DeepVista: 16K Panoramic Cinema on Your Mobile Device

Wenxiao Zhang* Feng Qian

HKUST University of Minnesota
wzhangal@cse.ust.hk fengqian@umn.edu
ABSTRACT

In this paper, we design, implement, and evaluate DeepVista, which
is to our knowledge the first consumer-class system that streams
panoramic videos far beyond the ultra high-definition resolution
(up to 16K) to mobile devices, offering truly immersive experiences.
Such an immense resolution makes streaming video-on-demand
(VoD) content extremely resource-demanding. To tackle this chal-
lenge, DeepVista introduces a novel framework that leverages an
edge server to perform efficient, intelligent, and quality-guaranteed
content transcoding, by extracting from panoramic frames the view-
port stream that will be delivered to the client. To support real-time
transcoding of 16K content, DeepVista employs several key mecha-
nisms such as dual-GPU acceleration, lossless viewport extraction,
deep viewport prediction, and a two-layer streaming design. Our
extensive evaluations using real users’ viewport movement data
indicate that DeepVista outperforms existing solutions, and can
smoothly stream 16K panoramic videos to mobile devices over
diverse wireless networks including WiFi, LTE, and mmWave 5G.

CCS CONCEPTS

« Information systems — Multimedia streaming; - Comput-
ing methodologies — Virtual reality; - Human-centered com-
puting — Mobile computing.

ACM Reference Format:

Wenxiao Zhang, Feng Qian, Bo Han, and Pan Hui. 2020. DeepVista: 16K
Panoramic Cinema on Your Mobile Device. In Proceedings of the Web Con-

ference 2021 (WWW °21), April 19-23, 2021, Ljubljana, Slovenia. ACM, New
York, NY, USA, 12 pages. https://doi.org/10.1145/3442381.3449829

1 INTRODUCTION

360° panoramic videos have recently registered high popularity
on commercial platforms such as YouTube and Facebook [24, 33].
Despite its attractiveness, today’s 360° video streaming faces a
dilemma. On one hand, when using a headset (e.g., a $10 Google
Cardboard [8] with a smartphone plugged in), a viewer would
expect a 360° video with a resolution much higher than that of
regular videos due to the immersive requirement and the close
distance from the eyes to the display. On the other hand, under the
same perceived resolution, 360° videos require more bandwidth and
hardware decoding resources than regular videos. The reason is
that given the limited field of view (FoV), a viewer consumes only a

*Part of this work was done when Wenxiao was visiting University of Minnesota.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-8312-7/21/04.

https://doi.org/10.1145/3442381.3449829

Bo Han Pan Hui
George Mason University HKUST
bohan@gmu.edu panhui@cse.ust.hk

small fraction (15% to 20% pixel-wise) of the panoramic frame that
is usually delivered and decoded.

In this study, we set an ambitious goal of streaming pristine-
resolution 360° panoramic videos that are far beyond the ultra high-
definition (UHD) quality on commodity mobile devices such as smart-
phones and untethered virtual reality (VR) headsets. To this end,
we propose DeepVista, a system offering video-on-demand (VoD)
content that has up to 16K resolution for matching the perception
limit of human eyes (§2). Having a panoramic resolution of 16KX8K
pixels, 16K videos offer 16X and 64 pixel density compared to 4K
and 1080p ones, respectively, which provide flawless, cinematic
pictures and truly immersive experience. Although such a high
resolution may not be necessary when watching regular videos, it
can facilitate a truly immersive experience in a head-mounted VR
headset setting where the display is very close to the viewer’s eyes.

Achieving the above goal is challenging. A 16K video at 30 frames
per second (FPS) has a raw bitrate of ~48 Gbps; even after encoding,
its bitrate could be around 300 Mbps [26]. Moreover, we would like
to stream 16K 360° videos to mobile devices with limited computa-
tion power and video decoding capability. As we will show in §3,
none of today’s mobile devices is capable of smoothly decoding
16K panoramic content.

Given the inadequacy of the client-only approach, we resort to
edge computing by exploring the following idea. An edge server
performs real-time transcoding by extracting the viewport and
delivering only the viewport content to the client. As a typical
viewport takes a small portion (around 1/4) of the panoramic view,
we can drastically reduce bandwidth usage and decoding work-
load on the client. For 16K panoramic video streaming, after such
transcoding, the client needs to decode only an 8K stream — feasible
on today’s COTS smartphones. Note that the industry has already
developed 8K screens for mobile devices [13] and the physical di-
mension of smartphone/tablet screens has been increasing [4]. The
edge proxy is a GPU-equipped machine. It can be placed at home
or office, or be provided by an edge/cloud provider. For instance,
Google offers high-end GPUs at as low as $0.2 per hour per GPU [9].

At a first glance, the idea of edge-assisted transcoding appears
to be straightforward: the edge decodes a 16K stream, crops the
predicted viewport (8K), encodes it, and then sends the viewport
content to the client. In the literature, some existing system such as
Freedom [50] does take this intuitive approach. However, we find
that the visual quality of its resulting transcoded content is unsat-
isfactory, not to mention its lack of built-in support for 16K video
content (§5.2.1). To this end, we make a key contribution by design-
ing and implementing an efficient, intelligent, and quality-guaranteed
transcoding framework capable of handling extremely high-resolution
VR content, and integrating this framework into DeepVista, a full-
fledged edge-assisted 360° video streaming system. We next describe
the key challenges faced by DeepVista with our proposed solutions.

https://doi.org/10.1145/3442381.3449829
https://doi.org/10.1145/3442381.3449829

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia Wenxiao Zhang et al.

