the pair

extension, and the property proven by the typing extension, we see the trade-off between
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extension freedom and the ability to prove desired properties. By the host language restrict-

ing how extensions define their semantics, the pair extension’s rules end up a bit strange,

but the typing extension can prove type preservation. If the host language gave extensions

more freedom by having less-restrictive projection constraints, the pair extension’s evalua-

tion rules could match those from the previous section, but the typing extension would find

it difficult, if not impossible, to prove its property.

Despite the apparent strictness of the host language, in some sense extensions have

more freedom than the typing extension would like, as we cannot prove progress with these

constraints. In the generic case we would be able to show the projection evaluates, but

without a projection constraint saying a term evaluates whenever its projection evaluates,

we cannot lift the evaluation back to the original term. However, limiting freedom more,

while it happens it would not affect the pair extension, would mean some extensions that

could be written in the current language would be disallowed.

Considering this example relative to the previous one, we also see how which modules

introduce relations and properties affects their definitions and provability. With typing

introduced by the host language in the previous section, which also introduced its key

relation and primary component category, proving progress was not a problem because all

modules knew the property and thus it could always be treated non-generically. Having

the host language introducing typing also allows the pair extension to define its own type

and typing, giving a better definition of typing for pairs. In this language, where typing is

introduced by an extension, we need to treat type preservation generically, which requires

strict constraints, and would need to treat progress generically with even stricter constraints

to be able to prove it. Moving typing to an extension also means the pair extension cannot

introduce pair-specific typing, resulting in a subjectively worse definition of typing overall

(e.g., fst(λx.x) would be typable because the projection of fst expects a function). Thus we

see that while some analyses do not significantly suffer from being introduced by extension

modules, such as the relations from the security and optimization extensions from Chapter 2,

others have worse definitions, and significant restrictions on what properties can be proven

about them.
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Whether a relation’s definition suffers from being introduced by a different module than

introduces its primary component category appears to be tied to the exact nature of the

relation. Typing, which relates specific constructor forms for expressions and types, works

best when each expression form can have rules written explicitly for it. Information flow

security for expressions, which depends only on the variables in an expression and the levels

they are assigned, can be defined just as well generically as directly. Optimization for

expressions falls somewhere in between. It would be useful to have rules written explicitly

for each expression form. However, our default rule that optimizes an expression to itself

also gives a workable definition, one that is perhaps better than the definition of typing

through a default rule in this language, but worse than the ideal definition.

7.4 Variations on an Imperative Language

Our final example investigates the trade-offs in the strictness of projection constraints and

the freedom of extensions in defining their semantics. It also looks at how the constructs

included in a host language affect the constructs and semantics extensions can introduce,

particularly in light of differing projection constraints. In particular, we find that both the

host language’s choices of metatheoretic properties, especially projection constraints, and its

choices in defining its own syntax and semantics affect what extensions may introduce and

how extensions must write their definitions. We also find that the strictness of projection

constraints can affect not only what properties extensions can prove, but also how the proofs

of those properties are written.

Our investigation uses three variations of a language and its metatheory that differ in

minor ways in the constructs they introduce, and differ in major ways in the projection

constraints they introduce. Using three language libraries with similar host languages and

adding similar extensions to them lets us directly compare how the differences affect what

constructs extensions can introduce, how they can define the semantics of those constructs,

and the properties they can prove.

The language underlying all three variations is an imperative language, similar to the
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one from Chapter 2, but more complex. It has expression forms for numbers and arithmetic,

booleans, strings, records, and function calls and type forms for integer, boolean, string, and

record types. It also has an expression form error representing situations where computation

fails, the idea being it is like throwing an exception in a language like Java and halts

execution. Our underlying language includes the statement forms from the language in

Chapter 2, skip, decl , assign, seq , ifte, and while. We additionally include three new

constructs. The print construct (print(e)) represents printing the value of an expression,

and the recUpdate (recUpdate(n,ns, e) where ns is a sequence of field names) represents

updating a field in an existing record (e.g., r.f1.f2 = e, using concrete syntax like C’s

struct updates). Finally, the scopeStmt construct (scopeStmt(s)) represents opening a new

scope for names. The scope of a variable name is the part of a program in which it is valid.

In our language, as in languages like C and Java, we generalize this to a scope being an

explicitly-created portion of the program where names declared inside it may be used inside

it after their declarations but are then not available outside.

In addition to expressions, statements, and types, our language includes syntax cat-

egories for function declarations fun and programs prog , each with one constructor. A

function declaration has a name for the function, parameters to the function and their

types, a return type, and a statement body. A program is a list of function declarations,

with one chosen as the main function, as in C or Java.

We have six extensions, summarized in Table 7.1. We split these into two groups. Syn-

tactic extensions are those focused on adding new syntax, not new properties or relations;

new properties and relations added in them are there only to support the new syntax and

extend the imported semantics to it. Semantic extensions are focused on adding new re-

lations and properties, not new syntax, although they may do so to support making use

of their new relations and properties. In the remainder of this section, we first look at

the differences between the language libraries, then look at how the differences affect the

implementations of each of these modules as extensions in the libraries.

179



Syntactic Extensions

Ascription Extension
Adds an expression form for ascribing types to arbitrary
extensions

Assertion Extension
Adds a statement form for asserting conditions are true and
abruptly terminating if they are not

Conditional Expression
Extension

Adds an expression form for conditionally evaluating one of
two expressions

List Extension
Adds list expression forms like cons and tail , statement
forms listUpdate for updating a list in place and listForeach
for looping over all elements of a list, and a list type

Semantic Extensions

Security Extension
Adds a security analysis to check programs do not leak sen-
sitive information

Translation Extension
Adds a translation relation to translate programs into the
host language

Table 7.1: Extension modules added to our language variations

7.4.1 Language Library Versions and Projection Constraints

We have three versions of our language and metatheory. They differ in the particulars of

how their host languages define the language semantics, with one also introducing another

expression form to make its language richer. They also differ in how strict their projection

constraints for evaluation are. We look at each in turn.

Loose Evaluation in VL

Our first version of the language library has loose projection constraints for expression

evaluation, so we use VL to refer to it and its metatheory. Some of its relevant relations

and a few rules are shown in Figure 7.8.3 These relations make use of some non-extensible

syntax categories that will be shared by all three versions of the underlying language. These

categories are:

• fECtx : A context of known functions that carries information necessary for function

call expressions to lookup the function being called and evaluate its body.

3The full Sterling and Extensibella development can be found at https://mmel.cs.umn.edu/

extensibella/examples/looseEval/description.html.
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• output : A sequence of printed values that has constructors nilOutput with no argu-

ments and consOutput(e, output).

• eCtx : Scoped evaluation contexts that map variable names to values. The constructors

for this category are nilScopes for completely empty contexts and addScope(γ, eCtx)

where γ is a set of bindings as in the language from Chapter 2; recall γ has constructors

nilval and consval(n, e, γ).

These categories help us define evaluation with function calls, printed output, and explicit

scopes for variables.

Our language includes a number of relations. The ones we will discuss are listed in

Figure 7.8. Note that for relations introduced by different language libraries that have

different definitions in the different libraries, we will subscript uses of them to specify to

which library they belong. One relation introduced by VL, varsL, maps expressions to the

variables occurring in them. The expression evaluation relation evalExprL relates a function

context, evaluation context, and expression to its produced value and printed output. The

statement evaluation relation evalStmtL relates a function context, evaluation context, and

statement to an updated evaluation context and printed output. The program evaluation

relation evalProgL relates a list of arguments and a program to its printed output, being

defined as evaluating its main function with the arguments given. The projection relation for

statements includes another argument besides the projection statement and its projection,

this argument being a set of variables. This is the set of names currently bound in the

program at the point the statement occurs, which we can get from an evaluation context

using the namesOf (eCtx ∗, 2n) relation. Using the set of known names, we can find fresh

ones with the freshName((2n)∗, n) relation, which, assuming an ordering on variable names,

finds the first name not in the given set, letting statement projections use new temporary

variables. Note these last two relations are defined the same across all three libraries, so we

do not subscript them.

The two interesting aspects of the relations here compared to those from Chapter 2

are the explicit scoping in evaluation contexts and the printed output, both seen in rules

181



Relations include
varsL(e

∗, 2n), evalExprL(fECtx , eCtx , e
∗, e, output),

evalStmtL(fECtx , eCtx , s
∗, eCtx , output), evalProgL(e, prog

∗, output),
namesOf (eCtx ∗, 2n), freshName((2n)∗, n), concat(output∗, output , output)

Projection relations include
proj eL(e

∗, e), proj sL(2
n, s∗, s), proj progL (prog∗, prog)

evalExprL(fECtx , eCtx , e
∗, e, output)

evalExprL(fECtx , eCtx , intlit(i), intlit(i),nilOutput)
EL-Intlit

evalExprL(fECtx , eCtx , e1, intlit(i2), o1)
evalExprL(fECtx , eCtx , e2, intlit(i1), o2)

plus(i1, i2, i) concat(o1, o2, o)

evalExprL(fECtx , eCtx , add(e1, e2), intlit(i), o)
EL-Add

evalStmtL(fECtx , eCtx , s
∗, eCtx , output)

evalExprL(fECtx , eCtx , e, true, o1)
evalStmtL(fECtx , addScope(nilval , eCtx ), st, addScope(γ, eCtx

′), o2)
concat(o1, o2, o)

evalStmtL(fECtx , eCtx , ifte(e, st, sf ), eCtx
′, o)

XL-If-True

evalStmtL(fECtx , addScope(nilval , eCtx ), s, addScope(γ, eCtx
′), o)

evalStmtL(fECtx , eCtx , scopeStmt(s), eCtx ′, o)
XL-ScopeStmt

evalStmtL(fECtx , eCtx , s1, eCtx 1, o1)
evalStmtL(fECtx , eCtx 1, s2, eCtx

′, o2) concat(o1, o2, o)

evalStmtL(fECtx , eCtx , seq(s1, s2), eCtx
′, o)

XL-Seq

evalExprL(fECtx , eCtx , e, intlit(i), o
′)

concat(o′, consOutput(intlit(i),nilOutput), o)

evalStmtL(fECtx , eCtx , print(e), eCtx , o)
XL-Print-Int

Figure 7.8: Selected relations and rules in VL’s host language
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in Figure 7.8. We see the explicit scoping in XL-If-True and XL-ScopeStmt. In both

rules we create a new, empty scope for evaluating a sub-statement, and remove the scope

after its evaluation, eliminating the new bindings that occurred in the scope but keeping

any updates to bindings from the rest of the program. We see specifications of printed

output in all the rules. Note that, while expressions cannot directly print themselves,

as printed output only comes from print statements, they may indirectly print through

function calls. Evaluating numeric constants cannot print anything, so the output in the

EL-Intlit rule is empty. In the EL-Add rule, both sub-expressions may print, so we

use a relation concat(output∗, output , output) that concatenates the two lists into one. We

similarly concatenate output in XL-Seq and XL-If-True. In XL-Print-Int, the output

is whatever the expression’s evaluation printed plus the integer value being printed.

The host language for VL introduces a number of properties; the ones that will be

important in our discussion are primarily the projection constraints. The looseness of

projection constraints here refers primarily to expression evaluation. The host language

introduces a constraint that an expression’s projection evaluates if it does, and that they

have the same printed output:

∀e, e′, fECtx , eCtx , v, o.proj eL(e, e′) ⊃

evalExprL(fECtx , eCtx , e, v, o) ⊃ ∃v′.evalExprL(fECtx , eCtx , e′, v′, o)

This does not place any requirements on values produced by evaluating each; as we shall

see in our discussions of extensions, they can be totally unrelated. However, by requiring

the same printed output from both, it places an implicit constraint on the order in which

sub-expressions are to be evaluated in both. Because we concatenate printed output in rules

based on which sub-expression is evaluated “first”, conceptually, an expression’s projection

must evaluate the sub-expressions in the same order. Note this projection constraint does

not apply to printing values and their projections themselves, such as evaluating print(e)

and print(e′) where e projects to e′, only to the printed output of evaluating each of e and

e′.
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The host language for VL imposes a stricter constraint on statement evaluation, that

a statement’s projection evaluates with the same printed output and the same updated

evaluation context:

∀s, s′,ns, fECtx , eCtx , eCtx ′, o.proj sL(ns, s, s
′) ⊃

evalStmtL(fECtx , eCtx , s, eCtx
′, o) ⊃ evalStmtL(fECtx , eCtx , s

′, eCtx ′, o) (7.4)

This initially appears perhaps too strict to be compatible with our projection constraint

for expressions. However, it only applies when projecting statements, which does not mean

projecting the expressions within them, so the two constraints are separate. Because the

host language’s statement forms can implement any sort of control flow an extension might

want, expecting the same behavior from extension-introduced statements and their projec-

tions does not end up too strict.

As an example of how the constraints for expressions and statements are separate, con-

sider the splitlist(nhd, ntl, e) construct from the list extension from Chapter 2 representing

simultaneous assignment of the head of e’s result to nhd and the tail of e’s result to ntl. This

projects to a sequence of assignments using the list extension’s head and tail constructs:

seq(seq(assign(nhd, e), assign(ntl, tail(var(nhd)))), assign(nhd, head(var(nhd))))

The projection of the splitlist still uses the same expression e, not its projection. Under

the projection, this e still evaluates to the same value. This value must have the form

cons(e1, e2) in order for the original splitlist to evaluate, and then the head and tail in the

projection evaluate as well. The splitlist construct then satisfies this projection constraint,

even though the list expressions on which it operates project to unrelated things, as our

projection constraint for expressions allows. Thus, because statement projections do not

also need to project the expressions within them, the strictness of the projection constraints

for expressions and statements are independent.

The host language also introduces projection constraints that two projections of a term
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are the same (i.e., projection is unique). For projecting statements, this is qualified by

having the same set of variables used:

∀ns, s, s1, s2.proj sL(ns, s, s1) ⊃ proj sL(ns, s, s2) ⊃ s1 = s2

Note that because the freshName relation finds the first name not in the given set, assuming

a fixed ordering of variable names, it is also unique, always relating a set of variables to

the same fresh one. Thus we can have both uniqueness of statement projection and fresh

variables used as temporaries in a projection.

Another projection constraint the host language introduces is that the variables in an

expression’s projection are the same as those in the original expression:

∀e, e′, v, v′.proj eL(e, e′) ⊃ varsL(e, v) ⊃ varsL(e
′, v′) ⊃ v = v′ (7.5)

This, along with the requirement for evaluation having the same printed output, means ex-

tensions cannot drop sub-expressions in projecting, as that might change the set of variables

or printed output.

The host language for VL also introduces a property that expression evaluation is deter-

mined entirely by the values assigned to its variables in the evaluation context:

∀e,ns, fECtx , eCtx 1, eCtx 2, v, o.evalExprL(fECtx , eCtx 1, e, v, o) ⊃ varsL(e,ns) ⊃

(∀x, xv .x ∈ ns ⊃ lkpVal(eCtx 1, x, xv) ⊃ lkpVal(eCtx 2, x, xv)) ⊃

evalExprL(fECtx , eCtx 2, e, v, o) (7.6)

This is stated as if an expression evaluates under eCtx 1 and every variable x in the expres-

sion’s set of variables has the same value in eCtx 2 as in eCtx 1, then the expression evaluates

under eCtx 2 with the same value and printed output.

Finally, VL introduces the addP(evalExprL) and addP(evalStmtL) properties. The proxy
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rule for the evalExprL relation is

proj eL(e, e
′) evalExprL(fECtx , eCtx , e

′, v′, o)

evalExprL(fECtx , eCtx , e, v, o)

EL-Q

This requires an expression with an extension-introduced constructor as its top-level symbol

project whenever it evaluates, and that the projection also evaluate. The proxy rule for

statement evaluation is similar:

namesOf (eCtx ,ns) proj sL(ns, s, s
′) evalStmtL(fECtx , eCtx , s

′, eCtx ′, o)

evalStmtL(fECtx , eCtx , s, eCtx
′, o)

XL-Q

This also requires evaluating statements with extension-introduced top-level symbols to

project and those projections to evaluate, but is also qualified by taking the set of known

names from the evaluation context to use to create the projection.

Evaluation and Projection in VP

Our next version of the language library has a stricter projection constraint for expression

evaluation than VL, one that will require a relationship between values based on projection,

so we refer to it as VP .
4 It introduces the same non-extensible syntax categories and relations

over them as VL introduces. Figure 7.9 gives some of the other relations in the language

and some rules defining them. The evaluation relations have the same types as in VL, but

we see some of the rules are defined differently. While the EP -Intlit rule is the same as

the EL-Intlit rule, the EP -Add rule uses a matchInt relation to get integers from its sub-

expressions’ values rather than assuming the sub-expressions evaluate to values constructed

by intlit directly. To understand the purpose of this matching, we need to understand the

projection constraint for expression evaluation VP introduces, as it forces this choice.

