
CARS: Collaborative Augmented Reality for Socialization
Wenxiao Zhang

Hong Kong University of Science and
Technology

Hong Kong SAR, China
wzhangal@cse.ust.hk

Bo Han
AT&T Labs Research

Bedminster, New Jersey
bohan@research.att.com

Pan Hui
University of Helsinki

Hong Kong University of Science and
Technology

panhui@cse.ust.hk

Vijay Gopalakrishnan
AT&T Labs Research

Bedminster, New Jersey
gvijay@research.att.com

Eric Zavesky
AT&T Labs Research

Bedminster, New Jersey
ezavesky@research.att.com

Feng Qian
Indiana University

Bloomington, Indiana
fengqian@indiana.edu

ABSTRACT
As Augmented Reality (AR) ties closely to the physical world, its
users looking at overlapped scenes are likely to be in the vicinity
of each other, which naturally enables the collaboration and inter-
action among them. In this paper, we propose CARS (Collaborative
Augmented Reality for Socialization), a framework that leverages
the social nature of human beings to improve the user-perceived
Quality of Experience (QoE) for AR, especially the end-to-end la-
tency. CARS takes advantage of the unique feature of AR to support
intelligent sharing of information between nearby users when it
is feasible. It brings various benefits at the user, application and
system levels, e.g., reduction of end-to-end latency and reuse of net-
working and computation resources. We demonstrate the efficacy
of CARS through a preliminary evaluation based on a prototype
implementation.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting design and evaluation methods; • Networks → Cloud
computing; • Information systems → Image search;

KEYWORDS
Augmented reality, collaborative augmented reality, cloud offload-
ing, device to device communication

ACM Reference Format:
Wenxiao Zhang, Bo Han, Pan Hui, Vijay Gopalakrishnan, Eric Zavesky,
and Feng Qian. 2018. CARS: Collaborative Augmented Reality for Social-
ization. In HotMobile ’18: 19th International Workshop on Mobile Computing
Systems & Applications, February 12–13, 2018, Tempe , AZ, USA. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3177102.3177107

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HotMobile ’18, February 12–13, 2018, Tempe , AZ, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5630-5/18/02. . . $15.00
https://doi.org/10.1145/3177102.3177107

1 INTRODUCTION
Augmented Reality (AR) enhances the physical world by creat-
ing virtual annotations to augment one’s perception of reality. AR
systems can recognize objects inside the camera view of a mobile
device and augment them with annotations [5, 11]. AR has found
applications in various areas, such as training [13], healthcare [20],
and communication [22]. However, most AR applications operate
independently in a standalone way. Thus, the cooperation and in-
teraction among mobile users running the same application are
largely neglected.

With the recent advances of communication technologies (e.g.,
5G and 802.11ac/ad) and AR devices (e.g.,Microsoft HoloLens [19]),
AR applications will become prevalent and be widely adopted by
consumers and businesses. For example, Apple has released the
ARKit [3] in iOS 11 which allows developers to create AR experi-
ences using iPad and iPhone. The increasing popularity of AR offers
tremendous opportunities for collaborations among its users. The
key reason is that, by its design AR ties tightly with the real world,
a unique feature that other applications such as virtual reality do
not have. As a result, its users viewing overlapped scenes are in
the close proximity and can communicate locally to share their
common interests.

In this paper, we advocate to leverage the social nature of human
beings for enabling the coordination and collaboration of sharing
the results of computation intensive AR tasks, high quality AR an-
notations, and real-time annotation modifications by users. To this
end, we propose CARS which, to the best of our knowledge, is the
first collaborative AR framework for cloud-based AR. CARS sup-
ports instantaneous socialization (e.g., real-time user interactions)
and those experiences spread over time via local caches.

CARS brings various benefits at different levels. At the user level,
it satisfies the general need of human beings for collaborations
and interactions and creates an immersive user experience for AR.
At the application level, CARS allows the exchange of invaluable
information, for example, regarding the surrounding environment
during a fire hazard for first responders with a single-minded focus.
At the system level, it improves the efficiency of AR by reducing
end-to-end latency, reusing computation resources in the cloud,
saving mobile data usage, etc.