‘ Visual Quality of

Supporting 16K ‘ Viewport Prediction

Figure 1: The basic idea of DeepVista. (a) A 16K panoramic
frame represented using CubeMap [7]. The red area corresponds
to the viewport. (b) The transcoded 8K frame containing the
viewport content. (c) The rendered view on client device.

¢ Efficient and Quality-guaranteed Viewport Transcoding. 360°
videos (and rendered VR content in general) are stored using vari-
ous projection algorithms under which a viewport typically has an
irregular shape (Figure 2). We develop a method that can precisely
identify the viewport and fit it into a rectangular frame (§5.2). As
illustrated in Figure 1, a projected panoramic frame is segmented
into fixed-sized blocks; all blocks overlapping with the viewport
are then losslessly rearranged into a rectangular frame in a concur-
rent manner, by leveraging GPU’s massive parallelism. In contrast,
existing transcoding solutions such as Freedom [50] cannot guar-
antee that the cropped viewport content fits the target rectangular
frame. Hence, the resolution of viewport content usually needs to
be lowered to various degrees, leading to quality degradation.

o Efficient Processing of 16K Content. We find that besides mo-
bile devices, even today’s state-of-the-art desktop and workstation
GPUs cannot directly decode 16K videos using their dedicated de-
coding hardware [19]. To tackle this challenge, we design a first-of-
its-kind pipeline that allows two GPUs to collaboratively perform
transcoding. Each GPU first decodes a half-16K (8Kx8K) stream
separately; then according to the viewport information, both GPUs
efficiently exchange the decoded data so that each possesses half of
the viewport (4Kx4K); the viewport is then encoded half-and-half
by the two GPUs; the client will subsequently assemble the two
encoded streams into the final 8K viewport (8Kx4K). We carefully
optimize the above pipeline by minimizing the dependency between
two GPUs, guaranteeing that the transcoding meets the stringent
timing requirement of 30+ FPS.

o Intelligently Hiding the Transcoding Latency. Due to the
large size of 16K videos, their transcoding and wireless delivery
may incur high latency that needs to be effectively hidden to ensure
a smooth user experience. DeepVista takes two approaches to ad-
dress this challenge. First, the edge employs deep learning (DL) to
predict a viewer’s future viewport and uses it (as opposed to the cur-
rent viewport [50]) for transcoding. While some prior studies have
applied DL to head movement prediction of VR users [30, 37, 55],
we leverage DL-based viewport prediction to improve the transcod-
ing performance. Specifically, we integrate the prediction module
into the transcoding engine; we strategically reduce the resource

Transcoded Content Content Guided Transcoding
Freedom Low No No
DeepVista High Yes Yes

Table 1: DeepVista vs. Freedom [50] (details in §5.2.1).

footprint for online inference; and we carefully choose key param-
eters of the prediction model (§5.4). Second, to tolerate viewport
prediction errors, the edge also delivers a low-resolution panoramic
stream, which is properly synchronized with the high-resolution
viewport stream for minimizing the stall probability (§5.3).

o System-level Integration and Optimizations. We integrate
all the above components into a holistic edge-assisted 360° video
streaming system. We introduce a series of system-level optimiza-
tions to boost the performance and enhance the quality of experi-
ence (QoE), such as deep pipelining, judicious buffer management,
and fast client-side processing (§5.6). DeepVista employs a robust
bitrate adaptation algorithm that adjusts the transcoded stream
quality dynamically based on the network condition (§5.5).

We implement DeepVista on commodity GPU-equipped ma-
chines and smartphones in 9,500 LoC (§6). We extensively evaluate
DeepVista using real 360° videos, real users’ viewport movement
data, and live WiFi, LTE, and mmWave 5G networks [25]. The key
evaluation results consist of the following (§7).

o Over 802.11n WiFi, DeepVista typically experiences no 16K frame
skip, and the 16K high-resolution content covers 98% of the view-
port on average. The perceptual quality is close to visually lossless
(SSIM, a widely used visual quality metric [52], is higher than 0.98).
o Under live LTE networks with fluctuating bandwidth and latency,
DeepVista yields 2.6% of 16K frame skips on average (1.56 s/minute),
and an average high-resolution ratio of 96%. Under mmWave 5G
networks, DeepVista can achieve almost perfect quality with nearly
no 16K frame skip. We spent more than 400GB of LTE/5G data on
experiments over commercial cellular networks.

e DeepVista reduces the last-mile bandwidth consumption by 52%
to 69%, compared to fetching the panoramic scene.

o When streaming 8K 360° videos, DeepVista outperforms the state-
of-the-art solution (Flare [47]) by reducing the median stall from
22-34 seconds per minute to no stall, and reducing the median
data transfer size by a factor of 3.0 to 3.6X. DeepVista offers sig-
nificantly higher visual quality compared to Freedom, a recently
proposed edge transcoding solution [50].

2 BACKGROUND AND RELATED WORK

Playback and Representation. When displaying a 360° video, the
player situates the viewer in the center of an imaginary sphere, and
renders the content onto the inner surface of the spherical “screen”.
At a given time, the viewer can perceive only a small portion of
the panoramic content, as determined by the viewing direction
(latitude/longitude) and the FoV (e.g., 100°X90°). Various projection
methods such as Equirectangular projection [47], CubeMap [7],
and Pyramid [15] have been leveraged to transform the panoramic
content (used for storage and delivery), to the displayed content. For
example, in CubeMap, the transformation is established by placing
the sphere into a bounding cube, and performing 90° perspective
projections of the sphere onto its six faces.

