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Abstract. Origin tracking is a technique for relating the output of a
transformation back to its input. In term rewriting systems, where this
notion was developed, it relates subtrees in the resulting normal form
term to the original term. The technique is useful in several settings,
including program debugging and error reporting.

We show how origin tracking can be integrated into higher-order at-
tribute grammars, which construct new syntax trees during attribute
evaluation. Furthermore, we extend origins with additional information
to track sub trees that correspond to the redex and contractum of rewrite
rules when implemented using attribute grammars. The computation of
origins and their extensions is formally defined using big-step operational
semantics. Finally we describe a program transformation framework as
an example use of origin tracking in attribute grammars.

1 Introduction and Motivation

Transformations on syntax trees have many applications, ranging from opti-
mizations which aim to reduce execution time to translating human-readable
code down into low-level languages. Such transformations can output trees with
non-obvious relations to the transformation’s input. Without making explicit
relations between the trees, it can be difficult to perceive how the two trees are
related. The transformation’s output may have been copied from a subtree of the
transformation’s input or constructed by a transformation based on a specific
subtree of the input, but these connections are lost in the transformations.

Origin tracking [5] constructs links from each node in the output tree of a
transformation to a node in the transformation’s input. In many cases a series of
transformations is made to achieve some goal, such as optimization, and origins
are traced across multiple steps. Simply put, origins connect a node to the node
which introduced it to the tree. Consider a transformation which replaces every
negation node negate with subtraction from zero. An example of this is shown in
Fig. 1. Intuitively, const(0) and the sub node were introduced to the tree because
the original negate node acted as a transformational catalyst. Other nodes in
the output tree were not modified by the transformation, and thus have origins
pointing back to the nodes they were copied from (the origin of const(3) in the
output tree has an origin pointing to the const(3) node in the input tree).

Van Deursen [4] added origin tracking to primitive recursive schemes (PRS),
in which evaluation by term rewriting is done in two phases, but we focus on the
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Fig. 1. Input and output for rewrite rules replacing negation with subtraction and re-
moving the multiplicative identity. Links are shown for origins, redex, and contractum.

second here for the purpose of discussing origin tracking and connecting it to
attribute grammars. In PRS evaluation, an unordered set of left-linear rewrite
rules are applied nondeterministically and exhaustively to a given input tree.
For example, the following rewrite rules replace negation with subtraction from
zero and reduce multiplication by one on the left:

negate(X) → sub(const(0), X), mul(const(1), X) → X

Per the notion of origins in PRS [4], origins for individual nodes are con-
structed based on where the node is located related to the contractum and if
it was explicitly constructed from a (non-variable) term on the right hand side
of the rewrite rule. If the node is either disjoint from or above the contractum,
then it is given an origin based on the context case which points to the node
from which it was duplicated in the input tree. For example, this holds for the
add and mul nodes in Fig. 1. If the node is explicitly constructed by the rewrite
rule (such as the sub and const (of 0) nodes in the figure), then it is given an
origin based on the auxiliary symbols case which points to the root of the redex.
Finally, nodes which are copied based on variable bindings in the rewrite rule
are given an origin based on the common variables case which points to the
node from which it was duplicated in the input tree; see the const(4) node in
the figure. Note the similarity between origins constructed by the context and
common variables cases: these are origins on nodes copied from the input tree.

In this paper, we migrate this notion of origins into attribute grammars (AGs)
[10]. During tree construction, we annotate trees with a path to their origin. We
use annotations to hold origins in AGs. Annotations are similar to attributes
except they are set on undecorated trees when the tree is built and before
its attributes are evaluated or it is used as sub-tree in some other tree con-
struction operation. Annotations are accessed in the same way as attributes
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(e.g. t.anno where anno is an annotation on tree t). The operational semantics
of this evaluation are presented in Section 2 without origins and in Section 3
with origins.

With origins and without the rewrite rules themselves, it can still be diffi-
cult to determine what caused the changes resulting in the const(4) node in
Fig. 1. By adding a reference for the redex (dotted and dash-dotted lines), it is
clear that it was affected by a reducing transformation catalyzed by the lower
mul node in the input tree, which is not clear with only origin edges. Similarly,
adding the contractum arrow for const(0) shows that it was not the only node
modified by the transformation which constructed it; because its contractum
points to its parent, it can assume that its parent is also new. Beyond redex
and contractum, we found two additional properties which are useful in explor-
ing transformations: a boolean flag which shows whether the node was newly
constructed by the transformation (nodes constructed by the auxiliary symbols
case in a PRS) and a set of labels which describe the applied transformation.
While these four properties have simple implementations within PRS, they are
not straightforward to define these within AGs. This is partly due to the abun-
dance of attributes which construct the unmodified nodes and are unnecessary
in PRS. The combination of these four new properties with origins are called
extended origins and are discussed in Section 4.

In Section 2, we define a simple attribute grammar calculus and the big-step
operational semantics of attribute evaluation. The effort to define this opera-
tional semantics pays off in Section 3 where it is extended to precisely show
how origins can be added to attribute grammars and computed during attribute
evaluation, the first contribution of this paper. The second contribution is the
definition and specification of extended origins in Section 4. This extension adds
to each node whether the node was newly constructed by a transformation, the
node’s redex, the node’s contractum, and a set of descriptive labels. Section
5 contains the third contribution, an application to a program transformation
specification language based on Halide [12], a transformation tool for optimizing
matrix computations. We close with related work in Section 6 and conclude in
Section 7.

