
Optimizing 360 Video Delivery Over Cellular Networks

Feng Qian
Indiana University
Bloomington, IN

fengqian@indiana.edu

Bo Han
AT&T Labs – Research

Bedminster, NJ
bohan@research.att.com

Lusheng Ji
AT&T Labs – Research

Bedminster, NJ
lji@research.att.com

Vijay Gopalakrishnan
AT&T Labs – Research

Bedminster, NJ
gvijay@research.att.com

Abstract
As an important component of the virtual reality (VR) technology,
360-degree videos provide users with panoramic view and allow
them to freely control their viewing direction during video play-
back. Usually, a player displays only the visible portion of a 360
video. Thus, fetching the entire raw video frame wastes band-
width. In this paper, we consider the problem of optimizing 360
video delivery over cellular networks. We first conduct a measure-
ment study on commercial 360 video platforms. We then propose
a cellular-friendly streaming scheme that delivers only 360 videos’
visible portion based on head movement prediction. Using viewing
data collected from real users, we demonstrate the feasibility of our
approach, which can reduce bandwidth consumption by up to 80%
based on a trace-driven simulation.

CCS Concepts
•Networks → Application layer protocols; Mobile networks;
•Computing methodologies→ Virtual reality;

Keywords
360-degree video; Head movement prediction; Virtual reality; Cel-
lular networks

1. INTRODUCTION
The past three years have witnessed increasing commercial progress

of the virtual reality (VR) technology, which has eventually stepped
out of labs. It is projected to form a big market of $120 billion by
2020 [2]. Users can now experience VR capabilities on their mobile
devices using affordable VR devices such as a $15 Google Card-
board [4]. 360-degree videos, also known as immersive or spheri-
cal videos, play a critical role in the VR ecosystem. They provide
users with panoramic views and create a unique viewing experience
in particular when used in combination with the 3D video technol-
ogy. 360 videos are recorded by omnidirectional cameras or camera
array systems (e.g., Facebook Surround 360 [3]). They simultane-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

AllThingsCellular’16, October 03-07, 2016, New York City, NY, USA
c© 2016 ACM. ISBN 978-1-4503-4249-0/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2980055.2980056

Figure 1: Adjusting 360 video viewing direction.

ously record all 360 degrees of a scene that can be “wrapped” onto
a 3D sphere, with the cameras at its center.

When watching a 360 video, a viewer at the spherical center
can freely control her viewing direction, so each playback creates
a unique experience. As shown in Figure 1, the user wearing a VR
headset can adjust her orientation by changing the pitch, yaw, and
roll, which correspond to rotating along the X, Y, and Z axes, re-
spectively. Then the 360 video player computes and displays the
viewing area based on the orientation and the field of view (FoV).
The FoV defines the extent of the observable area, which is usually
a fixed parameter of a VR headset (e.g., 110◦ horizontally and 90◦

vertically).
360 videos are very popular on major video platforms such as

YouTube and Facebook. Despite their popularity, the research com-
munity lacks an in-depth understanding of many of its critical as-
pects such as performance and resource consumption. In this pa-
per, we fill this gap by investigating how to optimize 360 video
delivery over cellular networks, which, we envision, form the key
infrastructure that facilitates ubiquitous access of VR resources in
the cloud. We begin with understanding the state-of-the-art of 360
video delivery by conducting measurements on two commercial
360 video platforms: YouTube and Facebook. We found that 360
video largely inherits the delivery scheme from traditional Inter-
net videos. This simplifies the deployment, but makes 360 video
streaming very cellular-unfriendly, because the video player always
fetches the entire video including both visible and invisible por-
tions. This leads to tremendous resource inefficiency on cellular
networks with limited bandwidth, metered link, fluctuating through-
put, and high device radio energy consumption.

Motivated by the above, we propose a novel cellular-friendly

http://dx.doi.org/10.1145/2980055.2980056

streaming scheme for 360 videos. The high-level idea is the fol-
lowing, instead of downloading everything, the player only fetches
the parts that are visible to the user in order to reduce the band-
width consumption. This requires us to predict the viewer’s head
movement (to know which portion of the view to fetch). To inves-
tigate its feasibility, we collected five users’ head movement traces
when watching real YouTube 360 videos. Trace-driven analysis in-
dicates that at least in the short term, viewers’ head movement can
be accurately predicted (with accuracy > 90%) by even using sim-
ple methods such as linear regression. We also address other design
challenges such as handling prediction errors and integration with
DASH and HTTP.