Content Streaming. Most of today’s content providers such
as YouTube and Facebook deliver 360° videos using a monolithic

DeepVista: 16K Panoramic Cinema on Your Mobile Device

approach that always streams the entire panoramic scene [24]. This
incurs a tremendous waste of traffic since the viewer consumes only
a small fraction (around 15%-20% pixel-wise) of a panoramic frame.
To overcome this limitation, viewport-adaptive streaming schemes
have been developed for 360° videos, which fetch mainly the con-
tent overlapping with the viewport. From the system perspective,
there exist only a few full-fledged viewport-adaptive 360° video
streaming systems, such as PARSEC [29] (2020), Pano [33] (2019),
Freedom [50] (2019), Flare [47] (2018), and Rubiks [35] (2018). Ru-
biks and Flare employ a tile-based approach where the panoramic
content is spatially divided into tiles, which are selectively fetched.
Pano optimizes the QoE for 360° video streaming by considering
users’ attention. PARSEC employs super-resolution to reduce band-
width consumption. None of the above work leverages edge sup-
port except Freedom, which is the most relevant work to ours. We
briefly compare DeepVista and Freedom in Table 1 and describe the
details in §5.2.1. There exist numerous other proposals of viewport-
adaptive 360° content delivery, albeit many backed up by analytical,
simulation, or emulation results [27, 32, 46, 51, 53, 54, 58—-60]. None
of the above work handles 16K 360° videos.

VR and HD Video Streaming. The big context of DeepVista is
VR and HD multimedia content streaming, on which a plethora of
work has been done [39-41, 44]. Some recent efforts utilize 60 GHz
millimeter wave links to deliver multimedia data [23, 42]. Despite
its high bandwidth, mmWave is vulnerable to signal blockage and
attenuation. More importantly, the mobile client may not be able to
timely decode the high-resolution content [42]. The only proposal
of 16K VR streaming that we are aware of was a preliminary study
by Alface et al. [26]. However, in their design, the content displayed
on mobile devices has only a 4K resolution.

3 MOTIVATION

Why 16K Resolution for 360° Videos? It is well known that VR
requires a high resolution and low latency [40]. A human with
20/20 vision can perceive up to 60 pixels per degree [6, 12], or 3,600
pixels within an area of 1°x1°. Today’s VR headsets (e.g., Google
cardboard [8] and Samsung Gear VR) typically cover an FoV of about
100° horizontally and 90° vertically [47]. To achieve the resolution
of 3,600 pixels/deg?, 32M (3600x100x90) pixels are expected to be
in the FoV. However, an 8K video has only 8Kx4K=32M pixels for
the panoramic view, falling far short from the pristine resolution.
Instead, 16K videos offer 4x pixel density compared to 8K, making
the resolution within the FoV close to the pristine resolution.

Can COTS Mobile Devices Directly Decode 16K Videos?
We test on mainstream smartphones, including Samsung Galaxy
S8 (SGS8), SGS9, SGS10, Pixel 3, and popular laptops. We find that
none is capable of decoding 16K H.264 or H.265 videos with the
on-device hardware decoders. In fact, even state-of-the-art desktop
and workstation GPUs (e.g., NVIDIA GeForce/Quadro/Tesla series)
cannot decode 16K videos [19]. Note that in this paper, the decoding
capability of a GPU refers to decoding a video using the GPU’s
dedicated hardware decoder, as software-based video decoding is
usually much slower than hardware-based solutions.

Is “Split-and-merge” Feasible? We consider an alternative
“split-and-merge” approach: the server pre-segments a 16K video
into tiles; the client fetches and decodes them in parallel, and then
merges the decoded tiles into the original stream. One 16Kx8K

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Threads k=1 k=2 k=4 k=38
16Kx8K N/A N/A N/A N/A
8Kx8K N/A 23.6+0.8 21.6+0.6 N/A
8Kx4K 459+0.3 456+1.2 249+09 18.7+0.4
4Kx4K 58.1+05 51.1+19 388+1.1 28.7+0.6

Table 2: H.265 decoding performance on Samsung Galaxy S8. Re-
ported FPS values are averaged over 10 runs of decoding the same
video (Angel Falls [3]) with different resolutions.

frame can be segmented into, for example, two 8Kx8K tiles, four
8Kx4K tiles, or sixteen 4Kx2K tiles. We conduct experiments on
an SGS8 with Exynos 8895 SoC. Table 2 benchmarks the perfor-
mance of decoding an H.265 video with different resolutions. Each
row corresponds to a target panoramic frame resolution, whereas
each column represents parallel decoding using k threads, each
invoking the Android MediaCodec API [2] to decode a tile whose
size is 1/k of the panoramic frame. Each cell in Table 2 shows the
decoding performance in FPS, with “N/A” denoting this option is
not feasible. For example, the first row indicates that 16K video
decoding is not possible; the second row shows that there are two
ways to decode an 8Kx8K video: using two threads each decoding
an 8Kx4K stream, or using four threads each decoding a 4Kx4K
stream. They yield an overall FPS of only 23.6 and 21.6, respectively
(the merging overhead is not even considered). We make similar
observations on other devices.

How Much can Tile Based Viewport Adaptation Help? The
“split-and-merge” approach can be improved by making it viewport-
adaptive: the client fetches and decodes only a subset of the tiles
based on the user’s viewport [35, 47]. Unfortunately, this approach
still cannot support 16K 360° video streaming on today’s mobile
devices. To stream the viewport-only portion of a 16KXx8K stream,
the player needs to fetch and decode up to 25% (i.e., 8Kx4K worth)
of the panoramic content (§5.2). To realize this, the highlighted
cells in Table 2 indicate two available options for achieving at least
30 FPS. However, in a tile-based scheme, the viewport boundary
typically does not align with the tile boundary. Instead, as shown
in Figure 2, the viewport may intersect with up to four tiles. Since
a tile is the atomic decodable unit, the actual decoding workload is
amplified by 2X to 4x compared to those in the highlighted cells in
Table 2, making it impossible to achieve 30 FPS.