We illustrate the high level idea and benefits of CARS using an
example in Figure 1. Suppose Alice and Bob are visiting a gallery
and are appreciating two side-by-side paintings, Vincent and Mona

Session: Augmentation HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

25

https://doi.org/10.1145/3177102.3177107
https://doi.org/10.1145/3177102.3177107

Figure 1: An illustrative example of CARS. Users can collab-
oratively perform object recognition: they can exchange re-
sults that each has received from the cloud.

Lisa, separately. They get the results of an AR application (i.e.,
recognition result and annotation content) from the cloud. Now
they change their positions, Alice moving to Mona Lisa and Bob to
Vincent. Instead of running cloud-based recognition again which
may waste mobile data usage and computation resources in the
cloud, they can collaboratively exchange the results from previous
runs via Device-to-Device (D2D) communications. We will discuss
other mechanisms beyond D2D in § 5.

CARS is not limited to indoor environments and does not require
localization. It is also helpful for outdoor scenarios, such as city
sightseeing. Note that localization alone is not enough for AR. Even
if we know which painting a user is looking at via localization, it
cannot tell us the position of that painting within a camera view
for augmentation.

Although the above idea sounds straightforward, there are sev-
eral practical issues in order to realize CARS. The key challenge is
that CARS should maintain, or better improve, the user-perceived
QoE (especially the end-to-end latency), when processing locally
the shared information from others. Another hurdle is the support
of interactions among users, which requires the synchronization of
annotations and their changes made by users. To address these chal-
lenges, we carefully design the architecture and key components of
CARS to make them lightweight yet efficient and suitable for mobile
devices (§ 3). Our design makes it feasible to collaborate among
users by performing object recognition locally based on the results
from the cloud. We build a prototype of CARS which demonstrates
it can reduce object-recognition latency by up to 40%, compared to
cloud-based AR (§ 4).

2 BACKGROUND
In this section, we introduce howmobile ARworks, by summarizing
its pipeline, which was shown in Figure 1 of our previous work [30],
and cloud-offloading feature of AR.

2.1 Pipeline of Mobile AR
A typical pipeline of mobile AR systems starts with Object Detection
that identifies the Regions of Interest (ROIs) for target objects in

(a) Bar Graph (b) CDF

Figure 2: Size distribution of typical 3D objects for annota-
tion (Source: Unity Asset Store).

a camera frame. For each ROI, Feature Extraction is the next step
which extracts its feature points. The third step isObject Recognition
that determines the original image for the target ROI stored in a
database of to-be-recognized objects.

We utilize the classic image retrieval technology for object recog-
nition. To compress raw feature points, we first build an offline
probabilistic model (e.g.,GaussianMixture Model, GMM [25]) based
on the feature points of all images in the database. Using this model,
we encode the feature descriptors of an image into a compact rep-
resentation (e.g., Fisher Vector, FV [23]). We then store all compact
feature representations of the images using a hash function (e.g.,
Locality Sensitive Hashing, LSH [7]) for faster retrieval. Upon re-
ceiving an object recognition request, we process the request frame
using the same procedure as described above, to get its compact
feature representation. We then check its nearest neighbors in the
hash table for the best matching result.

Template Matching validates object recognition result and cal-
culates the pose of the target. Object Tracking takes the pose as
its input with the goal of avoiding object recognition for every
frame. Finally, Annotation Rendering renders the virtual content
determined by the recognition result to augment the target object.
Annotation content is usually a 3D object for achieving a better
user experience. We retrieve the size of around 12,000 3D objects
from the Asset Store of Unity [28] and plot the distribution and its
CDF in Figure 2. The size of a 3D object ranges from a few hundreds
of kilobytes to tens of megabytes. The large size of these 3D anno-
tations is one of the motivations to enable collaborative sharing of
them among users.