2 Attribute Grammars

In this section we provide a specification of attribute grammars that is used
throughout the paper. After a description of the structure of an attribute gram-
mar we provide a big-step operational semantics for evaluation of expressions in
attribute equations without origins. This semantics is then extended in Sections 3
and 4 to compute origins and their extensions during attribute evaluation. Typ-
ing rules for expressions are also provided to aid in understanding the distinction
between undecorated and decorated trees.
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2.1 Definition of the Formalism

In this formulation of attribute grammars we assume a set of primitive types,
PT , used in all attribute grammars, where PT includes types Bool , Int , Str .

An attribute grammar AG has the form 〈G,A,O,D〉 where G = 〈N,P, sig, S〉
is the underlying context free grammar. N is the set of nonterminals. X =
N ∪PT , and denotes the symbols that appear on the right hand side of produc-
tions. P is finite set of production names, each with a signature sig(p ∈ P ) =
x0 :: N0 ::= x1 :: X1 ... xnp :: Xnp where np ≥ 0. In this formalism, as in our
attribute grammar system Silver [13], production signatures provide names for
the symbols in a production; these names are then used in attribute equations
to refer to nodes in the syntax tree. A function typeP extracts just the type
from a production signature such that type(x0 ::N0 ::= x1 ::X1 ... xnp ::Xnp ) =
N0 ::= X1... Xnp . S ∈ N is the type of the root node of a tree representing, for
example, a complete program or compilation unit.

The set of attributes A = 〈Asyn, Ainh, Aloc, typeA〉, contains the finite disjoint
sets of names of, respectively, the synthesized, inherited, and local attributes and
a mapping of attribute names to types in X . Note that typeA(a ∈ Asyn∪Ainh) ∈
X since we limit synthesized and inherited attributes to hold only undecorated
trees and primitive values. This can easily be generalized to support reference [6]
or remote [2] attributes (decorated trees) but we keep things simple in this
formalism. typeA(a ∈ Aloc) ∈ N so that local attributes only hold syntax trees.
In the original work on HOAGs [14], this was the case and local attributes were
called non-terminal attributes. Note that in Silver and other AG systems, we
generalize this to allow local attributes to hold any type, but restrict them here
to trees to simplify the discussion.

The “occurs-on” relation O = 〈Oattr, Oloc〉 indicates which attributes occur
on which nonterminals and which local attributes occur on which productions:
Oattr ⊆ (Asyn ∪ Ainh) × N and Oloc ⊆ Aloc × P . Note that a local attribute
has the same type on each production. Though not formalized here, there are
no inherited attributes on S.

Attribute equations and functions are specified in D = 〈EQ, σf 〉. EQ is the
set of set of equations indexed by P and have the form lhs = e. Expressions
e are defined below, and the left hand side lhs, for a production p ∈ P with
sig(p) = x0 ::N0 ::= x1 ::X1 ... xnp ::Xnp , has the form

lhs ::= x0.a where (a,N) ∈ Osyn

| xi.a where i > 0, (a,Xi) ∈ Oattr, a ∈ Ainh

| �i.a where (a, typeA(�i)) ∈ Oattr, a ∈ inh
| �i where (�i, p) ∈ Oloc

F is finite set of function names, F = dom(σf ), where σf maps function names
to lambda-expressions of the form λy1 : T1, ..., yn : Tn.e, where y ranges over
variables bound in expressions and T ranges over types, defined below.

Fig. 2 shows an attribute grammar, written in Silver, that computes the trans-
formations described in Section 1. Note that here, the process is deterministi-
cally driven by a root production root which defines its doExpd local attribute
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nonterminal Root, Expr;

synthesized attribute expd::Expr

occurs on Expr;

synthesized attribute simp::Expr

occurs on Expr;

abstract production negate

e::Expr ::= ne::Expr

{ e.expd = sub(const(0), ne.expd);

e.simp = negate(ne.simp); }

abstract production mul

e::Expr ::= l::Expr r::Expr

{ e.expd = mul(l.expd, r.expd);

e.simp

= case l of

| const(1) -> r.simp

| _ -> mul(l.simp, r.simp)

end; }

abstract production root

r::Root ::= e::Expr

{ local doExpd :: Expr = e.expd;

local doSimp :: Expr =

doExpd.simp; }

abstract production add

e::Expr ::= l::Expr r::Expr

{ e.expd = add(l.expd, r.expd);

e.simp = add(l.simp, r.simp); }

abstract production sub

e::Expr ::= l::Expr r::Expr

{ e.expd = sub(l.expd, r.expd);

e.simp = sub(l.simp, r.simp); }

abstract production const

e::Expr ::= i::Integer

{ e.expd = const(i);

e.simp = const(i); }

Fig. 2. Silver syntax specification which replaces negation with subtraction from zero
and removes the multiplicative identity

as the expanded tree which replaces negation with subtraction. Similarly, the
doSimp local attribute removes multiplicative identities from doExpd. Two of
the attribute equations have obvious connections to the original rewrite rules:
negate’s expd equation resembles the negation expansion rule, and mul’s simp
equation resembles the rule conducting the removal of the multiplicative identity.
The remaining attributes serve to reconstruct the tree outside where the rewrite
rule would have been applied; in the PRS, this reconstruction is conducted au-
tomatically behind the scenes.

Many attributes have dependencies on other attributes on the same produc-
tion or on its children. Thus attributes without any dependencies are evalu-
ated first, followed by attributes whose dependencies have been evaluated. Thus,
for well-defined attribute grammars, evaluation never runs into the case where
needed attributes are not defined. Note that references to parent (left hand side),
child, and local attribute trees are seen as decorated in attribute equations; this
is reflected in the typing rules found in the following section.