Unlike VL, which does not require a relationship between the value of an expression

4The full Sterling and Extensibella development can be found at https://mmel.cs.umn.edu/

extensibella/examples/matchEval/description.html.

186

https://mmel.cs.umn.edu/extensibella/examples/matchEval/description.html
https://mmel.cs.umn.edu/extensibella/examples/matchEval/description.html


Relations include
varsP (e

∗, 2n), evalExprP (fECtx , eCtx , e
∗, e, output),

evalStmtP (fECtx , eCtx , s
∗, eCtx , output), evalProgP (e, prog

∗, output),
matchInt(e∗, i), matchTrue(e∗), matchFalse(e∗), matchRec(e∗, fs)

Projection relations include
proj eP (e

∗, e), proj sP (2
n, s∗, s), proj progP (prog∗, prog)

evalExprP (fECtx , eCtx , e
∗, e, output)

evalExprP (fECtx , eCtx , intlit(i), intlit(i),nilOutput)
EP -Intlit

evalExprP (fECtx , eCtx , e1, v1, o1) evalExprP (fECtx , eCtx , e2, v2, o2)
matchInt(v1, i1) matchInt(v2, i2) plus(i1, i2, i) concat(o1, o2, o)

evalExprP (fECtx , eCtx , add(e1, e2), intlit(i), o)
EP -Add

matchInt(e∗, i)

matchInt(intlit(i), i)
MI-Intlit

matchTrue(e∗)

matchTrue(true)
MT-True

matchRec(e∗, fs)

matchRec(rec(fs), fs)
MR-Rec

Figure 7.9: Selected relations and rules in VP ’s host language
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projedVal(e∗, e)

projedVal(e, e)
PV-Zero

projedVal(e1, e2) projedVal(e2, e3)

projedVal(e1, e3)
PV-Trans

proj eP (e1, e2)

projedVal(e1, e2)
PV-Proj

projedFields(f1, f2)

projedVal(rec(f1), rec(f2))
PV-Rec

projedFields(fs∗, fs)

projedFields(nilFs,nilFs)
PF-Nil

projedVal(e1, e2) projedFields(fs1, fs2)

projedFields(consFs(n, e1, fs1), consFs(n, e2, fs2))
PF-Cons

Figure 7.10: Rules for projedVal relation for value expressions and projedFields relation
for record fields

and its projection, VP does require a relationship between values, expressed by the relation

projedVal(e∗, e), shown in Figure 7.10. This constraint stated as

∀e, e′, fECtx , eCtx , v, o.proj eP (e, e′) ⊃ evalExprP (fECtx , eCtx , e, v, o) ⊃

∃v′.evalExprP (fECtx , eCtx , e′, v′, o) ∧ projedVal(v, v′)

which also requires the same printed output. The relation projedVal(e1, e2) can be described

at a high level as e1 taking zero or more projection steps somewhere throughout its structure

to become equal to e2. It allows an expression and its projection to evaluate to the same

value (PV-Zero), or the projection to evaluate to the projection of the original value

(PV-Proj). It also allows an expression to evaluate to a new value form that projects

to a record and the expression’s projection to evaluate to a record as well, but with fields

containing values related by projection (PV-Trans with PV-Proj and PV-Rec). This

relation between values allows extensions the freedom to introduce new value forms, but

also gives extensions introducing properties some idea of what those new value forms mean.

188



It is not immediately clear why this projection constraint should induce us to use rela-

tions like matchInt and matchRec in defining the host language. To understand why, we

need to consider an extension, one that introduces a new value form and expression forms

that operate on that form of value. The new expression forms need to project to something

from the host language, something that, without matching, expects the sub-expressions to

evaluate to exactly a value form introduced by the host language. In VL, we can write

projections that avoid this problem but satisfy the projection constraints by evaluating

to entirely unrelated values, but VP ’s projection constraints do not allow this, requiring

closely-related values. Defining the host language’s semantics through matching enables

the host language’s constructs to operate on extension-introduced value forms, enabling

extensions to introduce new value forms. We will discuss this further, and more concretely,

in the context of the list extension, which this matching enables to introduce new value

forms.

To help extensions understand the meaning of extension-introduced value forms, the

host language also introduces properties requiring values related by projedVal to match the

same value forms. This gives us properties like

∀e, e′, i.projedVal(e, e′) ⊃ matchInt(e, i) ⊃ matchInt(e′, i)

∀e, e′, i.projedVal(e, e′) ⊃ matchInt(e′, i) ⊃ matchInt(e, i)
(7.7)

We have similar properties for each match relation. The effect of using matching relations

and requiring them to carry through projedVal is similar to the pattern matching built into

Silver [15, 38]. In Silver, matching a value v against a pattern intlit(i) automatically checks

if v is constructed by intlit and, if not, projects it and tries the matching again. This prior

experience suggests that the matching approach used in VP might be useful.

In addition to these properties, VP has many of the same properties as VL, but with VP ’s

relations replacing VL’s relations. It also requires statement evaluation to produce the same

results (Property 7.4), that projections for all syntax categories be unique, that expres-

sions’ projections have the same variables (Property 7.5), and that expression evaluation

be determined entirely by the values assigned to an expression’s variables in the evaluation
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context (Property 7.6), as well as introducing the addP(evalExprP ) and addP(evalStmtP )

properties, with proxy rules like those introduced by VL.

Exact Evaluation in VE

Our final version of the language library, VE , requires the evaluation of a projection to be

exactly the same as that for the projecting term’s evaluation.5 This is similar to but stricter

than what we saw in VP . To aid us in highlighting the effects of changes in the host language

on what extensions may introduce, we also add a new construct to the shared underlying

language, one that will allow us to nest statements inside expressions.

The evaluation and projection relations for VE ’s host language can be found in Fig-

ure 7.11. Because we can now nest statements inside expressions, the evaluation relation

for expressions includes an updated evaluation context, the same as statement evaluation

does, in addition to a value. This is threaded through rules, with each sub-expression and

sub-statement using the updated evaluation context from the previously-evaluated one, as

we see in EE-Add and XE-If-True. Our new expression form that allows us to nest

statements inside expressions is stmtExpr(s, e), with evaluation rule EE-StmtExpr. We

evaluate the statement s in a new scope, then evaluate the expression e in the updated

evaluation context, only dropping the new scope after the expression has been evaluated,

allowing it to use new variables declared by the statement. Note also that our projection

relation for expressions now includes a set of names, just as the one for statements does.

Because we can nest statements inside expressions, we may find it useful to generate fresh

names for temporaries in projecting expressions as well as statements.

VE introduces two projection constraints for expression evaluation. First, it requires an

expression’s projection to evaluate with the same printed output, as do the other language

5The full Sterling and Extensibella development can be found at https://mmel.cs.umn.edu/

extensibella/examples/exactEval/description.html.

190

https://mmel.cs.umn.edu/extensibella/examples/exactEval/description.html
https://mmel.cs.umn.edu/extensibella/examples/exactEval/description.html


Relations include
evalExprE(fECtx , eCtx , e

∗, e, eCtx , output), evalStmtE(fECtx , eCtx , s
∗, eCtx , output),

evalProgE(e, prog
∗, output)

Projection relations include
proj eE(2

n, e∗, e), proj sE(2
n, s∗, s), proj progE (prog∗, prog)

evalExprE(fECtx , eCtx , e
∗, e, eCtx , output)

evalExprE(fECtx , eCtx , intlit(i), intlit(i), eCtx ,nilOutput)
EE-Intlit

evalExprE(fECtx , eCtx , e1, intlit(i1), eCtx 1, o1)
evalExprE(fECtx , eCtx 1, e2, intlit(i2), eCtx

′, o2)
plus(i1, i2, i) concat(o1, o2, o)

evalExprE(fECtx , eCtx , add(e1, e2), intlit(i), eCtx
′, o)

EE-Add

evalStmtE(fECtx , addScope(nilval , eCtx ), s, eCtx 1, o1)
evalExprE(fECtx , eCtx 1, e, v, addScope(γ, eCtx

′), o2) concat(o1, o2, o)

evalExprE(fECtx , eCtx , stmtExpr(s, e), eCtx ′, o)
EE-StmtExpr

evalStmtE(fECtx , eCtx , s
∗, eCtx , output)

evalExprE(fECtx , eCtx , e, intlit(i), eCtx
′, o′)

concat(o′, consOutput(intlit(e),nilOutput), o)

evalStmtE(fECtx , eCtx , print(e), eCtx
′, o)

XE-Print-Int

evalExprE(fECtx , eCtx , e, true, eCtx 1, o1)
evalStmtE(fECtx , addScope(nilval , eCtx 1), st, addScope(γ, eCtx

′), o2)
concat(o1, o2, o)

evalStmtE(fECtx , eCtx , ifte(e, st, sf ), eCtx
′, o)

XE-If-True

Figure 7.11: Selected relations and rules in VE ’s host language
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libraries, but also the same value and the same updated evaluation context:

∀ns, e, e′, fECtx , eCtx , v, eCtx ′, o.proj eE(ns, e, e
′) ⊃ namesOf (eCtx ,ns) ⊃

evalExprE(fECtx , eCtx , e, v, eCtx
′, o) ⊃ evalExprE(fECtx , eCtx , e

′, v, eCtx ′, o)

The second one requires an expression to evaluate whenever its projection does:

∀ns, e, e′, fECtx , eCtx , v, eCtx ′, o.proj eE(ns, e, e
′) ⊃ namesOf (eCtx ,ns) ⊃

evalExprE(fECtx , eCtx , e
′, v, eCtx ′, o) ⊃ evalExprE(fECtx , eCtx , e, v, eCtx

′, o)

Taken together, these require the evaluation behavior of extension-introduced constructs to

be exactly the same as their projections, so extensions proving properties can understand

the behavior of other extensions very well.

Statements are similarly restricted to require exactly the same behavior for extension-

introduced constructs and their projections. If a statement evaluates, its projection evalu-

ates with the same updated context and printed output:

∀ns, s, s′, fECtx , eCtx , eCtx ′, o.proj sE(ns, s, s
′) ⊃ namesOf (eCtx ,ns) ⊃

evalExprE(fECtx , eCtx , s, eCtx
′, o) ⊃ evalExprE(fECtx , eCtx , s

′, eCtx ′, o)

If a statement’s projection evaluates, so does the projecting statement:

∀ns, s, s′, fECtx , eCtx , eCtx ′, o.proj sE(ns, s, s
′) ⊃ namesOf (eCtx ,ns) ⊃

evalExprE(fECtx , eCtx , s
′, eCtx ′, o) ⊃ evalExprE(fECtx , eCtx , s, eCtx

′, o)

These four projection constraints give extensions a very strong foundation for proving new

properties about evaluation, as we shall see in discussing the extensions written for VE .

Finally, as do the other two language libraries, VE introduces the addP(evalExprE) and

addP(evalStmtE) properties, once again with similar proxy rules, to allow extensions to
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introduce properties using these evaluation relations as their key relations.

We see that, while there are differences in the exact definitions of the host languages

of the different libraries in addition to their projection constraints, overall they define es-

sentially the same underlying language, other than VE ’s addition of the stmtExpr form.

Note, however, that this form does not increase the power of VE relative to the others; any

program written using it can be rewritten to avoid it. We shall see in the remainder of

this section how the differences in the definitions of the host languages, despite appearing

relatively minor, and the changes to the projection constraints are significant to what we

can and cannot write in extensions.

7.4.2 Syntactic Extensions

We start our examination of the different capabilities of the different libraries with the syn-

tactic extensions to the language. The first two extensions are the ascription and assertion

extensions, with rules for VL shown in Figure 7.12; the evaluation and projection rules for

the versions of the extensions in the other language libraries are similar. The ascription

extension adds an expression form ascribe(e, ty) that wraps another expression, expecting

it to have the given type; this expression form is useful in programming to help one fix type

errors. It defines typing to check e has type ty, but otherwise treats itself as if it were only

e, and projects to e.

The second extension adds a statement form assert(e) that asserts e evaluates to true,

abruptly terminating the program if that is not the case. Assertion statements are useful

for detecting bugs, showing when one’s assumptions about how values should be related are

false. The assert construct projects to an if-then-else that evaluates the expression, doing

nothing else if it is true, and abruptly terminating the program using the host language’s

error construct if the expression is false. The simplicity of these extensions, and the fact

their meanings so directly match what is available in the host language, allows all three

language libraries to accept them with the same rules and projections.
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evalExprL(fECtx , eCtx , e, v, o)

evalExprL(fECtx , eCtx ,
ascribe(e, ty), v, o)

EL-Ascribe
proj eL(ascribe(e), e)

ProjL-Ascribe

evalExprL(fECtx , eCtx , e, true, o)

evalStmtL(fECtx , eCtx , assert(e), eCtx
′, o)

XL-Assert

proj sL(assert(e),
ifte(e, skip, print(error)))

ProjL-Assert

Figure 7.12: Evaluation and projection rules for the ascription and assertion extensions

evalExprL(fECtx , eCtx , c, true, o1)
evalExprL(fECtx , eCtx , t, v, o2) concat(o1, o2, o)

evalExprL(fECtx , eCtx , condExpr(c, t, f), v, o)
EL-CondExpr-True

evalExprL(fECtx , eCtx , c, false, o1)
evalExprL(fECtx , eCtx , t, v, o2) concat(o1, o2, o)

evalExprL(fECtx , eCtx , condExpr(c, t, f), v, o)
EL-CondExpr-False

Figure 7.13: Evaluation rules for condExpr in VL

Conditional Expression

The next extension, the one introducing a conditional expression, is where the libraries

start diverging. The new conditional expression form condExpr(e, e, e), commonly called

the ternary expression in languages like C and Java, takes conditional evaluation to the

expression level. Depending on whether the first sub-expression evaluates to true or false,

its result is either the result of evaluating the second or third sub-expressions. Its evaluation

rules from VL are found in Figure 7.13. Unlike the previous two extensions, this construct

is trying to bring something new, arbitrary branching, to the expression level.

Recall that VL requires expression projections to evaluate and have the same printed

output. This initially appears problematic for introducing condExpr(c, t, f), as VL’s host
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language does not include explicit branching, and we need branching to evaluate either t

or f and get its printed output, but not both. However, VL’s projection constraint also

allows extensions to evaluate to unrelated values, so we can use the implicit branching of

short-circuiting boolean operations, projecting condExpr(c, t, f) to

or(and(c, or(eq(t, intlit(0)), true)), eq(f, intlit(0)))

This always evaluates c, as the conditional expression does, so the printed output of the

whole includes c’s printed output. If c evaluates to true, the and continues, which evaluates

t. Since the second conjunct always evaluates to true, we then do not evaluate f , so the

expression’s printed output is the same as in the EL-CondExpr-True rule it is emulating.

If c evaluates to falseVal , we go and evaluate f , as expected, giving the same printed

output as in the EL-CondExpr-False rule it is emulating. Thus the projection constraint

is satisfied, even though the values will only ever be related by random chance.

The version of the extension for VE has similar evaluation rules to those found in Fig-

ure 7.13, but using evalExprE instead and threading through context updates. Its language

library requires the projection to produce not only the same printed output, but also the

same value. To do so, it can wrap a conditional statement in a stmtExpr to accomplish the

branching:

stmtExpr(seq(decl(x, intTy , intlit(0)), ifte(c, assign(x, t), assign(x, f))), x)

In this, x is a fresh name generated using freshName to use as a temporary. The use of

intTy and intlit(0) in the declaration of x are simply placeholders; we do not need the type

to match the type of t and f , and we will replace the initial value without using it. It is

clear that this has exactly the same behavior as the conditional expression has, conditionally

assigning the correct value to x, which is then the value in which its evaluation results. It is

also clear that whenever one of the term or its projection evaluates, the other will as well.

Most interesting of all, perhaps, is that VP cannot support this extension. In VP ,
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projections need to evaluate to values related to those of the projecting expressions, so

the boolean short-circuiting evaluation approach of VL does not work. Because VP ’s host

language does not include stmtExpr like VE ’s host language does, it cannot use statement-

level branching to accomplish this either. This shows how the richness of the host language

and the strictness of the projection constraints in a language library both affect what

extensions may introduce. If a language library has strict projection constraints but a

rich host language, as in VE , it can support a lot of extensions with interesting semantics

because the projections can match the extension behavior. Similarly, if a language library

has a poorer host language but loose projection constraints, such as VL, it can also support

a lot of extensions because the projections do not need to match the extension behavior

closely. However, when we have somewhat stricter projection constraints without enriching

the language, as in VP , there are some extensions we cannot write. This is true even when

the same computations can be represented by both the richer and poorer host languages,

as we see here, because of how they can be represented.

