
Nanopass Attribute Grammars
Nathan Ringo

ringo025@umn.edu
University of Minnesota

USA

Lucas Kramer

krame505@umn.edu
University of Minnesota

USA

Eric Van Wyk

evw@umn.edu
University of Minnesota

USA

Abstract
Compilers for feature-rich languages are complex; they per-

form many analyses and optimizations, and often lower com-

plex language constructs into simpler ones. The nanopass

compiler architecture manages this complexity by specifying

the compiler as a sequence of many small transformations,

over slightly different, but clearly defined, versions of the

language that each perform a single straightforward action.

This avoids errors that arise from attempting to solve multi-

ple problems at once and allows for testing at each step.

Attribute grammars are ill-suited for this architecture,

primarily because they cannot identify the many versions

of the language in a non-repetitive and type-safe way. We

present a formulation of attribute grammars that addresses

these concerns, called nanopass attribute grammars, that (𝑖)
identifies a collection of all language constructs and analyses

(attributes), (𝑖𝑖) concisely constructs specific (sub) languages
from this set and transformations between them, and (𝑖𝑖𝑖)
specifies compositions of transformations to form nanopass

compilers. The collection of all features can be statically

typed and individual languages can be checked for well-

definedness and circularity. We evaluate the approach by

implementing a significant subset of the Go programming

language in a prototype nanopass attribute grammar system.

CCS Concepts: • Software and its engineering → Trans-
lator writing systems and compiler generators.

Keywords: attribute grammars, compilers, nanopass com-

pilers, software engineering

ACM Reference Format:
Nathan Ringo, Lucas Kramer, and Eric Van Wyk. 2023. Nanopass

Attribute Grammars. In Proceedings of the 16th ACM SIGPLAN In-
ternational Conference on Software Language Engineering (SLE ’23),
October 23–24, 2023, Cascais, Portugal. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3623476.3623514

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SLE ’23, October 23–24, 2023, Cascais, Portugal
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0396-6/23/10. . . $15.00

https://doi.org/10.1145/3623476.3623514

1 Introduction
Modern programming languages require sophisticated com-

pilers. Feature-rich languages have many constructs, and a

compiler typically performs several semantic analyses, opti-

mizations, and transformations on programs. It can also be

difficult to observe the behavior of different aspects of the

compiler and test the results.

One approach to dealing with these complexities is to de-

sign the compiler as a sequence of several (perhaps dozens)

small, clearly-defined tasks on programs in clearly-identified

versions of the language. Compilers with this design are

called nanopass compilers [18]. These tasks may be quite

simple syntactic transformations such as reducing all if-then

constructs in an imperative language into if-then-else con-

structs in which the else-clause is a skip statement. Other

lowering transformations may replace list comprehensions

with higher-order function calls or replace loops with gotos.
These simple steps transform programs into simpler and

smaller versions of the language, each one known to not con-
tain the constructs that are transformed away. Other transfor-

mations may be more complex, such as type-checking in or-

der to annotate expressions with their types; yet others may

perform optimizations such as common sub-expression elim-

ination. Some passes condense the source language down

to language variations more suitable for translation. For ex-

ample, a compiler may replace expressions in which binary

operators are nested, as in x + (y * z), with a sequence of

operations that only allow atomic expressions such as vari-

ables and value literals as arguments to binary operators,

as in let temp1 = y * z in x + temp1. Eventually, the steps
transform the program to code that can be translated directly

to a low-level intermediate language or to assembly, since it

contains goto-statements and simple expressions.

This approach has been used successfully in both educa-

tional [19] and industrial [9] contexts. The proponents of

nanopass compilers claim several benefits. The primary one

is that each step is small and easy to understand. Because

various language versions are clearly specified as the input

and output of different passes, one can ensure that, e.g., cer-
tain constructs have in-fact been transformed away and need

not be considered again. Each step is also more amenable to

testing as the output of each step can be inspected.

This paper adapts attribute grammars (AGs) to the nanopass

approach. AGs were first specified by Knuth [10] in 1968

and are a convenient formalism for specifying computa-

tions over syntax trees. They work by decorating tree nodes

70

https://orcid.org/0000-0002-6782-1554
https://orcid.org/0000-0001-6719-6894
https://orcid.org/0000-0002-5611-8687
https://doi.org/10.1145/3623476.3623514
https://doi.org/10.1145/3623476.3623514

SLE ’23, October 23–24, 2023, Cascais, Portugal Ringo, Kramer, and Van Wyk

with semantic information called attributes. Synthesized at-

tributes propagate information up the tree, e.g. types on ex-

pressions. Inherited attributes propagate information down

the tree, e.g. typing contexts on statements and expressions.

Well-definedness analyses can ensure that all the equations

needed to specify attribute values are present and are non-

circular [10, 15, 16]. This provides a strong static exhaustive-

ness check that all language constructs have a specification

for each semantic analysis. They have been extended over

the years in a variety of ways, most prominently to sup-

port higher-order attributes [25] so that syntax trees may be

passed as attributes, and reference [5] or remote [1] attributes
that allow referring to remote nodes in the syntax tree.

Despite supporting a modular approach to language im-

plementation, attribute grammars are not well-suited for

the nanopass approach. The primary problem is that the

context-free grammar in an attribute grammar defines a sin-

gle complete language and there is no convenient mechanism

in the formalism for defining a family of languages that dif-

fer in various ways such that trees in (different) input and

output languages can both be safely constructed. One can,

of course, define an AG for each of the dozens of different

languages that arise in a nanopass compiler but this would

involve the significant duplication of many grammar pro-

ductions that appear in many of the language versions. The

alternative is to abandon the well-definedness analyses and

define equations for a particular task or transformation on

only the relevant subset of productions for which that task

occurs. But doing so is quite unsatisfactory.

The primary contribution of the paper is to close this

gap between nanopass compilers and attribute grammars by

providing a formulation of nanopass attribute grammars such
that the various languages and their attributes can be both

conveniently defined and checked for type-correctness, well-

definedness, and absence of circular attribute specifications.

A nanopass attribute grammar consists of 3 components:

1. E: the collection of language elements. This is in the

form of an attribute grammar from whose components

different languages are to be constructed.

2. L: the family of languages that are transformed be-

tween. A language 𝐿 ∈ L is an AG that has a subset of

the nonterminals, productions, attributes, etc. found

in E.
3. C: the composition of transformations into a nanopass

compiler. This maps programs in the original language

into some target form.

The collection of language elements E is statically type

checked to ensure, for example, all productions are applied to

the correct number of correctly-typed arguments. However,

this specification may not be well-defined (some productions

are intentionally missing equations for some attributes not

relevant to them), and it is not meant to be used on its own.

Languages in L are attribute grammars and identify steps

in the compilation process. They correspond to the different

languages in a nanopass compiler. Terms in a language can

be annotated with attribute values during construction so

that they may be used, instead of recomputed, by the trans-

formation. For example, a type-checking transformation will

produce programs, if they are well-typed, that have annota-

tions on expressions indicating their type. The annotations

are just attributes that need not be computed but exist on

the tree directly. Transformations are defined by transform
attributes and correspond to passes in a nanopass compiler.

The framework can be instantiated with different varieties of

attribute grammars as well as different attribute evaluation

mechanisms.

A second contribution is two mechanisms for concisely
constructing the languages in L that maintains their type-

correctness established in E. The first specifies a language
“from scratch” by identifying the productions and attribute

occurrences on nonterminals to include; all other aspects,

such as nonterminals in the grammar and equations for at-

tributes are determined from the desired productions and

occurrences. The second specifies a new language by extend-

ing an existing language by adding or removing components.

Since each language in L will include different productions

and attribute equations, the well-definedness and circularity

analyses need to be performed on a per-language basis.

We also evaluate this notion of nanopass attribute gram-

mars by implementing a prototype nanopass attribute gram-

mar system and use it to implement a compiler for a signifi-

cant subset of the Go programming language.
1

Section 2 recalls the structure of attribute grammars before

Section 3 provides the specification of nanopass approach to

AGs and the E, L, and C components described above. Sec-

tion 4 describes the prototype system realizing nanopass AGs

and the Go compiler developed with it. Section 5 discusses

related work; Section 6 discusses performance and attribute

analysis, describes some future work, and concludes.

2 Background: Attribute Grammars
Attribute grammars are a formalism for defining the seman-

tics of context free languages [10] by attributing semantic

values to nodes in a syntax tree. An attribute grammar can be

defined as a tuple 𝐴𝐺 = (𝐺,𝐴, Γ𝐴,@, 𝐸𝑄) consisting of the

context-free grammar𝐺 , attributes𝐴, mappings of attributes

to types (Γ𝐴) and to nonterminals on which they occur(@),

and the set of attribute-defining equations 𝐸𝑄 .

The grammar 𝐺 is a tuple (𝑁𝑇,𝑇 , 𝑃, Γ𝑃 , 𝑆). 𝑁𝑇 is a finite

set of nonterminals and 𝑇 is a finite set of terminals. 𝑇 in-

cludes traditional token types with lexemes and primitive

types, e.g. integers and strings. In some systems this includes

1
Available at https://melt.cs.umn.edu and archived at https://doi.org/10.
13020/h1qa-s993.

71

https://melt.cs.umn.edu
https://doi.org/10.13020/h1qa-s993
https://doi.org/10.13020/h1qa-s993

Nanopass Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

structured data such as lists or tuples. 𝑃 is a finite set of pro-

duction names and Γ𝑃 is a total map from production names

to their signatures. Signature elements are labeled so that

equations can refer to the left and right-side elements using

labels instead of positions. Thus, Γ𝑃 maps 𝑃 to signatures of

the form 𝑥0 : 𝑋0 ::= 𝑥1 : 𝜏1 ... 𝑥𝑛 : 𝜏𝑛 where 𝑋0 ∈ 𝑁𝑇 and

each 𝜏𝑖 ∈ 𝑁𝑇 ∪𝑇 for 𝑖 ∈ {1..𝑛}. 𝑆 ∈ 𝑁𝑇 is the start symbol

indicating the type of the root node of a program tree.