2.2 Cloud-Based Mobile AR
The performance of the current generation of mobile devices is
still restricted by their computation power and battery life. AR
systems can potentially offload some tasks to the cloud, in order to
reduce the computation overhead on mobile devices. There are two
common offloading scenarios. AR systems can offload tasks starting
from object detection by sending camera frames to the cloud [11],
or they can run object detection and feature extraction locally on a
mobile device and upload the extracted feature points to the cloud
for object recognition [12].

CARS inherits the benefits from cloud offloading of AR. First,
image retrieval algorithms are usually computation intensive. Of-
floading them to the cloud can significantly reduce the end-to-end
latency [5]. Second, the size of digital annotations may be large, as
shown in Figure 2. It is challenging to store them for a dataset with
a reasonable size (e.g., 1,000 images) locally on mobile devices.

Session: Augmentation HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

26

Figure 3: System architecture of CARS framework (dotted
lines are for control messages). Its two key components are
Scene Matcher and Annotation Synchronizer.

3 CARS SYSTEM DESIGN
In this section, we present an overview of CARS and describe its
two key building blocks: the APP and Base layers.

3.1 CARS Overview
Using the pipeline in § 2.1 directly in CARS is not beneficial, as our
previous work [30] has demonstrated that it takes several seconds
for image retrieval on mobile devices, much longer than cloud-
based AR. We show the system architecture of CARS in Figure 3.
The major difference between the APP layer and the traditional
AR applications (as elaborated in § 2.1) is that it does not handle
object recognition itself, which is offloaded to the Base layer. The
Base layer hides the details of object recognition and annotation
download from the APP layer through a simplified and lightweight
object-recognition engine.

The main benefit of decoupling the APP and Base layers is that
they can evolve independently of each other. For example, we can
make the Base layer lightweight and feasible for collaboratively
exchanging annotations based on performing locally object recog-
nition. It also makes the integration of traditional AR applications
into CARS easy. They can send recognition requests to Recognition
Proxy without caring about the operations happening underneath.

3.2 The APP Layer
The APP layer retrieves camera frames for object recognition and
tracks recognized objects. It has three components: Recognition
Proxy, Visual Tracker and Annotation Renderer.

Recognition Proxy is the bridge between the APP and Base
layers for object recognition. Its input is a camera frame and the
response contains the pose of the target object in that frame. It
offloads the recognition to the cloud for improved latency perfor-
mance and for supporting a large database of images. If the same
object has been processed by the cloud for other nearby users and
the result is available in the local cache, the Base layer returns it
directly to Recognition Proxy without involving the cloud, as we
will explain in § 3.3.

Figure 4: Workflow of Scene Matcher (We use dotted lines
for control messages).

Visual Tracker tracks the pose of a recognized target when
camera view changes. It is initialized by Recognition Proxy. After
that Visual Tracker takes continuous camera frames as input and
calculates the object pose frame-by-frame. Object pose contains
three dimensions of translation and three dimensions of rotation
(i.e., the so-called Six Degrees of Freedom, 6DoF). We utilize feature
points to calculate the object pose in each frame, and optical flow
tracking [9] to track the feature points in the frame sequence.

Annotation Renderer augments the recognized objects using
the virtual content which will be either downloaded directly from
the cloud or fetched from others. It calculates a 6DoF pose of an
annotation for rendering. We use a 3D graphics engine to render
the annotation and to align it precisely with the physical target
object. Annotation Renderer also reacts to users’ touch input and
instructions from Annotation Synchronizer of the Base layer for
changes made by others, and modifies annotations accordingly.

3.3 The Base Layer
TheBase layer handles object recognition and annotation download
and synchronization for the APP layer. It has five components:
Motion Detector, Scene Matcher, Annotation Synchronizer, Peer
Manager and Cloud Manager.

Motion Detector indicates that a user intends to recognize the
object inside the current camera frame. It triggers object recog-
nition by avoiding specific user commands such as screen touch
or voice input, which provides a seamless user experience. Object
recognition will be initiated when a mobile device is in a relatively
steady and vertical status, which filters out blurry images and cam-
era frames with irrelevant objects (e.g., when the camera is facing
the ceiling). In order to ensure the accuracy of object recognition,
Motion Detector continues monitoring the user’s hand movement.
It ignores the result if there is a significant movement during the
recognition which may cause a mismatch between the request
frame and the recognition result.