2.2 Static and Dynamic Semantics of Expression Evaluation

Here we first discuss the form of expressions (e), values (v), and types (T), as
shown in Fig. 3, and present typing and big-step operational semantics evaluation
rules for expressions without origins. These rules are relatively straightforward;
the only potentially unexpected aspect is that we treat decorated and undec-
orated syntax trees as having different types and, thus, value representations.
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e ::= if e then e else e
| case e of

q1(y
1
1 , ..., y

1
nq1

) ⇒ e1
...
qn(y

n
1 , ..., y

n
nqn

) ⇒ en
| f(e, ..., e)
| var
| var .attr
| p(e, ..., e)
| new var
| v

var ::= x0 | xi, i > 0 | �i | y

v ::= true

| false

| n
| str
| p(v, ..., v)
| [n, ..., n]
| λy1 : T1, ..., yn : Tn.e

T ::= PT
| N
| N ::= X...X
| T...T → T
| Ref N

Fig. 3. The form of expressions e, variables var , values v, and types T

The primary reason for the formality here is to be provide a precise means for
specifying the computation of origin, redex, and contractum information in the
later, extended version of these evaluation rules.

Expressions include if-then-else expressions, case-expressions, and function
application that behave as one would expect in a functional language; these are
listed first in the productions over e. Case expressions also introduce variable
bindings which again are denoted by yi. Expressions also include variable refer-
ences, var , of which there are four varieties: references to the tree constructed
by a production and named by the variable on the root/left-hand side (x0) and
child trees (xi, i > 0). Local attributes (�i) and bound variables y round out the
types of variables, all denoted by var .

Attributes may be referenced on decorated syntax trees, denoted var .attr. The
restriction of var .attr, and not allowing e.attr, ensures that attributes are only
accessed of the production root, children, locals or variables bound by functions
or case-expressions. The restriction is removed in Silver and most AG systems
but it keeps things simple here. Tree construction, p(e1, ..., enp), constructs new
undecorated syntax trees. Synthesized attributes cannot be accessed on such
trees; the process of decorating the root node of an undecorated tree with its
inherited attributes converts it to decorated tree.

Expressions also include the values, v, to which which expressions evaluate,
also shown in Fig. 3. These include boolean, numeric (n), and string (str) liter-
als. Tree literals p(v, ..., v) are undecorated trees; they are simply terms in the
language of the grammar G. Paths, [n1, ..., nk], are sequences of integers describ-
ing a path to a subtree. The empty path [ ] refers to the root node of the original
syntax tree, [1] refers to the first child of that root node, and the path [1, 2] refers
to the second child of that first child. For example, the negate node in Fig. 1 is
referenced by the path [2, 1]. Finally, lambda expressions are also values.

Types include primitive types PT , undecorated trees with nonterminal of type
N at the root, production types N ::= X...X , function types T...T → T and
path types, Ref N , for paths to trees of type N .
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Fig. 4 contains the big-step operational semantics of the evaluation of expres-
sions, these rules have the form σ, t 	 e → v indicating that for an environment
σ mapping bound variables y to values, and expression e that is part of an
equation for the production that constructed the tree t, evaluates to value v.

The figure also has typing rules to assisting in understanding evaluation. These
have the form AG, p,Γ 	 e : T indicating that an expression e in an equation
associated with production p in AG has type T where Γ maps bound variables
to their types.

Before beginning, we note one additional form of type rule for production,
function, and attribute names of the form AG 	 e : T since these are done inde-
pendently of any production or equation. Specifically, AG 	 p : T , AG 	 f : T ,
and AG 	 a : T indicate that, respectively, a production p, function f or at-
tribute a has the indicated type. These are straightforward and not formalized
here, they simply refer to the appropriate components of AG.

Variable references: Inside of equations for a production we consider the vari-
ables representing the root, child nodes, and local attributes to be decorated
trees, and thus their type is Ref N and their values are paths to the appro-
priate nodes. For example, in Fig. 4 the rule T-Root indicates that the root
node variable x0 is a reference to the nonterminal on the left hand side of the
production p. Rule E-Root indicates that xo evaluates to the path t on the left
hand side of the turnstile — this is the path to the tree on which this expression
is being evaluated. Child node variables xi are typed similarly and evaluate to
the path to the tree t extended to denote their sub-tree. Local attributes are de-
clared to have the type of a nonterminal, just like child trees in productions and
similarly the production has equations defining the inherited attributes on each
local attribute. Thus their type in expressions are decorated trees, represented
by paths. The negation of the index i for the local �i is used in specifying the
path to this local decorate tree. Bound variables are bound to types and values
and are found in Γ and σ, respectively.

Attribute access: The type rule T-SynInh checks that attributes are accessed
on decorated trees only, and that the attribute decorates the tree and thus
determines its type. The rule E-SynInh indicates that because the parent node,
each child node, and local variables are typed as decorated trees, synthesized
and inherited attributes can be accessed from them. (Note that local attributes
are accessed by name directly, without the “dot” notation shown above.)

Tree construction: Productions are used like functions to build undecorated trees
of some nonterminal type N , and are essentially just terms in the language of
G. Child expressions are evaluated to values that match the production’s type.

When an equation copies an undecorated tree value into a higher order syn-
thesized or inherited attribute (of the same type), it is simply that same undec-
orated tree that is stored in the attribute. On the other hand, when an equation
copies such a value into a local attribute, then that undecorated tree becomes
a decorated tree in the sense that it can now be given inherited attributes and
then have synthesized attributes computed on it.
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AG � p : N ::= X1 ...Xn

AG, p, � x0 : Ref N
(T-Root)

σ, t � x0 → t (E-Root)

i > 0
AG � p : N ::= X1 ...Xn

AG, p, � xi : Ref Xi

(T-Child)

i > 0

σ, t � xi → t · [i ] (E-Child)

AG � � : N

AG, p, � �i : Ref N
(T-Local)

σ, t � �i → t · [−i ] (E-Local)

(y, T ) ∈ Γ

AG, p,Γ � y : T
(T-BVar)