Attributes are specified by the set 𝐴 = 𝐴𝐼 ∪𝐴𝑆 which can

be partitioned into disjoint sets of inherited (𝐼) and synthe-

sized (𝑆) attributes. Γ𝐴 is a total map from attribute names

to types in 𝑇 , Γ𝐴 ⊆ ((𝐴𝐼 ∪ 𝐴𝑆) → 𝑇). The occurs-on rela-

tion @ ⊆ 𝐴 × 𝑁𝑇 specifies which nonterminals an attribute

decorates; (𝑎,𝑋) ∈ @ (written 𝑎@𝑋 as shorthand) indicates

that attribute 𝑎 occurs on 𝑋 . Note that 𝑆 has no inherited

attributes: ∀𝑎 ∈ 𝐴, (𝑎@𝑆) =⇒ 𝑎 ∉ 𝐴𝐼 .

Equations, 𝐸𝑄 =
⋃

𝑝∈𝑃 𝐸𝑄𝑝 , indicate how values of at-

tributes are determined; each is associated with a production

𝑝 in 𝑃 . Each has the form 𝑥 .𝑎 = 𝑒 where 𝑎 ∈ 𝐴, 𝑥 is label on

the production, and 𝑒 is an expression defining the value of

𝑥 .𝑎. We require that for any production 𝑝 , no two equations

in 𝐸𝑄𝑝 have the same left hand side. Different attribute gram-

mar systems put different requirements on the constructs in

𝑒 , but generally, 𝑒 is an expression that can refer to the values

of attributes on the signature elements of 𝑝 and construct

and manipulate these values.

Since Knuth’s original specification [10] attribute gram-

mars have been extended in many ways. One variety extends

the types that attributes may take (the range of Γ𝐴) and con-

structs in equations accordingly. Higher-order attributes [25]

dramatically increase the usefulness of AGs by allowing trees

to be passed around as attributes and then supplied with in-

herited attributes so that synthesized attributes can then be

computed on them and accessed. These add 𝑁𝑇 to the range

of Γ𝐴. Reference [5] and remote [1] attributes extend Γ𝐴 with

pointers (references) to decorated tree nodes somewhere else

in the syntax tree. A common use is to allow variable uses

in a program to have a reference attribute pointing to their

declarations so that information such as the variable’s type

can be accessed on the remote declaration node.

Another form of extension provides means for more easily

moving values up and down the tree. Kastens and Waite [8]

alleviate so-called copy-rules for propagating information

down the tree and described other mechanism for collect-

ing information, such as diagnostic messages, up the tree.

Variations on these are now common in AG systems.

An important aspect of attribute grammars, and many

of their extensions, are static analyses to identify and vali-

date the flow of information through different attributes.

A well-definedness analysis in many systems determines,

for each synthesized attribute, which inherited attributes

may be needed to compute its value (sometimes called flow-
types [17]) in order to determine if all required equations

are present. This information can also be used to define a

circularity analysis to check for cycles in attribute depen-

dencies. These analyses were provided in Knuth’s original

formulation and are typically extended to accommodate new

features, such as higher-order attributes [25].

There also a variety of mechanisms for computing the val-

ues for attributes on a tree. Ordered attribute grammars [7]

and an extension of them [22] determine an order, applicable

for all possible trees, for computing attributes. In contrast,

the commonly-used demand-driven approach treats AGs sim-

ilarly to lazy functional programs and computes attributes

only as they are needed. Other approaches embed AGs in

existing languages, often lazy functional ones, to write the

specification directly as programs in those languages [12, 21].

Circular attribute grammars allow attribute dependencies

to be circular as long as they are well-founded, providing a

convenient means for specifying fix-point algorithms [3, 13].

This discussion of attribute grammars and their different

variations is necessarily incomplete. In principle, these, and

others, fit into the nanopass attribute grammar formalism

presented below. That framework can be instantiated with

different types of attributes and evaluation schemes.

3 Nanopass Attribute Grammars
In this section we describe the nanopass attribute grammar

formalism: the language elements E, the family of languages

L, and the compositions C. Sections 3.1 - 3.2 specify E by

extending the formalism specified in Section 2, discuss what

is required for it to be well-formed, and provide its type-

checking rules. Sections 3.3 - 3.5 specify L and transform

attributes and discuss the language checking process per-

formed on each language to ensure that it is well-defined

and that its transformations produce terms using only the

productions in their target language. Section 3.6 describes

how transformations are composed to construct a nanopass

compiler.

3.1 Language elements: E
The first part of a nanopass AG specification, denoted E, is
a collection of attribute grammar elements (𝐺,𝐴, Γ𝐴,@, 𝐸𝑄)
as above from which different languages will be constructed.

This is extended in two ways.

First, we add a new kind of attribute, transform attributes,

denoted𝐴𝑇 . The𝐴 component of E is now𝐴 = 𝐴𝐼∪(𝐴𝑆∪𝐴𝑇).
These are essentially higher-order synthesized attributes

for defining transformations between languages in L by

equations also in 𝐸𝑄 . Transform attributes always have the

same type as the nonterminal they’re computed on, so they

are not (and need not be) included in Γ𝐴. These are discussed
further in Section 3.4.

The second addition is annotations. These annotate the
tree with semantic values supplied when the tree is con-

structed instead of being computed during attribute eval-

uation. To simplify the formalism, these are specified as

72

SLE ’23, October 23–24, 2023, Cascais, Portugal Ringo, Kramer, and Van Wyk

attributes whose equations are ignored when it is demanded;

instead, the value is the one provided when the tree was

built. Note that Γ𝐴 still contains the types of annotations.

To support annotations, expressions that appear on the

right-hand-side of equations can supply them to trees that

they construct. If we notate building a tree from production 𝑝

with children 𝑡1 and 𝑡2 as 𝑝 (𝑡1, 𝑡2), we might notate building

the same tree while supplying annotation 𝑎 with the value

of the expression 𝑒 as 𝑝 (𝑡1, 𝑡2, 𝑎 = 𝑒).
Annotations might be used to store, for example, the types

of expressions. After the types have been computed (as an

attribute), we will still continue to transform the program

in the process of compiling it. To avoid needing to re-type-

check the tree at any time the types of expressions might be

needed later on, we can make the attribute an annotation.

As discussed in Section 3.3, each language in L will indi-

cate which attributes in 𝐴𝐼 ∪𝐴𝑆 are to be treated as annota-

tions and thus be predefined on trees in the language.

Due to how close E is to a standard AG specification, ex-

isting attribute evaluation strategies can work with only

minor tweaks to support annotations. An attribute evalua-

tion strategy that is aware of languages can take advantage of

this to remove dependencies between equations that might

otherwise exist.

If E satisfies the requirements mentioned above and for

𝐴𝐺 in Section 2, it is said to be well-formed; this is the first
requirement the specifications must satisfy. Note that unlike

a traditional attribute grammar specification, E is not ex-

pected to be well-defined. After some transformations have

been applied some language constructs will have been trans-

lated into other more fundamental forms and thus no longer

appear in the programs. Since later passes won’t need to

handle constructs that won’t be present, we don’t need equa-

tions on those productions for attributes that are only used

after the production is eliminated.

3.2 Type checking language elements E
Even though we cannot check well-definedness on a collec-

tion of elements E, we can still check that they arewell-typed,
given some language of expressions that may appear on the

right-hand side of an equation. Type checking can be done

once on the language elements E and type-correctness will

preserved for languages in L when they are constructed

using one of the two methods described in Section 3.3. Some

rules for a reasonably standard type system adapted for a

NAG system are shown in Figure 1.

The type-correctness of a well-formed E is satisfied when

for all productions 𝑝 ∈ 𝑃, 𝑃 ∈ 𝐴𝐺 , all equations 𝑥 .𝑎 = 𝑒 in

𝐸𝑄𝑝 , 𝐸𝑄𝑝 ∈ 𝐴𝐺 type check, as indicated by the judgment

𝑝 ⊢ (𝑥 .𝑎 = 𝑒) Tok
This judgment in turn refers to a traditional typing judgment

for expressions,

𝑝 ⊢ 𝑒 : 𝜏

In both cases, 𝑝 ∈ 𝑃 acts as a context, providing the

types of children. The components of 𝐴𝐺 are also ambiently

present as the global context and referred to by names used

above. Thus typing contexts such as Γ𝐴 and Γ𝑃 , the occurs-
on relation @, and other aspects of 𝐴𝐺 can be used in the

type checking rules. Synthesized and inherited equations

have typical typing rules, T-inh-eq and T-syn-eq, ensuring

that attributes occur properly and the type of the expression

matches that of the attribute. Following these are 3 sample

rules for typing expressions. Of more interest are transform

attributes; their equations are typed by T-transform-eq,

which ensures that the type of the equation’s right-hand

side matches the production’s left-hand side. Their access is

typed similarly by T-transform-access.

The T-prod rule for constructing trees is more general

than a typical one, since it needs to handle annotations. Note

that type-checking does not check that only the annotations

that should occur do occur. In E we do not know whether

an attribute will be treated as an annotation or as an at-

tribute to be computed. This check happens in the language-

correctness checks described in Section 3.5.

3.3 Languages: L
A nanopass AG also consists of a family of languages, and
transformations between them, L. Each language uses a sub-

set of the grammatical and semantical features found in E.
They will use some productions and some attributes to define

a language with only the desired syntax and semantics. We

discuss two convenient and concise mechanisms to identify

what these languages consist of so that the type-correctness

established once on E is maintained on each language and

need not be checked again.