List Extension

Our final syntactic extension is the list extension, adding new forms for expressions, state-

ments, values, and types. The full set of constructs the list extension seeks to add include

all those introduced by the list extension in Chapter 2, as well as new expression forms

index (e, e) for accessing an element in a list at a certain index and length(e) for taking the

length of a list. The definitions of the semantics for the expression forms are as expected.

They also include two new statement forms. The first, listUpdate(n, e, e), updates the ele-

ment in a list at a given index, with listUpdate(l, i, e) being similar to a Python list update

or Java array update l[i] = e. The other statement form, listForeach(n, e, s), executes

the loop’s body s once for each element of the list e, with the name n being associated with

the current element, similar to a foreach loop in Java or a for loop over a list in Python.

The rules for these new statement constructs for VL, along with the auxiliary relations that

help implement them, are shown in Figure 7.14, with the definitions from the extensions to

the other language libraries implementing the same behavior. The constructs each version
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evalStmtL(fECtx , eCtx , s
∗, eCtx , output)

lkpVal(eCtx , l, lv) evalExprL(fECtx , eCtx , idx , intlit(i), o1)
evalExprL(fECtx , eCtx , e, v, o2) updateListIndexL(lv , i, v, lv

′)
update(eCtx , l, lv ′, eCtx ′) concat(o1, o2, o)

evalStmtL(fECtx , eCtx , listUpdate(l, idx , e), eCtx
′, o)

XL-ListUpdate

evalExprL(fECtx , eCtx , e, lv , o1)
iterateL(fECtx , eCtx , lv , n, s, eCtx

′, o2) concat(o1, o2, o)

evalStmtL(fECtx , eCtx , listForeach(n, e, s), eCtx
′, o)

XL-ListForeach

updateListIndexL(e, i
∗, e, e)

updateListIndexL(cons(hd , tl), 0, v, cons(v, tl))
ULI-0

subtract(i, 1, i′) updateListIndexL(tl , i
′, v, tl ′)

updateListIndexL(cons(hd , tl), i, v, cons(hd , tl
′))

ULI-Step

iterateL(fECtx , eCtx , e
∗, n, s, eCtx , output)

iterateL(fECtx , eCtx ,nil , n, s, eCtx ,nilOutput)
IL-Nil

evalStmtL(fECtx , addScope(consval(n, hd ,nilval), eCtx ), s, addScope(γ, eCtx 1), o1)
iterateL(fECtx , eCtx 1, tl , n, s, eCtx

′, o2) concat(o1, o2, o)

iterateL(fECtx , eCtx , cons(hd , tl), n, s, eCtx
′, o)

IL-Cons

Figure 7.14: Rules for evaluating list statements in VL’s list extension

of the extension successfully adds to each version of the language library are shown in Ta-

ble 7.2, along with those expression forms it identifies as values. As we will discuss below,

VP is unable to support some of the expression forms for reasons similar to its inability to

support the conditional expression, and VE does not identify new value forms due to its

projection constraints for expression evaluation.

We start our discussions of the extensions in the different language libraries with VL,

which is the simplest of the three. This version of the extension includes all the constructs

the extension designer seeks to add, as shown in Table 7.2. The projections of the list
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VL VP VE

Expression Forms

nil nil nil
cons cons cons

head(e) head(e) head(e)
tail(e) tail(e) tail(e)
null(e) null(e) null(e)

index (e, e) index (e, e)
length(e) length(e)

Statement Forms
listUpdate(n, e, e) listUpdate(n, e, e) listUpdate(n, e, e)
listForeach(n, e, s) listForeach(n, e, s) listForeach(n, e, s)

Type Forms listTy(ty) listTy(ty) listTy(ty)

Forms Identified as Values
nil nil

cons(e, e) cons(e, e)

Table 7.2: New constructors introduced by the list extension for each version of the
language library

expressions are generally the same as those in the list extension in Chapter 2, projections like

head(e) projecting to e and cons(e1 , e2 ) projecting to eq(e1, e2); these sorts of projections

are extended to the two new expression forms as well, matching the printed output of the

list expressions as required by the projection constraint. To match the stricter constraint

for statements, the two new statement forms need to have more exact, and therefore more

complex, projections. These are shown in Figure 7.15 using program fragments written in

a Java-like language for clarity; these fragments map to statements in our host language

with the list extension, but they are nearly unreadable when written using abstract syntax

alone. The projection of listUpdate saves the relevant values in new temporaries, then pulls

the elements before the index off the list and stores them, replaces the correct index when

it is reached, then piles the other elements back onto the list. This matches the behavior

we see in the XL-ListUpdate, ULI-0, and ULI-Step rules in Figure 7.14. The projection

of listForeach creates a while loop to execute the body for each element of the list, just as

we see in the XL-ListForeach, IL-Nil, and IL-Cons rules. It is clear upon examination

that both of these projections have the same effects as the statements that project to them,

satisfying our constraints.

VP supports most of the constructs, including the two statement forms that use the same

evaluation rules and projections as VL, but not the index or length expressions. Both list
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proj sL(ns, listUpdate(l, i, e), s
′) proj sL(ns, listForeach(x, l, s), s

′)
where s′ is where s′ is

{
intTy SaveI = i;
intTy SaveE = e;
intTy Hold = [];

while (SaveI > 0){
SaveI = SaveI - 1;

Hold = head(l)::Hold;
l = tail(l);

}
l = SaveE::tail(l);
while (!null(Hold)){

l = head(Hold)::l;
Hold = tail(Hold);

}
}

{
intTy SaveL = l;
while (!null(SaveL)){

intTy x = head(SaveL);

SaveL = tail(SaveL);

s
}

}

where SaveI, SaveE, Hold are unique
fresh names relative to ns ∪ {l}

where SaveL is a fresh name
relative to ns ∪ {x}

N.B. The outer set of braces on both denote opening a new scope (scopeStmt)

Figure 7.15: List statement projections in VL, which match those in VP

indexing and list length depend on traversing an arbitrarily-sized portion of the list, requir-

ing looping, which VP ’s host language does not support at the expression level. However,

the inability of VP to introduce these as new expression constructs does not mean programs

in a language composed from VP including its list extension cannot find the length of a list

or an element at an index. Statements carrying out these operations are expressible using

constructs from VP ’s host language and list extension. It is simply in representing them as

expressions, and in introducing expression constructs carrying them out, that VP is lacking.

The list expressions that are present in VP project to record expressions, a choice that is

not only natural, but forced by the projection constraint they must obey. List expressions

such as head(e) and tail(e) need to project to expressions that evaluate to values related

by projedVal . To do so, we need expression forms from the host language that can operate

on the list value cons(hd , tl) to which the sub-expressions of both head(e) and tail(e) must

evaluate, with one projection choosing hd and one choosing tl . Because the projection of

the list value needs to maintain both the head and the tail values to fulfill the projection
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constraint for the evaluation of the head(e) and tail(e) constructs, it must project to a record

value, the only structured value the host language offers. We can project cons(hd , tl) to a

record value with a head field with the value hd and a tail field with the value tl , with head(e)

and tail(e) projecting to record accesses of the appropriate fields. Because the record field

accesses are defined using the matchRec relation, they can operate on cons(hd , tl) as if it

were the record value to which it projects. To support the null(e) construct, the record

value to which a cons value projects also contains a null field with the value false.

Our final language library version, VE , similarly projects list expressions to records, but

its definitions end up rather complicated and unintuitive due to its projection constraints

requiring exact matching of evaluation results. This constraint means its constructs cannot

use new values. This is why VE does not identify nil or cons(e, e) as value forms like the

list extensions in VL and VP do; it could identify them as such, but it could not use them as

such. Rather, as in VP , our list expressions project to record expressions, and, to satisfy the

projection constraints, list expressions instead evaluate to and operate on record values, as

we see in Figure 7.16. An expression nil evaluates to a record value with a null field, and

null(e) accesses this null field to determine whether a “list” value is null or not. Comparing

the rules for evaluation of the list statements in VL’s list extension, shown in Figure 7.14,

and the ones for VE in Figure 7.16, we see the use of record values for expressions also makes

their definitions more complex, as they must now operate on record values as well. VE can

also support the list extension’s index and length expressions by projecting them to loops

wrapped in stmtExpr , similar to how it projected condExpr to an if-then-else statement.

Recall we also expect bidirectional existence of statement evaluation, and matching of

results across projection. This is simple for the listForeach construct, which can use the

same projection as in VL and VP . However, the projection of listUpdate must become more

complex to support the evaluation of the original statement existing whenever the projection

evaluates. The new projection is shown in Figure 7.17; compare this to the projection in

Figure 7.15. The reason the new projection is more complex is that we can’t count on the

“list” value we are updating actually being list-shaped, even counting a record with null ,

head , and tail fields as list-shaped; it could have extra fields, or, without some of the checks

200



evalExprE(fECtx , eCtx , e
∗, e, eCtx , output)

evalExprE(fECtx , eCtx ,nil , rec(consFs(null , true,nilFs)), eCtx ,nilOutput)
EE-Nil

evalExprE(fECtx , eCtx , e, rec(fs), eCtx
′, o) lookupField(fs,null , v)

evalExprE(fECtx , eCtx ,null(e), v, eCtx , o)
EE-Null

evalStmtE(fECtx , eCtx , s
∗, eCtx , output)

lkpVal(eCtx , l, lv) evalExprE(fECtx , eCtx , idx , intlit(i), o1)
evalExprE(fECtx , eCtx , e, v, o2) updateListIndexE(lv , i, v, lv

′)
update(eCtx , l, lv ′, eCtx ′) concat(o1, o2, o)

evalStmtE(fECtx , eCtx , listUpdate(l, idx , e), eCtx
′, o)

XE-ListUpdate

evalExprE(fECtx , eCtx , e, lv , o1)
iterateL(fECtx , eCtx , lv , n, s, eCtx

′, o2) concat(o1, o2, o)

evalStmtE(fECtx , eCtx , listForeach(n, e, s), eCtx
′, o)

XE-ListForeach

updateListIndexE(e, i
∗, e, e)

lookupField(fs,null , false) replaceField(fs, head , v, fs ′)

updateListIndexE(rec(fs), 0, v, rec(fs))
ULI-0

lookupField(fs,null , false) subtract(i, 1, i′) lookupField(fs, tail , tl)
updateListIndexE(tl , i

′, v, tl ′) replaceField(fs, tail , tl ′, fs ′)

updateListIndexE(rec(fs), i, v, rec(fs
′))

ULI-Step

iterateE(fECtx , eCtx , e
∗, n, s, eCtx , output)

lookupField(fs,null , true)

iterateE(fECtx , eCtx , rec(fs), n, s, eCtx ,nilOutput)
IE-Nil

lookupField(fs,null , false) lookupField(fs, head , head)
evalStmtE(fECtx , addScope(consval(n, hd ,nilval), eCtx ), s, addScope(γ, eCtx 1), o1)

lookupField(fs, tail , tl)
iterateE(fECtx , eCtx 1, tl , n, s, eCtx

′, o2) concat(o1, o2, o)

iterateE(fECtx , eCtx , rec(fs), , n, s, eCtx
′, o)

IE-Cons

Figure 7.16: Selected evaluation rules for the list extension in VE
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proj s(ns, listUpdate(l, i, e), s
′) where s′ is

{
intTy SaveI = i;
intTy SaveE = e;
intTy Hold = [];

while (SaveI != 0 && !null(l)){
SaveI = SaveI - 1;

intTy Copy = l;
Copy.tail = Hold;

Hold = Copy;

l = tail(l);
}
if (null(l)){

intTy Copy = error;

}
else {}
l = SaveE::tail(l);
while (!null(Hold)){

intTy Copy = Hold;

Copy.tail = l;
l = Copy;

Hold = tail(Hold);

}
}
where SaveI, SaveE, Hold, and Copy are unique fresh names relative to ns ∪ {l}

Figure 7.17: Projection for listUpdate in VE

added, not enough fields. Using a temporary variable Copy we can use the same intuitive

approach as before, but still save any extra fields that the listUpdateE relation would leave

unmodified. This projection allows us to prove the evaluation of the listUpdate and its

projection are exactly the same, as this version of the language requires.

In considering our syntactic extensions in the three language libraries, we see how both

the syntax and projection constraints from a library’s host language affect the syntax exten-

sions introduce and how they extend the definitions of the existing semantics to their new

syntax. With VP , we saw how relatively strict projection constraints and a relatively poor

host language can combine to limit what semantics extensions may introduce relative to

languages with either richer host languages or less-restrictive projection constraints. This

suggests that the constructs and semantics extensions may introduce are not necessarily
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hampered by choices of projection constraints or constructs included in the host language,

so long as they are appropriately coordinated with one another.

We also see how projection constraints can affect exactly how the semantics of constructs

are defined. Even though the list extensions of VL, VP , and VE show programmers the same

behavior, other than VP missing some constructs, the definitions of those semantics in VE are

complicated by the requirement that its list expressions evaluate to the record values their

projections do. In contrast to the more standard definitions enabled by the looser projection

constraints of VL and VP , it is more difficult to read and reason about the definitions given

by VE . This strictness also requires a more complex projection for listUpdate; even having

written the other two libraries’ projections and proven them correct, getting insight into

what the projection needed, the author had to iterate on the definitions of the projection

and the updateListIndexE relation to be able to prove VE ’s projection constraints for them

due to the difficulties introduced by arbitrary record values.

While the strictness of projection constraints can negatively affect the freedom of ex-

tensions in introducing new syntax and the ease of extending existing semantic relations to

them, strictness can be a benefit for extensions proving new properties, as we shall see with

our semantic extensions.

7.4.3 Security Extension

The first semantic extension we consider is for information flow security, as we had in

Chapter 2. In addition to the secdecl and security level constructors it introduced before,

the extension now introduces new constructors allowing functions to declare the security

level of their returned values and parameters. The security analysis is extended to handle

function declarations and programs, as well as the new expression and statement forms.

The most important addition to note is that printing is allowed only in public contexts;

printing in a private context would leak information about the values of private variables

in conditions that let us reach the private context. Note also that functions are considered

secure if their bodies are secure when the parameters are assigned the levels the programmer

gives them.
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The main function in a program can also have both public and private arguments, just as

any other function can, an idea that may sound a bit strange at first. While the arguments

to the main function can stand for arguments given to a program run on the terminal, as

we expect, they can also stand for other inputs to it. For example, the contents of a file

containing an encryption key that is used in a program might be considered an argument

to the program, and thus to the main function, and a private one at that.

The main security property we want for all three versions of the language, then, is that

a secure program has the same printed output if the public arguments to the main function

are the same, even though the private arguments may differ. If progSecureL is the security

analysis relation for VL’s security extension, relating a program to the security levels for

arguments to its main function, and eqpublicargs holds when the public arguments in two

sets have the same values, this property can be stated as

∀p, sa, a1, a2, o1, o2.progSecureL(p, sa) ⊃ eqpublicargs(sa, a1, a2) ⊃

evalProgL(a1, p, o1) ⊃ evalProgL(a2, p, o2) ⊃ o1 = o2

for VL. The statements would be equivalent for the other two language libraries. Since the

printed output is the only evaluation result we see from executing a program, it makes sense

that that is our measure of leakage. Comparing this property to Property 3.3 that we had

for statements in the language from Chapter 2, we see the eqpublicargs relation between

the arguments corresponds to the eqpublicvals relation between contexts that requires all

variables assigned public in the security context to have the same values in two evaluation

contexts.

To prove the property we want about programs, we need to know properties about both

statements and expressions being evaluated under evaluation contexts containing the same

values for public variables but possibly different ones for private variables. The statement

one is similar to Property 3.3, that public variables in the updated contexts for two evalua-

tions are always the same, but with the addition that the printed output for both is always

the same as well. The proof of this property in all three versions of the language library
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proceeds much as the one in the more limited language did.

For expressions, we need to know that the printed output for two evaluations under

related contexts is the same, but also that expressions with a public security level produce

the same values when evaluated under both evaluation contexts. Due to the stricter con-

straints VE requires of extensions versus the other two libraries, we can provide a proof of

this property directly in VE , while we must take a different approach for the other two.

In VE , we can prove these properties with expression evaluation as the key relation. In

the generic case we know the security levelE relation is defined by projecting the generic

expression to an expression e′ and finding the level of e′. We also know that an expression

and its projection evaluate to exactly the same value and have exactly the same printed

output. Thus we can use the induction hypothesis with the evaluation and levelE derivation

for e′ to show both of its evaluations produce the same value and output, then directly lift

back the result to the generic expression, completing the generic case. As all the known

cases are direct, the proof is complete.