Scene Matcher is the core of the Base layer. We show its work-
flow in Figure 4. Upon receiving a recognition request from the
APP layer, Scene Matcher first tries to find a local match by com-
puting the feature descriptors and their compact representation
of the request frame. It then calculates the distance between this
compact feature representation and those in Scene Storage. Using
the pair of feature-point sets from the request frame and the local

Session: Augmentation HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

27

(a) Latency (b) Quantity & Unit Size

(c) Accuracy (d) Energy Consumption

Figure 5: Performance comparison of various algorithms us-
ing OpenCV4Android library on a Xiaomi MI5 phone.

match, SceneMatcher determines the homography between them to
find their geometric transformation and adjusts the corresponding
recognition result from the local match accordingly.

Scene Matcher offloads object recognition to the cloud when it
cannot find a local match, following the procedure described in § 2.
When the recognition result is returned from the cloud, besides
used by theAPP layer, SceneMatcher also inserts it with the request
frame into Scene Storage. Similarly, the request frames and results
from other devices are cached in Scene Storage. To speed up the
local search, Scene Matcher also extracts the feature points from the
request frame, generates the compact feature representation, and
stores them into Scene Storage. As a result, each scene is represented
as a {frame image, recognition result, feature points, compact feature
representation} tuple.

A key design challenge of Scene Matcher is the selection of a
lightweight yet efficient and suitable object recognition algorithm
for mobile devices. SIFT [18] and SURF [4] have been used exten-
sively in cloud-based AR (e.g., Overlay [11] uses SURF and Visu-
alPrint [12] uses SIFT). Instead of using them blindly for CARS,
we evaluate the performance of 5 representative algorithms, SIFT,
SURF, ORB [26], FAST+FREAK [1] and BRISK [16]. We use the
following metrics, latency, feature quantity (i.e., the number of gen-
erated feature descriptors), the size of a single feature descriptor,
recognition accuracy and mobile device energy consumption.

We plot the experimental results with a dataset of 100 images
(i.e., movie posters) in Figure 5. The results for latency and feature
quantity are averaged over the 100 images. We use only 10 images
to measure energy consumption, as the results for them already
show similar patterns as those of latency in Figure 5a (as expected).
Among these algorithms, ORB achieves the best tradeoff between
these metrics, higher than 90% accuracy with low latency and en-
ergy consumption and small memory space for storage, which is
consistent with the result in Rublee et al. [26]. Thus, CARS uses
ORB in Scene Matcher. A limitation of ORB is that it is less robust
to image-scale changes [26], compared to other schemes such as

SIFT and SURF. Thus, we need to resize the camera frame to a scale
similar with the original image.

An important design decision we have made is the utilization
of a probabilistic model to significantly speed up object recognition
on mobile devices. Object recognition is relatively slow when com-
paring raw feature descriptors directly, as the numbers of feature
descriptors may be fairly different for various images. There are
several probabilistic models available, such as Gaussian Mixture
Model [25] and Bernoulli Mixture Model (BMM) [14]. CARS uses
BMM as GMM does not fit with binary descriptors such as ORB.
Moreover, FV with BMM built upon ORB features is about two
orders of magnitude faster than FV with GMM on SIFT features [2].

SceneMatcher contains Annotation Storage to cache annotations
along with the scenes. When Scene Matcher finds a local match,
Annotation Storage provides the corresponding content without
requesting it from the cloud, which reduces the end-to-end latency
and mobile data usage.

Annotation Synchronizer enables instantaneous interactions
among users via synchronizing the annotation status so that one
can see in real-time the modifications made by others. It shares
with others the description of annotations (e.g., a 3D object’s pose,
texture, lightness, etc.) generated by Annotation Renderer. Since
the objects in the camera view are recognized by Scene Matcher,
Peer Manager can learn from it their identities and communicate
with others to see if they are looking at the same objects.