3.3.1 Languages. The productions, attributes, associated
equations, etc., are all specified in E and may (or may not) be

used in different languages and thus languages have (nearly)

the same structure as the collection of language elements

E. We will superscript language elements by the language

names and also superscript the overarching language com-

ponents elements by E. When the context is clear we will

drop these superscripts.

A language 𝐿 ∈ L is a 6-tuple containing:

• 𝐺𝐿 = (𝑁𝑇 𝐿,𝑇 𝐿, 𝑃𝐿, Γ𝐿
𝑃
, 𝑆𝐿) where 𝑁𝑇 𝐿 ⊆ 𝑁𝑇 E

,

𝑇 𝐿 = 𝑇 E
, 𝑃𝐿 ⊆ 𝑃 E

, Γ𝐿
𝑃
⊆ ΓE

𝑃
, and 𝑆𝐿 = 𝑆 E

.

• 𝐴𝐿 = 𝐴𝐿
𝐼
∪ (𝐴𝐿

𝑆
∪𝐴𝐿

𝑇
), where 𝐴𝐿 ⊆ 𝐴E

• @
𝐿 ⊆ @

E

• Γ𝐿
𝐴
⊆ ΓE

𝐴

• 𝐸𝑄𝐿 = ∪𝑝∈𝑃𝐿𝐸𝑄𝐿
𝑝 where 𝐸𝑄𝑃

𝑝 ⊆ 𝐸𝑄 E
𝑝

• @
𝐿
𝐴
⊆ @

E
where @

𝐿 ∩@
𝐿
𝐴
= ∅

The first five components correspond directly to their

equivalents in E. Note that terminals and primitive values

𝑇 𝐿
and 𝑇 are not scoped to a particular language and are

73

Nanopass Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

T-inh-eq

𝑎 ∈ 𝐴𝐼 𝑎@𝑋

Γ𝑃 (𝑝) = (... ::= ... 𝑥 : 𝑋 ...) 𝑝 ⊢ 𝑒 : Γ𝐴 (𝑎)
𝑝 ⊢ (𝑥 .𝑎 = 𝑒) Tok

T-syn-eq

𝑎 ∈ 𝐴𝑆 𝑎@𝑋

Γ𝑃 (𝑝) = (𝑥 : 𝑋 ::= ...) 𝑝 ⊢ 𝑒 : Γ𝐴 (𝑎)
𝑝 ⊢ (𝑥 .𝑎 = 𝑒) Tok

T-lhs

𝑝 ∈ 𝑃 Γ𝑃 (𝑝) = (𝑥 : 𝑋 ::= ...)
𝑝 ⊢ 𝑥 : 𝑋

T-rhs

𝑝 ∈ 𝑃 Γ𝑃 (𝑝) = (... ::= ... 𝑥 : 𝜏 ...)
𝑝 ⊢ 𝑥 : 𝜏

T-inhsyn-access

𝑎 ∈ (𝐴𝐼 ∪𝐴𝑆) 𝑎@𝑋 𝑝 ⊢ 𝑒 : 𝑋 Γ𝐴 (𝑎) = 𝜏

𝑝 ⊢ 𝑒.𝑎 : 𝜏

T-transform-eq

𝑎 ∈ 𝐴𝑇 𝑎@𝑋

Γ𝑃 (𝑝) = (𝑥 : 𝑋 ::= ...) 𝑝 ⊢ 𝑒 : 𝑋
𝑝 ⊢ (𝑥 .𝑎 = 𝑒) Tok

T-transform-access

𝑎 ∈ 𝐴𝑇 𝑎@𝑋 𝑝 ⊢ 𝑒 : 𝑋
𝑝 ⊢ 𝑒.𝑎 : 𝑋

T-prod

Γ𝑃 (𝑝′) = (𝑥0 : 𝑋0 ::= 𝑥1 : 𝜏1 ... 𝑥𝑚 : 𝜏𝑚)
∀

1≤𝑖≤𝑛
𝑝 ⊢ 𝑒𝑖 : 𝜏𝑖 ∀

𝑚<𝑖≤𝑛
𝑎𝑖@𝑋 ∀

𝑚<𝑖≤𝑛
Γ𝐴 (𝑎𝑖) = 𝜏𝑖

𝑝 ⊢ 𝑝′ (𝑒1, ..., 𝑒𝑚, 𝑎𝑚+1 = 𝑒𝑚+1, ..., 𝑎𝑛 = 𝑒𝑛) : 𝑋0

Figure 1. Typing rules for E.

available in all languages. This is done to simplify the pre-

sentation, but could be accommodated without much effort.

Note that in all languages, the start symbol is the same 𝑆 E
.

The sixth component, @
𝐿
𝐴
, describes the annotations that

are present on each nonterminal. Values for these are pro-

vided when the 𝐿 tree is constructed. Recall the use-case of

saving the results of type-checking expressions. We assume

the computed type is 𝑡𝑦, the nonterminal for expressions is

𝐸, the language in which type-checking is performed is 𝐿0,

and the language in which the 𝑡𝑦 attribute is an annotation

is 𝐿1. In this case, both 𝑡𝑦 ∈ 𝐴
𝐿0
𝑆

and 𝑡𝑦 ∈ 𝐴
𝐿1
𝑆
, but while

𝑡𝑦@𝐿0 𝐸, instead 𝑡𝑦@
𝐿1
𝐴
𝐸.

Identifying languages. A language is simply a subset of

E along with an indication of annotations @𝐴. Identifying a

specific language 𝐿 ∈ L by enumerating all of the elements

would be quite tedious and also open to errors from leaving

out required components. For example, 𝐿 might not be well-

formed if the production signature map Γ𝐿
𝑃
does not have a

signature for a production in 𝑃𝐿
. It might also not be type-

correct if in the expression for an equation in 𝐸𝑄𝐿
references

an attribute that is not found in 𝐴𝐿
, @

𝐿
, or Γ𝐿

𝐴
. To avoid

these problems we provide two mechanisms for specifying

languages that are both concise and also result in type correct

languages.

The first mechanism identifies a language 𝐿 directly. It
requires only the enumeration of production names (𝑃𝐿

)

that are to be used and the desired occurrences of attributes

(@
𝐿
) and annotations (@

𝐿
𝐴
) to be used. All other elements

of 𝐿 can be inferred from these. For each production name

𝑝 ∈ 𝑃𝐿
, we include its signature in Γ𝐿

𝑃
. Any nonterminal

appearing in Γ𝐿
𝑃
is added to 𝑁𝑇 𝐿

, and 𝑆𝐿 = 𝑆 E
. Thus 𝐺𝐿

is

well-formed. From the attribute and annotation occurrence

relation elements identified we populate the sets of attribute

𝐴𝐿
𝐼
, 𝐴𝐿

𝑆
, and 𝐴𝐿

𝑇
. Also, any nonterminal 𝑋 in @

𝐿
or in @

𝐿
𝐴

is added to 𝑁𝑇 𝐿
if not already there. Similarly, appropriate

equations are selected for attributes in @
𝐿
. The equation

𝑥 .𝑎 = 𝑒 from 𝐸𝑄 E
𝑃
is included in 𝐸𝑄𝐿

𝑝 when 𝑝 ∈ 𝑃𝐿
and

𝑎 ∈ 𝐴𝐿
. Equations for annotations are not included in 𝐸𝑄𝐿

.

Γ𝐿
𝐴
is Γ𝐴 restricted to attributes in 𝐴𝐿

𝑆
and 𝐴𝐿

𝐼
.

Why design things in this way? Recall the two types

of expression productions discussed in Section 1: one al-

lowed (nested) expressions as children; the other allowed

only atomic children of variables and literals. The source

language for the transformation that rewrites nested expres-

sions into atomic ones needs to identify only the complex

expression productions. These are the expressions that may

be used to construct a tree that is input to this transformation.

We would not want to include the atomic expression produc-

tions in this collection because that would indicate that they

could also be used to form input terms. Doing so would not

allow us to ensure that input and output languages are of

the proper form. The language checking process described

in Section 3.5 will ensure that expressions only generate

trees in the appropriate language and that attributes access

are in fact in the language. This check, along with ensuring

that all the required equations are present, is done in the

language-checking process. Specifically, see the discussion

of the language-checking rule L-prod there.

The second mechanism for identifying a language 𝐿 does

so by extension. It uses an extends mechanism that creates a

new language by identifying elements to add to, or remove

from, an existing language. Formally, a language 𝐿 identified

this way is specified as:

• a language 𝐿′, perhaps also defined as an extension,

• a set of production names 𝑃𝐿+
to add to 𝑃𝐿′

• a set of production names 𝑃𝐿−
to remove from 𝑃𝐿′

• a set of occurrences @
𝐿+

to add to @
𝐿′

74

SLE ’23, October 23–24, 2023, Cascais, Portugal Ringo, Kramer, and Van Wyk

• a set of occurrences @
𝐿−

to remove from @
𝐿′

• a set of occurrences @
𝐿+
𝐴

to add to @
𝐿′

𝐴

• a set of occurrences @
𝐿−
𝐴

to remove from @
𝐿′

𝐴

From these, we can compute:

• 𝑃𝐿 = (𝑃𝐿′ ∪ 𝑃𝐿+) − 𝑃𝐿−

• @
𝐿 = (@𝐿′ ∪@

𝐿+) −@
𝐿−

• @
𝐿
𝐴
= (@𝐿′

𝐴
∪@

𝐿+
𝐴
) −@

𝐿−
𝐴

From here, the other elements of 𝐿 are inferred using the

same process as described above for creating language di-

rectly from a set of productions and occurrences. Similarly,

the resulting language is well-formed and well-typed in the

same manner.

3.4 Transform attributes
Transform attributes play a key role in nanopass attribute

grammars, as they define the transformations from one lan-

guage into the next. A transform attribute 𝑎𝑇 ∈ 𝐴𝑇 is defined

as having a source language Γ𝑆 (𝑎𝑇) = 𝐿𝑆 and a target lan-

guage Γ𝑇 (𝑎𝑇) = 𝐿𝑇 . Transform attributes have equations

similar to those used for higher-order attributes.