We cannot use this approach for VL and VP because we don’t have the same value

produced by the projection as its original expression. Even in VP , where the values are

related by projedVal , we cannot lift the property back from the projection like this. What

we know is that our two evaluations of the generic constructor produce values v1 and v2

under the related evaluation contexts, that the projection e′ produces a single value v under

both, and that we have projedVal(v1, v) and projedVal(v2, v). This does not tell us that v1

and v2 are the same, as we would need in this approach to the proof, because several values

could be related to v. For example, if v were a record value, v1 could be another record

value and v2 could be a list value. The failure of this approach is even clearer for VL, as

we have no relationship between the evaluation results of the generic constructor and its

projection e′.

Instead, we can prove an expression with level public contains only variables assigned

public in the security context, with the levelL or levelP relation as the key relation. In the

generic case, the proof relies on the projection constraint that an expression’s variables are

a subset of its projection’s variables (Property 7.5), which both versions of the language
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library have. We can then use the host language’s property that expression evaluation is

determined by the values assigned to its variables in the evaluation context (Property 7.6),

also shared by both libraries, and the fact that the two evaluation contexts have all the

same values for public variables, to show the values produced by any expression under the

two related evaluation contexts is the same.

Thus we have the same fact for expressions, which supports the properties for statements

and ultimately for programs, in all three libraries, but by two different approaches. The fact

we use different approaches to reach the same conclusions here does not affect programmers.

A programmer using a composed language built from any one of these three language

libraries sees the same thing, a language where she declares security levels for functions

and variables and receives a static guarantee information marked as confidential cannot be

leaked by any execution of the program.

7.4.4 Translation Extension

Our final extension is for translating the language to itself, or, more specifically, to the

host language. This self-translation might seem to be a strange choice, but it makes a

good stand-in for considering the limitations on translating to any language, or any sort

of program transformation an extension might introduce. By testing a self-translation, we

keep the transformation simple, making both the rules implementing it and the proofs of

properties relatively simple as well.

The translation extension is defined in the same way for all three versions of the language,

with a rule for each constructor that simply translates the sub-terms. Some of VL’s rules

for translating expressions can be found in Figure 7.18, with the rules being equivalent for

VP and VE . In TEL-Add, we see an addition add(e1, e2) translates e1 to e′1 and e2 to e′2,

with the overall translation being add(e′1, e
′
2). Other rules follow this same pattern, both

for expressions and for statements. Note the statement relation includes both an incoming

set of used names and an outgoing, updated one for new declarations, this set of names

being used in the default rule. The default rules for both expressions (TEL-Default) and

statements (TSL-Default) project the term, with statement projections using the set of
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transEL(e
∗, e)

transEL(intlit(i), intlit(i))
TEL-Int

transEL(var(n), var(n))
TEL-Var

transEL(e1, e
′
1) transEL(e2, e

′
2)

transEL(add(e1, e2), add(e
′
1, e

′
2))

TEL-Add

transSL(2
n, s∗, s, 2n)

transSL(ns, s1, s
′
1,ns1) transSL(ns1, s2, s

′
2,ns

′)

transSL(ns, seq(s1, s2), seq(s
′
1, s

′
2),ns

′)
TSL-Seq

transEL(e, e
′)

transSL(ns, assign(n, e), assign(n, e
′),ns)

TSL-Assign

Default rules (S):

proj eL(e, ep) transEL(ep, e
′)

transEL(e, e
′)

TEL-Default

proj sL(ns, s, sp) transSL(ns, sp, s
′,ns ′)

transSL(ns, s, s
′,ns ′)

TSL-Default

Figure 7.18: Selected rules for VL’s expression translation relations

used names to generate fresh ones if needed, taking the translation of its projection as its

translation.

A relation implementing a translation such as this might be a way to make a runnable

implementation of a language. A program in the extensible language is translated to one in

a more common programming language, which is then compiled and executed. For example,

the Silver attribute grammar system [38], itself an extensible language, is implemented by

translation to Java code that can be compiled and executed.

The correctness of such a translation can be specified by the evaluation of the translated

program having behavior related in certain ways to the original program. What we can prove

about the translations in our different language libraries, which are all defined by the same

rules, differs greatly based on the projection constraints each one provides.
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For VE , our projection constraints let us prove the evaluation of the translation is exactly

the same as the original, that is, we can prove

∀s, s′,ns,ns ′, fECtx , fECtx ′, eCtx , eCtx ′, o.

evalStmtE(fECtx , eCtx , s, eCtx
′, o) ⊃ transSE(ns, s, s

′,ns ′) ⊃

transRelFunsE(fECtx , fECtx
′) ⊃ evalStmtE(fECtx

′, eCtx , s′, eCtx ′, o)

where transRelFunsE relates two function contexts where the functions in the second are

translations of the functions in the first, that a statement’s translation evaluates with the

same results as the original statement. We can also prove

∀s, s′,ns,ns ′, fECtx , fECtx ′, eCtx , eCtx ′, o.

evalStmtE(fECtx
′, eCtx , s′, eCtx ′, o) ⊃ transSE(ns, s, s

′,ns ′) ⊃

transRelFunsE(fECtx , fECtx
′) ⊃ evalStmtE(fECtx , eCtx , s, eCtx

′, o)

that a statement evaluates with the same results when its translation does. We can prove

similar properties for expressions and programs. These proofs are possible because, in

the generic cases, we know the translation is defined by the default rule, which translates

the generic term’s projection. The projection constraints tell us a statement’s projection

evaluates if the original statement does, and vice versa, and the induction hypothesis tells

us the same about the projection and its translation. Then, transitively, the projection’s

translation, which is also the original statement’s translation, evaluates if and only if the

original statement evaluates as well, and with the same results. Because the evaluation

behavior of a program and its translation is exactly the same, using a translation as an

implementation seems like a reasonable choice for VE .

In VP , we can prove the translation of an expression evaluates to a value to which the

original’s value is related by projedVal when the values in the contexts for the same names
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are also related by projedVal (relation projedCtxs):

∀e, e′, fECtx , fECtx ′, eCtx , eCtx ′, v, o.evalExprP (fECtx , eCtx , e, v, o) ⊃ transEP (e, e
′) ⊃

transRelFunsP (fECtx , fECtx
′) ⊃ projedCtxs(eCtx , eCtx ′) ⊃

∃v′.evalExprP (fECtx ′, eCtx ′, e′, v′, o) ∧ projedVal(v, v′)

We have similar properties for statements and programs. In the known, non-generic cases for

this property, we use the properties introduced by the host language requiring values related

by projedVal to match the same value forms, such as that if we have projedVal(v, v′) and

matchInt(v, i), we also have matchInt(v′, i). For example, in the case of add(e1, e2), which

translates to add(e′1, e
′
2), we know e1 evaluates to v1 andmatchInt(v1, i1) because add(e1, e2)

evaluates using the EP -Add rule. The induction hypothesis then shows e′1 evaluates to a

value v′1 and projedVal(v1, v
′
1). Then we also know matchInt(v′1, i1) by Property 7.7, and

a similar chain of reasoning applies to the evaluation of e2. Since both new values match

integers, we can apply the EP -Add rule for the translation, getting the same value. In the

generic case, we rely on the projection constraint that an expression’s projection evaluates

to a value related to the original expression’s value by projedVal . The translation of the

generic expression is the translation of its projection, as defined by the default rule, we know

the projection evaluates, and the induction hypothesis tells us its translation evaluates with

a value related to the projection’s value by projedVal . Then, since projedVal is defined as

transitive (rule PV-Trans in Figure 7.10), the translation’s value is related to the original

expression’s value.

The properties VP can prove tell us a translated program’s printed output is the same as

the original program’s printed output, and that the translated program evaluates whenever

the original program does. However, it may be that the translated program evaluates

when the original would not. Consider the list extension’s constructs. The expression

head(e) translates to a record access access(e′, head) using the default rule for translation,

where e translates to e′. Here e′ evaluates to a record value rec(fs) when the field access

evaluates, but head(e) will only evaluate if the value v produced by e is a list-shaped value.
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Unfortunately, all we know is projedVal(v, rec(fs)), which does not guarantee head(e) will

evaluate, as v might be a record value as well. Thus we only have one direction of the

correspondence for VP . This might still make using a translation as an implementation

reasonable in some situations, but the utility is not as clear as for VE .

Finally, for VL, we cannot prove anything about the relationship between the evaluation

of the original program and its translation. We cannot prove the printed outputs are related,

or that the translation’s evaluation exists even if the original program evaluates. Initially

it appears we should have a similar result as in VP , where the translation evaluates if the

original does, because our projection constraint also requires an expression’s projection to

evaluate if the projecting expression evaluates. However, the lack of a relationship between

the actual values makes it untrue. Consider an expression

add(condExpr(eq(x, intlit(1)), intlit(3), intlit(4)), intlit(1))

This evaluates to either 4 or 5, depending on the value of x. However, recall from earlier

that the projection of the condExpr is built by boolean conjunction and disjunction and

evaluates to a boolean value, and its translation that comes from this projection will then

also be built by boolean constructs and evaluate to a boolean value, if it evaluates at all.

Then, while the projection of an individual expression evaluates, a full-program translation

that uses them may not. Using a translation for anything in VL is worthless; the existence

of the translation extension here is a pipe dream.

An obvious question to ask is why all three libraries could support the same security

property for programs, while the translation properties each provides are so different. It

appears to be due to the differences in the expectations of the properties introduced by

the two extensions. While the security extension relies on two evaluations of the same

expression having the same value, the translation extension relies on an expression and its

translation, two different expressions, having related values. Thus the increased strictness

of the projection constraints of VE relative to VP , and of VP relative to VL, allow us to

prove more for the translation extensions, where the different expressions are related by
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projection, while the properties about an expression’s evaluation being uniquely determined

by its variables are sufficient for VL and VP to prove their security properties.

In considering these three language libraries with different versions of the underlying

language and its metatheory, we have seen how the various choices in the constructs to

include in the host language and the projection constraints affect how we write extensions,

both with introducing new syntax and the properties we can prove. In the syntactic ex-

tensions, we saw how the projections and behind-the-scenes implementations of the same

constructs vary from library to library. However, even though the definitions have signif-

icant differences, the behavior a programmer will see out of the same constructs from the

extensions in different language libraries is the same in all cases. Even in VE where lists

evaluate directly to records, the programmer can think about a program as using lists, and

the evaluation will appear the same as if the program were using list values. Thus the

differences in the languages, as far as programmers using them are concerned, are almost

entirely in the realm of what the languages may offer them, both in the constructs they can

provide and the properties they can prove. The specifics of the behind-the-scenes choices

of projection constraints matter only to the language developers who will use them to offer

the publicly-visible constructs and properties to their users.

7.5 Considerations for Extensibility

As we have seen, writing extensible languages and their properties requires more thought

than non-extensible languages and their properties. In addition to the considerations in

the monolithic setting, one must also consider how choices will affect extensions written by

others. Here we present some of the issues to be considered when writing a module, and its

properties, for an extensible language.

7.5.1 Designing Language Modules

One consideration in designing language modules in light of extensibility is considering

whether the abstract syntax in a language makes it difficult for extensions to work together.
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For example, the security extension from Chapter 2 introduces a statement constructor

secdecl to declare a new variable with an explicit security level. Suppose we added such an

extension to a language with division, and another extension to check we do not divide by

zero. This might add a nonzerodecl constructor to declare a new variable as holding a non-

zero number. In a composed language containing both of these extensions, we cannot declare

one variable both as non-zero and with an explicit security level because the declaration

forms are different. When a syntax constructor contains a way for declaring information

that affects a check of the rest of the program, it can be useful to allow that information

to be extended so two extensions can add to it at once. This type of variation point within

syntax can make extension inter-operation feasible. We see this with declarations, where

we are expected to declare a type for a variable. Rather than each extension adding its

own declaration form, we might design the host language’s declaration to take a list of

declaration modifiers. Then the security and no-zero-division extensions could both add

their own modifiers and be used together for the same variable.

Another consideration is in how general we write relations to be. In a non-extensible

language, we know exactly how we plan to use a relation and, no other uses being added

later, we can write the relation to be specific to that use case. However, in an extensible

setting, it might be easier to split one specific relation into a couple of more general ones.

For example, rather than write a relation to walk down a list-like abstract syntax tree,

gathering information at each node and then carrying out an action over it at the end, it

is better to write it as two separate relations. One relation can walk down the abstract

syntax tree, gathering information, which is then passed to another relation that carries out

the final action. This allows the gathering relation to be reused if an extension wants to

repurpose it. In addition to making relations reusable, this can also make it easier to prove

properties about it, as the properties can be split into two simpler parts.

Some considerations like these affected the development of AbleC [17], an extensible

specification of the C programming language. Its definition was explicitly given certain

extension points, syntactic and semantic additions to what one might expect of a specifica-

tion of the C programming language, enabling extensions to add constructs and semantics
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they could not add without the extension points. The example of the security and no-

zero-division extensions above is similar to type qualifiers in AbleC. The host language is

defined so extensions can declare new qualifiers, such as for non-null pointers, and add

them to declarations using the host language’s syntax. It is also defined to aid extensions

in propagating and checking the conditions of qualifiers are satisfied. AbleC also defines

the semantics of its operators generally, allowing for overloading by extensions when they

add new types. Choices like these can make it easier for extension authors to introduce new

and interesting constructs to a language.

7.5.2 Declaring Metatheoretic Properties

Crafting a set of metatheoretic properties for an extensible language module is a balancing

act. On one hand, extensions should have freedom to introduce new and interesting seman-

tics. On the other hand, extensions should have access to properties constraining behavior

so they can prove interesting new properties. A third consideration, not on the same con-

tinuum between semantic freedom and proving ability but also affected by choices there, is

in the ease of writing the semantics for extensions. As we saw with VE in Section 7.4, the

choices made by a module can also make new semantic definitions more or less intuitive.

The particular choices a language developer makes will depend on what his focus will be

for the library and its purpose, whether he wants to enable lots of new syntax, lots of new

properties, or make it easy for others to write extensions. We give here some considerations

in this balancing act and our experience with them.

Once we have decided our language should have a certain property, we need to decide

exactly how to state it. In non-extensible settings, we generally figure out exactly what

premises we need to prove our conclusion and give only those, as anything more limits

the property’s applicability unnecessarily. Making the set of premises minimal, and those

premises as general as possible, seems like it is good for extension freedom as well. However,

this is not necessarily the case. By minimizing and generalizing the property statement,

we might be cutting off some extensions that need extra information, and more specific

information, to prove properties. Some extensions may require more specific information
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about what is expected to be true when proving a property than is needed in the host

language. If there is no reason a more specific version of a premise should not be true,

it may be better to require the more specific version. This must, of course, be balanced

against the possibility an extension will want to break the specific version of the premise.

Which way to err, on the general or specific side, may be dependent on the language being

defined.

An example of premises in Extensibella we might not need when a property is introduced

but might need later is is relations as discussed in Section 7.1. While the module introducing

a property might not need to use the structure, it can be helpful in extensions. Our

list extension to VL in the previous section projects cons(e1, e2) to eq(e1, e2), which the

projection constraints require to evaluate whenever the original expression evaluates. This

then requires knowing that the values v1 and v2, to which e1 and e2 evaluate, are equal or

not. The decidability of equality for values was a property of the host language upon which

we implicitly relied. Because the projection constraint’s statement in Extensibella includes

the is relation for the original expression, allowing us to get the is relation for the values

as well, we are able to show this projection evaluates, something we would not be able to

show otherwise.

Another set of considerations are those for what properties to include. Proving prop-

erties with imported key relations that don’t also involve newly-introduced relations is

generally quite difficult; they need to be implied directly by other properties and projection

constraints. Thus it is important for a module designer to try to provide all properties that

are expected to be true about the module’s relations and that might be useful for extensions

to use as lemmas in their own properties. This also must be balanced against extension

freedom, but properties stated generally enough are more often going to be helpful to ex-

tension writers trying to prove properties about imported relations than they are going to

be harmful to the freedom of extension writers adding to the language.

A particular example of this is introducing the addP(R) property for relations extensions

may want to use. We have found two classes of relations extensions often want to use

as key relations. The first is evaluation relations. Since extensions commonly introduce
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new static analyses intended to indicate something about dynamic behavior, extension-

introduced properties often include evaluation as a premise. As evaluation usually does

not follow the structure of terms as static analyses do, we often want to use it as the key

relation, requiring the addP(R) property for it. The second set, perhaps unexpectedly, are

is relations. Sometimes we want to show a relation will hold with some arguments for any

term, for which we want to carry out induction on the structure of the term. This requires

using an is relation as the key relation.