To summarize, we make the following contributions.

•We conduct to our knowledge a first characterization study of 360
video delivery on commercial video platforms (§2).

•We presented the design of a cellular-friendly 360 video delivery
scheme based on head movement prediction, whose feasibility is
validated by a pilot user study (§3).

• We quantify the benefits brought by our scheme using trace-
driven simulation. The results indicate that our scheme can signif-
icantly reduce the bandwidth consumption of 360 video streaming
by up to 80% (§4).

2. MEASUREMENT STUDY
We conduct a measurement study to understand how 360 videos

are delivered by commercial video platforms. We study the two
most popular video platforms: YouTube and Facebook. We use the
official YouTube app on a Samsung Galaxy S5 phone running An-
droid 4.4.2 to watch top YouTube 360 videos. During the video
playback, we capture HTTPS transactions by redirecting all traffic
to a man-in-the-middle proxy (using mitmproxy [5]). For Face-
book, we watch several popular 360 videos in a Chrome browser
on a Windows 10 laptop1, and use the Chrome debugging tool to
analyze HTTPS transactions. We describe our findings as follows.

• Both YouTube and Facebook encode 360 videos into the stan-
dard H.264 format in an MP4 container. In fact, a 360 video is also
playable in conventional media players, which only show the raw
frames as exemplified in the large image in Figure 2. As shown,
the raw frame is distorted because it was projected from the 3D
panoramic sphere. When the viewing area is determined, the vis-
ible portion is then reversely projected from the raw frame to the
screen, as illustrated by the two small images on the right side of
Figure 2.

• The raw frames of YouTube and Facebook videos exhibit dif-
ferent visual “patterns”. We found the reason to be their different
projection algorithms. YouTube employs equirectangular projec-
tion [10] that directly uses the latitude and longitude on a sphere
as the vertical and horizontal coordinates, respectively, on the raw
frame. Facebook instead employs a projection scheme called Cube
Map [8] that has less distortion in the polar areas of the sphere.

• Both YouTube (on Android app) and Facebook (on Chrome for
Windows 10) use progressive download over HTTP, a widely used
streaming technique, to deliver 360 videos. Progressive download
allows a client to start playing the video before it is fully down-
loaded. It is realized using HTTP byte range request.

• Both video platforms support multiple encoding bitrates for 360
videos. The viewer can switch between SD and HD versions on
Facebook. YouTube provides up to 8 bitrate levels from 144s to
1It is difficult to conduct the experiments on a smartphone because
mitmproxy does not work with the Facebook app for Android.

Video Scene Length 1080s 1440s 2160s
Roller coaster 1’57” 66MB 105MB 226MB
Animals 2’49” 52MB 129MB 246MB
Aerobatic Flight 8’12” 172MB 350MB 778MB
Google IO 2016 2h8’34” 1.7GB 4.9GB 9.1GB

Table 1: Sizes of four 360 videos on YouTube.

2160s2. Note the video quality numbers refer to the resolution of
the entire raw frame (Figure 2 left), in which the viewer only sees
a small portion at any given time (Figure 2 right). Therefore, to
achieve the same user-perceived playback quality, the raw frame
quality of a 360 video has to be much higher than that of a non-360
video. Based on our viewing experience, for a decent user experi-
ence, a 360 video needs to be streamed at at least 1080s. For exam-
ple, 480p is a reasonable quality for conventional videos. However,
when watching the video in Figure 2 under 480s, the quality is un-
acceptably bad because the viewer in fact has a stretched view of a
subarea of a 480s frame.

• As a direct consequence of the above observation, for the same
user perceived quality, 360 videos have very large sizes. Table 1
lists sizes of four 360 videos on YouTube, assuming 1080p is the
minimum video quality for a reasonable QoE. This inevitably causes
issues on cellular networks with limited bandwidth (in particular
when signal strength is not good) and metered link.