Recognition and tracking of common real-world objects guaran-
tee that the coordinate systems of annotations for different users
are synchronized (i.e., the coordinate system of the physical world
is the reference here). Modifications from a user change only the
coordinates of annotations within his/her virtual world, which
are shared by Annotation Synchronizer with others. We presently
support moving, scaling, and rotating actions from users, and this
design is capable of extending to much more complex operations.
Annotation Synchronizer can resolve the conflicts among users by
utilizing the strategies proposed by Gautier et al. [6].

Peer Manager utilizes WiFi Direct or Bluetooth Low Energy
for peer discovery and D2D communications. It periodically scans
for nearby devices running the same AR application. It maintains
a list of peering devices with whom it can collaborate with. A
challenge here is how to determine what recognition results and
annotations to share and store in the local cache with a small size,
which has been investigated extensively in the literature. For exam-
ple, Psephos [10] is a fully distributed caching policy for content
sharing in mobile opportunistic networks. To control the size of the
cache, CARS can also optimize the sharing and fetching policy via
preference-aware schemes such as PrefCast [17], as we will discuss
in § 5. We leave the integration of existing approaches into CARS
as our future work.

Although D2D communication is helpful in this paradigm to
share locally AR results, its performance depends on the network
conditions between mobile devices. As collaborating users have
overlapped scenes of common ROIs in their camera views, they
should be close to each other which usually leads to a higher band-
width of WiFi Direct than that when communicating with the cloud.
However, if future technologies (e.g., LTE-Advanced and 5G) can
offer higher throughput than WiFi Direct, we can also leverage
the edge cloud, for CARS (as to be discussed in § 5). In order to

Session: Augmentation HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

28

Step Latency (ms)

ORB Feature Extraction 40.40 ± 2.31
Fisher Encoding with BMM 78.58 ± 6.37
Scene Retrieval 1.750 ± 0.55
ORB Feature Matching 9.738 ± 1.64
Pose Calculation 30.45 ± 4.73

Table 1: Breakdown of latency for different AR tasks on mo-
bile devices. The value after ± is the standard deviation (for
20 experimental runs).

improve the reliability of D2D communication, especially when
many users are using CARS in a crowded environment, we can limit
the collaboration between only users with good wireless channel
quality (e.g., with signal strength higher than a threshold).

Cloud Manager communicates with the cloud via WiFi or LTE
for submitting the recognition request and receiving the result and
annotation, as described in § 2. Each request contains a compressed
file of the camera frame. The result has the identity and 6DoF pose
of the target object.

4 PRELIMINARY EVALUATION
In this section, we present the experimental results based on our
proof-of-concept implementation of CARS.

4.1 Implementation
We build a prototype of CARS using the OpenCV4Android [21]
library on Xiaomi MI5 smartphones (2.15 GHz Snapdragon 820
processor). We use ORB [26] for feature extraction and Fisher Vec-
tor [23] with BMM [14] to encode feature descriptors. The phone
downloads the BMM model for the entire database from the cloud.
Note that the size of BMMmodel does not depend on the number of
images in the database and is only 131.58 KB for our setup. Motion
Detector uses gyroscope and accelerometer on the phone to analyze
hand motion of users. Annotation Renderer employs a XML file for
describing the status of annotations.

We simplify the setup and configuration of the object-recognition
pipeline to make it feasible on mobile devices, as our previous
work [30] demonstrated when using the same pipeline it takes
much longer time than cloud-based object recognition. First, we
reduce the number of ORB feature points from ∼500 (in cloud-based
AR) to 200. This reduction has almost no impact on the recognition
accuracy, given the small size of the local cache (with only 100
images). Second, due to the small search space in the local cache,
we do not need to use the Local Sensitive Hashing (LSH) of FV.
Third, we skip object detection and thus our mobile image retrieval
supports the recognition of only one object.

4.2 Experimental Results
Our preliminary performance evaluation focuses on the end-to-end
latency, as we believe it should be the first-class citizen for AR.
The latency is the processing time from generating the recogni-
tion request to displaying the annotation. It has two parts, object
recognition and annotation download.