Once a set of properties for a module has been decided, they must be given an order. As

discussed in Chapter 5, this must maintain the composed order for any imported modules,

but new properties may be added anywhere in the order. This order should reflect likely

proof dependencies, not only for properties needed as lemmas in the context of the cur-

rent module, but also considering what properties might be useful as lemmas in extended

contexts. This is particularly important for projection constraints, as they do not have

any projecting syntax creating proof cases when they are introduced to show the module

designer what lemmas might be needed. In deciding where to order addP(R) properties,

one must also consider when extensions might want to use them to permit a relation’s use

as a new property’s key relation. A good rule of thumb is that the more basic a property

seems, the earlier in an order it should go, as it will not require many other properties as

lemmas for its proof and it might be needed to prove other properties.

All the considerations we have discussed depend on anticipating what extensions might

need. In our experience, this anticipation is the most common source of difficulty in using

our reasoning framework as opposed to writing proofs of properties in a monolithic setting.

The restrictions from Definitions 4.1 and 4.6 do not generally make proofs more difficult to

write, as the nature of metatheory proofs is generally to obey them anyway. Generic proofs

are often not difficult to write, usually being easier than at least a few of the proofs for the

known cases. In contrast, we have sometimes found while writing examples that our host

language had not sufficiently anticipated extension needs; the considerations in this section

come from times where the host language was insufficient in its properties, either the ones

it had chosen or how it stated them.
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To alleviate some of the problem, a module designer might try writing her own extension

before declaring her work done. A simple extension adding some new syntax and only

properties necessary as lemmas for existing properties does not take too much work to

write, but can identify problem points that are not obvious otherwise. For example, consider

the unified canonical forms lemma from Section 7.2. Knowing the language includes the

progress property, it is clear extensions will need to introduce canonical form lemmas if they

introduce new values and syntax operating on those values. However, until we try to prove

one for the pair extension it is not clear there will be any problem in doing so, and thus

that we need a host-language solution. Trying out the extension-writing experience can also

potentially catch problems with property orders and premises, and thus can be considered

a good service to provide to other contributors to a language library.

While we have written several example language libraries, much more exploration of our

ideas is needed. Three particular topics for further exploration stand out. The first is the

applicability of our framework to more extensions that are primarily semantic in nature,

adding new semantic relations and properties about them. Next, there is still much space

to explore in the trade-offs between extension freedom and the ability to prove properties.

We explored some options for definitions of evaluation and projection constraints about

evaluation in the previous section. However, we mostly left other semantic relations, such

as typing, unexamined. It could be there are interesting and useful projection constraints

beyond those for evaluation. Finally, the languages we have written have generally not

been realistic. The languages in the previous section, while larger than the others, are still

smaller than general programming languages. Specifying and extending realistic program-

ming languages, such as C, could provide more insight into our method’s usefulness.
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Chapter 8

Related Work

In this thesis we have presented a completely modular approach to developing the metathe-

ory of extensible languages. Any language module may introduce a new metatheoretic

property, with the proof for each property spread across modules. A composed language is

then guaranteed to have all the properties introduced by the modules included in it based on

these modular proofs. In this chapter, we consider related work on modularity in extensible

languages, both for specifications of syntax and semantics and for metatheory.

We first consider modular checks for the syntax and semantics of extensible languages

that guarantee desirable properties of compositions in Section 8.1. Just as our framework

permits different language modules to introduce new metatheoretic properties and write

modular proofs guaranteeing they will hold for any composed language, the prior works we

consider allow introducing portions of language syntax and semantics in different modules,

with guarantees desired properties hold of any composition.

We then consider prior approaches to developing the metatheory of extensible languages

in Section 8.2. These works have two primary drawbacks. First, some approaches require

glue proofs, changes or additions to modular proofs, to complete proof compositions, making

them not completely modular. Second, some approaches provide automatic composition of

modular proofs, guaranteeing properties will hold for any composition, but do not permit

arbitrary modules to introduce new properties, instead requiring all properties to be in-

troduced in a way where all modules will know them. Additionally, we consider another

framework that has other severe limitations making it unsuitable for fulfilling our vision of

any module introducing new properties and guaranteeing they hold for any composition.
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8.1 Modular Guarantees for Language Specifications

Because our goals are to allow non-experts to build language compositions and to do so

with the benefits of metatheory for their composed languages, we are also interested in

guarantees that language compositions are well-formed in other ways based on modular

checks. Such guarantees help fulfill our vision of programmers, not language experts, being

able to choose sets of modules from a language and use the language resulting from their

composition. Our guarantee that any composed language will have certain metatheoretic

properties is useless for such programmers unless the composed language is also guaranteed

to have well-formed concrete syntax and the programs they write can be parsed, and that

it has well-formed semantics so it can be executed or interpreted. We examine here three

such guarantees based on modular checks.

The first guarantee is relatively simple. Consider typing for language specifications. In

Section 2.2, we mentioned a requirement that the rules introduced by language specification

modules must be consistent with the typing constraints imposed by the specifications of

constructors and relations. A modular check that each module’s specification is well-typed

guarantees a composed language then is also well-typed. Similarly, in the Silver attribute

grammar system [38], language modules are checked for type errors in a modular fashion,

which then guarantees composed languages are well-typed. It is easy to see that modular

typing ensures compositions will be well-typed. A well-typed specification is one where each

individual rule, or, for attribute grammars, each individual equation, is well-typed. Thus

taking the union of individual sets where each element is well-typed is also well-typed.

In contrast to the inherent modularity of typing, consider grammars as specifications

of concrete syntax. Grammars consist of sets of terminals, nonterminals, and productions.

The composition of grammars from independent modules can be implemented as a union of

the corresponding sets from each module, as with most parts of our semantic specifications.

However, the property we might desire of this composition is more complex to maintain

in composition than typing. We generally want a grammar for a programming language

to have a deterministic parser, guaranteeing each program in the grammar’s language can
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be parsed in a unique way. Some systems for extensible languages with concrete syntax

specifications, such as SugarJ [9], Sugar* [10], and Spoofax [20], use generalized parsing.

This allows ambiguous composed grammars to be parsed, and thus the same program may

have multiple parses, and possibly multiple meanings, only one of which the programmer

writing it intended. In contrast, modular determinism analysis (MDA) [36], implemented

by the Copper parser generator [25], provides a modular check of grammar additions from

extension modules relative to a host language’s grammar to ensure their compositionality.

A set of extensions that all individually pass this modular check are guaranteed to compose

such that a specific combined approach to scanning and parsing produces a deterministic

parser for the composed language. Requiring extensions to pass the MDA check may rule

out some syntax an extension developer wants to introduce as it cannot pass the check even

though particular compositions might be fine. However, it also eliminates the possibility of

creating a composed language that cannot be deterministically parsed.

Another guarantee based on a modular check, this one for language semantics, comes

from the setting of attribute grammars. When an attribute grammar is animated to be

used as a compiler or interpreter, a missing attribute equation means it will crash; this is

analogous to encountering a missing pattern in pattern matching in a functional language.

In the JastAdd [13] attribute grammar system, used for writing extensible languages, a

check for missing equations is carried out when a composed language is built. If equations

are missing at that time, the language composer must write glue code to provide them, a

non-modular approach to language composition. To have a completely modular approach to

composition, this check must be turned into one individual modules can carry out. Modular

well-definedness analysis (MWDA) [18], implemented in the Silver system [38], creates such

a modular check. MWDA uses a flow analysis to determine on which attributes a particular

one may depend, with this analysis remaining valid even when more constructs are added

to the language. The flow analysis determines which other attributes an attribute access

may need, and thus, across all possible attribute accesses, which equations are necessary. If

all modules in a composition pass this check, the composed language is guaranteed to have

all the equations it can need, and cannot crash due to a missing equation.
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Our work applies this same approach of modular checks giving compositional guarantees

to metatheory. As in MDA, where any module may introduce new syntax, and MWDA,

where any module may introduce new semantics, our framework permits any module to in-

troduce new metatheoretic properties. As typing, MDA, and MWDA have modular checks

that modules are well-formed in desirable ways, so our reasoning framework has a modu-

lar check in the form of modular proofs. We then have a guarantee of all metatheoretic

properties holding, just as typing has a guarantee of composed well-typedness, MDA has a

guarantee of determinism in parsing, and MWDA has a guarantee of no missing equations.

8.2 Metatheory Frameworks for Language Extension

In contrast to our approach to metatheory, which builds metatheory modularly and guar-

antees it holds for any composed language, most existing frameworks for developing the

metatheory of extensible languages either do not permit arbitrary language modules to

introduce new properties, or they do not provide a guarantee properties will hold for com-

posed languages. In this section we examine prior approaches to metatheory for extensible

languages, breaking them down by whether their primary limitation relative to our ap-

proach is limiting the introduction of new properties or requiring glue code for composition.

We also consider an approach to developing metatheory for extensible languages, called

non-interference, that superficially shares the same characteristics as our framework but

has other serious limitations.

8.2.1 Frameworks Limiting Properties

There are several frameworks for proving properties about extensible languages that limit

how properties may be introduced, but guarantee the properties they do have hold for

composed languages. These operate on varying models of language extension.
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SoundX

The first framework we consider is SoundX [23]. SoundX assumes a language extensibility

framework where a host language introduces abstract syntax and defines typing relations,

with extensions adding new syntax, defining the typing relations for that syntax, and defin-

ing translations of the new syntax into the host language, similar to our projections. Typing

is checked for programs using the extended syntax, then translated to the host language

for any further analysis, making the extensions little more than syntactic sugar. SoundX

proves one property, that programs well-typed with the extension typing rules will desugar

via their translations into well-typed programs in the host language alone. Desugared ex-

pressions having the same type as the original expressions, but desugared (e.g., for the pair

extension from Section 7.2, an expression of type pairTy(intTy) desugars to an expression

of the arrow type to which pairTy(intTy) projects). SoundX proves this automatically

for each rule an extension introduces, creating an equivalent typing derivation for the full

translation using only rules introduced by the host language. This property permits the

host language designer to prove properties he desires, such as type soundness, outside of the

SoundX framework for the host language alone and know they will hold for any composed

language, since only fully-desugared programs are evaluated.

The drawback of this approach is that it is limited to this one property. It cannot

be used to prove anything beyond a direct correspondence between sugar and desugared

derivations of typing; any other properties must be proven separately for the host language

alone. Such a direct correspondence may also be too strict to permit some interesting

extensions, even if a language designer is not concerned about extending other relations or

proving further properties. Our list extension from Chapter 2 does not conform to this,

as the projections do not have related types, nor do our list extensions from Section 7.4

where lists project to records. The type listTy(intTy) projects to a record type with a head

field of type intTy , a tail field of type listTy(intTy), and a null field of type boolTy . The

projection of cons(e1, e2) has all these fields, but the projection of nil only has the null field,

breaking SoundX’s property. This suggests SoundX’s approach might be limited in what
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new datatypes extensions can add, particularly if the host language is relatively simple. In

contrast, our approach permits language designers to choose what they expect to be true

of projections, giving extensions more freedom. This allows extension-introduced syntax to

be more than syntactic sugar, as it must be with SoundX.

Extending Inductive Types

Another work, by Boite [3], allows more freedom than SoundX as properties are introduced

by the initiator of the language, not by the reasoning framework itself. It looks at reusing

proofs when extending inductive types with additional constructors and modifying existing

relations by adding new rules and new parameters. All reasoning is carried out in Coq [1].

The language framework underlying this work assumes a host language module introduces

a set of syntax categories and relations, with extension modules adding new constructors of

those categories and new rules for the relations. Additionally, relations can be modified by

adding new parameters, such as an extension adding a new parameter for a variable store

to an existing evaluation relation without one, with existing rules modified automatically

to include new parameters. Because of these modifications of relations, extensions can only

be added linearly, building on each other in sequence; independent extensions that are then

composed are not allowed. The reasoning framework allows the host language module to

introduce a set of properties for the language, which the host language designer proves for

the host language without any restrictions on proofs. Each successive extension is then

required only to add new proofs for cases arising from case analyses for the new rules it

adds, with the cases from the modules on which it builds reusing the proofs already written

for them. Because extension is linear, it needs no restrictions on how proofs are written, as

opposed to the restrictions we must place on proofs. Any case analysis is valid, as extensions

adding new cases even to nested, non-top-level case analyses will know these new cases need

to be proven.

While the soundness of proofs is guaranteed, it appears the reasoning framework of this

work is underpowered relative to the language framework about which it reasons. Extensions

may add new parameters to relations, but they cannot introduce new properties about those
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parameters, nor can they add well-formedness conditions about them as premises for existing

properties. The language framework is also quite restrictive compared to ours. In addition

to not allowing extensions to introduce new relations, the limitation to linear extension

means users of such languages cannot pick and choose extensions; a user may select the

extensions he wants, but must then use all extensions in the extension sequence up to the

last one he wants, including any intervening ones he does not want. Linear extension also

means extension developers must coordinate to decide whose extension will be next in line;

they cannot independently write their own features.

Meta-Theory à la Carte

Our final example of an existing framework with sound composition is meta-theory à la

carte (MTC) [7]. MTC reasons about languages written using what we call the comple-

mentary components framework, where independent component modules build on a set of

shared declarations of syntax categories and relations. Each module adds new constructors

of the shared categories and new rules defining the shared relations. MTC also includes

metatheoretic properties as part of the shared declarations, with each module writing proofs

of the properties for the cases it introduces. These proofs also have restrictions on case anal-

ysis, similar to those imposed by our Definitions 4.1 and 4.6, to ensure composed proofs

are complete. These proofs are written in Coq using a particular, complex encoding of

languages and proofs. This encoding then allows all the component modules and proofs

to be composed, forming a single language specification and proofs of properties about it.

Unfortunately, this encoding is so complex it can be difficult to ascertain whether the lan-

guage written, and each property, is the one intended; the authors note this difficulty in

their paper. This is in contrast to our approach, where the encoding into G is very direct

and the correspondence between our language specification and the one about which we

reason is clear.

The benefit of this encoding of languages and proofs is that it builds the proof restric-

tions and composition directly into Coq’s logic. In contrast, our proof restrictions need
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to be enforced on top of G as an extra check for modular validity, and our proof compo-

sition requires pulling apart G proofs and recombining their modified sub-proofs to create

composed ones.

Shared Limitations of These Frameworks

All of these reasoning frameworks are lacking relative to ours because modules other than a

host language, if that, cannot introduce new properties, nor can their underlying language

frameworks allow extensions to introduce new relations. This means that at best they can

support extensions extending the existing relations in interesting ways; SoundX cannot even

support this, as its extensions are syntactic sugar and their semantics must exactly match

their translations. Thus these frameworks cannot support semantic extensions, such as our

security and optimization extensions from Chapter 2, meaning their modularity is limited

to extensions that are basically syntactic in nature.

In practice, this type of limitation, where modules cannot introduce new properties, is

often too strong to be useful. Even proving existing properties, such as ones that might be

introduced by the host language in Boite’s framework or that might be part of the shared

declarations of MTC, often requires using others as lemmas. Some such lemmas may need

to be introduced by extensions to support their new definitions, properties that cannot be

stated by the host language because the specific syntax referenced in the property is not

known at that time. For this reason, the implementation of the MTC framework bows to

practicality and allows component modules to introduce new properties, but compositions

including such properties require glue proofs to complete them. Shared properties are still

proven without requiring glue proofs, once the lemmas they need have been glued into the

proof development.

8.2.2 Frameworks Requiring Glue Proofs

We turn now to discussing reasoning frameworks where modular reasoning does not guar-

antee properties will hold for any composed language, and thus proof composition might

require glue proofs to make separate pieces work together. These works provide ways of
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reusing proofs of properties for modules in different language extensibility frameworks, re-

ducing the work needed for proving properties for a composition, but not eliminating it.

The frameworks in the previous section, being completely modular, allow programmers who

are not experts in language design or logic to choose what extensions to use and know the

properties of the full language. The frameworks in this section instead require experts to

create compositions of sets of extensions, as the composed proofs might require extra work

to finish. Additionally, properties with semi-modular proofs, as these frameworks have, may

not hold for every composition due to interactions between the different features included

in compositions. No guarantee is given until an expert creates and certifies a composition’s

proofs.