• Finally, for both YouTube and Facebook, the client always down-
loads the entire raw frame regardless of user’s viewing direction.
This leads to tremendous waste of network bandwidth, because
most areas of a raw frame are not viewed by the user. Based on
our simulation in §4, such invisible areas account for up to 80% of
the network bandwidth consumed by 360 video playback. We note
that due to the use of a single H.264 video stream, it is inherently
impossible for a 360 video client to fetch a subarea of a raw frame.

3. PROPOSED DESIGN

3.1 Problem Statement and Challenges
The measurements in §2 indicate that 360 videos largely inherit

the delivery scheme from traditional Internet videos. The obvi-
ous advantage is simplicity: virtually no change is required on the
server side, and a non-360 player can be easily enhanced to sup-
port 360 videos by adding projection and head movement detection.
However, the negative side is, streaming 360 videos is very band-
width consuming, because (1) under the same user perceived qual-
ity, 360 videos have much larger sizes than non-360 videos, and (2)
today’s 360 video players always fetch the entire raw frame includ-
ing both the visible and invisible portion. This may not be a big is-
sue for wired and high-speed WiFi networks. However, the scheme
is not friendly to cellular networks where radio resources are scarce
and bandwidth is limited. Also, downloading excessive data hurts
mobile devices’ battery life because cellular radio is known to be
energy-hungry: when in active use, the LTE radio accounts for at
least 50% of the entire smartphone’s energy consumption [16].

Motivated by the above, we propose to improve 360 video stream-
ing over cellular networks, with the goal of reducing the bandwidth
consumption. Our high-level idea is straightforward: instead of
downloading everything, the client only fetches the parts that are
visible to the user. To realize this idea, we face several challenges.
First, we need a mechanism that allows a client to download a sub-
area of a video chunk. Second, in order to determine what to fetch,
the client needs to predict a viewer’s head movement. The pre-

2YouTube uses suffix “s” instead of “p” for 360 video quality.

Figure 2: Left image: a raw frame of a 360 video at 1080s. Two right images: visible frames reversely projected from the raw frame
when the viewer is looking at Points 1 and 2. Video source: https://www.youtube.com/watch?v=-xNN-bJQ4vI

0 1 2 3 4 5 6 7
0

1

2
3

x

y Visible area Θ

Figure 3: Spatial segmentation of a video chunk into tiles.

diction needs to be robust and efficient. We also need to tolerate
inaccurate prediction by strategically sacrificing bandwidth in cer-
tain situations. Third, our approach should incur minimal changes
to both the client player and in particular, the server. Next, we detail
the key design aspects of our proposal.

3.2 Spatial Segmentation of the Video
For traditional videos, to support simultaneous download and

playback, a video is temporally segmented into chunks or byte
ranges. To support downloading a subarea of a video chunk, the
video also needs to be spatially segmented. This can be realized in
an online manner: the client computes the target area of a chunk,
and embeds them into HTTP request parameters; the server then
dynamically generates a smaller chunk containing only the target
area and transmits it to the client. This approach suffers from two
drawbacks. First, it greatly increases the server-side computational
overhead. Second, due to projection, the target area is not a rectan-
gle, making it hard for the client to specify the target area.

We instead propose spatially segmenting the video in an offline
manner. Each 360 video chunk is pre-segmented into multiple
smaller chunks, which we call tiles. A tile has the same duration
as a chunk while only covering a subarea of the chunk. The easi-
est way to generate the tiles is to evenly divide a chunk containing
projected raw frames into m*n rectangles each corresponding to a
tile (we will use this approach in our simulation in §4). Suppose the
projected visible area is Θ. The client only requests for the tiles that
overlap with Θ. An example is illustrated in Figure 3 where m=8
and n=4, and Θ is the yellow region. The client will only request
for the six tiles (4 ≤ x ≤ 6, 1 ≤ y ≤ 2) overlapping with Θ. Note
that due to projection, despite the viewer’s FoV being fixed (§1),

the size of Θ and thus the number of requested tiles may vary. For
example, under equirectangular projection, as shown in Figure 2,
more tiles are needed when the viewer looks downward (Point 2)
compared to when she looks straight forward (Point 1).