(y, v) ∈ σ

σ, t � y → v
(E-BVar)

AG, p,Γ � var : Ref N
(attr,N) ∈ Oattr AG � attr : T

AG = 〈G,A, 〈Oattr , 〉, p,Γ � var .attr : T
(T-SynInh)

σ, t � var → h

σ, t � var .attr → h.attr
(E-SynInh)

AG � p : N ::= X1 , ...,Xn

∀i1n(AG, p,Γ � ei : Xi)

AG, p,Γ � p(e1 , ..., en ) : N
(T-Tree)

∀i1n(σ, t � ei ⇒ vi)

σ, t � q(e1, ..., en) ⇒ q(v1, ..., vn)
(E-Tree)

AG, p,Γ � var : Ref X

AG, p,Γ � new var : X
(T-New)

σ, t � var → h

σ, t � new var → *h
(E-New)

AG, p,Γ � e : Ref N ∀i1n(AG � qi : N ::= X i
1 ...X

i
nqi

)

∀i1n(AG, p,Γ [r i1 	→ Ref X1 , ..., r
i
nqi

	→ Ref Xnqi
] � ei : T )

AG, p,Γ � case e of q1 (y
1
1 , ..., y

1
nqi

) ⇒ e1 ... qn (y
n
1 , ..., y

n
nqn

) ⇒ en : T
(T-Case)

σ, t � e → h qi = prod(*h) σ[y i
1 	→ h · [1 ], ..., y i

nq1
	→ h · [nqi ]], t � ei → v

σ, t � case e of q1 (y
1
1 , ..., y

1
nq1

) ⇒ e1 ... qn (y
n
1 , ..., y

n
nqn

) ⇒ en → v
(E-Case)

AG, p,Γ � e1 : Bool AG, p,Γ � e2 : T AG, p,Γ � e3 : T

AG, p,Γ � if e1 then e2 else e3 : T
(T-If)

σ, t � e1 → true σ, t � e2 → v

σ, t � if e1 then e2 else e3 → v
(E-IfTrue)

σ, t � e1 → false σ, t � e3 → v

σ, t � if e1 then e2 else e3 → v
(E-IfFalse)

AG � f : T ::= T1 , ...,Tn ∀i1n(AG, p,Γ � ei : Ti)

AG, p,Γ � f (e1 , ..., en ) : T
(T-FuncApp)

σf (f) = λy1 : T1, ..., yn : Tn.e ∀i1n(σ, t � ei → vi)
σ[y1 	→ v1 , ..., yn 	→ vn ], t � e → v

σ, t � f (e1 , ..., en ) → v
(E-FuncApp)

Fig. 4. Typing and evaluation rules for expressions without origins
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New: As described by rule E-New, the new operator extracts the value (an
undecorated tree or primitive value) that a path refers to. (confirmed by the
type rule T-New). It uses a dereference operator ∗ to do this. A path refers to
a decorated tree or a primitive value, the dereference operator extracts a new
undecorated tree from that path. In the case of a primitive value it just returns
it. Note that in this formulation only variable accesses evaluate to references.

Case: The type rule T-Case requires that the expression to be matched, e,
be a reference to a tree with type N , each production to be matched, pi, must
have npi children, and each expression ei has the same type. Note that the types
added to Γ for evaluation of the case clause expression are converted to Ref
types. This is the same process used in the type rules of parent, child, and local
variables since all of these will be seen as decorated (Ref ) trees in the evaluation
of the expression. The rule E-Case matches the result of evaluating e with one
of the given productions pi, binds each yij to the jth child of the value of e, and

evaluates the ith expression ei.

Other constructs: The typing and evaluation rules for if-then-else expressions
and function application are the same as in simple functional languages.

3 Origin Tracking in Attribute Grammars

In Section 2, we defined how attributes are evaluated within AGs without ori-
gins. In this section, we define how attributes are evaluated with origins. The
semantics in that section were defined so that only a few key modifications need
to be made to compute origins during expression evaluation, as described below.

As discussed above, the origin is defined as an annotation which contains a
reference to the node’s origin. In the case of initial trees, the origin is defined
as ⊥. We redefine the language of values v to replace the tree value p(v, ..., v)
with the tree value with an origin with a vertical bar to divide it from the node’s
children: p(v, ..., v|o). None of the typing rules require modification, but two
evaluation rules must be updated. These two rules (E-Tree and E-New) are
replaced by the two rules shown in Fig. 5. The rule E-O-Tree is only different
from E-Tree in that it gives the constructed tree an origin pointing to the tree
on which the attribute is defined.

Where E-New used *h, the rule E-O-New uses duplicate(h), the function
duplicate is defined in Fig. 6. If duplicate is passed a path to a primitive value,
then it returns that value. If duplicate is passed a path to a (decorated) tree it
constructs an undecorated copy of the tree with origins on the new tree pointing
to the corresponding nodes on the original tree. Note that duplicate mimics the
common variables case of PRS origins discussed in Section 1 in that a subtree is
copied into the result of the transformation’s output such that its origins point
back to the transformation’s input.

If we replace the expression for the simp equation on production mul in Fig. 2
with simplify(l , r) where simplify is a function whose body is the case expression
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∀i1n(σ, t � ei → vi)

σ, t � q(e1 , ..., en ) → q(v1 , ..., vn |t)
(E-O-Tree)

σ, t � var → h

σ, t � new var → duplicate(h)
(E-O-New)

Fig. 5. New rules required to add origins to AGs. The ”E-O-” prefix in the name of each
of the above rules means that the rule replaced the similarly named rules from Fig. 4
with the ”E-” prefix. Note that adding origins does not affect the typing relations.

duplicate(h) =
if type(∗h) ∈ PT then ∗ h
else case ∗ h of

q(t1 , ..., tk | ) → q( duplicate(h · [1 ]), ..., duplicate(h · [k ]) | h )

Fig. 6. Definition of duplicate with origins using pseudo code

currently in the figure, then the origin computed for any tree now constructed or
duplicated in that function is the same as if the function simplify was not called
and the original specification was used. This is because the evaluation rule E-
FuncApp in Fig. 4 uses the same tree t in the context of evaluating f(e1, ..., en)
as in the context of evaluating the body of f . Thus, origins are dependent on
the attribute being evaluated, not the functions used in that evaluation.