Proof Weaving

An early such work, Proof Weaving [30], reasons about languages written using the com-

plementary components framework, similar to MTC. Each component writes its proof in

Coq for each property, whether that be a property that is part of the shared set of decla-

rations or specific to the component, with no restrictions. The proofs for each component

in a composition are then combined (or woven) to create a proof for the property in the

full language. However, this proof may not be complete. Because there are no restrictions

on proofs, the composed proof may have holes, such as from a case analysis where only a

portion of the cases were known at the time the proof was written. The implementation

tries to fill these holes, but in general the human composer of the proofs must write glue

proofs to fill the holes instead. Overall, Proof Weaving is less a principled framework for

developing metatheory and more a computer program for manipulating Coq developments

in ways that may be useful, but are not guaranteed to be successful.

Modular Monadic Metatheory Library

The next work we consider is an extension to MTC, the modular monadic metatheory

library (M3TL) [5]. It reasons about languages using a modification of the complementary

components framework where each component module can use monads to add effects to
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shared relations, such as exceptions, variable stores, or references. The reasoning framework

assumes a set of shared property declarations, but each component module declares and

proves its own version of each property to fit the effects it adds (e.g., a proof of type

preservation for a component module adding a variable store needs to add a premise that

the variable stores for typing and evaluation correspond). These changes must meet a formal

requirement ensuring the set of effects is abstract enough to permit other components also

to introduce new effects. The M3TL framework reuses these modular proofs, along with

glue code for combining the included monads and glue proofs for combining the modified

property statements and their proofs, to create composed proofs of properties. As with the

underlying MTC framework, the encodings of languages, properties, and proofs for M3TL

are quite complex. The inclusion of effects makes the encodings significantly more complex

than those found in MTC.

M3TL provides a feature our reasoning framework does not, that of adding effects to a

language and reasoning about them. Our language extensibility framework can support the

addition of effects by extensions via a clever use of existing relation arguments, if the host

language plans for it.1 However, it appears our reasoning framework cannot reason about

them as M3TL does because we cannot modify existing property statements to add extra

premises for the well-formedness of new effects, nor change their conclusions to reflect the

inclusion of new effects.

Product Lines of Theorems

Another work, by Delaware et al. [6], treats language extension as product lines, with each

extension being a feature optionally included in the language. The idea underlying this

approach is treating a language as a software product with different versions. A software

product might have a basic version with few features, a pro version with a full set of

features, and in-between versions that include all the features of the basic version plus some

subset of those in the pro version. The higher-featured versions of the software product use

1Sterling code for a language modeling the approach to language extension of modular structural op-
erational semantics [29], which also permits adding effects to languages, can be found online at https:

//mmel.cs.umn.edu/sterling/examples/modelingMSOS/description.html.
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the same code as the more basic ones, all developed by the same team of developers, but

with certain program modules added to implement the added features, where the modules

may also modify the existing code in some ways. Treating language extension as product

lines also assumes one team develops all the language features, with different versions of

the language resulting from including different extension feature modules relative to the

host language. The host language introduces variation points extensions may use to modify

existing definitions, adding new arguments to constructors and new parameters to relations,

as well as adding new premises to rules. This is similar to the approach to extension taken

by M3TL. Due to these changes to the shared definitions, glue code might be needed to

create composed languages including different features. Because of the assumption that one

team develops all the features, and thus knows all the possible combinations, the team can

also develop all the glue that might be needed.

The host language also introduces properties for the language, treating the property

statements and their proofs as a product line as well. As with language definitions, the

property statements also include variation points, allowing language features to modify

them to fit the new features they may add. These variation points have restrictions on

what extensions may add so different property versions can be composed. Each module

writes a proof in Coq for the cases it introduces, with appropriate restrictions on the proofs

so they may be composed. A metatheory composition requires glue proofs combining the

modified property statements and filling in the changes to other proofs to fit the property

statements modified for full sets of effects, creating full property statements combining all

variations and valid proofs for the full properties.

Because of the explicit assumption that product-line extensible languages are developed

by one team, the glue code and glue proofs required for composition can be developed by

that same team. This allows non-experts to choose the features they want from the set

provided by the language developers without concerns about compositions, as all possible

compositions have been certified by the language experts who wrote them. The drawback

of this approach relative to our vision is that, while programmers are free to choose any set

of language features they want, outside developers are not free to add new feature modules
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to the language. Only the central team of language developers can add modules, as they

need to certify all possible compositions for soundness.

FPOP

Our last framework requiring glue proofs is fpop [14]. Its language extensibility framework

allows extensions to build on a host language and other extensions to it. In doing so, an

extension module inherits their definitions, adding its own definitions to them. It may also

modify imported definitions via glue code, changing the definitions given by other modules,

in addition to introducing its own new relations and defining them. Properties and their

proofs are treated similarly to semantic definitions. Extensions may introduce their own

properties, and must prove properties inherited from other modules as well. For existing

properties, an extension may either extend the existing proof, writing proofs only for the

new cases it introduces, or it may rewrite the entire proof from scratch. The latter can be

useful if the original proof’s structure does not work with the additions an extension makes

to the language.

Rewriting proofs from scratch is enabled by fpop’s lack of a concept of automatic

composition. It is freer than Boite’s work from the previous section in that linear extension

is not a requirement; two modules may both build on the same module. However, combining

independent modules requires a language developer to write a new module inheriting from

both. In general, a combining module may need to rewrite the proofs of the shared properties

of independent modules it includes from scratch, as they may not share the same structure.

This metatheory framework places a heavy burden on extension writers in comparison with

our approach, as writing extensions in fpop may require rewriting the entirety of proofs

for existing properties, whereas our approach only requires an extension writer to add new

cases to existing properties’ proofs.

8.2.3 The Non-Interference Framework

The final framework we consider [19] introduces a notion it calls interference, undesirable

interactions between extensions that invalidate properties, and defines non-interference of
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extensions as a way to ensure desired properties hold for composed languages. Superficially,

this framework appears to support many of the same things as ours. It does not limit prop-

erties as we saw in Section 8.2.1, as any language module may introduce new properties.

Property proofs also do not require glue proofs for composition as in the frameworks in

Section 8.2.2. It also assumes Silver’s model of extensibility [38], of which ours is a gener-

alization. Despite these similarities, there are several limitations of this framework relative

to ours.

The non-interference framework requires attribute equations for a term and its projec-

tion always to evaluate to essentially-equal values, where the values are either the same or

one projects to the other; extensions obeying this restriction are said to be non-interfering.

This mirrors SoundX’s requirement for typing, requiring that a term and its projection

must have types that are equal or projections, but extends it to the definitions of all seman-

tics. Properties are proven for the host language, and they are proven to hold when two

terms have semantic attributes with essentially-equal values. Then the composed proof of a

property can apply the given proof to the host language and copy the property’s truth for

terms built by extension-introduced syntax constructors from their projections because all

a term’s semantic attributes must have values that are essentially equal to its projection’s

values. Copying the property from the projection like this is similar to our generic proofs,

but with a more simplistic, one-approach-fits-all generic proof. The proof work required by

the non-interference framework then is three-pronged: (1) extensions prove their attribute

equations for new syntax evaluate to values that are essentially equal to the corresponding

attributes for the syntax’s projection, (2) modules prove their new properties for the host

language, and (3) modules prove their new properties hold for any terms with essentially-

equal attribute values.

One difficulty in using this framework is that non-interference places very strict require-

ments on extensions. Our list extension from Chapter 2 is not non-interfering, as projections

such as projecting cons(e1, e2) to eq(e1, e2) do not maintain the same semantics. Consider

also the secdecl construct from the security extension from Chapter 2. The updated security

context for secdecl can differ from that for the decl to which it projects, as the secdecl can
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be used to declare variables as private, whereas decl always declares variables as public.

Without being able to declare variables as private, as this requirement does not permit, the

security analysis can be introduced and proven to ensure private information is not leaked,

but it cannot be useful. The requirement for each of a term’s attribute values to be related

to the corresponding attribute value of its projection is like a very strict projection con-

straint. By making the requirements for projections be specified by the language designer

rather than a characteristic of the framework itself, we allow each language library to choose

requirements that work well for it.

Another limitation of this framework is that its property proofs are only applicable to

fully-decorated trees, meaning terms for which all semantic analyses have been derived.

This immediately rules out some ill-behaved trees, such as those without types or that do

not evaluate. While it might appear the modular well-definedness analysis would ensure

such trees do not exist, MWDA only considers the existence of attribute equations; it

cannot consider whether the equations will produce values or not. In particular, the non-

interference framework rules out considering trees where the computation of some attribute

value is non-terminating. Then a property about the existence of a derivation of a semantic

relation is vacuously true in this framework, as terms not having such a derivation are

excluded from consideration. This can be mitigated somewhat by an existing analysis that

ensures computations in an attribute grammar terminate [21]. However, this analysis is

naturally conservative, and encodings of many languages, such as statement evaluation in

our example language from Chapter 2, into an attribute grammar cannot pass it. Such a

determination would require the analysis to determine any program written in the language

would terminate.

Finally, despite allowing any module to introduce a new property, not just the host

language, this framework does not consider the use of properties as lemmas. The author

states he believes circularity in proofs of different lemmas cannot be introduced as long as

each module’s proofs are fine individually [16]. However, as no module explicitly writes the

proofs for copying a property from a term’s projection, it is not clear circular dependencies

cannot be introduced in the composition by this process.
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Chapter 9

Conclusion

This thesis has presented a reasoning framework for developing the metatheory of exten-

sible languages in a modular fashion. In our framework, we assume extensible languages

are developed as composable modules in language libraries, with the modules introducing

language features. A common structure for language libraries is to have a module defin-

ing a host language, with other modules being extensions to the host language. Extension

modules extend the definitions given by the host language, adding new syntax and new se-

mantics to the language. Extensions may be developed independently of one another, so the

syntax and semantics they introduce are not known by other modules. Language composi-

tion combines the definitions given by all modules, creating a full language with all features

introduced by all included modules. This composition includes extending the definitions

of new semantic relations introduced by one module to the new constructs introduced by

an independent module, often using projections that translate away extension-introduced

constructs.

Our reasoning framework permits language modules to introduce their own new proper-

ties, with a guarantee each property will hold for any composition of well-formed modules.

The proof that a property will hold for any composed language is distributed across the set

of modules knowing the property as modular proofs, each providing a portion of the proof

work necessary for a composed language. Each modular proof is written in the context of

a single module’s knowledge of the language, proving the property for the portion of the

language it knows. However, not all parts of a language are known by a module that also

knows the property. When an extension module introduces a property, other extensions
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that are independent of it but which may be included in a composed language cannot con-

tribute to the proof, although they may contribute to the definitions for which the property

specifies relationships. Thus we also identify a way for modular proofs to use generic rea-

soning, allowing a module introducing a property to prove it will hold for portions of the

language introduced by independent modules not knowing the property. This generic rea-

soning is made possible by using other properties as lemmas and knowing how definitions

are extended to constructs from other extensions. In particular, properties we identify as

projection constraints, which specify how the semantics of a construct and its projection

must be related, figure prominently in such generic reasoning. The modular proofs written

by the modules included in a language composition may be composed to form the full proof

necessary for each property for a composed language, similar to how the modules in the

language specification are composed to form a full language.

The use of generic reasoning makes it possible for any module to introduce new metathe-

oretic properties. Without generic reasoning to extend proofs to constructs that are not

modularly known with the property, only the host language would be able to introduce

properties. Because the host language is known to all modules in a language library, prop-

erties introduced by it are also known, and thus modular proofs of them can be written by

all modules. As extensions are not known to all modules, their properties are not shared

by all. If extensions could not introduce new properties, they could not usefully introduce

new semantic analyses, such as the security check for information flow mentioned in Chap-

ter 1 and expanded upon in Chapter 2. Without properties guaranteeing the accuracy of

such checks, they would not be useful. Then extensions would be limited to adding new

syntax and extending existing semantics to them only, in contrast to the full participation

in defining the language by also introducing new semantic analyses that we have presented.

In addition to developing our reasoning framework, we have written an implementation

of it. To support this, we have also written an implementation of the language extensi-

bility framework on which it relies. Together, these allow language developers to write

specifications of language modules and write modular proofs of their metatheoretic proper-

ties. Using these implementations, we have created several example language libraries with
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metatheoretic properties and modular proofs of them. Overall, these have suggested our

reasoning framework is practical for the development of modular metatheory, and that the

limitations it imposes on proofs are not too restrictive. These examples have also allowed

us to examine the effects different choices of projection constraints have on what extension

modules may introduce. Because the generic reasoning needed for proving properties in-

troduced by extensions relies so heavily on projection constraints, the choices of projection

constraints affect what properties extensions can prove. Additionally, because extensions

must prove the projection constraints hold for their new syntax, they affect what syntax

extensions may introduce, and how they define the semantics of that syntax. The ability

of extensions to prove interesting properties and the freedom of extensions to introduce

interesting syntax is then in tension, as more restrictive projection constraints help prove

properties but limit syntax, and less restrictive projection constraints do the opposite. In

investigating these trade-offs, we have found there is no perfect balance between the two.

The choice must be made by the language designers, deciding what is appropriate for the

language they are writing, taking from our experiences advice on what may be appropriate.

Our reasoning framework provides a means for realizing the vision of extensible lan-

guages we laid out in the introduction relative to metatheory. In this vision, programmers

who are not experts in developing programming languages can choose the features they

want in a programming language from the modules in a language library, with automatic

composition of the modules to form a full language with all the features from the mod-

ules they selected. The reasoning framework in this thesis allows them also to compose

the metatheory of the language automatically, guaranteeing the full language has all the

metatheoretic properties from the modules they selected. However, there is more work that

can be done.

One aspect of this work is writing more example languages. As noted at the end of

Chapter 7, there is more room for trying out different possible projection constraints, de-

termining how different choices affect extensions and when they are useful, and for trying

out more extensions to more types of languages than we have been able to write. We also

noted at the end of Chapter 5 that determining what ordering choices are useful in different
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situations requires developing more languages, particularly ones with extensions building on

other extensions. Finally, even our largest languages are still toy languages. Our framework

needs to be tested for developing the metatheory of realistic languages as well.

In addition to writing more examples, we can improve the experience of module authors

developing modular metatheory and the experience of programmers relying on it. We

expand on these ideas in the rest of this chapter, presenting possibilities for future work

along these lines.

9.1 Higher-Order Abstract Syntax for Reasoning

Higher-order abstract syntax [28, 34] is a method for encoding binding structures in object-

level abstract syntax by using binding structures in the meta-language in which it is en-

coded. This approach can improve ease of specification and, especially, ease of reasoning

about programming languages [40, 41]. Using higher-order abstract syntax, binding struc-

tures for constructs such as variable names can be represented using meta-level bindings.

This eliminates the need for handling bindings explicitly, such as the approach using typing

and evaluation contexts we had in our example language in Chapter 2. Reasoning about the

object language can take advantage of metatheoretic properties about such bindings rather

than proving them specifically for the object language. For example, weakening for typing

(i.e., adding new type bindings to a context does not change the type of an expression)

when using higher-order abstract syntax can rely on weakening as a metatheoretic property

of the meta-level bindings. This eliminates the work of proving weakening specifically for

typing; the weakening for typing follows directly from weakening for the meta-level bind-

ings. Because we have limited ourselves to a first-order setting, we cannot use higher-order

abstract syntax, and must handle binding structures explicitly in our language encodings

and proofs.

To use higher-order abstract syntax in our work, we would need to leave the first-order

setting. Fortunately, our chosen logic G [11] already supports reasoning about higher-order

abstract syntax, so most of our work on the reasoning framework would still apply. The main
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apparent technical difficulty is in the relationship between unification in the limited context

of the language of a single module and the larger context of a composed language, and

between unification before and after term replacement eliminating generic constructors. In

our lifting of generic proofs to new constructs in the context of composed languages, replac-

ing generic constructors with terms built by new constructors relies on knowing unification

with a formula before term replacement implies unification with a related formula after

term replacement, and that the most general unifiers from both unifications are related by

term replacement and substitution as well. This is used in the cases for proof rules using

language rules in the reasoning, either through case analysis or applying a language rule to

a sequent’s conclusion. The difficulties in moving to a higher-order setting that can support

higher-order abstract syntax would likely primarily arise in proving Theorem 3.4 and the

theorems in Appendix B due to the use of higher-order unification.

A less-technical aspect of introducing higher-order abstract syntax would be consider-

ations on whether its use affects extensibility. We saw in Chapter 7 that some choices we

make in the syntax of extensible languages affect what extensions can introduce. Once

the theory allowing higher-order abstract syntax in an extended version of our reasoning

framework is completed, an exploration of the effect of using it on extensibility of languages

can be undertaken. In particular, this can focus on whether defining extensible higher-order

abstract syntax restricts what extensions may introduce and whether it has an effect on the

ease of introducing properties requiring generic reasoning.