We set up a VM (8 vCPUs @ 2.5GHz and 32GB memory) in a
public cloud. The mobile device communicates with the cloud via

WiFi, with a Round Trip Time (RTT) of ∼36 ms. With the WiFi
interface connected to both an access point (in Station mode) and
a peer device (in WiFi Direct mode), the bandwidth is ∼13 Mbps
between the phone and the cloud, and ∼32 Mbps between the
phones.When the phone connects to the cloud via cellular networks,
the bandwidth of WiFi Direct increases to ∼60 Mbps, as it does not
need to share the airtime with the Station mode. The RTT of WiFi
Direct between the phones is only ∼3.5 ms. Using the pipeline
described in § 2.1, the latency for cloud-based recognition is ∼266
ms. Downloading a 5MB (themost common size shown in Figure 2a)
annotation from the server takes ∼3084 ms.

The local object recognition has five steps, and we list their com-
pletion time in Table 1. The recognition latency depends on the
nearest neighbor search in Scene Matcher. We define the recog-
nition accuracy as the ratio between the number of successful
recognition requests over the total number of requests. CARS can
achieve ∼90% accuracy when searching up to 5 nearest neighbors
(i.e., repeating feature matching at most 5 times). Thus, the local
recognition latency is at most ∼200 ms. When considering only the
nearest neighbor (i.e., executing feature matching only once), the
recognition latency is ∼161 ms with close to 60% accuracy.

Downloading the same 5 MB annotation via WiFi Direct takes
only ∼1266 ms, much faster than downloading from the cloud. If
the phone communicates with the cloud via cellular networks, this
download time would be even shorter (due to the higher through-
put). Note that since annotations are usually shared before recogni-
tion happens, users may not perceive this download latency. In a
nutshell, the reduction of end-to-end latency mainly benefits from
the fact that CARS can perform lightweight object recognition on
mobile devices by leveraging the results of cloud-based AR.

5 DISCUSSION AND FUTUREWORK
In this section, we discuss several unsolved issues and directions of
future work.

Preemptive Caching. Other than D2D communication, CARS
can also benefit from cloud-initiated push to enable collaborative
AR. For example, if CARS knows there are three more paintings on
the left side of Mona Lisa and Bob is moving toward that direction,
it can request, in advance, the cloud to push existing recognition
results from others for these paintings if available. In this case,
the collaboration does not happen directly over D2D, but utilizes
the cloud as a remote cache for sharing. Note that this approach
requires localization/mobility prediction and may consume extra
mobile data, especially for outdoor scenarios. AR applications can
utilize the edge cloud, e.g., Cloudlets [27], to further improve the
QoE of the preemptive caching.

Sharing Policy. Regarding the sharing policy of CARS, users
can express their personal interests via preferences (i.e., utility for
an object) [17], which reduces the chance of exchanging objects
that a user may not be curious about. To further minimize the
communication overhead on D2D, CARS users will not forward
recognition results and annotations from others and should avoid
always-on-sharing for reducing energy consumption. Moreover,
we can assign a time-to-live (as a geographical bound) for the scene
a user plans to share with others, which decreases the probability
that the scene will not be consumed by them.

Session: Augmentation HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

29

Evaluation and Deployment. The performance evaluation in
this paper is preliminary. For example, we use only two smart-
phones in the experiments, measure mainly the latency reduc-
tion, and the target objects are all movie posters. As shown in
CoMon [15], opportunistic cooperation among nearby users can
reduce energy consumption of mobile sensing. As our future work,
we plan to conduct large-scale real-world experiments by deploying
CARS in places such as museums and galleries, and evaluate its
performance thoroughly (e.g., by measuring energy consumption
on mobile devices).

6 RELATEDWORK
We divide existing work into two categories: cloud-based aug-
mented reality and mobile image recognition.

Cloud-Based AR can be either non-continuous or continuous.
For the former, users cannot move their mobile devices before get-
ting the results from the cloud. For example, it takes around 500 ms
for Overlay [11] to finish object recognition and rendering, during
which a user needs to pause the camera at the interested object.
VisualPrint [12] optimizes the uplink bandwidth requirements by
uploading fingerprints extracted from the feature points of a cam-
era frame to the cloud for recognition. In contrast to Overlay and
VisualPrint, Glimpse [5] is a continuous face and road-sign recog-
nition system. It uses an active cache of camera frames to hide the
cloud-offloading latency by tracking objects in real time.