To simplify interaction with the generated origins, we define the function
getOrigin such that getOrigin(p(t1, ..., tk|o)) = o. A tree’s origin path is gener-
ated by repeatedly calling getOrigin on its output until it returns ⊥ (signifying
the initial tree has been reached). Note that origin paths and paths are different:
origin paths are ordered sequences of trees, and paths [n, ..., n] as seen in v are
ordered sequences of integers used to locate decorated trees. This function will
be added to the interface defined in the next section.

4 Extending Origin Tracking with Transformation
Information

Origins are useful for constructing paths from the result of a set of transforma-
tions to the initial tree. However, the information provided by origins does not
always provide all of the information that we may want from a transformation.
Specifically, the answers to the following four questions are missing:

– Was the tree newly constructed by the transformation in question?
– What is the root of the transformation’s input (its redex)?
– What is the root of the transformation’s output (its contractum)?
– Why did the transformation happen?

We define a set of functions to provide an interface for answering these questions.
The first question is answered by a function getIsContractum that returns true



292 K. Williams and E. Van Wyk

on subtrees which were not just copied from the previous tree (i.e. true for nodes
with auxiliary symbols origins). The second question is answered by getRedex
which returns a path to the redex of the transformation, and the third is an-
swered by a function getContractum which returns a path to the contractum
of the transformation. The fourth question is answered by a function getLabels
which returns a set of labels for a given subtree where each label contains a
characterization of the transformation which constructed the subtree.

These four functions, along with origins, make our interface for extended
origins. Two of these functions (getIsContractum and getLabels) directly return
annotations pulled off of their argument while the others compute their results
from new annotations.

4.1 The Extended Origins Interface

In this section, we define the interface functions and state some invariants on
their behavior.

The function getIsContractum returns whether a node was newly introduced
by the last applied transformation, and requires a new annotation of type bool
called isContractum such that getIsContractum(t) = t .isContractum. This an-
notation is set so that the nodes with context or common variables origins in
the PRS setting define isContractum to be false and those nodes with auxiliary
symbols origins define isContractum to be true.

To set isContractum we must be able distinguish between attribute equa-
tions that implement a rewrite rule and set isContractum to true (such as the
definition of expd on negate and simp on mul in Fig. 2) and those that direct the
transformation and set isContractum to false (such as the both attributes on
sub). The expression p(e1, ..., en) is evaluated with isContractum = true unless
three conditions hold, indicating that isContractum should be set false. These
are:

– p matches the production of the tree the attribute is evaluated on,
– each ei is either xi or xi.attr for some attribute attr, and
– the constructed tree will be the root (not some subtree) of the tree eventually

computed as the value of the attribute whose equation is being evaluated.

The first two conditions are simple to validate, and the third is determined by a
new boolean flag er which is added to the left of the turnstile in the evaluation
relation defined below. In our running example, in the expd attribute on negate,
the sub node is evaluated where er = true and the const(0) node is evaluated
where er = false.

getLabels requires a new finite set L with type labels×P×A which statically
defines labels for each attribute on each production. Calling getLabels(t) returns
the set of labels associated with the production p and attribute attr which con-
structed t, denoted Lp

attr. These labels may be different for every application,
but possible labels for AGs include “translation”, “rephrasing”, “local”, “inher-
ited”, and “synthesized”. Other customizable labels refer to the task completed
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getRedex(t) =
if t = ⊥ then ⊥
else if t .redex �= ⊥ then t .redex

else getRedex(parent(t))
(a)

getContractum(t) =
if t = ⊥ then ⊥
else if t .redex �= ⊥ then t

else getContractum(parent(t))
(b)

Fig. 7. Definitions of getContractum and getRedex using pseudo code

by a given attribute, such as “replace negation with subtraction”. Though these
labels are strings, we do not exclude the possibility for labels of other types.

getRedex and getContractum require a single new annotation called redex
which contains either a path to the redex of the tree the annotation resides on
or ⊥, indicating that there is no redex. Both getContractum and getRedex are
defined using a helper function parent which returns the parent node of its given
subtree or ⊥ if it does not have a parent. getRedex is defined in Fig. 7(a), and
getContractum is defined in Fig. 7(b).

Consider the following nodes in the output tree in the example from Sec-
tion 1: sub, the inner add, and mul. The sub node, ts, was constructed by the
expd attribute on negate and getIsContractum(ts) = true, getRedex(ts) re-
turns a path to the negate node, and getContractum(ts) returns a path to ts.
The add node, ta, was copied by the inner mul in the input tree using a new
copy which defines ta’s redex as a path to the inner mul in the input tree.
Also, getIsContractum(ta) = false and getContractum(ta) returns a path to ta.
The mul node, tm, was unchanged by the transformation and is not new, so
getIsContractum(tm) = false , and getRedex(tm) = getContractum(tm) = ⊥.