4 DEEPVISTA OVERVIEW

DeepVista strategically leverages an edge server to transcode in
real-time a panoramic 16K video stream into an 8K stream that
covers the user’s viewport. The 8K stream can be efficiently decoded
and rendered on mobile devices (8K screens for mobile devices are
already available [13]). This leads to much less decoding overhead
and bandwidth consumption than tile-based approaches, because
the edge can precisely extract the viewport from the panoramic
scene into a single video stream. In addition, the edge has more
computation resources for running sophisticated algorithms such
as deep viewport prediction (§5.4) to boost system performance.
DeepVista consists of a video content server, an edge proxy, and
a client. Compatible with the DASH (Dynamic Adaptive Stream-
ing over HTTP) standard, the server is simply a stateless HTTP(S)
server. The key logic such as 16K to 8K transcoding, viewport predic-
tion, and rate adaptation is performed on the edge. The thin client

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Wenxiao Zhang et al.

C[LSTM Models) -----; 1---mmmmmmmmmms b e s GPUD) (GPU2) _Data , Control,
Edge/Svr Rate Vlewport Rate Network AN
Ada ptation redlctlo Ada ptatlon Monitor (Mot[on Sensor) C[Visibility Map)
Predicted (iat, lon) V. v VS Quality “Viewport (lat, lon) 3
| 1 VR
The viewer looks at the Half-16K Decoded) (Block) | (“Half VS Half VS
equator (latitude = 0°). » Decoder Buffer % Reorg. : % Encoder | Decoder k3
S ! X x S| |5 e
2| ,(Half-16K) , (Decoded) ,(Block)| ,(Half VS E Half Vs iz
a Decoder Buffer |T"| Reorg. " " Encoder » E Decoder b5 °
': T T A A A e 8 g
T [Visibility Map)------- ' PS PS o}
i | Buffer] "\ Decoder e
The viewer looks at the i___ _________ ~ ___ ________________ T
north pole (latitude = 90°). SERVER EDGE Resync Signal & Real-time Statistics CLIENT
Figure 2: viewports overlap with 4 out of 8 tiles Figure 3: The DeepVista system architecture (16K Reso-

(2x4 segmentation, equirectangular projection).

decodes/renders the 8K (viewport) stream and reports necessary
data such as the viewport movement trajectory to the edge.
Designing and implementing DeepVista faces several major chal-
lenges. First, simultaneously decoding 16K frames and encoding 8K
frames may not be an easy task even for the edge. For example, an
NVIDIA GTX 1080Ti GPU can achieve 16K decoding performance
at only around 16 FPS (a 16K frame is split into two 8Kx8K frames
for decoding). Second, we need an efficient transcoding scheme that
can fill an 8K frame with the user’s viewport content at 16K resolu-
tion without quality degradation. Third, we need robust methods
to hide the transcoding and network delay, which may cause the
transcoded/delivered viewport to deviate from the viewport that
should be perceived. Last but not least, the system involves many
components; it is far from trivial to implement various system-level
optimizations and to integrate them into a holistic system.
Scaling to Multiple Users. Video transcoding is inherently
resource-demanding. For large-scale deployment of DeepVista, we
can provision resources at the Internet edge in a way similar to
today’s cloud gaming services such as Google Stadia [10], where
each player has dedicated GPU resources in low-latency clouds.
Such infrastructures already exist today (e.g., NVIDIA EGX [17]).
Future Trend. Specialized hardware supporting 16K-video de-
coding may appear in the future. Complementing that, DeepVista
enables commodity hardware to stream 16K panoramic videos. It
can also drastically reduce the last-mile bandwidth consumption.
We believe that in the foreseeable future, it is less likely that mobile
GPUs will be capable of decoding 16K videos due to the inherent
constraints of form factors, energy footprint, and heat dissipation.
DeepVista’s concept is therefore still valuable in the long term.

5 SYSTEM DESIGN

We now detail the design of DeepVista as shown in Figure 3.

5.1 Server-side Content Preparation

The DeepVista server is compatible with DASH and is thus a regular
HTTP(S) server: the 16K content is split into chunks and encoded
into different quality levels using standard encoders such as H.265.
There are two non-trivial design decisions for the DeepVista server.
First, for each quality level, instead of storing a single 16KXx8K video,
the server stores two 8Kx8K streams of the original content. This
facilitates distributing the workload to two GPU instances.

lution, Dual GPU mode).

The other design decision is to let the server prepare a low-
resolution version of the panoramic video, called the Panoramic
Stream (PS). In our current design, we use 2Kx1K resolution for
the PS. Note that the edge transcodes only the 16K video. The
transcoded stream is referred to as the Viewport Stream (VS). The PS
is directly forwarded by the edge to the client without transcoding.
The purpose of having the PS is twofold. First, it helps tolerate
viewport prediction errors. Since the PS contains the full panoramic
scene, the client can use it to cover any missing portion in the
viewport that is not delivered by the VS due to inaccurate viewport
prediction. We find that a missing portion, if any, typically occurs
at the border of a viewport, so patching it using the PS typically
incurs small QoE degradation. Second, since the delivery of the PS
does not depend on the viewport, the client can maintain a large
buffer for it, thus reducing the stall (i.e., rebuffering) probability:
if the VS is not delivered in time, at least the PS can be played. In
contrast, for the VS, the client buffer has to be shallow because
predicting the viewport in the long term is difficult.