For many transformations, the computation for many pro-

ductions in the language is to simply apply the transforma-

tion to the child trees and re-build the tree with the same

production and the transformed child trees. It would be quite

inconvenient to write these directly and thus they are in-

ferred when an explicit equation is not provided for a pro-

duction. Consider a production 𝑠𝑒𝑙𝑒𝑐𝑡𝑜𝑟 for selecting a field

from a record with signature 𝑒:Expr ::= 𝑙 :Expr 𝑟 :String with

no explicit equation for the transformation 𝑎𝑇 . When the

target language has no annotations, the generated equation

would be 𝑒.𝑎𝑇 = selector (𝑙 .𝑎𝑇 , 𝑟). The same production is

used, and the 𝑎𝑇 attribute is computed on each child of non-

terminal type. Children that are not of nonterminal type are

passed as-is.

If the production has annotations in the target language,

the generated equation copies them over from the attributes

and annotations in the source language. The 𝑎𝑇 attribute is

recursively applied if the annotation has a nonterminal type

— this is the same process as performed on the children. For

example, if in the target language of 𝑎𝑇 , Expr has two anno-

tations, 𝑖𝑠𝐼𝑛𝐿𝑎𝑚𝑏𝑑𝑎:Boolean and 𝑡𝑦𝑝𝑒:Type, the generated

equation would be:

𝑒.𝑎𝑇 = selector (𝑙 .𝑎𝑇 , 𝑟 , isInLambda = 𝑒.isInLambda,

𝑡𝑦𝑝𝑒 = 𝑒.𝑡𝑦𝑝𝑒.𝑎𝑇)

Note that the 𝑒.𝑡𝑦𝑝𝑒.𝑎𝑇 call would require that there are no

non-annotation inherited attributes on the Type nonterminal

in 𝑎𝑇 ’s source language, since additional attribute equations

are not supplied here.

In the general case, the generated equation for a pro-

duction 𝑝 with signature 𝑒:𝑋𝑒 ::= 𝑥0:𝑋0 𝑥1:𝑋1 ... would be

𝑒.𝑎𝑇 = 𝑝 (𝑥0 [.𝑎𝑇], ..., 𝑎0 = 𝑡ℎ𝑖𝑠 .𝑎0 [.𝑎𝑇], ...), where the [.𝑎𝑇]

represents the attribute only being demanded on children,

attributes, and annotations of nonterminal type.

Note that this equation is generated only if:

• 𝑝 ∈ 𝑃𝐿𝑇
,

• @
𝐿𝑆 ∪@

𝐿𝑆
𝐴

⊆ @
𝐿𝑇
𝐴
, and

• 𝑎@
𝐿𝑆
𝐴
𝑋 =⇒ �𝑎𝐼 ∈ 𝐴𝐼 such that 𝑎𝐼@

𝐿𝑆 Γ𝐴 (𝑎)
If these conditions are not met, the programmer is required to

explicitly provide an equation. Consider the transformation

replacing if c then s with if c then s else skip. Since the if-then
production is not in the target language an explicit equation

is required. Likewise, if the attributes and annotations in the

source are not enough to define the annotations in the target

then equations are required. Finally, as noted, we require that

annotations on the source language do not need inherited

attributes on that type.

The process of generating an equation for a transform

attribute always results in a well-typed equation. If the rest

of E passed type-checking, we know the entire specification

is well-typed, and that evaluation of attributes will not result

in runtime type errors.

3.5 Language checking
A language 𝐿 ∈ L is language-correct if every equation in

𝐸𝑄𝐿
evaluates to a term in the appropriate language. Recall

that synthesized and inherited attributes produce terms in

the same language as the language of the term the attributes

are computed on, while transform attributes produce terms

in the attribute’s target language.

If E is type correct, then the languages 𝐿 ∈ L will, if

constructed using the methods described above, also be type

correct and will not experience typical evaluation-time type

errors. Some concerns however must be checked on the

individual languages and their transform attributes. These

checks ensure that a language 𝐿 is language-correct and that

the evaluation-time errors listed below do not occur.

• 𝐿 is missing an equation for an attributes in 𝐴𝐿
𝑆
∪𝐴𝐿

𝐼

for production in 𝑃𝐿
that may be demanded during

evaluation.

• 𝐿 computes a tree for a higher-order attribute in 𝐴𝐿
𝑆
or

𝐴𝐿
𝐼
that is not in the language of 𝐿. That is, a production

not in 𝑃𝐿
is used in the tree.

• Similarly, 𝐿 computes a tree for a transform attribute

𝑎 ∈ 𝐴𝑇 with target language 𝐿𝑇 (Γ𝑇 (𝑎) = 𝐿𝑇) that is

not in the language of 𝐿𝑇 .

• 𝐿 has an equation for a synthesized attribute 𝑎 ∈ 𝐴𝐿
𝑆

for production 𝑝 but also defines 𝑎 as an annotation in

an application of the production 𝑝 , as in 𝑝 (..., 𝑎 = ...).
• 𝐿 has an equation that demands the value of an inher-

ited attribute on a tree that does not have a parent tree

that can provide the defining equations. This could

happen when accessing a synthesized or transform

attribute (that depends on an inherited attribute) on

75

Nanopass Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

a tree stored as a higher-order attribute since that tree
has no parent.

The language-correctness of a language 𝐿 is indicated by

the judgment 𝐿 ⊢ Lok. By definition, 𝐿 ⊢ Lok is established

if for all nonterminals 𝑋 ∈ 𝑁𝑇 𝐿
, for all productions 𝑝 ∈ 𝑃𝐿

with 𝑋 on the left hand side, and for all attributes 𝑎 ∈ (𝐴𝑆 ∪
𝐴𝐼) where 𝑎@𝐿𝑋 the following conditions hold:

• (𝑥 .𝑎 = 𝑒) ∈ 𝐸𝑄𝐿
𝑝 : ensuring that the attribute grammar

is complete and no equations are missing, and

• 𝑝, 𝐿 ⊢ (𝑥 .𝑎 = 𝑒) Lok, ensuring 𝐿 is language-correct.

Completeness is a conservative analysis and it is often more

convenient to require that only the equations that would

ever be needed in an attribute evaluation are present. In

Section 6 we discuss why this conservative analysis is less of

a concern in nanopass attribute grammars than in traditional

higher-order attribute grammars. This second requirement

could be replaced by a less-conservative analysis if desired.

This language-correctness analysis assumes that type-

checking has already been performed. It is specified as a

collection of inference rules, as was done with type checking.

It is organized as a pair of judgments, one for equations and

one for expressions:

𝑝, 𝐿 ⊢ (𝑥 .𝑎 = 𝑒) Lok and 𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑒 Lok

These judgments are parameterized by languages. 𝐿 is the

language of the tree the attribute is being computed on. It

is constant throughout the analysis. 𝐿𝑇 is the language the

expression computing a tree should evaluate to: the source

language 𝐿 for inherited and synthesized attributes and the

target language 𝐿𝑇 for transform attributes. Some of the rules

establishing these judgments are given in Figure 2.

The rule L-inhsyn-eq for synthesized and inherited equa-

tions ensures that the expression of the equation will com-

pute a tree in the source language 𝐿. The rule L-transform-

eq for transform equations checks the expression 𝑒 using

the target language 𝐿𝑇 to ensure that trees used in 𝑎𝑇 are in

𝐿𝑇 . A node and its children are always in the same language

as the attribute is being computed on. This allows accessing

attributes that are defined on the source language.

Accessing a synthesized or inherited attribute (or an an-

notation) preserves the language of the term it is computed

on, since we would expect the results of analyses on a term

to be in the term’s own language. It also requires that the

attribute be present in the language. To ensure all attribute

accesses are well-defined, the access may be on a name from

the signature (L-inhsyn-sig-access) where, due to the com-

pleteness check, all attributes in the language have equations

defined. The access could also be of an annotation on any

expression (L-anno-access), since the annotation must have

been supplied when the termwas constructed. A synthesized

attribute can also be accessed on an arbitrary expression (L-

syn-nodeps-access), for example on a higher-order attribute,

L-inhsyn-eq

𝑎 ∈ (𝐴𝐿
𝐼 ∪𝐴𝐿

𝑆) 𝑝, 𝐿, 𝐿 ⊢ 𝑒 Lok
𝑝, 𝐿 ⊢ (𝑥 .𝑎 = 𝑒) Lok

L-transform-eq

𝑎 ∈ 𝐴𝐿
𝑇 𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑒 Lok

Γ𝐿𝑆 (𝑎) = 𝐿 Γ𝐿𝑇 (𝑎) = 𝐿𝑇

𝑝, 𝐿 ⊢ (𝑥 .𝑎 = 𝑒) Lok

L-lhs

Γ𝐿𝑃 (𝑝) = (𝑥 :𝑋 ::= ...)
𝑝, 𝐿, 𝐿 ⊢ 𝑥 Lok

L-rhs

Γ𝐿𝑃 (𝑝) = (... ::= ... 𝑥 :𝜏 ...)
𝑝, 𝐿, 𝐿 ⊢ 𝑥 Lok

L-inhsyn-sig-access

𝑥 :𝑋 ∈ Γ𝐿𝑃 (𝑝) 𝑎 ∈ (𝐴𝐿
𝐼 ∪𝐴𝐿

𝑆) 𝑎@𝐿𝑋

𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑥 .𝑎 Lok

L-anno-access

𝑎 ∈ (𝐴𝐿
𝐼 ∪𝐴𝐿

𝑆)
𝑎@𝐿

𝐴𝑋 𝑝 ⊢ 𝑒:𝑋 𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑒 Lok
𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑒.𝑎 Lok