Besides the above approach, an alternative and more complex
way is to apply segmentation directly on the 3D sphere instead of
on the projected 2D raw frame so that each tile covers a fixed angle.
This makes the number of tiles to be requested irrespective of user’s
viewing direction (but their total bytes may still vary). We plan to
explore both segmentation approaches.

Performing the spatial segmentation offline eliminates the server-
side overhead. Multiple tiles can be requested in a single bundle to
reduce network roundtrips. Tiles’ meta data such as positions and
URLs can be embedded in a metafile exchanged at the beginning
of a video session.

3.3 Head Movement Prediction
Ideally, if a viewer’s head movement during a 360 video session

is known beforehand, we can generate the optimal sequence of tiles
that minimizes the bandwidth consumption. To approximate this in
reality, we propose to predict the head movement i.e., the change
of pitch, yaw, and roll.

Is a viewer’s head movement indeed predictable? To get a pre-
liminary answer to this key question, we conduct a user trial of five
users. The experimental setting is as follows. Each user wears a
Google Cardboard viewer [4] with a Samsung Galaxy S5 smart-
phone placed into the back of it3. The smartphone plays four short
YouTube 360 videos (duration from 1’40” to 3’26”) of different
genres. Meanwhile, a head tracker app runs in the background
and sends the raw yaw, pitch, and roll readings to a nearby lap-
top using UDP over WiFi (latency < 1ms). We use OpenTrack [7],
an open-source head tracking software, to perform preprocessing
(e.g., smoothing and head shaking removal) under default settings
before recording the data. The sampling rate is 250Hz. During the
playback, the five users can view at any direction by freely moving
their heads.

Leveraging the collected traces, we use a sliding window of 1
second from t0 − 1 to t0 to predict a future head position at t0 + δ

3To use the Google Cardboard, we enable 3D mode of 360 videos.

https://www.youtube.com/watch?v=-xNN-bJQ4vI

Next 0.5s Next 1s Next 2s

P
re

di
ct

io
n

A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

Avg
LR
WLR (a)

Next 0.5s Next 1s Next 2s

P
re

di
ct

io
n

A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

Avg
LR
WLR (b)

Next 0.5s Next 1s Next 2s

P
re

di
ct

io
n

A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

Avg
LR
WLR (c)

Next 0.5s Next 1s Next 2s

P
re

di
ct

io
n

A
cc

ur
ac

y

0

0.2

0.4

0.6

0.8

1

Avg
LR
WLR (d)

Figure 4: Head prediction results for four 360 videos: (a) roller coaster, (b) NASA Mars, (c) sailing, and (d) sports. A moving window
of 1s is used to predict next δ=0.5s, 1s, and 2s using average (Avg), linear regression (LR), and weighted LR (WLR).

for each dimension of yaw, pitch, and roll. In this feasibility study,
we use three simple prediction approaches.

• Average. We compute the average value in the window as the
prediction result.

• Linear Regression (LR). We train an LR model using all samples
in the window, and then use the model for prediction. All samples
in the window have the same weight.

•Weighted linear regression (WLR). It is similar to LR, except that
a more recent sample is considered more important: the weight of
a sample at t0 − x is set to 1− x (0 ≤ x ≤ 1).

For a given window (t0−1, t0), the output of the prediction con-
sists of the estimated yaw, pitch, and roll at t0 + δ. We consider
the prediction to be accurate if the predicted values in all three di-
mensions differ from the true values by less than 10◦, which can
be easily compensated by downloading slightly more data as to
be described in §3.3.1. Figure 4 shows the prediction results of
δ ∈ {0.5s, 1s, 2s} for the four videos, with each point represent-
ing one video playback. The prediction accuracy (Y Axis) of a
playback is defined as the number of accurate predictions over the
total number of predictions.

We describe two major findings in Figure 4. First, despite the
simple prediction techniques we use, we observe good short-term
predictability for head movement. Using WLR, the average predic-
tion accuracy values across all users and all videos for δ = 0.5s and
1s are 96.6%±2.0% and 92.4%±3.7%, respectively. On the other
hand, prediction in the longer term is more difficult: the average ac-
curacy drops to 71.2%±7.6% when δ = 2s. Second, the prediction
methodology does matter, as linear regression significantly outper-
forms the naïve averaging approach. Using WLR further slightly
improves the results. We plan to experiment with more sophisti-
cated machine learning algorithms and to leverage richer training
data in our future work. Also, the prediction can be further con-
strained by robust heuristics (e.g., a user will be very unlikely to
vary the roll by more than ±15◦).