5.2 16K-to-8K Viewport-aware Transcoding

We now focus on the edge design. Its core component is transcoding
from the 16K stream (the two 8KXx8K streams fetched from the
server) to the 8Kx4K viewport stream (VS). The high-level approach
is intuitive: extracting from the 16K panoramic frame a region that
(1) fully covers the predicted viewport (i.e., the blue regions in
Figure 2), and (2) can be fit into an 8K frame.

We face two challenges when realizing the above approach. First,
we need to choose an appropriate projection method for the VS. For
simple projection schemes such as Equirectangular, the viewport
area of the panoramic frame, which we call Projected Viewport Area
(PVA), may vary significantly depending on the viewer’s orientation.
This is illustrated in Figure 2: when the viewer looks at the equator
(the top plot), the PVA is small; however, as he/she looks towards
the north pole (the bottom plot), the PVA expands to more than 1/4
of the panoramic frame, making 16K-to-8K transcoding impossible.
In contrast, the PVA of CubeMap (§2) has a much smaller varia-
tion (and thus lower distortion), and is always less than 1/4 of the
panoramic frame under a typical FoV regardless of the viewer’s
orientation. DeepVista thus adopts CubeMap as the VS representa-
tion. It is possible to extend DeepVista to support other projection
schemes (e.g., Pyramid projection [15]).

DeepVista: 16K Panoramic Cinema on Your Mobile Device

The second challenge is to efficiently and losslessly “reorganize”
the viewport content into an 8Kx4K rectangular frame. This is nec-
essary because the viewport typically has an irregular shape, and its
bounding box oftentimes exceeds 8Kx4K. To begin with, we divide
each face of a CubeMap into small blocks. A block is somewhat
similar to a tile depicted in Figure 2; however, the difference is that
a tile is an independently decodable video stream, whereas blocks
are merely “atomic” regions of pixels whose positions can be rear-
ranged within a single video frame. Therefore, blocks can be made
much more fine-grained than tiles, leading to less bandwidth waste
and decoding overhead. Based on its position in the CubeMap, each
block is assigned a unique ID.

There is a tradeoff between the reorganization overhead and the
bandwidth saving. Having more blocks makes the partition more
fine-grained, thus reducing the number of invisible pixels that be-
long to the blocks around the border of the viewport. However, this
comes at the cost of a higher reorganization overhead. In DeepVista,
we divide the whole CubeMap into 600 blocks (10x10 blocks on
each face). We select 600 because its block reorganization time is
short (<3ms); meanwhile, all blocks overlapping with the viewport
can always be reorganized into an 8K frame. By enumerating all
possible viewports, we find that under the 100°x90° FoV!, at most
142 blocks are visible in the viewport, fewer than the capacity of
150 blocks (=600/4) that the 8K VS can carry. The above method
ensures that the predicted viewport content (in 16K resolution) can
losslessly fit an 8K frame, thus guaranteeing the transcoding quality.
It is a general approach that can work with any projection scheme.

To identify the blocks to be included in the VS, we compute offline
a visibility map, which contains mappings from a viewport (latitude,
longitude) to the set of blocks overlapping with the corresponding
viewport. In addition, since the number of visible blocks is less
than 150, we complement the set by including extra blocks on the
periphery of the visible blocks, to make the set contain exactly
150 blocks. This helps further tolerate viewport prediction errors.
The visibility map has 181x361 entries that enumerate all possible
viewports (lat € [-90°,90°], lon € [-180°,180°]) at the granularity of
1°, with each entry containing 150 block IDs.

We next detail the edge-side transcoding process. We use off-the-
shelf GPUs that provide two key functionalities: (1) hardware-based
video decoding and encoding, and (2) streaming multiprocessors
(SMP) that can process the blocks in mass parallelism.

e The edge decodes the original 16K content using the NVIDIA
Video Codec API Recall from §5.1 that the server stores the 16K
content in two 8KXx8K streams. We find that using a single GPU (e.g.,
GeForce GTX 1080 Ti) to decode the two streams yields a frame
rate of only 16 FPS. Therefore, DeepVista supports using two GPU
instances to decode both streams in parallel in order to keep up with
the required frame rate. For performance consideration, DeepVista
does not explicitly merge the two decoders’ output. Instead, the
decoded half-16K frames are kept in each GPU’s memory.

o For each decoded 16K frame, the edge uses the predicted viewport
as the key to look up the visibility map, and obtains the list of blocks.
Figure 1(a) shows the six faces of a 16K CubeMap. It also exemplifies
a viewport at (lat=0°, lon=0°). Pixels belonging to the 120 blocks

!We focus on a typical FoV of 100°x90°. Larger FoVs may need slightly more blocks,
and can be supported by slightly increasing the VS resolution.

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

within the viewport are marked in red, and those belonging to the
30 extra blocks around the viewport are marked in yellow. The edge
then copies the 150 blocks to the 8K frame, placed from top-left
to bottom-right according to their IDs. The blocks are arranged
in 10 rows and 15 columns as shown in Figure 1(b). The copying
of the blocks is parallelized over a large number of GPU (CUDA)
threads, with each responsible for handling k pixels of a block
(we empirically choose k=4 for the YUV420 format). The client also
maintains the same visibility map so that the reorganized blocks can
be restored (§5.6). If dual GPUs are used, each GPU is responsible
for producing half of the viewport (75 blocks in a 4K X 4K frame).
Cross-GPU block exchange, i.e., copying blocks from one GPU to the
other, is only performed here, in an on-demand manner. This helps
minimize the coupling between the GPUs. The cross-GPU transfers
go through the PCI-E interface without the CPU involvement.

® The transcoded frames are encoded into the VS using the NVIDIA
Video Codec API. Under a single GPU (dual GPUs), the VS consists
of one 8Kx4K (two 4Kx4K) encoded stream(s), which are transmit-
ted to the client.