L-syn-nodeps-access

𝑎 ∈ 𝐴𝐿
𝑆

𝑎@𝐿𝑋 ∀
𝑎′@𝐿𝑋

𝑎′ ∉ 𝐴𝐿
𝐼 𝑝 ⊢ 𝑒:𝑋 𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑒 Lok

𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑒.𝑎 Lok

L-transform-sig-access

𝑎 ∈ 𝐴𝑇

𝑎@𝐿𝑋 𝑥 :𝑋 ∈ Γ𝐿𝑃 (𝑝) Γ𝑆 (𝑎)𝐿 = 𝐿 Γ𝑇 (𝑎)𝐿 = 𝐿𝑇

𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑥 .𝑎 Lok

L-transform-nodeps-access

𝑎 ∈ 𝐴𝑇 𝑎@𝐿𝑋 ∀
𝑎′@𝐿𝑋

𝑎′ ∉ 𝐴𝐿
𝐼 Γ𝑆 (𝑎)𝐿 = 𝐿𝑆

Γ𝑇 (𝑎)𝐿 = 𝐿𝑇 𝑝 ⊢ 𝑒:𝑋 𝑝, 𝐿, 𝐿𝑆 ⊢ 𝑒 Lok
𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑒.𝑎 Lok

L-prod

𝑝′ ∈ 𝑃𝐿𝑇 Γ𝑃 (𝑝′) = (𝑋 ::= ...)
∀

0≤𝑖≤𝑛
𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑒𝑖 Lok {𝑎𝑚+1, ..., 𝑎𝑛} = {𝑎 |𝑎@𝐿

𝐴𝑋 }

𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑝′ (𝑒0, ..., 𝑒𝑚, 𝑎𝑚+1 = 𝑒𝑚+1, ..., 𝑎𝑛 = 𝑒𝑛) Lok

L-prim

𝑝 ⊢ 𝑒:𝜏 𝑝, 𝐿, 𝐿𝑒 ⊢ 𝑒 Lok 𝜏 ∉ 𝑁𝑇 𝐿𝑒 ∈ L
𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑒 Lok

L-if

𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑐 Lok 𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑡 Lok 𝑝, 𝐿, 𝐿𝑇 ⊢ 𝑒 Lok
𝑝, 𝐿, 𝐿𝑇 ⊢ (if 𝑐 then 𝑡 else 𝑒) Lok

Figure 2. Some language correctness rules for 𝐿 ∈ L.

76

SLE ’23, October 23–24, 2023, Cascais, Portugal Ringo, Kramer, and Van Wyk

when there are no inherited attributes in the language occur-

ring on the type, as the synthesized attribute cannot possibly

depend on any inherited attributes.

Accessing a transform attribute produces a term in the

transform attribute’s target language, from a term in the

transform attribute’s source language. The rules L-transform-

sig-access and L-transform-nodeps-access inspect the

languages 𝐿 and 𝐿𝑇 in the context of the rules. Similar rules

exist for transform attributes accessed as annotation (𝑎@𝐿
𝐴
𝑋)

but this is rarely done.

Constructing a termwith a production entails more checks.

The rule L-prod checks that the production is valid in the

language 𝐿𝑇 , that its subterms are valid in that language, and

that it has exactly the set of annotations it should have to be

in that language.

Most of the time, 𝐿 and 𝐿𝑇 are the same language in equa-

tions for inherited or synthesized attributes (L-inhsyn-eq),

since these attributes’ values are in the same language as the

tree they are computed on. In contrast, transform equations

(L-transform-eq) require that 𝐿 and 𝐿𝑇 are the source and

target languages of the transform attribute.

The last issue to address is in regards to primitive types in

𝑇 . They don’t belong to any language, so we want to leave

them unconstrained with respect to languages. Consider the

equation computing a term for a transform attribute 𝑎𝑇 using

production 𝑝 ∈ 𝐿𝑇 that uses an Boolean annotation value

computed on a tree in the source language (𝑥 .𝑎𝑆):

𝑥 .𝑎𝑇 = 𝑝 (ann = 𝑥 .𝑎𝑆)

Since the Boolean value is, by definition, in the language of

𝐿𝑇 we do not care about the languages of the trees involved

in computing it. We can add the L-prim rule to handle this

case. Note that it leaves the target language for checking 𝑒

to be unconstrained: 𝐿𝑒 can be any language in L.
2

With L-prim in place, the rules for expressions of base

type can be trivial, since they can belong to any language.

The only feature of note is in the rule L-if since the then and

else branches of if expressions must have the same 𝐿𝑇 as

the expression unless they are base types (in which case the

L-prim rule applies). We elide similar rules for other base

type expressions such as addition or numeric literals.

3.6 Composition on nanopasses: C
A nanopass attribute grammar will also specify at least one

composition of a desired set of transformations, typically

to lower the source language down to a version that can be

easily translated to some target language. For example, we

may lower an imperative language with various control flow

mechanisms and expressions over various types down to a

version that only uses labels and goto-statements for con-

trol flow and expressions are transformed into assignment

2
Although this rule is non-algorithmic, it can easily be conservatively ap-

proximated and is so implemented in our prototype system.

statement sequences that directly translate into low-level

intermediate code similar to assembly language instructions.

A composition, in its most primitive form, is a sequence

of transform attributes (𝑡0, ..., 𝑡𝑛), where each 𝑡𝑖 ∈ 𝐴𝑇 . This

implicitly identifies the source and target languages of the

overall composition; the overall source language is Γ𝑆 (𝑡0),
while the overall target language is Γ𝑇 (𝑡𝑛). In practice, a

composition may check the results of on transformation

before performing the next one. For example, if type errors

are found on a program in a typing transformation then

those errors may be output and the compilation aborted.

If E is type correct and the languages are all language-

correct, then we can check that the compositions are also

type-correct. For a composition to be type-correct the fol-

lowing condition must hold:

∀𝑖, 𝑖 ∈ {1...𝑛}. Γ𝑆 (𝑡𝑖) = Γ𝑇 (𝑡𝑖−1)
This ensures that the input tree for each transformation

matches the source language of the transformation. Recall

that the start symbol 𝑆 has no inherited attributes and thus

the computation of some transform attribute 𝑡𝑖 does not need

them to be specified. If additional information is needed

by in the computation of a transform attribute, then that

information can be supplied as an annotation.

The output of the simple composition form above is thus

a tree in Γ𝑇 (𝑡𝑛). We can then use this tree as input to the

next step in the compilation, either to compute a textual

representation of a program in a target language or use

higher-order attributes to construct a tree in some other

language.

Multiple compositions may be defined against a single

nanopass attribute grammar. For example, a production com-

piler may wish to define multiple optimization levels that

run different sets of passes.

4 Evaluation - a Nanopass Go Compiler
To evaluate the design of nanopass attribute grammars we

have developed a prototype nanopass attribute grammar

system and used it to implement several passes in a compiler

for Go version 1.17 that generates x86_64 assembly language

code. Go is a lexically-scoped, statically-typed, imperative

language and, in many respects, has control-flow statements

and expressions that one might expect. We note specific

points of interest below as they become relevant.

In this section we describe several of the 32 languages

and transformations between them. Section 4.1 describes the

simple transformation that lowers for-loops into while-loops.

Section 4.2 describes the more complicated transformation

(and some of its predecessors) of lowering complex numbers

into records with a real and imaginary field. This demon-

strates how transformations lower not only the program

syntax but also that of annotations. Section 4.3 describes the

last language in the sequence; one that has been sufficiently

lowered to enable a direct translation to assembly language.

77

Nanopass Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

1 // for <clause > <body >

2 prod forStmt(clause: LoopClause ,

3 body: Stmt): Stmt;

4

5 // for x != 0 { ... }

6 prod whileClause(expr: Expr): LoopClause;

7

8 // for i := 0; i < 10; i++ { ... }

9 prod forClause(init: Stmt , cond: Expr ,

10 post: Stmt): LoopClause;

11

12 // for k, v = range m { ... }

13 prod rangeClause(lhs: ExprList ,

14 rhs: Expr): LoopClause;

Figure 3. A subset of the productions describing loops.

Section A in the appendix lists and briefly describes all 32

languages and 34 passes (transformations).

4.1 Lowering for-style loops to while-style loops
Go supports both for loops that have the C-like structure

of for init; cond; post { body } and while-style ones

that have only a condition. We lower the former to the lat-

ter. Figure 3 shows, in the language of our prototype, that

in the abstract syntax, both loops represented by a single

generic forStmt production (line 2) that encapsulates all

the looping constructs Go supports. Interestingly, they all

use the keyword for, so this structure is not unreasonable.

There are then various clauses that can be used with the for
keyword, which are productions of the LoopClause nonter-

minal: while-loop style on line 6, C for-loop style on line 9,

and a clause for ranging over key-value pairs on line 13.

There are many other productions in E that we do not show,

but they do have the expected form.

The meta-language syntax of the prototype essentially

adds concrete syntax to the constructs in the formalism in

Section 3. It does interleave elements of E and L but it

should be straightforward to read. Productions are written

in a functional style so that the left-hand-side nonterminal

appears last and the right-hand-side elements are in parens.

The lowering of C-style for-loops into while-style loops

takes place after 18 previous passes, on language L15, and is

shown in Figure 4. L0, the initial language in our nanopass

compiler, contains the abstract syntax of Go and the inter-

vening languages resolve names and perform type checking.