Despite the satisfactory short-term predictability, a key concern
is, is 1 to 2 seconds too short to fetch the tiles? We expect that under
reasonable cellular network conditions, such a prediction window
of 1 to 2 seconds is sufficient for network transfer. Today’s LTE
networks offer high bandwidth and low latency [22]. Assuming
15Mbps bandwidth, which can be achieved on today’s commer-
cial LTE networks [1], it takes only 0.53 second to download a
1-second full-frame video chunk at 1080p4. Since our scheme only
downloads the visible portion, the required bandwidth for fetching
the tiles can further be reduced by 60% to 80% (§4). This makes
our scheme quite feasible on today’s LTE networks and the 5G net-
works that offer throughput of up to 1Gbps.

4The average video bitrate for 1080p is about 8Mbps [9].

3.3.1 Handling Prediction Errors
Due to human users’ randomness, prediction errors are inevitable.

We realize that the head movement predictability may highly de-
pend on the video content. For example, in Figure 4, the roller
coaster video in subplot (a) has higher predictability than the NASA
Mars video in subplot (b) because the former has a more clear “fo-
cal point” (the rail of the roller coaster) than the latter.

We handle prediction errors using several strategies. First, due
to the online and sliding-window nature of the prediction scheme, a
previous inaccurate prediction might be fixed by a more recent and
accurate prediction. If the new tiles corresponding to the updated
prediction can be fetched before the playback deadline, the penalty
is only wasted bandwidth. We describe how to prioritize such fixes
in §3.5.

Second, since most prediction errors are expected to be small,
we can tolerate them by conservatively fetching more tiles cover-
ing a larger area than what is predicted. For example, in Figure 3,
the client can further fetch surrounding tiles such as (3,1) and (4,0).
We call these additionally fetched tiles out-of-sight (OOS) tiles, as
they will remain invisible unless a prediction error occurs. Clearly,
the number of OOS tiles incurs a tradeoff between bandwidth con-
sumption and user experience. It can be, for example, dynami-
cally determined by the recent prediction error e maintained by the
player. The larger e is, the more OSS tiles need to be fetched.

Third, to further reduce the bandwidth consumption of OOS tiles,
they can be fetched at a lower quality, which depends on their dis-
tance to the predicted area. At a high level, this is essentially a vari-
ation on Forward Error Correction (FEC), which transmits lower
quality versions of alternate data in case of errors. Consider Fig-
ure 3 again. Suppose the six tiles overlapping with the predicted
visible area Θ are fetched at quality level n. Then a nearby OOS
tile (3,1) might be fetched at quality level n − 1, and an OOS tile
such as (2,1) that is further away might be fetched at an even lower
level. The intuition is, the likelihood that the viewer will watch a
far-away OOS is low, but in case that happens, having a low-quality
tile will at least ensure the smooth playback without stalling the
video.

In the worst case when the user’s head movement is quick and
exhibits no trend, our prediction may have low accuracy, leading
to potential stalls (or leaving part of the display blank if the player
chooses to skip the stalls). We design a fail-safe mechanism to
address this. As stalls due to wrong predictions occur more fre-
quently, more OOS tiles will be fetched. Eventually, the player
will fall back to today’s simple approach of fetching all tiles. In
this case, since we are fetching more tiles, their quality will be de-
graded accordingly if the bandwidth is limited.

3.4 Leveraging Crowd-sourced Statistics
Popular 360 videos from commercial content providers and video-

sharing websites attract a large number of viewers (e.g., more than
4 million views of Figure 2’s video). Also, it is known that users’
viewing behaviors are often affected by the video content [14, 11].
We believe this is also true for 360 videos: at certain scenes, view-
ers are more likely to look at a certain spots or directions. Consider
an example of a mountain climbing video. When “standing” at the
peak, viewers may want to enjoy the view by looking all around.