Image Recognition is a key component of augmented reality.
CrowdSearch [29] combines image search and real-time human val-
idation via crowdsourcing systems, such as the AmazonMechanical
Turk. ThirdEye [24] tracks the browsing behaviors of customers
in retail stores by identifying the item a user is gazing at through
an online image search service. Gabriel [8] assists users with their
cognitive abilities using Google Glass, which leverages mobile edge
computing for reducing the end-to-end latency of image recognition.
Different from the above work, CARS explores the collaborative
nature of mobile users for cloud-based AR systems to improve the
quality of user experience.

7 CONCLUSION
In this paper, we propose CARS, a collaborative AR framework
for socialization. CARS leverages the unique feature of AR that its
users who share common scenes are usually close to each other.
By enabling the social nature of human beings, CARS supports
the interaction and coordination among users of cloud-based AR
applications. Given that the size of local cache is usually small, we
simplify the pipeline of object recognition to make it feasible on mo-
bile devices. We build a proof-of-concept for CARS on smartphones
and demonstrate it can reduce the object-recognition latency by up
to 40%, compared to purely cloud-based AR.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their insightful comments.
The research of Pan Hui was supported in part by the General
Research Fund from the Research Grants Council of Hong Kong
under Grant 26211515 and Grant 16214817. The research of Feng
Qian was supported in part by a Google Faculty Award.

REFERENCES
[1] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. 2012. Freak: Fast

Retina Keypoint. In Proceedings of CVPR.
[2] Giuseppe Amato, Fabrizio Falchi, and Lucia Vadicamo. 2016. Aggregating binary

local descriptors for image retrieval. Multimedia Tools and Applications (2016),
1–31.

[3] Apple Inc. 2017. Introducing ARKit: Augmented Reality for iOS. https://developer.
apple.com/arkit/. (2017). [accessed on 20-October-2017].

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. SURF: Speeded Up
Robust Features. Proceedings of ECCV (2006).

[5] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari
Balakrishnan. 2015. Glimpse: Continuous, Real-Time Object Recognition on
Mobile Devices. In Proceedings of SenSys.

[6] Laurent Gautier, Christophe Diot, and Jim Kurose. 1999. End-to-end transmission
control mechanisms for multiparty interactive applications on the Internet. In
Proceedings of INFOCOM.

[7] Aristides Gionis, Piotr Indyk, Rajeev Motwani, and others. 1999. Similarity Search
in High Dimensions via Hashing. In VLDB, Vol. 99. 518–529.

[8] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and
Mahadev Satyanarayanan. 2014. Towards Wearable Cognitive Assistance. In
Proceedings of MobiSys.

[9] Berthold KP Horn and Brian G Schunck. 1981. Determining Optical Flow. Artifi-
cial intelligence 17, 1-3 (1981), 185–203.

[10] Stratis Ioannidis, Laurent Massoulié, and Augustin Chaintreau. 2010. Distributed
Caching over Heterogeneous Mobile Networks . In Proceedings of SIGMETRICS.

[11] Puneet Jain, JustinManweiler, and Romit Roy Choudhury. 2015. Overlay: Practical
Mobile Augmented Reality. In Proceedings of MobiSys.

[12] Puneet Jain, Justin Manweiler, and Romit Roy Choudhury. 2016. Low Bandwidth
Offload for Mobile AR. In Proceedings of CoNEXT.

[13] Eric Johnson. 2015. Boeing Says Augmented Reality Can Make
Workers Better, Faster. http://www.recode.net/2015/6/8/11563374/
boeing-says-augmented-reality-can-make-workers-better-faster. (2015).
[accessed on 20-October-2017].

[14] Alfons Juan and Enrique Vidal. 2004. Bernoulli mixture models for binary images.
In Proceedings of ICPR.