The transform attribute toL16 (line 6) produces programs

without these kinds of loops in language L16. Language
L16 is specified by extending L15 as shown on lines 1–5. It

removes (-=) the forClause production from nonterminal

LoopClause’s set of productions (line 2) and includes only

(:=) occurrences of attributes liftedInit and liftedPost
on LoopClause (line 3). These are defined as higher-order

1 lang L16 extends L15 {

2 LoopClause.prods -= {forClause},

3 LoopClause.attrs := {liftedInit ,

4 liftedPost}

5 }

6 transform attribute toL16 from L15 to L16;

7

8 syn liftedInit: Stmt;

9 syn liftedPost: Stmt;

10

11 aspect forClause {

12 this.liftedInit := init;

13 this.toL16 := whileClause(cond);

14 this.liftedPost := post;

15 }

16

17 aspect default LoopClause {

18 this.liftedInit := emptyStmt ();

19 this.liftedPost := emptyStmt ();

20 }

21

22 aspect forStmt {

23 this.toL16 := block {appendStmt(

24 clause.liftedInit ,

25 forStmt(

26 clause.toL16 ,

27 appendStmt(

28 body.toL16 ,

29 clause.liftedPost)))); }

Figure 4. Lowering C-style for-loops to while-style loops.

synthesized attributes holding statements (lines 8–9). The

aspect constructs associate equations with productions and,

by convention, use this as the name of the constructed

tree node. Names of argument trees are found in the pro-

duction declarations in Figure 3. These attributes lift the

init and post components out of a C-style for-loop (line 12,

line 14) and are the empty statement, by default, on other

LoopClause productions (lines 17–20). The forClause can
then transform itself into an whileClause that uses the

cond child as the loop condition (line 13). Finally, we de-

fine an equation on the forStmt production to actually put

the liftedInit and liftedPost statements into place in

the new while-style loop (lines 22–29). For all other Stmt
productions, e.g. if-then-else statements, a default equation

is generated, as discussed in Section 3.4, to apply the toL16
transformation to its components and build the same tree

with those transformed results. Thus, a statement of the form

for init; cond; post { body } is lowered to one of the form
{ init; for cond { body; post }}. Figure 4 contains the en-
tirety of the code for this pass.

78

SLE ’23, October 23–24, 2023, Cascais, Portugal Ringo, Kramer, and Van Wyk

4.2 Lowering complex numbers
Go supports complex numbers with imaginary number liter-

als, overloaded arithmetic operators, and supporting library

functions for constructing and accessing complex numbers.

Here we discuss a transformation that lowers them to structs

containing two floating-point numbers. (For simplicity we

assume complex numbers are 64 bits; the transformation

can easily be made to also handle 128-bit complex num-

bers.) Interestingly, complex number types and functions are

not built-in syntax, but instead are library functions whose

names may be shadowed by programmer-declared names,

thus complicating the lowering.

This process is done in a few steps, which we will illustrate

on an example function shown in its original L0 form at

the top of Figure 5. These versions are the concrete syntax

versions of the results of the various transformations, lightly

formatted. The ability to easily inspect the results at each

step is an advantage of the nanopass approach.

By language L8, (see second version in Figure 5) earlier

passes have performed name resolution and renamed lexical

variables, so the names of all types and functions are fully

qualified (shown in here with ad hoc syntax not in L0; the
"" package is the “universe block” in Go, and contains all

predeclared identifiers). Lexically-bound names are made

unique, using the $ notation to attach unique numbers.

The first step in lowering complex numbers occurs in L9
where we lower imaginary number literals to calls to the

complex function (line 2 of L9 in Figure 5). In L11 we have
recognized calls to polymorphic standard library functions,

including the complex, real (access of the real component),

and imag (accessing the imaginary component) functions,

and given them their own productions, of the same names,

in the language’s abstract syntax. This is indicated here by

bolding the constructs’ names on lines 2–3. In Go 1.17,

users cannot define polymorphic functions, and polymor-

phic functions behave unlike other variables, so it makes

type-checking simpler to recognize them as productions.

In L12 type-checking is done. The specification of L11 adds
a synthesized attribute occurrence for types, ty: Type, to
Expr and the corresponding equations are then also included.
Equations for type-checking complex number constructs,

such as the recently added complex production, are also

included so that these expressions are appropriately typed.

Figure 6 defines L12 and converts the L11 attribute ty into
an annotation (line 4) so that typing information is retained

(in toL12) for use in the remaining passes. As of L14, the
Expr nonterminal contains the productions complex, real,
imag, as well as the arithmetic operators that are defined

on complex numbers. After L15, a type annotation with its

isComplex64 attribute set to true indicates an operation over
complex values.

We transform away language-level support for complex

numbers when transforming from L14 to L15 in toL15, also

Language L0:

1 func f(x complex64) float32 {

2 y := x + 1.2i

3 return real(y) - imag(y)

4 }

Language L8:

1 func f(x$0 "".complex64) "".float32 {

2 y$1 := x$0 + 1.2i

3 return "".real(y$1) - "".imag(y$1)

4 }

Language L9:

1 func f(x$0 "".complex64) "".float32 {

2 y$1 := x$0 + "".complex (0.0, 1.2)

3 return "".real(y$1) - "".imag(y$1)

4 }

Language L11:

1 func f(x$0 "".complex64) "".float32 {

2 y$1 := x$0 + complex (0.0, 1.2)

3 return real(y$1) - imag(y$1)

4 }

Language L15:

1 func f(x$0 struct{ r "".float32 ,

2 i "".float32 })

3 "".float32 {

4 var y$1 struct{ r "".float32 ,

5 i "".float32 }

6 y$1 = "$builtins".AddComplex64(

7 x$0 ,

8 struct{ r "".float32 ,

9 i "".float32 }{ 0.0, 1.2 })

10 return y$1.r - y$1.i

11 }

Figure 5. An example function, lowered from 𝐿0 to 𝐿15.

shown in Figure 6. To get started, L14 inherits the string at-

tribute complexOpName from L12 (line 1), to occur on binary

operators (line 6) to be the name of the built-in function cor-

responding to the operator (line 9) to which the operator will

translate. (This is the empty string for operators that don’t

apply to complex numbers.) Though not shown, it also inher-

its an attribute isComplex64 (line 2 on type nonterminals

(line 5) to indicate if a Type is a complex type.

The target language, L15 on line 12, eliminates the com-

plex number productions (line 13) and the attributes used in

L14 (lines 14–15) as part of toL15 (line 16).

79

Nanopass Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

One part of toL15 translates binary operators (lines 18–20)
to a call to a runtime function (line 22) whose name is based

on the complex operator name (line 25) if the type of the

operator is complex (line 21). The operands are also lowered

(lines 27–28). The type annotation ty is set to be the lowered
version of the complex type (line 30). This transformation

of complex types to struct types is not shown; it produces a

struct with a real and imaginary field of type float.

If the type is not complex then the transformation is ap-

plied to the child expressions and annotations (lines 32–34).

Lastly, the complex productions complex (line 38), real
(line 48) , and imag (not shown), are also lowered to, re-

spectively, struct literals (lines 39–45, or the struct selector

operator (lines 49–50).

Thus, we see, that over a handful of passes, complex num-

bers are lowered into structure types and expressions.

4.3 L31: Nearly assembly language
After all passes, the final target language L31 is simple enough

to generate assembly straightforwardly in a single pass, al-

though register allocation has not been done. The declara-

tion nonterminal has productions for functions and methods

with stack frame layouts, opaque type definitions, and global

variables without initializers. The statement nonterminal

has productions for sequencing statements, for conditional

and unconditional gotos, assignments (to variables or struct

fields), and expressions evaluated for effect. The expression

nonterminal has no productions for nested expressions, only

those with atomic operands: literals, references to variables

(including functions), and references to methods. The re-

maining productions are for those atomic operands, function

calls, closure creation, casting between types, calls to the

memory allocator, and references to struct fields.

5 Related Work
Naturally there are many extensions to Knuth’s original at-

tribute grammars that are related to this work. Transform

attributes in Section 3 are essentially a version of higher-

order attributes [25] that are constrained to have the same

nonterminal type as the nonterminal on which they occur.

This restriction allows for the automatic generation of equa-

tions for productions that do not define them explicitly. Ref-

erence [5] and remote [1] attributes allow trees already dec-

orated with attribute values (or references to them) to be

passed as attributes. A common use case is to link uses of

a variable back to the tree that declared it. In some sense,

trees with attributes converted to annotations by a transform

attribute are similar in that they come with values already

decorating them. Trees generated in transform attributes are

more restricted, however; we only use them to construct the

tree of the program output from the transformation.

1 syn complexOpName: string;

2 syn isComplex64: bool;

3 lang L12 extends L11 {

4 Expr.annots += { ty },

5 Type.attrs += { isComplex64 },

6 BinOp.attrs += { complexOpName }, ... }

7

8 aspect add { // prod add(): BinOp;

9 this.complexOpName := "ComplexAdd";

10 } // similarly for all BinOp productions

11

12 lang L15 extends L14 {

13 Expr.prods -= { complex , real , imag },

14 Type.attrs -= { isComplex64 },

15 BinOp.attrs -= { complexOpName } }

16 transform attribute toL15 from L14 to L15;

17

18 // prod binOpExpr(lhs: Expr , op: BinOp ,

19 // rhs: Expr): Expr;

20 aspect binOpExpr { this.toL15 =

21 if this.ty.isComplex64 then

22 callExpr(

23 varExpr(

24 qname("$runtime",

25 op.complexOpName),

26 ty=c64BinopType),

27 exprsCons(lhs.toL15 ,

28 exprsCons(rhs.toL15 ,

29 exprsNil ())),

30 ty=this.ty.toL15)

31 else

32 binOpExpr(lhs.toL15 , op.toL15 ,

33 rhs.toL15 ,

34 ty=this.ty.toL15);

35 }

36

37 // prod complex(r: Expr , i: Expr): Expr;

38 aspect complex { this.toL15 =

39 compositeExpr(c64Type ,

40 elementsCons(fieldKey("r"),

41 r.toL15 ,

42 elementsCons(fieldKey("i"),

43 i.toL15 ,

44 elementsNil ())),

45 ty=c64Type); }

46

47 // prod real(c: Expr): Expr;

48 aspect real { this.toL15 =

49 selectorExpr(c.toL15 , "r",

50 ty=this.ty.toL15); }

Figure 6. Lowering complex numbers in struct types and

expressions.