Based on the above intuition, we propose to use crowd-sourced
viewing statistics, which can be easily collected by video servers, to
complement head movement prediction. In the literature, viewing
statistics have been leveraged to estimate the video abandonment
rate [14] and to automatically rate video contents [11]. In the con-
text of 360 videos, for each chunk, the server records download
frequencies of its tiles, and provides client players with such statis-
tics through metadata exchange. A tile’s download frequency is
defined as the number of video sessions that fetch this tile divided
by the total number of sessions accessing this video. The client
can (optionally) use the statistics to guide the download strategy
of OOS tiles (§3.3). For example, a simple strategy is to expand
the set of OOS tiles to include tiles whose download frequencies
are greater than a configurable threshold. The threshold trades off
between bandwidth consumption and user experience.

3.5 Integration with DASH and HTTP
Although currently most 360 videos use progressive download,

we envision they will switch to DASH soon, which is the state-of-
the-art delivery mechanism for conventional videos. Extensive re-
search has been conducted on improving the QoE of DASH video [18,
21, 13, 23, 17]. A DASH video is split into chunks encoded with
multiple discrete bitrate levels; a video player can switch between
different bitrate levels at a chunk boundary. In contrast, 360 videos
involve more complexity, because the player needs to make deci-
sions at both the temporal and spatial dimension.

The most important component of a DASH scheme is its rate
adaptation algorithm, which determines the quality level of chunks
to fetch. There are largely two categories of approaches: throughput-
based and buffer-based. A throughput-based rate adaptation algo-
rithm adjusts chunks’ quality levels based on estimated throughput.
The buffer-based approach, on the other hand, selects the bitrate
level based on the player’s buffer occupancy level, which implic-
itly encodes the network capacity information.

For today’s 360 video delivery that downloads everything (§2),
it requires no change to any DASH algorithm. But how about
the interplay between our prediction-based streaming scheme and
DASH? We consider the aforementioned two categories of DASH
algorithms. Throughput-based DASH algorithms could work well
with our scheme: when the estimated throughput decreases (in-
creases), the quality level of tiles will decrease (increase) corre-
spondingly. One challenge is to set the thresholds for quality level
switches. Due to projection and OOS tiles, the required bandwidth
in our scheme has higher variance than that for non-360 videos.
Thus, the thresholds may need to be adjusted dynamically.

We now consider buffer-based DASH algorithms. One issue here
is that in our scheme, the player may not want to keep a large buffer
occupancy, because predicting viewer’s head movement in the long
term is difficult (§3.3). As a result, since the player only maintains
a relatively short duration of video contents in the buffer, buffer-
based DASH algorithms may interact poorly with our scheme. We
plan to conduct a more in-depth study on this in our future work.

Interaction with HTTP. Similar to regular DASH, our scheme
uses HTTP(S) as the underlying delivery protocol. Each tile is
fetched by an HTTP request. A new observation here is that pri-
orities of HTTP transactions play an important role in mitigating

the user experience degradation caused by inaccurate prediction.
Consider the following example. The player is in the progress of
downloading tile x whose playback time is t2. Then suddenly, the
player realizes a predicted tile to be played at t1 < t2 is incorrect.
To fix this issue, the player immediately issues a request for tile y
whose playback time is t1. Since the delivery of y is more urgent
than x, ideally the server should pause the transmission of x, and
transmit y at its full speed. This can be realized by giving y a higher
priority than x. New web protocols such as HTTP/2 [12] already
support fine-grained control of HTTP transactions’ priorities that
are very useful in our scheme.

4. TRACE-DRIVEN SIMULATION
We developed a trace-driven simulator to evaluate how much

bandwidth our proposed scheme can potentially save. The input
to the simulator consists of the user study traces collected in §3.3
(five users watching four YouTube 360 videos). Recall that a trace
consists of a user’s head positions (pitch, yaw, and roll) during a
360 video playback at a sampling rate of 250Hz. We assume the
duration of each video chunk is 1 second, and the horizontal and
vertical FoV are 110◦ and 90◦, respectively (a typical setting for
VR headsets). For each chunk, we consider three tile configura-
tions: 4×8, 6×12, and 10×20. Given a particular 1-second chunk,
our simulator computes the set of tiles to be fetched as follows.
First, it computes the visible area Ω on the 3D sphere based on the
head position trace and FoV. Second, it projects Ω to Θ on the 2D
raw frame. We implemented the equirectangular projection algo-
rithm that is used by YouTube. Third, the simulator derives the set
of tiles to be fetched by calculating the overlap between Θ and all
tiles as illustrated in Figure 3. The bandwidth saving of a video
playback can thus be estimated as 1−NF /N whereN andNF are
the total number of tiles and the number of tiles that are actually
fetched, respectively, across all chunks. Note here for simplicity,
we assume all tiles in a video have the same size.