[15] Youngki Lee, Younghyun Ju, Chulhong Min, Seungwoo Kang, Inseok Hwang,
and Junehwa Song. 2011. CoMon: Cooperative Ambience Monitoring Platform
with Continuity and Benefit Awareness. In Proceedings of MobiSys.

[16] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. 2011. BRISK: Binary
robust invariant scalable keypoints. In Proceedings of ICCV.

[17] Kate Ching-Ju Lin, Chun-Wei Chen, and Cheng-Fu Chou. 2012. Preference-aware
content dissemination in opportunistic mobile social networks. In Proceedings of
INFOCOM.

[18] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints.
Journal of Computer Vision 60, 2 (2004), 91–110.

[19] Microsoft. 2017. HoloLens. https://www.microsoft.com/microsoft-hololens/.
(2017). [accessed on 20-October-2017].

[20] Ben Nelson. 2017. VR/AR Challenge finalist WayPoint RX take the
guess work out of filling prescriptions. https://developer.att.com/blog/
vr-ar-challenge-waypoint-rx. (2017). [accessed on 20-October-2017].

[21] OpenCV. 2017. OpenCV4Android. http://opencv.org/platforms/android/. (2017).
[accessed on 20-October-2017].

[22] Sergio Orts-Escolano, Christoph Rhemann, and others. 2016. Holoportation: Vir-
tual 3D Teleportation in Real-time. In Proceedings of the 29th Annual Symposium
on User Interface Software and Technology (UIST).

[23] Florent Perronnin, Yan Liu, Jorge Sánchez, and Hervé Poirier. 2010. Large-scale
image retrieval with compressed Fisher vectors. In Proceedings of CVPR.

[24] Swati Rallapalli, Aishwarya Ganesan, Krishna Chintalapudi, Venkat N Padman-
abhan, and Lili Qiu. 2014. Enabling Physical Analytics in Retail Stores Using
Smart Glasses. In Proceedings of MobiCom.

[25] Douglas A Reynolds, Thomas F Quatieri, and Robert B Dunn. 2000. Speaker
Verification Using Adapted Gaussian Mixture Models. Digital Signal Processing
10, 1-3 (2000), 19–41.

[26] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In Proceedings ICCV.

[27] Mahadev Satyanarayanan, Paramvir Bahl, RamÃşn Caceres, and Nigel Davies.
2009. The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive
Computing 8, 4 (2009), 14–23.

[28] Unity. 2017. Asset Store. https://www.assetstore.unity3d.com/. (2017). [accessed
on 20-October-2017].

[29] Tingxin Yan, Vikas Kumar, and Deepak Ganesan. 2010. CrowdSearch: Exploiting
Crowds for Accurate Real-Time Image Search on Mobile Phones. In Proceedings
of MobiSys.

[30] Wenxiao Zhang, Bo Han, and Pan Hui. 2017. On the Networking Challenges of
Mobile Augmented Reality . In Proceedings of VR/AR Network.

Session: Augmentation HotMobile’18, February 12–13, 2018, Tempe, AZ, USA

30

https://developer.apple.com/arkit/
https://developer.apple.com/arkit/
http://www.recode.net/2015/6/8/11563374/boeing-says-augmented-reality-can-make -workers-better-faster
http://www.recode.net/2015/6/8/11563374/boeing-says-augmented-reality-can-make -workers-better-faster
https://www.microsoft.com/microsoft-hololens/
https://developer.att.com/blog/vr-ar-challenge-waypoint-rx
https://developer.att.com/blog/vr-ar-challenge-waypoint-rx
http://opencv.org/platforms/android/
https://www.assetstore.unity3d.com/

	Abstract
	1 Introduction
	2 Background
	2.1 Pipeline of Mobile AR
	2.2 Cloud-Based Mobile AR

	3 CARS System Design
	3.1 CARS Overview
	3.2 The APP Layer
	3.3 The Base Layer

	4 Preliminary Evaluation
	4.1 Implementation
	4.2 Experimental Results

	5 Discussion and Future Work
	6 Related Work
	7 Conclusion
	References