80

SLE ’23, October 23–24, 2023, Cascais, Portugal Ringo, Kramer, and Van Wyk

Onemechanism for transforming trees is the tree-rewriting

mechanism [20] in JastAdd [2] that rewrites trees to elimi-

nate certain syntactic forms. Another is forwarding [24] in

Silver [23] used for similar purposes. These differ from trans-

form attributes in that both of these processes are more local

in nature and not used for transforming an entire program.

Silver also has strategy attributes [11], in which strategies

control the application of rewrite rules to transform trees

in a more global manner, but the differentiation of different

languages is not possible there. Perhaps most similar to trans-

form attributes are attribute coupled grammars [4]. These

were a precursor to higher order attributes and were used

to link attribute grammars in a sequence to translate a tree

through a series of different languages. This is essentially

what transform attribute do, but again the differentiation

of many languages from a common collection of language

elements is not present in this formalism.

The LISA system previously explored [14] splitting an at-

tribute grammar specification into separate languages, which

are defined using an object-oriented-inspired inheritance

mechanism similar to our framework’s extension mecha-

nism described in Section 3.3. In fact our prototype uses the

same extends keyword as LISA. An important difference is

that LISA could not identify and use two distinct languages in

the same phase of evaluation. This is needed in computations

carried out during our language transformations to isolate

the safe construction of some trees in the source language

and others in the target language of the transformation.

The other primary body of related work is that of nanopass

compilers. The original design and implementation of nano-

pass compilers was done for the Scheme language for both

educational [18] and industrial applications [9]. This work

articulated the software engineering benefits of the approach,

such as greater transparency into theworking of the compiler

and more direct means for testing. This is certainly useful in

educational settings and Jeremy Siek’s new textbook adopts

this approach [19]. In that work, programs are represented

as Scheme data structures that are essentially syntax trees.

These lack the ability to structure computations over the

tree as flexibly as attribute grammars allow. This concern

was noted in the GitHub repository for the Scheme-to-C

compiler.
3

6 Discussion and Conclusion
A concern one might have about nanopass attribute gram-

mars used production-grade compilers is runtime perfor-

mance. Are the many small-scale passes much slower than

a few larger-scale ones? We have not performed a rigor-

ous evaluation of the overall performance; however, Keep

and Dybvig note [9] that after rewriting the Chez Scheme

3https://github.com/akeep/scheme-to-c/blob/18f6cd26f/c.ss#L2576-L2578

compiler to use the nanopass framework, compile times re-

mained within a factor of two despite improvements to code

generation, including a slower register allocator.

Another possible concern is the traditional, and somewhat

conservative, well-definedness analysis used in our formu-

lation in Section 3. It requires equations for all synthesized

attributes and inherited attributes that occur on nontermi-

nals in a production’s signature. This is overly conservative,

as some equations may be written that are never actually

demanded. More sophisticated analyses have been devel-

oped, such as one by Kaminski and Van Wyk [6] that checks

for effective completeness; that is, all potentially demanded

attributes have an equation. Performing this analysis and

a traditional higher-order circularity analysis [25] for each

language in L would be straightforward.

There are a number of aspects of future work that we are

currently investigating. The first is the further development

of the prototype nanopass AG system to make it more robust

and extend it with more modern attribute grammar features

such as some of those described in Sections 2 and 5. This

will allow us to do a more complete evaluation of nanopass

attributes grammars by applying it to more language. The

current prototype is contains the features needed to exper-

iment with the nanopass formalism described in Section 3

but it lacks many of the modern AG features that improve

the usability and convenience of the paradigm.

Although, as described above, we have reason to believe

that performance is not a significant problem there is one

optimization that is appealing — fusing several independent

passes into one to avoid an additional traversal over the tree.

Another potential extension is to specify a target language

for all attributes, rather than just transform attributes. This

would enable a notion of reference attributes using annota-

tions, by defining the language of, e.g., an environment at-

tribute mapping names to definitions to have some attributes

on definitions present as annotations. This may complicate

language checking, as the source language of an attribute

could no longer be determined from its target language.

To conclude, we have introduced nanopass attribute gram-

mars, a formalization of their specification, and a prototype

system used to define many aspects of a compiler for the

Go programming language. The distinguishing feature of

nanopass attribute grammars is the clear identification of

many distinct, yet similar, languages drawn from the same set

of language elements. This provides the linchpin on which

the static language checking depends so that the attribute

grammars for individual languages can be shown to be well-

defined even when the entire collection of language elements

in E will most likely not be. Perhaps equally important is the

clarity of thought that this style of compiler design brings:

one can think in terms of clearly defined languages, know-

ing what has, and has not, been translated away or had its

structure change in some way. In a large complex software

artifact such as a compiler this is a considerable benefit.

81

https://github.com/akeep/scheme-to-c/blob/18f6cd26f/c.ss#L2576-L2578

Nanopass Attribute Grammars SLE ’23, October 23–24, 2023, Cascais, Portugal

A The passes in the Go nanopass compiler
The Go compiler we have designed consists of 32 different

languages, L0 to L31 and 34 passes. Three passes, renameVar-
iables, makeDerefExplicit, and lowerSelectorMethod-
Calls, have the same source and target language.

The last language has an attribute that outputs x86_64

assembly. Since there is no register allocator, this assembly is

inefficient, but it is runnable. We have also not implemented

the runtime support needed for concurrency.

1. giveImportsNames, L0 to L1 – Rewrites imports like

import "example.com/foo" to

import bar "example.com/foo". The latter form

already exists in the CST, and this removes a special

case in the next pass.

2. fullyQualifyNames, L1 to L2 – Rewrites variables

that refer to imported declarations to refer to the pack-

age directly. For example, Println might become

"fmt".Println, foo.Bar might become

"example.com/foo".Bar, and int32 might become

"".int32.
3. renameVariables, L2 to L2 – Renames lexical vari-

ables to have globally unique names, so that variable

shadowing doesn’t become an issue. For example, x
might become x$45.

4. liftTypesAndConstants, L2 to L3 – Lifts declarations
of types and constants in local scopes to the global

scope, and renames references to them to fit. (Due

to renameVariables, we know there will not be any

name conflicts.)

5. expandTypeAliases, L3 to L4 – Expands and removes

type aliases. Note that this only applies to declarations

like type a = b, not type a b.
6. expandLists, L4 to L5 – Rewrites function parame-

ters, struct fields, etc. like func foo(a, b "".int)
to func foo(a "".int, b "".int).

7. lowerIncDec, L5 to L6 – Lowers increment and decre-

ment statements to the corresponding assignment state-

ments.

8. labelLoops, L6 to L7 – Adds labels to loops that lack

them, and makes break and continue statements ex-

plicitly refer to their loop.

9. normalizeInterfaces, L7 to L8 – Sorts the methods

of interface types to be in lexicographic order, and

resolves any interface inclusions. This is useful for

type-checking later.

10. lowerImaginaryLits, L8 to L9 – Lowers imaginary

literals to calls to the complex function with a zero

real part.

11. recognizeMakeAndNew, L9 to L10 – Recognizes the

make and new constructs, and provides errors for uses

of types as function call arguments other than those

constructs.

12. recognizePolyBuiltins, L10 to L11 – Recognizes

the other polymorphic built-in functions.

13. typeCheck, L11 to L12 – Adds a type annotation to

expressions.

14. makeDerefExplicit, L12 to L12 – Adds uses of the

dereference operator that were implicit in the source

language. For example, foo$7.Bar() might be rewrit-

ten to (*foo$7).Bar().
15. lowerSelectorMethodCalls, L12 to L12 – Lowers

method calls that can be statically dispatched to di-

rect calls, and references to those methods to lamb-

das. For example, x$3.Foo(n$2) might be rewritten

to ("foo".MyStruct).Foo(x$3, n$2), and y$4.Foo
might be rewritten to func(n$1321 "".int) {
("foo".MyStruct).Foo(y$4, n$1321) }.

16. hoistVariableDecls, L12 to L13 – Lifts variable dec-

larations to the start of their nearest enclosing func-

tion.

17. removeIfPreStmt, L13 to L14 – Removes the "pre

statement" from if statements. For example, rewrites

if n, err = "foo".bar(); n != nil {} to n, err
= "foo".bar(); if n != nil {}.

18. lowerComplex (toL15), L14 to L15 – Lowers calls to

the complex-number-related built-in functions, and

operators on complex numbers, to calls to runtime

functions.

19. lowerForLoops (toL16), L15 to L16 – Lowers for-style
loops to while-style loops.

20. lowerForRangeLoops, L16 to L17 – Lowers loops us-

ing the range construct to use indices on arrays, slices,

and strings, and runtime functions on channels and

maps.

21. lowerIfThen, L17 to L18 – Lowers if-thens without

an else to if-then-elses.

22. lowerSelect, L18 to L19 – Lowers select statements

to calls to a runtime function.

23. lowerTypeSwitch, L19 to L20 – Lowers switch state-
ments on the runtime type of a value to a series of

ifs.
24. lowerExprSwitch, L20 to L21 – Lowers other switch

statements to a series of ifs, including their fallthr-
ough statements.

25. lowerControlFlow, L21 to L22 – Lowers the remain-

ing control-flow constructs (break, continue, for, if,
return) to gotos and labels.

26. lowerDefer, L22 to L23 – Lowers the defer statement

to a shadow stack and adds code to the exit blocks of

functions to support defer.
27. liftInitFunction, L23 to L24 – Recognizes the defi-

nition of init functions and lifts their bodies to the

Package nonterminal.

28. inlineConstants, L24 to L25 – Inlines references to

consts and removes the consts’ declarations.
29. liftInitializers, L25 to L26 – Lifts initializers for

global variables and constants to the init function.