5.2.1 Compare to State-of-the-art Transcoding Approach. To fur-
ther illustrate the advantages of DeepVista’s transcoding approach,
we compare it with the mechanism used by Freedom [50], a recent
system that also leverages the edge to perform viewport transcoding
(a preliminary design was published by the same authors in [49]).
Freedom is the most relevant work compared to DeepVista. It em-
ploys a representative transcoding approach: based on the current
FoV F, the edge crops a region R, encodes it, and sends it to the
client. To tolerate the client’s viewport movement, R needs to be
expanded from F by A. We denote this as R = F + A. Despite its
simplicity, Freedom has a major limitation. Since it does not rely on
real-time viewport prediction, A has to be fairly large (e.g., £30° for
yaw and +15° for pitch). In addition, A is directly encoded with F at
the same quality. This leads to quality reduction as the resolution
of F + A needs to be shrunk to fit the target (transcoded) frame.

We conduct the following experiment to quantify the above
limitation. We transcode an 8K video into a 4K stream based on 12
users’ viewing trajectory (details in §7.1). We implement Freedom’s
approach for FoV F = 100° X 90° using three configurations of A:
17° X 15°, 28° X 25°, and 39° X 35° [50]. When the FoV becomes F + A,
Freedom has to sacrifice the quality by shrinking the cropped frame,
which is larger than the normal FoV, to 4K. Using the viewport
content from the original video as the ground truth, the measured
SSIM is 0.953+0.002, 0.941+0.002, and 0.929+0.003, respectively, for
the above three configurations of A. Note that the original Freedom
system performs 8K to 1080p (instead of 4K) transcoding, leading
to an even higher quality degradation. Also note that Freedom does
not have built-in support of 16K video content.

Compared to Freedom, DeepVista takes a different transcoding
approach (Table 1), which guarantees the cropped viewport content
can losslessly fit the target frame. Under the same setup, the SSIM of
DeepVista (considering both VS and PS, with viewport prediction)
is measured to be 0.995, significantly better than Freedom.

5.3 VS/PS Coordination & Buffer Management

VS Resync. In DeepVista, the pace of video playback is determined
by the PS due to its reliability: the PS can enjoy a deep on-client

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

buffer since it depends on neither the viewport nor transcoding.
Normally, the VS playback is synchronized with the PS as ensured
by the edge. However, due to network anomalies, the VS delivery
may fall behind the PS, causing missing VS frames.

Once the client detects a missing VS frame Fy,, it sends a resync
message to the edge, which will immediately stop working on the
current VS frame and start processing a new frame with an ID of
Fm + 1 - Tpipe], where r is the FPS of the VS, and Tpjpe is the
estimated latency of the edge-to-client pipeline for processing the
new frame, including the delay of transcoding, network transfer,
client decoding, and client-side buffering. DeepVista continuously
profiles the above components in order to accurately estimate Tp;pe.
Intuitively, [r - Tpipe | represents the smallest number of VS frames
that have to be skipped due to the client/edge processing time
and network delay, so that the VS can catch up with the PS again.
During the brief resync phase, the user sees only the PS, but the
video still plays smoothly without any stall (unless the PS is not
delivered in time).

Edge-side Buffer Management. For each GPU, the edge main-
tains a frame buffer storing several decoded half-16K frames, in
order to prevent the encoder from starvation. The decoded frame
buffer also facilitates the above resync process by having the new
frame ready (i.e., already decoded) after skipping several frames.
One decoded half-16K frame in YUV420 format requires ~96 MB of
memory. We buffer 60 frames, which occupy about 6.7GB memory
on each GPU. An important design decision we make is that the edge
does not explicitly maintain any buffer for transcoded VS frames.
This is because such frames contain predicted viewports (§5.4), and
need to be delivered to the client as soon as possible. Buffering them
will inflate the viewport prediction window ((Fp — F¢)/r, see §5.4),
making the viewport prediction less accurate.

5.4 Viewport Prediction

In DeepVista, viewport prediction is executed on the edge server.
We develop two concrete prediction methods. The first one is a sim-
ple linear regression [47] used as the baseline for comparison (§7.8).
The second method is based on deep learning (DL). We build an
offline DL model of multiple prior viewers’ viewport trajectories of
the same video, and apply this model to predict a new user’s view-
port at runtime. We adopt Long Short-Term Memory (LSTM) [36]
due to its good accuracy for time series data prediction. We train
two LSTM models for each video, one for latitude predication and
the other for longitude prediction, using many users’ viewport
movement trajectories collected when they watch the same video
(we use up to 30 users in our evaluation in §7.8). We train the net-
work to minimize the mean absolute error (MSE), which is used as
the loss function.

While some prior studies have applied DL to head movement
traces of VR users [30, 37, 55], our contribution here is to leverage
DL-based viewport prediction to improve the transcoding performance.
We address several system-related design issues as detailed below.
o First, we need to properly integrate the viewport prediction mod-
ule with the transcoding engine. Specifically, a prediction is per-
formed when a VS frame is about to be generated (after the original
16K content is decoded, as this step is viewport-independent). The
client continuously uploads the user’s real-time viewport trajectory
to the edge, with the sampling rate of 30 Hz, consuming only 3

Wenxiao Zhang et al.