9.2 Property-Based Testing for Modular Metatheory

Proving language properties is quite time-consuming, even when the proofs are not par-

ticularly complex. This is a time investment many language designers are not willing to

make. However, even when language designers do not intend to expend the time and effort

required to verify properties hold, it can be still be useful to identify the properties expected

to hold for a language. Knowing what properties a language is expected to have can be

useful for programmers using it for non-critical applications. If a language is supposed to
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have the property of type preservation, and thus well-typed programs should not encounter

ill-typed values, a programmer can choose to write a program assuming all values will have

the correct types and not include checks that values do have the expected forms.

For situations where full verification is not necessary, we might be able to get a reasonable

level of assurance from property-based testing [4]. In general property-based testing, a

property a function is expected to have is identified, then randomized inputs are generated

for the function, checking each output satisfies the expected property. For example, we

might check a function f is commutative by generating random inputs a and b and checking

that f(a, b) = f(b, a). This is a much lighter-weight approach to checking properties hold

as determining the properties desired of a program, or of a language, is relatively easy

compared to proving them.

It might be possible to apply property-based testing to the modular development of

metatheory. This would allow module designers to introduce the properties they expect

to be true and get some modular assurance they hold for composed languages. Using our

reasoning framework as a guide to what to test, modules might test the properties we want

the composed language to have, like type preservation or the security property, and also

projection constraints that help module authors determine if their default rules are sensible

for the projections they use. The difficulty, as we saw with writing modular proofs, is that

only a portion of the language is known modularly. This suggests a robust testing-based

approach to modular metatheory should be able to introduce some sort of unknowns into

the testing, both to represent generic proof cases and the possibility that a sub-term will

be constructed using a rule introduced by an unknown extension that defines the relation

a bit differently than any known rule.

9.3 Safe Relation Orders

While our focus in this work is on specifications of extensible languages and reasoning about

them, our vision is for extensible languages to be useful to programmers. Programmers

choose the language modules they want to use and compose them, with our work ensuring
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their composed languages have the metatheoretic properties the designers of all the modules

wanted them to have.

One part of enabling programmers to use extensible languages in their day-to-day pro-

gramming tasks is turning language specifications into usable languages. This requires

creating compilers or interpreters based on those specifications, a problem is beyond the

scope of our work, and generally unrelated to our primary concern, metatheory. However,

there is one aspect of this related to metatheory, which we consider here, and that is guiding

how relations are ordered to be applied in compilers and interpreters.

Consider using our example language from Chapter 2 to execute programs. If we have

a composed language including all the modules we have discussed, we might check whether

a program is typable using the host language’s typing relation and whether it is secure

using the security extension’s secure relation. Once it has passed both checks, we might

optimize the program, then execute the optimized program. We modularly proved the

original program will not leak sensitive information when executed, but the original program

is not what is being executed in this scenario. Is the execution still leak-free? If the

optimization extension modularly proves a property that it does not change evaluation

results, this is true. However, if we include a different program transformation that is not

verified to do so, this may not be the case.

Our approach to modular metatheory has guaranteed composed languages have desirable

properties. However, as we see in this example, it has not, and indeed cannot, guarantee

these properties are applicable to what happens in a use of the language. Future work

must address this problem, finding a way to ensure the properties a language has apply

to the way it is used. This is an inherently compositional problem, as it does not arise

until a composed language is being used, and thus our vision of programmers choosing their

own language features further requires a solution to it that does not rely on an expert in

languages and logic checking whether an order is safe.
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Appendix A

Full Language Library

This appendix gives the full specification for our example language library from Chapter 2.

A.1 Host Language H

BH = ∅

A.1.1 Syntax

CH = {s, e, ty , n, i,Γ, γ}

CH :

s ::= skip | decl(n, ty, e) | assign(n, e) | seq(s, s) | ifte(e, s, s) | while(e, s)

e ::= var(n) | intlit(i) | true | false | add(e, e) | eq(e, e) | gt(e, e) | not(e)

ty ::= int | bool

Γ ::= nilty | consty(n, ty,Γ)

γ ::= nilval | consval(n, e, γ)

A.1.2 Relations

RH = {lkpTy(Γ∗, n, ty), notBoundTy(Γ∗, n), lkpVal(γ∗, n, e), value(e∗), vars(e∗, 2 n),

Γ ⊢ e∗ : ty, Γ ⊢ s∗,Γ, γ ⊢ e∗ ⇓ e, (γ, s∗) ⇓ γ}
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RH contains the following rules:

lkpTy(Γ∗, n, ty)

lkpTy(consty(n, ty ,Γ ), n, ty)

LT-Head
n ̸= n′ lkpTy(Γ, n, ty)

lkpTy(consty(n ′, ty ′,Γ ), n, ty)

LT-Tail

notBoundTy(Γ∗, n)

notBoundTy(nilty , n)

NLT-Nil
n ̸= n′ notBoundTy(Γ, n)

notBoundTy(consty(n ′, ty ′,Γ ), n)

NLT-Cons

lkpVal(γ∗, n, e)

lkpVal((consval(n, v, γ)), n, v)

LV-Head
n ̸= n′ lkpVal(γ, n, v)

lkpVal((consval(n′, v′, γ)), n, v)

LV-Tail

value(e∗)

value(intlit(i))

V-Int

value(true)

V-True

value(false)

V-False

vars(e∗, 2 n)

vars(var(n), {n})
VR-Var

vars(true,∅)

VR-True

vars(intlit(i),∅)

VR-Int

vars(false,∅)

VR-False

vars(e1 , vr1 ) vars(e2 , vr2 )

vars(add(e1 , e2 ), (vr1 ∪ vr2 ))

VR-Add
vars(e1 , vr1 ) vars(e2 , vr2 )

vars(gt(e1 , e2 ), (vr1 ∪ vr2 ))

VR-Gt

vars(e1 , vr1 ) vars(e2 , vr2 )

vars(eq(e1 , e2 ), (vr1 ∪ vr2 ))

VR-Eq
vars(e, vr)

vars(not(e), vr)

VR-Not
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Γ ⊢ e∗ : ty

lkpTy(Γ, n, ty)

Γ ⊢ var(n) : ty

T-Var

Γ ⊢ true : bool

T-True

Γ ⊢ intlit(i) : int

T-Int

Γ ⊢ false : bool

T-False

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ add(e1 , e2 ) : int

T-Add
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ gt(e1 , e2 ) : bool

T-Gt

Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ eq(e1 , e2 ) : bool

T-Eq
Γ ⊢ e : bool

Γ ⊢ not(e) : bool

T-Not

Γ ⊢ s∗,Γ

Γ ⊢ skip,Γ

TS-Skip
Γ ⊢ e : ty notBoundTy(Γ, n)

Γ ⊢ decl(n, ty , e), consty(n, ty ,Γ )

TS-Decl

Γ ⊢ s1,Γ
′ Γ′ ⊢ s2,Γ

′′

Γ ⊢ seq(s1 , s2 ),Γ
′′

TS-Seq
Γ ⊢ e : ty lkpTy(Γ, n, ty)

Γ ⊢ assign(n, e),Γ

TS-Assign

Γ ⊢ e : bool Γ ⊢ s,Γ′

Γ ⊢ while(e, s),Γ

TS-While
Γ ⊢ e : bool Γ ⊢ s1,Γ

′ Γ ⊢ s1,Γ
′′

Γ ⊢ ifte(e, s1 , s2 ),Γ

TS-If

γ ⊢ e∗ ⇓ e

lkpVal(γ, n, v)

γ ⊢ var(n) ⇓ v

E-Var

γ ⊢ true ⇓ true

E-True

γ ⊢ intlit(i) ⇓ intlit(i)

E-Int

γ ⊢ false ⇓ false

E-False

γ ⊢ e ⇓ false

γ ⊢ not(e) ⇓ true

E-Not-T
γ ⊢ e ⇓ true

γ ⊢ not(e) ⇓ false

E-Not-F
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γ ⊢ e1 ⇓ intlit(i1) γ ⊢ e2 ⇓ intlit(i2) plus(i1, i2, i)

γ ⊢ add(e1 , e2 ) ⇓ intlit(i)

E-Add

γ ⊢ e1 ⇓ v1 γ ⊢ e2 ⇓ v2 v1 = v2

γ ⊢ eq(e1 , e2 ) ⇓ true

E-Eq-T

γ ⊢ e1 ⇓ v1 γ ⊢ e2 ⇓ v2 v1 ̸= v2

γ ⊢ eq(e1 , e2 ) ⇓ false

E-Eq-F

γ ⊢ e1 ⇓ intlit(i1) γ ⊢ e2 ⇓ intlit(i2) i1 > i2

γ ⊢ gt(e1 , e2 ) ⇓ true

E-Gt-T

γ ⊢ e1 ⇓ intlit(i1) γ ⊢ e2 ⇓ intlit(i2) i1 ≤ i2

γ ⊢ gt(e1 , e2 ) ⇓ false

E-Gt-F

(γ, s∗) ⇓ γ

(γ, skip) ⇓ γ

X-Skip
(γ, s1) ⇓ γ′ (γ′, s2) ⇓ γ′′

(γ, seq(s1 , s2 )) ⇓ γ′′
X-Seq

γ ⊢ e ⇓ true (γ, s1) ⇓ γ′

(γ, ifte(e, s1 , s2 )) ⇓ γ′
X-If-T

γ ⊢ e ⇓ false (γ, s2) ⇓ γ′

(γ, ifte(e, s1 , s2 )) ⇓ γ′
X-If-F

γ ⊢ e ⇓ v

(γ, decl(n, ty , e)) ⇓ consval(n, v, γ)

X-Decl
γ ⊢ e ⇓ v update(γ, n, v, γ′)

(γ, assign(n, e)) ⇓ γ′
X-Assign

γ ⊢ e ⇓ false

(γ, while(e, s)) ⇓ γ

X-While-F

γ ⊢ e ⇓ true (γ, s) ⇓ γ′ (γ′, while(e, s)) ⇓ γ′′

(γ, while(e, s)) ⇓ γ′′
X-While-T
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A.1.3 Projections and Default Rules

T H = {e : proj e(e, e), s : proj s(s, s), ty : proj ty(ty , ty)}

TH = ∅

SH = ∅

A.2 List Extension L

BL = {H}

A.2.1 Syntax

C L = ∅

CL:

s ::= splitlist(n, n, e)

e ::= nil | cons(e, e) | null(e) | head(e) | tail(e)

ty ::= list(ty)

A.2.2 Relations

RL = ∅

RL contains the following rules:

value(e∗)

value(nil)

V-Nil
value(e1 ) value(e2 )

value(cons(e1 , e2 ))

V-Cons
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vars(e∗, 2 n)

vars(nil ,∅)

VR-Nil
vars(e, vr)

vars(head(e), vr)

VR-Head

vars(e1 , vr1 ) vars(e2 , vr2 )

vars(cons(e1 , e2 ), (vr1 ∪ vr2 ))

VR-Cons
vars(e, vr)

vars(tail(e), vr)

VR-Tail

vars(e, vr)

vars(null(e), vr)

VR-Null

Γ ⊢ e∗ : ty

Γ ⊢ nil : list(ty)

T-Nil
Γ ⊢ e1 : ty Γ ⊢ e2 : list(ty)

Γ ⊢ cons(e1 , e2 ) : list(ty)

T-Cons

Γ ⊢ e : list(ty)

Γ ⊢ head(e) : ty

T-Head
Γ ⊢ e : list(ty)

Γ ⊢ tail(e) : list(ty)

T-Tail

Γ ⊢ e : list(ty)

Γ ⊢ null(e) : bool

T-Null

Γ ⊢ s∗,Γ

Γ ⊢ e : list(ty) lkpTy(Γ, nhd, ty) lkpTy(Γ, ntl, list(ty))

Γ ⊢ splitlist(nhd, ntl, e),Γ

TS-Splitlist
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γ ⊢ e∗ ⇓ e

γ ⊢ nil ⇓ nil

E-Nil
γ ⊢ e ⇓ cons(v1 , v2 )

γ ⊢ head(e) ⇓ v1

E-Head

γ ⊢ e1 ⇓ v1 γ ⊢ e2 ⇓ v2

γ ⊢ cons(e1 , e2 ) ⇓ cons(v1 , v2 )

E-Cons
γ ⊢ e ⇓ cons(v1 , v2 )

γ ⊢ tail(e) ⇓ v2

E-Tail

γ ⊢ e ⇓ nil

γ ⊢ null(e) ⇓ true

E-Null-T
γ ⊢ e ⇓ cons(v1 , v2 )

γ ⊢ null(e) ⇓ false

E-Null-F

(γ, s∗) ⇓ γ

γ ⊢ e ⇓ cons(v1, v2)

nhd ̸= ntl update(γ, nhd, v1, γ
′) update(γ′, ntl, v2, γ

′′)

(γ, splitlist(nhd, ntl, e)) ⇓ γ′′
X-Splitlist

A.2.3 Projections and Default Rules

T L = ∅

SL = ∅

TL contains the following rules:

proj e(null(e), e)

P-Null

proj e(nil , true)

P-Nil

proj e(head(e), e)

P-Head

proj e(cons(e1, e2), eq(e1, e2))

P-Cons

proj e(tail(e), e)

P-Tail

proj ty(list(ty), ty)

P-List

nhd ̸= ntl

proj s(splitlist(nhd, ntl, e),

seq(seq(assign(nhd, e), assign(ntl, tail(var(nhd)))),

assign(nhd, head(var(nhd)))))

P-Splitlist
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A.3 Security Extension S

BS = {H}

A.3.1 Syntax

C S = {sl ,Σ}

CS :

s ::= secdecl(n, ty, sl , e)

sl ::= public | private

Σ ::= nilsec | conssec(n, sl ,Σ)

A.3.2 Relations

RS = { lkpSec(Σ∗, n, sl), join(sl∗, sl , sl), Σ ⊢ level(e∗, sl), Σ sl ⊢ secure(s∗,Σ) }

RS contains the following rules:

Γ ⊢ s∗,Γ

γ ⊢ e : ty notBoundTy(Γ, n)

Γ ⊢ secdecl(n, ty , sl , e), consty(n, ty ,Γ )

TS-Secdecl

(γ, s∗) ⇓ γ

γ ⊢ e ⇓ v

(γ, secdecl(n, ty , sl , e)) ⇓ consval(n, v, γ)

X-Secdecl
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lkpSec(Σ∗, n, sl)

lkpSec(conssec(n, sl,Σ), n, sl)

LS-Head
n ̸= n′ lkpSec(Σ, n, sl)

lkpSec(conssec(n′, sl′,Σ), n, sl)

LS-Tail

join(sl∗, sl , sl)

join(public, public, public)

J-Public

join(private, ℓ, private)

J-Private-L

join(ℓ, private, private)

J-Private-R

Σ ⊢ level(e∗, sl)

lkpSec(Σ, n, ℓ)

Σ ⊢ level(var(n), ℓ)

L-Var

Σ ⊢ level(intlit(i), public)

L-Int

Σ ⊢ level(true, public)

L-True

Σ ⊢ level(false, public)

L-False

Σ ⊢ level(e, ℓ)

Σ ⊢ level(not(e), ℓ)

L-Not

Σ ⊢ level(e1, ℓ1) Σ ⊢ level(e2, ℓ2) join(ℓ1, ℓ2, ℓ)

Σ ⊢ level(add(e1, e2), ℓ)

L-Add

Σ ⊢ level(e1, ℓ1) Σ ⊢ level(e2, ℓ2) join(ℓ1, ℓ2, ℓ)

Σ ⊢ level(gt(e1, e2), ℓ)

L-Gt

Σ ⊢ level(e1, ℓ1) Σ ⊢ level(e2, ℓ2) join(ℓ1, ℓ2, ℓ)

Σ ⊢ level(eq(e1, e2), ℓ)

L-Eq
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Σ sl ⊢ secure(s∗,Σ)

Σ ℓ ⊢ secure(skip,Σ)

S-Skip

Σ ℓ ⊢ secure(s1,Σ
′) Σ′ ℓ ⊢ secure(s2,Σ

′′)

Σ ℓ ⊢ secure(seq(s1, s2),Σ
′′)

S-Seq

Σ ⊢ level(e, public)

Σ public ⊢ secure(decl(n, ty , e), conssec(n, public,Σ))

S-Decl

Σ ⊢ level(e, ℓ) lkpSec(Σ, n, private)

Σ ℓ′ ⊢ secure(assign(n, e),Σ)

S-Assign-Private

Σ ⊢ level(e, public) lkpSec(Σ, n, public)