Below are invariants relating the above functions and origins on a tree t with
children t1, ..., tn. Each invariant is followed by a brief description.

getOrigin(t) = ⊥ =⇒ ¬getIsContractum(t) ∧ getRedex(t) = ⊥ ∧
getContractum(t) = ⊥ ∧ getLabels(t) = {}

If the origin is undefined (which only occurs on initial trees) then the above are
default values for each of the properties.

getIsContractum(t) =⇒ getOrigin(t) �= ⊥ ∧ getRedex(t) �= ⊥∧
getContractum(t) �= ⊥

If the tree was constructed by a transformation, then its origin, redex, and
contractum are defined.

getOrigin(t) �= ⊥ =⇒ ∀ti(getOrigin(ti) �= ⊥)

If the origin is defined, then the origin of every child of t is defined.

(getRedex(t) �= ⊥ ∧ getContractum(t) �= ⊥) =⇒
∀ti(getRedex(ti) �= ⊥ ∧ getContractum(ti) �= ⊥)
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If a tree defines both its redex and contractum, then each of its children define
their redexes and contractums.

getRedex(t) �= ⊥ ⇐⇒ getContractum(t) �= ⊥
The redex is defined if and only if the contractum is defined. This is should be
clear from each of their definitions.

4.2 Evaluating Extended Origins in Attribute Grammars

As seen above, extending origins requires three new annotations: isContractum,
redex, and labels. Thus the tree value form p(v1, ..., vn|v) in v is replaced by
p(v1, ..., vn|v, v, v, v) where the first annotation is the node’s origin, the second
holds isContractum, the third holds redex, and the last holds labels.

Also, two items are added to the left of the turnstile in the evaluation rules: er
(used for setting isContractum) and the name of the attribute being evaluated,
a, to find the correct set of labels. Thus evaluation rules have the form

σ, t , a, er 	 e → v .

Many of the evaluation rules used for origins are only changed to use this
extended form and thus are not shown. Some only require the addition of the
two variables in the consequent, as shown here:

i > 0

σ, t , a, er 	 xi → t · [i ] (E-EO-Child)

This applies to E-EO-Root, E-EO-Local, and E-EO-BVar. Others, includ-
ing E-EO-IfTrue, E-EO-IfFalse, E-EO-Case, and E-EO-FuncApp, simply
use the new form in the antecedent, passing along the new values a and er in the
evaluation of their component expressions. Recall that function application with
origins constructs origins based on the tree on which the attribute is being eval-
uated. Similarly, the annotations introduced in extended origins are constructed
independently of the function being evaluated as they are also passed along as
values to the left of the turnstile.

The rule for attribute access requires a notable modification. Consider the
reducing transformation conducted by mul in the example in Fig. 1. If the left
child of mul is const(1), then the node’s simp attribute returns a copy of the
simp attribute on the node’s right child. If tree copying remains unchanged
and copies every annotation on the tree, then the resulting attribute might not
define the correct redex. In our example, it would not define any redex. This
is inconsistent with the description of getRedex which should define a redex
because a transformation has changed the tree. We explicitly define the copy
functionality for attribute access for extended origins. The copy is shown in
Fig. 8(a), and the new rules are shown here:

σ, t , a, true 	 var → h

σ, t , a, true 	 var .attr → copy(h.attr , t)
(E-EO-SynInhR)
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copy(t ′, r ′) =
if type(t ′) ∈ PT then t ′

else case t ′ of
q(t ′1 , ..., t

′
k |o, n, r , l) →

q(copy(t ′1 ,⊥), ..., copy(t ′k ,⊥)),
| o,n, if r ′ �= ⊥ then r ′ else r , l))

(a)

duplicate(h, r ′, l ′) =
if (type(∗h) ∈ PT then ∗ h
else case ∗ h of

q(t ′1 , ..., t
′
k |o,n, r , l) →

q(duplicate(h · [1 ],⊥, l ′), ...,
duplicate(h · [k ],⊥, l ′)
| h, false, r ′, l ′)

(b)

Fig. 8. Definitions of copy and duplicate for extended origins using pseudo code. copy
only modifies the redex if r′ is not ⊥, and duplicate specifies every annotation.

σ, t , a, false 	 var → h

σ, t , a, false 	 var .attr → copy(h.attr ,⊥)
(E-EO-SynInhNR)

In E-EO-SynInhR, the expression will return a value which is the root of the
value computed for attribute a, so the value of the attribute attr on h is modified
to have a redex pointing to t. In E-EO-SynInhNR, the expression will not be
the root of the value on attribute a, so it is copied with an undefined local redex.

The rules for new, and thus the duplicate function, must be modified to con-
struct correct values for new annontations isContractum, redex , and labels for
duplicated trees. Our original example does not include any such common vari-
ables cases, for example if in the simp equation on mul we replaced r .simp with
just r. In this case the new tree should have isContractum set to false and redex
set to a path to the mul node. We define a new duplicate which modifies the
one in Fig. 6 and inserts the new annotations. The new definition of duplicate is
shown in Fig. 8(b), and the new rules that replace E-New are shown here:

σ, t , a, true 	 var → h

σ, t , a, true 	 new var → duplicate(h, t ,L
prod(t)
a )

(E-EO-NewR)

σ, t , a, false 	 var → h

σ, t , a, false 	 new var → duplicate(h,⊥,L
prod(t)
a )

(E-EO-NewNR)

In E-EO-NewR, new is evaluated such that the given path is duplicated and
given t as a new redex if er = true and ⊥ if er = false.