We evaluate the bandwidth savings under three scenarios: (1) the
player has the perfect knowledge of head positions; (2) the player
fetches additional out-of-sight (OOS) tiles by virtually expanding
the FoV by 10◦ in four directions (up, down, left, and right); (3)
the player uses the same configurations as (2) except increasing the
chunk duration from 1s to 4s. The results are shown in plot (a), (b),
and (c) in Figure 5, respectively. We highlight several key findings
below. First, in Scenario (1) where the player knows perfectly the
head positions, the bandwidth saving can reach up to 80%. Second,
when taking OOS tiles into account, the bandwidth saving drops
as expected. However, the drop is small: when OOS tiles cover
additional 10◦ FoV in all directions, the maximal bandwidth saving
is reduced by only 5%. Third, reducing the tile size leads to higher
bandwidth savings. This is because as tiles become smaller, partial
overlaps between Θ and tiles are reduced. Due to a similar reason,
the bandwidth savings decrease when the chunk duration increases
to 4s. Overall, the preliminary results are promising.

The above simulation does not take prediction errors into consid-
eration. If they are taken into account, the bandwidth consumption
slightly increases by about 1.7% on average, compared to Scenario
(2) described above (using Weighted Linear Regression with a 1s
window to predict the head position in the next δ=1s). The penalty
is small because of the high prediction accuracy as shown in Fig-
ure 4. Also the OOS tiles can already mask many prediction errors.

5. RELATED WORK
In the literature, extensive efforts have been made toward im-

proving various aspects of mobile video [21, 13, 14]. In contrast,

Video 1 Video 2 Video 3 Video 4

B
an

dw
id

th
 S

av
in

g

0

0.2

0.4

0.6

0.8

1

4x8 Tiles
6x12 Tiles
10x20 Tiles (a)

Video 1 Video 2 Video 3 Video 4

B
an

dw
id

th
 S

av
in

g

0

0.2

0.4

0.6

0.8

1

4x8 Tiles
6x12 Tiles
10x20 Tiles (b)

Video 1 Video 2 Video 3 Video 4

B
an

dw
id

th
 S

av
in

g

0

0.2

0.4

0.6

0.8

1

4x8 Tiles
6x12 Tiles
10x20 Tiles (c)

Figure 5: Bandwidth savings: (a) with perfect knowledge, (b) with a larger FoV, and (c) with 4-sec video chunk duration.

much less research has been conducted on optimizing 360 videos
despite their popularity. Some early work focused on generating
360 video content from the rotation of a single camera [24] or from
a camera array [20]. There are also studies on stereo and multiview
videos where users can switch among two or more synchronized
video streams [19, 15]. Recently, the industry has been working
on improving the projection and encoding schemes for 360 videos,
such as Cube Map [8] and pyramid encoding [6] described in Face-
book technical blog posts. The same post [6] also envisions that
when combined with the pyramid encoding, performing head ori-
entation prediction can help reduce the bandwidth usage. Instead,
we proposed the concrete design of a cellular-friendly 360 video
streaming framework that does not depend on any specific pro-
jection scheme. We also proposed robust methods for tolerating
prediction errors, for leveraging crowd-sourced playback statistics,
and for integrating our scheme with DASH and HTTP protocols.

6. CONCLUSION
To conclude, our work sheds light on developing resource-efficient

360 video streaming schemes for LTE networks, which facilitate
ubiquitous access of VR resources. The pilot user study demon-
strates the feasibility of downloading only visible portion of a video
for saving network bandwidth. We are currently building a full 360
video streaming system on commodity Android devices. We plan
to evaluate it by large-scale user study under realistic cellular net-
work conditions.