Σ public ⊢ secure(assign(n, e),Σ)

S-Assign-Public

Σ ⊢ level(e, ℓ) join(ℓ′, ℓ, ℓ′′) Σ ℓ′′ ⊢ secure(s1,Σ1) Σ ℓ′′ ⊢ secure(s2,Σ2)

Σ ℓ′ ⊢ secure(ifte(e, s1 , s2 ),Σ)

S-If

Σ ⊢ level(e, ℓ) join(ℓ′, ℓ, ℓ′′) Σ ℓ′′ ⊢ secure(s,Σ′)

Σ ℓ′ ⊢ secure(while(e, s),Σ)

S-While

Σ ⊢ level(e, ℓ)

Σ ℓ′ ⊢ secure(secdecl(n, ty , private, e), conssec(n, private,Σ))

S-Secdecl-Private

Σ ⊢ level(e, public)

Σ public ⊢ secure(secdecl(n, ty , public, e), conssec(n, public,Σ))

S-Secdecl-Public

A.3.3 Projections and Default Rules

T S = {sl : proj sl (sl , sl)}

TS contains the following rule:

proj s(ns, secdecl(n, ty, sl , e), decl(n, ty, e))

P-Secdecl
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SS contains the following rules:

proj e(e, e
′) Σ ⊢ level(e′, ℓ)

Σ ⊢ level(e, ℓ)

L-Default

proj s(s, s
′) Σ ℓ ⊢ secure(s′,Σ′)

Σ ℓ ⊢ secure(s,Σ′)

S-Default

A.4 Optimization Extension O

BO = {H}

A.4.1 Syntax

CO = ∅

CO = ∅

A.4.2 Relations

RO = { opte(e
∗, e), opts(s

∗, s), notInt(e∗), notBool(e∗) }

RO contains the following rules:

opte(e
∗, e)

opte(var(n), var(n))

OE-Var

opte(intlit(i), intlit(i))

OE-Int

opte(true, true)

OE-True

opte(false, false)

OE-False

opte(e1, intlit(i1)) opte(e2, intlit(i2)) plus(i1, i2, i)

opte(add(e1, e2), intlit(i))

OE-Add-I

opte(e1, e
′
1) opte(e2, e

′
2) notInt(e′1)

opte(add(e1, e2), add(e
′
1, e

′
2))

OE-Add-O-1
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opte(e1, e
′
1) opte(e2, e

′
2) notInt(e′2)

opte(add(e1, e2), add(e
′
1, e

′
2))

OE-Add-O-2

opte(e1, e) opte(e2, e)

opte(eq(e1, e2), true)

OE-Eq-T

opte(e1, e
′
1) opte(e2, e

′
2) value(e ′1 ) value(e ′2 ) e′1 ̸= e′2

opte(eq(e1, e2), false)

OE-Eq-F

opte(e1, e
′
1) opte(e2, e

′
2) ¬value(e ′1 ) e′1 ̸= e′2

opte(eq(e1, e2), eq(e
′
1, e

′
2))

OE-Eq-O-1

opte(e1, e
′
1) opte(e2, e

′
2) ¬value(e ′2 ) e′1 ̸= e′2

opte(eq(e1, e2), eq(e
′
1, e

′
2))

OE-Eq-O-2

opte(e1, intlit(i1)) opte(e2, intlit(i2)) greaterThan(i1, i2)

opte(gt(e1, e2), true)

OE-Gt-T

opte(e1, intlit(i1)) opte(e2, intlit(i2)) lessEq(i1, i2)

opte(gt(e1, e2), false)

OE-Gt-F

opte(e1, e
′
1) opte(e2, e

′
2) notInt(e′1)

opte(gt(e1, e2), gt(e
′
1, e

′
2))

OE-Gt-O-1

opte(e1, e
′
1) opte(e2, e

′
2) notInt(e′2)

opte(gt(e1, e2), gt(e
′
1, e

′
2))

OE-Gt-O-2

opte(e, false)

opte(not(e), true)

OE-Not-T
opte(e, true)

opte(not(e), false)

OE-Not-F

opte(e, e
′) notBool(e′)

opte(not(e),not(e
′))

OE-Not-O
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opts(2
n, s∗)s

opts(skip, skip)

OS-Skip
opte(e, e

′)

opts(decl(n, ty, e), decl(n, ty, e
′))

OS-Decl

opts(s1, s
′
1) opts(s2, s

′
2)

opts(seq(s1, s2), seq(s
′
1, s

′
2))

OS-Seq
opte(e, e

′)

opts(assign(n, e), assign(n, e
′))

OS-Assign

opte(c, false)

opts(while(c, b), skip)

OS-While-F
opte(c, c

′) opts(b, b
′) c′ ̸= false

opts(while(c, b),while(c
′, b′))

OS-While-O

opte(c, true) opts(t, t
′)

opts(ifte(c, t, f), t
′)

OS-If-T
opte(c, false) opts(f, f

′)

opts(ifte(c, t, f), f
′)

OS-If-F

opte(c, c
′) notBool(c′) opts(t, t

′) opts(f, f
′)

opts(ifte(c, t, f), ifte(c
′, t′, f ′))

OS-If-O

notInt(e∗)

notInt(var(n))

NI-Var

notInt(true)

NI-True

notInt(false)

NI-False

notInt(add(e1, e2))

NI-Add

notInt(eq(e1, e2))

NI-Eq

notInt(gt(e1, e2))

NI-Gt

notInt(not(e))

NI-Not

notBool(e∗)

notBool(var(n))

NB-Var

notBool(intlit(i))

NB-Int

notBool(add(e1, e2))

NB-Add

notBool(eq(e1, e2))

NB-Eq

notBool(gt(e1, e2))

NB-Gt

notBool(not(e))

NB-Not
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A.4.3 Projections and Default Rules

T O = ∅

TO = ∅

SO contains the following rules:

opte(e, e)

OE-Default
proj s(ns, s, s

′) opts(ns, s
′)s′′

opts(ns, s)s
′′

OS-Default

notInt(e)

NI-Default

notBool(e)

NB-Default

A.5 Dummy Composition Module D

BD = {H,L, S,O}

CD= ∅

CD = ∅

RD= ∅

RD = ∅

T D= ∅

TD = ∅

SD = ∅
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Appendix B

Term Replacement, Substitution, and Unification

In our proofs in Chapter 4, we need some facts about the relationship between unification

and term replacement (Definition 4.11) to show the proofs written as part of modular proofs

can be used to prove the same properties in a larger composed language. We prove such

facts here.

First, we show term replacement distributes over substitution.

Theorem B.1 (Term replacement distributes over substitution). Let c and d be construc-

tors and c(t) be a term. Let θ be a substitution whose domain does not contain any of the

variables that appear in t. Then

1. for any term s, (sJc(t)/dK)[θJc(t)/dK] = s[θ]Jc(t)/dK.

2. for any formula F , (F Jc(t)/dK)[θJc(t)/dK] = F [θ]Jc(t)/dK.

3. for any unification problem U , (UJc(t)/dK)[θJc(t)/dK] = U [θ]Jc(t)/dK.

Proof. To prove the first clause, we proceed by induction on the structure of s.

If s is a variable, it may or may not be in the domain of θ. If it is not, it remains the

same variable on either side of the equation. If it is in the domain, it is replaced by rJc(t)/dK

on the left and r on the right, which is then term replaced so both sides are equal.

If s is a term built by d, it is replaced by c(t) on the left, which is then unchanged by

the substitution because the variables in t are not in the domain of θ. On the right, it is

still built by d after substitution, and thus is replaced with c(t), making both sides equal.

If s is a term built by some other constructor, it has the form c′(r) where r might be

empty. For each ri in r, we have (riJc(t)/dK)[θJc(t)/dK] = ri[θ]Jc(t)/dK. Because substitution
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and term replacement on a compound term are defined by applying the same operation to

each sub-term, this then means we have the same results for the overall substitutions and

term replacements, completing the proof for the first clause.

The clauses for formulas and unification problems clearly follow from the first. ■

Next, we prove term replacement is its own inverse if the term being substituted for a

constructor is built by a constructor not occurring in the original and the constructor for

which we are substituting does not take any arguments.

Lemma B.2 (Term replacement inversion). Let c and d be constructors where d does not

take any arguments (a 0-ary constructor) and let c(t) be a term.

1. Let s be a term in which c does not appear. Then sJc(t)/dKJd/cK = s.

2. Let F be a formula in which c does not appear. Then F Jc(t)/dKJd/cK = F .

3. Let U be a unification problem in which c does not appear. Then UJc(t)/dKJd/cK = U .

4. Let θ be a substitution in which c does not appear. Then θJc(t)/dKJd/cK = θ.

Proof. To prove the first clause, we proceed by induction on the structure of s. If s is

a variable, it is not changed by the term replacement. If s is d, dJc(t)/dK = c(t). Then

replacing terms built by c with d (c(t)Jd/cK) gives us back d. If s is built by some other

constructor, we carry out the term replacement on its arguments. This constructor cannot

be c by assumption, so the second replacement of d for terms built by c also leaves the

root constructor, replacing only in the sub-terms. Then, by the induction hypothesis, the

sub-terms are the same after the second replacement as originally, and then the whole term

is the same.

The clauses for formulas, unification problems, and substitutions clearly follow from the

clause for terms. ■

We can also prove term replacement removes a constructor completely.

Lemma B.3 (Term replacement removes constructor). Let c and d be constructors and

c(t) be a term where c(t) does not contain d.
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1. Let s be a term. Then sJc(t)/dK does not contain d.

2. Let F be a formula. Then F Jc(t)/dK does not contain d.

3. Let U be a unification problem. Then UJc(t)/dK does not contain d.

4. Let θ be a substitution. Then θJc(t)/dK does not contain d.

Proof. We can prove the first clause by induction on the structure of s. Whenever we come

to a term built by d, we replace it with c(t). Since c(t) does not contain d, we eliminate

each occurrence.

The clauses for formulas, unification problems, and substitutions clearly follow from the

clause for terms. ■

The following algorithm, due to Martelli and Montanari [24], is guaranteed to terminate,

either finding an mgu if the original problem is solvable, or failing if there is no unifier.

Definition B.4 (Unification algorithm). Repeatedly perform the actions of one of the rules

in this list to find a unifier for a unification problem:

• Reorder: Select a pair ⟨t, x⟩ where t is not a variable and x is and replace it with

⟨x, t⟩.

• Drop: Select a pair ⟨x, x⟩ where x is a variable and drop it.

• Variable elimination: Select a pair ⟨x, t⟩ where x is a variable occurring elsewhere

in the unification problem and where t ̸= x and x is not in t. Apply the substitution

{⟨x, t⟩} to the rest of the problem.

• Term reduction: Select a pair ⟨c′(t1, . . . , tn), c′(s1, . . . , sn)⟩. Replace this with the

pairs {⟨t1, s1⟩, . . . , ⟨tn, sn⟩}.

If none of the rules apply and there is a pair not of the form ⟨x, t⟩ where t does not contain x,

the unification has failed. If it succeeds, we say it is in solved form, giving us a substitution.

We will need a lemma about this algorithm, that pairs of the same term do not affect

its result.
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Lemma B.5 (Unification of identical pairs). Let U be a unification problem and t be a

term. Let θ be an mgu for U ∪ {⟨t, t⟩} by the algorithm in Definition B.4. Then θ is also

an mgu for U found by the algorithm.

Proof. We proceed by induction on the steps taken in the algorithm to find the mgu for

U ∪ {⟨t, t⟩}.

If a step operates on a pair other than ⟨t, t⟩, the same step applies to the same pair in

U .

If a step operates on ⟨t, t⟩, it must either use the drop rule or the term reduction

rule. If it uses the drop rule, the remainder of the two problems are the same and have the

same unifier. If it uses the term reduction rule, t has the form c(s1, . . . , sn), and we get

new pairs {⟨s1, s1⟩, . . . , ⟨sn, sn⟩}. We can then apply the induction hypothesis to eliminate

each of these pairs, finishing the proof. ■

We can prove an mgu for a unification problem can be turned into one for the unification

problem after term replacement by carrying out term replacement on it as well.

Theorem B.6 (Most general unifier after term replacement). Let c and d be constructors

and c(t) be a term. Let U be a unifiable unification problem where c and the variables in

t do not occur. Further assume every occurrence of d in U has the same arguments, that

is, every term in U with d as its top-level symbol is equal to every other term with d as its

top-level symbol. Then there is an mgu θ for U such that θJc(t)/dK is an mgu for UJc(t)/dK.

Proof. We will prove that if a unification problem U ′, in which c and the variables in t do

not occur and all terms built by d are equal, steps to U ′′ using the rules of the algorithm in

Definition B.4, then U ′Jc(t)/dK can step to U ′′Jc(t)/dK by a finite number of steps.

If U ′ steps by the reorder or drop rules, it is clear U ′Jc(t)/dK also steps by the same

rule because term replacement leaves variables unchanged.

If U ′ steps by the variable elimination rule with a pair ⟨x, s⟩, the pair ⟨x, sJc(t)/dK⟩

is in U ′Jc(t)/dK. Because x does not occur in s and the variables in t do not occur in U ′, it

is clear x does not occur sJc(t)/dK either. If x occurs elsewhere in U ′Jc(t)/dK, we can use
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the same rule to step to (U ′Jc(t)/dK)[{⟨x, sJc(t)/dK⟩}]. By Theorem B.1, this is the same

as (U ′[{⟨x, s⟩}])Jc(t)/dK, or U ′′Jc(t)/dK. If x does not occur elsewhere, as it may only have

occurred in U ′ in arguments to terms built by d, U ′Jc(t)/dK and U ′′Jc(t)/dK are the same,

so we take zero steps.

If U ′ steps by the term reduction rule with a pair ⟨c′(r1, . . . , rn), c′(s1, . . . , sn)⟩, con-

sider whether c′ is actually d. If it is, then the pair is actually ⟨d(r1, . . . , rn), d(r1, . . . , rn)⟩

because all terms with d as their top-level symbol are equal. The corresponding pair in

U ′Jc(t)/dK is ⟨c(t), c(t)⟩. By Lemma B.5, we get the same eventual solved form with or

without the pairs {⟨r1, r1⟩, . . . , ⟨rn, rn⟩} created by applying the rule in solving U ′. We

can similarly apply the term reduction rule in U ′Jc(t)/dK and Lemma B.5 to eliminate all

the pairs created from it. In both cases, this leaves us with the original problems with-

out this pair, so the relation still holds. If c′ is distinct from d, U ′′ contains the pairs

{⟨r1, s1⟩, . . . , ⟨rn, sn⟩}. We can also apply the term reduction rule to the corresponding pair

in U ′Jc(t)/dK, giving us new pairs {⟨r1Jc(t)/dK, s1Jc(t)/dK⟩, . . . , ⟨rnJc(t)/dK, snJc(t)/dK⟩}, so

we have the new steps are U ′′ and U ′′Jc(t)/dK.

If U ′ is in solved form, we have θ = U ′, and U ′ only contains pairs of the form ⟨x, s⟩ where

x does not occur in s. Because term substitution does not affect variables, U ′Jc(t)/dK is also

only pairs ⟨x, sJc(t)/dK⟩. Furthermore, because x does not occur in s and the variables in t

do not occur in U ′, x also does not occur in any sJc(t)/dK. Then U ′Jc(t)/dK is also in solved

form, giving us an mgu θJc(t)/dK. ■

We can now show a unification problem having an mgu after term replacement also

implies it had one before term replacement.

Theorem B.7 (Most general unifier before term replacement). Let c and d be constructors

where d does not take any arguments (a 0-ary constructor) and let c(t) be a term where d

does not occur in c(t) Let U be a unification problem where c and the variables in t do not

occur. If there is an mgu for UJc(t)/dK, then there is an mgu θ for U such that θJc(t)/dK is

an mgu for UJc(t)/dK.

Proof. For simplicity’s sake, we will refer to UJc(t)/dK as U ′. By Lemma B.2, we have that
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UJc(t)/dKJd/cK = U , that is, U ′Jd/cK = U . Because the only occurrences of c in U ′ are the

ones coming from replacing d with c(t), as we assumed U did not have c in it, all occurrences

of c have the same arguments. We also know d does not appear in U ′ by Lemma B.3. Then,

assuming there is an mgu for U ′, we can apply Theorem B.6 to show there is an mgu θ for

U ′ and an mgu θJd/cK for U ′Jd/cK. But this unification problem is simply U , so we have

an mgu θJd/cK for U . By using Theorem B.6 again, this time with U as the unification

problem, we get an mgu θ′ for U such that θ′Jc(t)/dK is an mgu for UJc(t)/dK, completing

the proof. ■
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