This last set of rules demonstrates the greatest difference between the eval-
uation of origins and extended origins. Since we need to determine if a tree
is part of the contractum to set isContractum and set its redex annotation
the single rule E-O-Tree is replaced by three rules shown in Fig. 9. Rule E-
EO-NotCntr defines the case in which the constructed tree has a context or
common variables type of origin and is not a constructed as part of the con-
tractum (abbreviated Cntr in rule names). In this case the constructed tree
does not have a redex and sets isContractum to false . The mul node in the
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q = prod(*t) ∀i1n(ei = new xi ∨ ei = xi.attr) ∀i1n(σ, t, a, false � ei ⇒ vi)

σ, t, a, true � q(e1, ..., en) ⇒ q(v1, ..., vn|t, false,⊥, L
prod(t)
attr )
(E-EO-NotCntr)

¬(q = prod(*t) ∧ ∀i1n(ei = new xi ∨ ei = xi.attr)) ∀i1n(σ; t , a, false � ei → vi)

σ; t , a, true � q(e1 , ..., en ) → q(v1 , ..., vn |t , true, t ,Lprod(t)
a )
(E-EO-CntrRoot)

∀i1n(σ; t , a, false � ei → vi)

σ; t , a, false � q(e1 , ..., en ) → q(v1 , ..., vn |t , true,⊥,Lprod(t)
a

(E-EO-CntrChild)

Fig. 9. Tree construction rules for extended origins

original example’s output is an example of this. E-EO-CntrRoot defines the
case where the tree being constructed may be the root of the computed attribute
value and is part of the contractum, resulting in a node which defines its redex
to be t and isContractum = true. This resembles the auxiliary symbols origin
case, and the sub node in the original example’s output is an example of this.
The final rule, E-EO-CntrChild, the constructed tree sets isContractum to
true and has no redex since it is not the root of the value of the computed
attribute. This resembles the auxiliary symbols origin case, and const(0) in the
original example’s output is an example of this. Recall, setting redex to ⊥ does
not mean that the getRedex function will not be able to find the root of the
redex on a parent node.

5 Applying Extended Origins

This section explores an application of extended origins to a language extension
built using Silver. This extension is for parallel matrix programming [15] based
on ideas from Halide [12], a tool intended for writing high-performance image
processing code which separates the “algorithm” (the operations to be evaluated)
from the “schedule” (the transformations which specify the order in which the
operations are evaluated). The schedules in Halide are designed to not affect the
semantics of the algorithm and only modify where and when operations take
place (e.g. by tiling, parallelizing, or vectorizing loops).

As an example of this, the code in Fig. 10(a) constructs a 2-dimensional
gradient matrix grad based on indexes x and y. The result of applying the
two schedules is shown in Fig. 10(b). The two schedules have parallelized the
y dimension (parallelize y) and designated the y loop as the outermost loop
(reorder y, x). These are the only schedules discussed in this paper, but we do
not claim that these two schedules are sufficient for high performance computing;
instead, they were selected based on their transformations and how they interact
with extended origins.

In this small example, many relations are obvious. The OpenMP pragma must
have been generated in some way by the parallelize schedule and the y iteration
occurs outside of the x iteration due to the reorder schedule. Consider if this
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grad(x,y) = x + y {

parallelize y;

reorder y, x;

}

(a)

#pragma omp parallel for ...

for y from 0 to yMax {

for x from 0 to xMax {

grad[x][y] = x + y;

}

}
(b)

Fig. 10. Example’s input and output

example included more schedules which closely interacted with each other and
were more invasive, thereby obfuscating relationships between the output code
and the initial schedules and algorithm. Such a set of schedules would output
code without any simple connection back to the original code.

By adding extended origins to this implementation, we can connect each node
of the output tree to the schedules which affected it. Intuitively, each OpenMP
pragma should be connected to a parallelize schedule, and each reorder schedules
should be connected to the nodes they rearrange.

Here, we briefly describe how an AG transforms the input code shown in
Fig. 10(a) into the code in Fig. 10(b). First, the algorithm is expanded into nested
for loops, each of which is encapsulated within its own forMarker node. The
expression nested in the deepest loop is a transformed version of the assignment
statement in the original code: grad[x][y] = x + y under a bodyMarker . The
marking nodes are used to mark where the tree should be cut when applying the
reorder schedule. This simplifies the reorder schedule because other schedules
which add new nodes must decide whether the added nodes should stay inside
a given loop (inside a loop and above the nested marker) or outside a given
loop (below a marker and above its loop). The first schedule is transformed
into its ScheduleAsRoot variation which has the remaining schedules and the
current state of the algorithm as its children. After applying its transformation, it
replaces itself with the next schedule’s ScheduleAsRoot node. After all schedules
have been applied, the markers are removed and the final tree is returned.

The parallelize schedule inserts an OpenMP pragma immediately before the
loop iterating over the given variable. To do this, a new higher-order synthesized
attribute parallel is defined on all nonterminals which replicates constructs not
affected by the transformations using equations similar to those on the add pro-
duction in the running example. On the loop which iterates over the variable
to be parallelized, the parallel attribute holds the sequence of the new pragma
followed by a copy of the original loop. Initially, the for-loop compared its iter-
ating variable against an inherited attribute parWith which held the variable to
be parallelized and, if the two variables matched, constructed the new pragma.
However, this gave the pragma an origin pointing to the loop, and therefore
cannot connect the pragma to the parallelize schedule.

We define parWith to have type ParWith, a nonterminal which defines the
new pragma as one of its attributes and with only one production which contains
the variable to be parallelized as a child. The ParWith node is constructed by
the parallelizeAsRoot node, which was in turn constructed by the parallelize
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Fig. 11. Diagram showing the result of applying the parallelization schedule using
parWith where the type of parWith is ParWith. Origins are shown with dashed arrows,
attributes are shown with dot-dash arrows, and new nodes are shown with dashed ovals.
Note that the pragma’s origin path includes both the pc and parallelizeAsRoot nodes,
and therefore also includes the parallelize node.

schedule; thus the parWith tree’s origin path includes the parallelize schedule.
In the loop’s definition of parallel , the loop copies the pragma attribute from its
parWith attribute. Thus the origin path of the pragma leads through the parWith
tree to the parallelizeAsRoot node and the parallelize schedule. This relation is
depicted in Fig. 11. Had we instead defined parWith to be a string instead of a
tree, this origin path would not exist and we would lose the relationship between
the parallel loop and the parallel schedule.