Acknowledgements
We thank the anonymous reviewers for their helpful feedback. We
also thank the five users who participated in our pilot user study of
360 videos.

7. REFERENCES
[1] 2015 Speedtest results for U.S. ISPs and Mobile Networks.

http://www.speedtest.net/awards/us.
[2] Augmented/Virtual Reality revenue forecast revised to hit

$120 billion by 2020. http://goo.gl/Lxf4Sy.
[3] Facebook Surround 360.

https://facebook360.fb.com/facebook-surround-360/.
[4] Google Cardboard.

https://vr.google.com/cardboard/index.html.
[5] mitmproxy. https://mitmproxy.org/.
[6] Next-generation video encoding techniques for 360 video

and VR. https://goo.gl/DvYivQ.
[7] OpenTrack: head tracking software.

https://github.com/opentrack/opentrack.
[8] Under the hood: Building 360 video.

https://code.facebook.com/posts/1638767863078802.

[9] YouTube Live encoder settings, bitrates and resolutions.
https://support.google.com/youtube/answer/2853702.

[10] YouTube live in 360 degrees encoder settings.
https://support.google.com/youtube/answer/6396222.

[11] X. Bao, S. Fan, A. Varshavsky, K. A. Li, and R. R.
Choudhury. Your Reactions Suggest You Liked the Movie:
Automatic Content Rating via Reaction Sensing. In
UbiComp, 2013.

[12] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer
Protocol Version 2 (HTTP/2). RFC 7540, 2015.

[13] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan,
and M. Chiang. A Scheduling Framework for Adaptive
Video Delivery over Cellular Networks. In MobiCom, 2013.

[14] M. A. Hoque, M. Siekkinen, and J. K. Nurminen. Using
Crowd-Sourced Viewing Statistics to Save Energy in
Wireless Video Streaming. In Mobicom, 2013.

[15] H. Huang, B. Zhang, S.-H. G. Chan, G. Cheung, and
P. Frossard. Coding and Replication Co-Design for
Interactive Multiview Video Streaming. In INFOCOM, 2012.

[16] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. A Close Examination of Performance and
Power Characteristics of 4G LTE Networks. In Mobisys,
2012.

[17] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and
M. Watson. A Buffer-Based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service. In
SIGCOMM, 2014.

[18] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness,
Efficiency, and Stability in HTTP-based Adaptive Video
Streaming with FESTIVE. In CoNEXT, 2012.

[19] J.-G. Lou, H. Cai, and J. Li. A real-time interactive
multi-view video system. In ACM Multimedia, 2005.

[20] R. Szeliski. Image Alignment and Stitching: A Tutorial.
Technical Report MSR-TR-2004-92, Microsoft Research.

[21] X. Xie, X. Zhang, S. Kumar, and L. E. Li. piStream:
Physical Layer Informed Adaptive Video Streaming Over
LTE. In MobiCom, 2015.

[22] Y. Xu, Z. Wang, W. K. Leong, and B. Leong. An End-to-End
Measurement Study of Modern Cellular Data Networks. In
PAM, 2014.

[23] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A
Control-Theoretic Approach for Dynamic Adaptive Video
Streaming over HTTP. In SIGCOMM, 2015.

[24] Z. Zhu, G. Xu, E. M. Riseman, and A. R. Hanson. Fast
generation of dynamic and multi-resolution 360◦ panorama
from video sequences. In IEEE Intl. Conf. on Multimedia
Computing and Systems, 1999.

http://www.speedtest.net/awards/us
http://goo.gl/Lxf4Sy
https://facebook360.fb.com/facebook-surround-360/
https://vr.google.com/cardboard/index.html
https://mitmproxy.org/
https://goo.gl/DvYivQ
https://github.com/opentrack/opentrack
https://code.facebook.com/posts/1638767863078802
https://support.google.com/youtube/answer/2853702
https://support.google.com/youtube/answer/6396222

	Introduction
	Measurement Study
	Proposed Design
	Problem Statement and Challenges
	Spatial Segmentation of the Video
	Head Movement Prediction
	Handling Prediction Errors

	Leveraging Crowd-sourced Statistics
	Integration with DASH and HTTP

	Trace-driven Simulation
	Related Work
	Conclusion
	References