Kbps of uplink bandwidth. At each prediction instance, the edge
uses this trajectory data to estimate the viewport at time t,, the
time when the to-be-transcoded VS frame (with an ID of) F,, will
be displayed to the viewer. Let ¢, be the current time at the client,
F. be the ID of the current frame being played at the client, r be the
(fixed) FPS of the VS. t. and F, are piggybacked with the trajectory
data uploaded to the edge. Since the frames are sequentially played,
tp can be estimated as t. + (Fp — F¢)/r.

e Second, our LSTM models should have a low resource footprint
at runtime. We thus employ a lightweight single-layer LSTM model
with 64 neurons. The LSTM layer is followed by a dropout layer
and a dense layer. The resulting size of each model is less than 0.5
MB, making it portable. It takes ~20ms for a single inference over
CPU. If using GPU, the inference time can be reduced to less than
3ms (see §7.1 for detailed experimental setup).

o Third, we need to carefully choose several key parameters, in
particular the size of the prediction window. We test using the 2,
5, 18, and 30 most recent samples for viewport prediction. Among
them, using the 2 most recent samples yields the best prediction
results. A possible explanation is that compared to a long window,
a short one such as 2 most recent samples can better adapt to users’
sudden movement.

5.5 Rate Adaptation for Real Time Transcoding

Rate adaptation dynamically adjusts the video quality based on
the network condition. DeepVista consists of two rate adaptation
modules: one controls the quality of the content fetched from the
server, and the other determines the quality of the VS content
transcoded by the edge. For the former, any traditional DASH-
friendly rate adaptation scheme [38, 43, 57] can be used. We thus
focus on the latter. By again following the DASH standard, the
edge encodes the VS into one of M qualities and we empirically
choose M to be 5 [32, 35, 47]. The bitrates of the quality levels are
48Mbps, 32Mbps, 20Mbps, 12Mbps, and 8Mbps. The highest bitrate
for the VS (48 Mbps) is selected based on the highest bitrate of the
three YouTube 8K videos we used for experiments. The four other
bitrates are selected by following Netflix’s recommendation [20]
where the encoded bitrate ratio between two consecutive quality
levels is roughly 1:1.5. As the VS is delivered continuously without
an explicit chunk boundary, we define a virtual chunk (V-chunk)
as a group of 10 consecutive frames. A V-chunk is the smallest
granularity of VS rate adaptation. Right before encoding each V-
chunk, the edge executes the rate adaptation logic and configures
the encoders’ output bitrate accordingly.

DeepVista’s rate adaptation is based on discrete optimization.
The concept was used in prior streaming systems [47, 56, 57], but
we tailor it to real-time transcoding. It maximizes the QoE over
a finite horizon of the next N V-chunks. We empirically choose
N=5 (setting it to 3 or 7 does not qualitatively change the results
in §7). Let g; be the quality level for the i-th V-chunk. The algorithm
determines g1, ..., g by considering the following QoE metrics.

o The Average Quality Level over the finite horizon is defined as
Q=h Zﬁ 1 qi/N. The coefficient h represents the average high-
resolution ratio (HRR) over the next N V-chunks. HRR is defined as
the fraction of the area occupied by the VS (as opposed to the PS)
in a viewport. DeepVista uses HRRs of previously played frames to

DeepVista: 16K Panoramic Cinema on Your Mobile Device

estimate the future HRR. A non-perfect viewport prediction may
lead to an HRR less than 1.

® The Bandwidth Requirement B is a 0/1 binary prediction indicating
whether the network bandwidth is too low to sustain the bitrate
of VS and PS, i.e, B = 1iff Zfil Bi/N + Bps > 1+ Ppreq where f; is
the encoded bitrate of g, fps is the bitrate of the PS, f,,q is the
predicted network bandwidth, and 7 is a parameter that tolerates
the bandwidth prediction error and encoded bitrate variation. We
empirically set 1 to 0.9.

® The Temporal Quality Switch quantifies the total number of quality

level changes. It is defined as TS = w where h is HRR
that is defined above. A small TS is preferred as it offers smooth
and gradual quality changes.
o The Spatial Quality Switch quantifies the QoE impact incurred by
a mixture of the VS and PS content in a viewport. It is defined as
SS=(1/2—|1/2—-h]) Zf\il qi- Given {q;}, SS reaches its maximum
when HRR is 1/2, i.e, VS and PS each occupies half of the viewport.
Having the above QoE components defined, the overall QoE is
calculated as their weighted sum, i.e., Q0E = Q — wsB—w;(TS+SS)
where wg and w; are the weights empirically chosen as wg = 5
(giving the bandwidth requirement high importance) and w; =
1/2 based on our tests using different combinations of (ws, w;).
Since the search space is relatively small, DeepVista enumerates all
combinations of {g;} and selects the one yielding the highest QoE.

5.6 Client-side Design

DeepVista adopts a thin-client paradigm. The client de-multiplexes
the VS and PS from the received data. For the PS, the client maintains
a large encoded frame buffer (30 seconds) to cushion the bandwidth
fluctuation and minimize the stall. The VS is much more delay-
sensitive than the PS, so the client immediately decodes VS frames
without any prior-to-decoding buffering. The edge coordinates with
the client by pacing its VS transcoding with the client-side playback
and performing a resync when the VS falls behind.

Video decoding on mobile devices is time-consuming [35, 40].
Compared to tile-based 360° video streaming that requires large
decoded buffers to instantly stitch the tiles [47], DeepVista involves
only the VS and PS streams, and the randomness of the viewport
movement is already taken into account by the edge. Henceforth,
the client-side decoding has a much lower overhead and becomes in-
dependent of the viewport movement. In DeepVista, the client only
maintains a shallow decoded buffer of 5 frames (empirically chosen).
The rationale for a shallow buffer is to reduce the transcoding-
to-rendering latency to make viewport prediction more accurate,
while absorbing the jitter of the network and client-side decoding.