The reorder schedule acts as one would expect: it splits the loops into frag-
ments rooted at forMarker s or bodyMarker nodes, rearranges the fragments,
and re-nests the fragments in the new order. Note that this transformation out-
puts nodes which are duplicates of the input nodes, so none of the output tree’s
nodes have the reorder schedule in their origin path. Instead, the connection to
the schedule is facilitated by the redex property. The reordering of the schedules
is conducted within local attributes on reorderScheduleAsRoot , so the nodes in
the ordered list of fragments have redexes pointing to it. Thus, each of the out-
put nodes are connected to the schedule via origins to the ordered list, a redex
to reorderScheduleAsRoot , and an origin to the reorder schedule. Though this
connection seems hard to find, the local attribute holding the reordered frag-
ments can be given a label which suggests following the redex property to find
the schedule which conducts the reordering.
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6 Related Work

The example in Section 1 is based on van Deursen’s description of origin tracking
in primitive recursive schemes (PRS) [4]. In our addition of redex and contractum
information to origins in attribute grammars we designed the evaluation rules
for tree construction to distinguish the equations which correspond directly to
rewrite rule transformations (whose origins correspond to the auxiliary symbols
case in a PRS) from those that simply reconstruct the tree (whose origins cor-
respond to the context and common variables cases). The reason we focus on
the rewrite rules from the second phase of a PRS is that the first phase in-
cludes rewrite rules that more closely resemble attribute grammar equations.
The expansion of negate would be specified by the following rules:

expd(negate(X)) → sub(const(0), expd(X))

expd(mul(X,Y )) → mul(expd(X), expd(Y ))

expd(sub(X,Y )) → sub(expd(X), expd(Y ))

expd(const(N)) → const(N)

Here, expd corresponds to a synthesized attribute in attribute grammars; the
rules above can be easily transcribed into attribute grammar equations.

In fact, this is done in previous work [11] in which bidirectional transforma-
tions are specified as rewrite rules and then implemented in attribute grammars.
In that work, the translation of rewrite rules to attribute equations defines a
similar notion of origins, called “links-back”, but these are not implemented on
general attribute equations. “Links-back” are only generated from rewrite rules,
significantly simplifying the process.

PRSs and AGs can be encoded in the other formalism [3], but adding origins to
attribute grammars by encoding a PRS with origins as an AG is not as intuitive
as a direct approach. Additionally, the translation approach does not support
the extension of redex and contractum information to origins.

Various language processing systems have implemented origins tracking. These
include Spoofax [8], based on strategic term rewriting; CENTAUR [1], imple-
mented in Lisp and Prolog with some notion of attributes similar to annotations
as described here; and in the meta-programming language Rascal [9].

The annotations for origins and redexes are implemented in Silver as refer-
ence [6]/remote [2] attributes; these allow graph structures to be defined on top
of syntax trees using attributes that point to other nodes in the syntax tree. They
are useful in many settings such as linking variable uses to their declarations.

7 Discussion and Conclusion

In Silver, many of the above restrictions imposed by the simple attribute gram-
mar calculus in Section 2 are removed since the restrictions can easily be gener-
alized. In addition to the generalizations mentioned earlier, the new construct
is not used in Silver because Silver uses the context of a reference to a tree
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such as xi to determine if it should be seen as a decorated or undecorated tree.
For example, it is decorated on the right hand side of an attribute equation for
attribute evaluation and case expressions, but undecorated otherwise.

One concern regarding this definition of evaluation is that two transforma-
tions which result in the same output without origins can result in trees with
different annotations. When inserting the OpenMP pragma in the application
given in Section 5, the designer has a choice to either define the parallel attribute
on the loop as seq(pragma(...), for(...)) or seq(pragma(...), x0 ). The former con-
structs a new tree for the loop which defines isContractum = true, while the
latter duplicates the original tree such that isContractum = false . This is incon-
sistent, and one could argue that isContractum = false is the best result for this
transformation. However, such a decision would disagree with the currently held
correlation between PRS origin cases in Section 1 and the isContractum anno-
tation. Currently, nodes with origins constructed by either context or common
variables cases define isContractum = false, and nodes with origins constructed
by the auxiliary symbols case define isContractum = true. This is a classic case
of two unique transformations which construct the same tree (excluding anno-
tations). We expect to find no issues with allowing some nodes with auxiliary
symbols origins to define isContractum = false, but more research is required
before any further claim can be made.

One area of future work is to determine how best to use the information
tracked by extended origins. How can we effectively present the data collected in
the Halide-inspired language extension to the programmer? This is beyond the
scope of this paper, but we can be assured that we have the raw data required.

Extended origins may also be useful in debugging attribute grammars. Algo-
rithmic debugging [7] is a search technique applied to attributed syntax trees,
following the structure of the tree and (local) higher order attributes. Extended
origins provide additional “edges” that may be traversed during debugging in
searching for the errant attribute equation, but more research into this is needed
to determine how useful that would be in practice.

We have not yet analyzed how tracking origins affects the amount of memory
Silver uses. More trees are kept in memory and not garbage collected due to the
origin and other references. In many applications using origins such as debugging
and transformation visualization we may run Silver in a “debug” mode to track
origins and pay the memory cost, but then turn it off for other applications.

To conclude, in this paper we defined origin tracking in attribute grammars
according to core themes shown in their construction in PRS. After showing that
origins provide little context, four additional properties and their accessors were
defined and added to define extended origins. These properties were shown to
provide meaningful connections between nodes and schedules through complex
transformations. Future work includes applying other complex transformations
and analyzing how they interact with extended origins.
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