82

SLE ’23, October 23–24, 2023, Cascais, Portugal Ringo, Kramer, and Van Wyk

30. flattenExprs, L26 to L27 – Lowers complex expres-

sions to simple ones; e.g. "foo".f("foo".g()) might

get lowered to tmp$1322 = "foo".g();
"foo".f(tmp$1322).

31. lowerCompositeExprs, L27 to L28 – Lowers assign-

ments of composite expressions to a series of assign-

ments. For example, x$22 = "foo".MyStruct{1,2}
might get lowered to x$22.Foo = 1; x$22.Bar = 2,
and xs$23 = []"".int{1,2,3}might get lowered to

xs$23 = make([]"".int, 3); xs$23[0] = 1; ...,
and so on.

32. lowerPolyBuiltins, L28 to L29 – Transforms calls

to the polymorphic built-in functions recognized by

recognizePolyBuiltins to calls to runtime functions.

33. layoutStackFrames, L29 to L30 – Places the local

variables declared in each function and method into a

single struct, such that each function has exactly one

local variable. A static link is also present, containing a

pointer to the parent’s stack frame struct, for lambdas’

stack frames.

34. lambdaLift, L30 to L31 – Lifts lambda expressions

to global functions that take an additional argument

for their parent’s stack frame and a call to a built-

in function that accepts the global function pointer

and the parent’s stack frame pointer and constructs

the closure. Globally-defined functions and methods

also get a globally-defined “closure” (that ignores the

parent’s stack frame). References to globally defined

functions and methods are changed to refer to these

closure objects instead.

References
[1] John Tang Boyland. 2005. Remote attribute grammars. J. ACM 52, 4

(2005), 627–687. https://doi.org/10.1145/1082036.1082042
[2] Torbjörn Ekman and Görel Hedin. 2007. The JastAdd extensible Java

compiler. In Proceedings of the 22nd annual ACM SIGPLAN Conference
on Object Oriented Programming Systems and Applications (OOPSLA)
(Montreal, Quebec, Canada). ACM, 1–18. https://doi.org/10.1145/
1297027.1297029

[3] R. Farrow. 1986. Automatic Generation of Fixed-Point-Finding Eval-

uators for Circular, but Well-Defined, Attribute Grammars. ACM
SIGPLAN Notices 21, 7 (1986). https://doi.org/10.1145/13310.13320

[4] H. Ganzinger and R. Giegerich. 1984. Attribute coupled grammars. In

Proceedings of the ACM SIGPLAN Symposium on Compiler Construction.
157–170. https://doi.org/10.1145/502874.502890

[5] Görel Hedin. 2000. Reference Attribute Grammars. Informatica 24, 3
(2000), 301–317.

[6] Ted Kaminski and Eric Van Wyk. 2012. Modular well-definedness

analysis for attribute grammars. In Proceedings of the 5th International
Conference on Software Language Engineering (SLE) (Lecture Notes in
Computer Science, Vol. 7745). Springer, 352–371. https://doi.org/10.
1007/978-3-642-36089-3_20

[7] Uwe Kastens. 1980. Ordered attributed grammars. Acta Informatica
13 (1980), 229–256. Issue 3. https://doi.org/10.1007/BF00288644

[8] U. Kastens and W. M. Waite. 1994. Modularity and reusability in

attribute grammars. Acta Informatica 31 (1994), 601–627. https:
//doi.org/10.1007/BF01177548

[9] Andrew W. Keep and R. Kent Dybvig. 2013. A Nanopass Framework

for Commercial Compiler Development. SIGPLAN Not. 48, 9 (sep 2013),
343–350. https://doi.org/10.1145/2544174.2500618

[10] Donald E. Knuth. 1968. Semantics of Context-free Languages. Mathe-
matical Systems Theory 2, 2 (1968), 127–145. https://doi.org/10.1007/
BF01692511 Corrections in 5(1971) pp. 95–96.

[11] Lucas Kramer and Eric Van Wyk. 2020. Strategic Tree Rewriting in

Attribute Grammars. In Proceedings of the ACM SIGPLAN International
Conference on Software Language Engineering (SLE) (Virtual, USA).
210–229. https://doi.org/10.1145/3426425.3426943

[12] José Nuno Macedo, Marcos Viera, and João Saraiva. 2022. Zipping

Strategies and Attribute Grammars. In Functional and Logic Program-
ming (Lecture Notes in Computer Science, Vol. 13215). Springer, 112–132.
https://doi.org/10.1007/978-3-030-99461-7_7

[13] Eva Magnusson and Görel Hedin. 2007. Circular reference attributed

grammars - their evaluation and applications. Science of Computer
Programming 68, 1 (2007), 21–37. https://doi.org/10.1016/j.scico.2005.
06.005 Special Issue on the ETAPS 2003 Workshop on Language

Descriptions, Tools and Applications (LDTA ’03).

[14] M. Mernik, M. Lenič, E. Avdičaušević, and V. Žumer. 1998. The tem-

plate and multiple inheritance approach into attribute grammars. In

Proceedings of the 1998 International Conference on Computer Languages.
102–110. https://doi.org/10.1109/ICCL.1998.674161

[15] Jukka Paakki. 1995. Attribute Grammar Paradigms—a High-Level

Methodology in Language Implementation. Comput. Surveys 27, 2
(June 1995), 196–255. https://doi.org/10.1145/210376.197409

[16] Michael Rodeh and Mooly Sagiv. 1999. Finding Circular Attributes

in Attribute Grammars. J. ACM 46, 4 (July 1999), 556–ff. https:
//doi.org/10.1145/320211.320243

[17] Joao Saraiva. 1999. Purely Functional Implementations of Attribute
Grammars. Ph. D. Dissertation. University of Utrecht.

[18] Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig. 2004. A

Nanopass Infrastructure for Compiler Education. SIGPLAN Not. 39, 9
(sep 2004), 201–212. https://doi.org/10.1145/1016848.1016878

[19] Jeremy G. Siek. 2023. Essentials of Compilation: An Incremental Ap-
proach in Racket. The MIT Press.

[20] Emma Söderberg andGörel Hedin. 2015. Declarative rewriting through

circular nonterminal attributes. Computer Languages, Systems & Struc-
tures 44 (2015), 3 – 23. https://doi.org/10.1016/j.cl.2015.08.008 Special

issue on the 6th and 7th International Conference on Software Lan-

guage Engineering (SLE 2013 and SLE 2014).

[21] S. D. Swierstra and P. R. Azero. 1998. Attribute grammars in the
functional style. Springer US, Boston, MA, 180–193. https://doi.org/
10.1007/978-0-387-35350-0_14

[22] L. Thomas van Binsbergen, Jeroen Bransen, and Atze Dijkstra. 2015.

Linearly Ordered Attribute Grammars: With Automatic Augmenting

Dependency Selection. In Proceedings of the 2015 Workshop on Partial
Evaluation and Program Manipulation (Mumbai, India) (PEPM ’15).
ACM, 49–60. https://doi.org/10.1145/2678015.2682543

[23] Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.

Silver: an Extensible Attribute Grammar System. Science of Computer
Programming 75, 1–2 (January 2010), 39–54. https://doi.org/10.1016/j.
scico.2009.07.004

[24] Eric VanWyk, Oege de Moor, Kevin Backhouse, and Paul Kwiatkowski.

2002. Forwarding in Attribute Grammars for Modular Language De-

sign. In Proceedings of the 11th Conference on Compiler Construction
(CC) (Lecture Notes in Computer Science, Vol. 2304). Springer-Verlag,
128–142. https://doi.org/10.1007/3-540-45937-5_11

[25] Harold H. Vogt, S. Doaitse Swierstra, and Matthijs F. Kuiper. 1989.

Higher Order Attribute Grammars. In Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI). ACM, 131–145. https://doi.org/10.1145/73141.74830

Received 2023-07-07; accepted 2023-09-01

83

https://doi.org/10.1145/1082036.1082042
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/1297027.1297029
https://doi.org/10.1145/13310.13320
https://doi.org/10.1145/502874.502890
https://doi.org/10.1007/978-3-642-36089-3_20
https://doi.org/10.1007/978-3-642-36089-3_20
https://doi.org/10.1007/BF00288644
https://doi.org/10.1007/BF01177548
https://doi.org/10.1007/BF01177548
https://doi.org/10.1145/2544174.2500618
https://doi.org/10.1007/BF01692511
https://doi.org/10.1007/BF01692511
https://doi.org/10.1145/3426425.3426943
https://doi.org/10.1007/978-3-030-99461-7_7
https://doi.org/10.1016/j.scico.2005.06.005
https://doi.org/10.1016/j.scico.2005.06.005
https://doi.org/10.1109/ICCL.1998.674161
https://doi.org/10.1145/210376.197409
https://doi.org/10.1145/320211.320243
https://doi.org/10.1145/320211.320243
https://doi.org/10.1145/1016848.1016878
https://doi.org/10.1016/j.cl.2015.08.008
https://doi.org/10.1007/978-0-387-35350-0_14
https://doi.org/10.1007/978-0-387-35350-0_14
https://doi.org/10.1145/2678015.2682543
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1007/3-540-45937-5_11
https://doi.org/10.1145/73141.74830

	Abstract
	1 Introduction
	2 Background: Attribute Grammars
	3 Nanopass Attribute Grammars
	3.1 Language elements: E
	3.2 Type checking language elements E
	3.3 Languages: L
	3.4 Transform attributes
	3.5 Language checking
	3.6 Composition on nanopasses: C

	4 Evaluation - a Nanopass Go Compiler
	4.1 Lowering for-style loops to while-style loops
	4.2 Lowering complex numbers
	4.3 L31: Nearly assembly language

	5 Related Work
	6 Discussion and Conclusion
	A The passes in the Go nanopass compiler
	References