Since the edge delivers 2 or 3 streams (1 PS + 1 or 2 VS), the
client utilizes 2 or 3 decoding threads, respectively, which output
the decoded VS/PS frames into their corresponding buffers. When
rendering the viewport, the client first checks if the PS buffer has
the required decoded frame. If not, a stall occurs; otherwise, the
client applies the CubeMap projection to project the PS frame based
on the user’s current viewport. Next, the client examines the VS
buffer. An empty VS buffer indicates that the VS is falling behind the
PS, and thus a resync is issued (§5.3). Otherwise, the client employs
amodified projection method to render the VS in the viewport, with
the rendered portion overwriting that of the PS. The modification

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

comes from the fact that the VS is received with reorganized blocks
(Figure 1(b)) so the client needs to project each block back onto the
original location in the viewport. This location is obtained through
the same block visibility map used by the edge (§5.2). Figure 1(c)
shows the rendered viewport.

6 SYSTEM IMPLEMENTATION

We implement DeepVista on commodity machines and smartphones.
The edge is developed in C++ and Python (6.9K LoC). We use the
NVIDIA Video Codec SDK [18] for hardware-assisted decoding and
encoding, and NVIDIA CUDA API [16] for block reorganization.
To enable accurate network performance measurement, we employ
the libpcap API [21] to get access to the TCP packet-level data.
The downlink (edge-to-client) throughput is estimated by moni-
toring the uplink TCP ACK stream. We use Keras [11] for LSTM
offline training and real-time inference. We integrate the compo-
nents from §5.2 to §5.5 into a holistic edge system. To optimize the
performance, we adopt a deep pipelining design where 7-9 threads
(depending on one or two GPUs) process the data and control planes
at different stages. We also employ a simple throughput-based rate
adaptation algorithm [38] between the server and edge.

The client is developed using the Android SDK (2.6K LoC). It em-
ploys the low-level MediaCodec API [2] to perform video decoding,
and OpenGL ES for CubeMap rendering.

Our prototype supports three modes: 2GPU/16K, 1GPU/16K,
and 1GPU/8K. In these modes, the VS outputs of the edge are:
two 4Kx4K streams, one 8Kx4K stream, and one 4Kx2K stream,
respectively. The PS has a resolution of 2Kx1K. Both the VS and
PS are encoded in H.265 format.

7 EVALUATION
7.1 Experimental Setup

Edge and Server. Unless otherwise stated, we conduct experiments
using a machine with an Intel i7-5820K CPU and two NVIDIA
GeForce GTX 1080 Ti GPUs (launched in Q1 2017) as the edge.
It runs Ubuntu 18.04 with Linux kernel 4.18. We benchmark the
performance of a better GPU, RTX 2080 Ti, in §7.7. We use another
machine as the video server, which is a stateless HTTP server.

Mobile Devices. We use two off-the-shelf smartphones. One is
an SGS8 (launched in Q2 2017) with an octa-core Cortex-A53 CPU,
a Mali-G71 MP20 GPU, and 4GB memory, running Android 9.0.
The other is a Samsung Galaxy S10 5G (Q2 2019) with an octa-core
Kryo 485 CPU, an Adreno 640 GPU, and 8 GB memory, running
Android 10.0. We use the SGS8 by default, and use the SGS10 only
for experiments over commercial mmWave 5G networks as the
SGS8 does not have a 5G modem. Neither phone is rooted?.

Networking. Since our evaluation focuses on the edge and the
client, we do not consider the scenario where the server-edge path
becomes the performance bottleneck. We therefore inter-connect
the server and the edge over 1Gbps Ethernet. We experiment with
three types of networks between the edge and the client.

2Both phones’ screen resolutions are lower than 8K. However, this does not affect our
evaluation results because the phones indeed download, decode, buffer, and render 8K
content for the VS.

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

Synthetic H.264 (Mbps) H.265 (Mbps)

16K Video CRF18 | CRF23 | CRF18 | CRF23
Interpolated (Angel Falls) 246 219 159 80
Stitched from four 8K videos* 328 277 232 122

*Angel Falls [3], NYC [14], Roller Coaster [22], and New Year [1].
Table 3: Comparison of 16K videos generated in two ways.

e An 802.11n WiFi network with a peak bandwidth of 100 Mbps
and a latency of less than 2ms. This represents a typical usage
scenario of DeepVista where the edge is a PC at the user’s home.
e Commercial LTE networks provided by a large U.S. cellular
carrier. We traveled to several locations (a university campus, a
residential area, a shopping plaza, and a business district) in a large
U.S. city to perform live experiments. The bandwidth ranges from
30 to 80 Mbps, and the client-edge RTT is between 40 and 90ms.
e Commercial mmWave 5G networks offered by another major
cellular carrier in the U.S. We also performed on-site tests at several
places with mmWave 5G coverage (28 GHz): a residential area and
two busy downtown areas, where the bandwidth ranges from 300
Mbps to 1 Gbps and the client-edge RTT is between 25 and 40 ms.
Video Content. We select three high-quality 360° videos from
YouTube: scenery (Angel Falls [3]), urban (NYC Drive [14]), and
entertainment (roller coaster [22]). They had a total number of
14.4M+ views as of October 2020. One problem is that YouTube
provides only up to 8K resolution for these videos, and we are unable
to find any 16K 360° videos online. We address this issue in two ways.
First, we create synthetic 16K videos by enlarging the above three
videos’ resolution from 8K to 16K using pixel-wise interpolation.
These interpolated 16K videos have meaningful content and the
desired resolution, but they are more compressible and therefore
having slightly lower bitrates than “real” 16K videos. Second, we
create another type of 16K videos by stitching together four content-
wise different 8K videos shown in Table 3. Complementing the
interpolated videos, the stitched 16K videos do not have meaningful
content, but their encoded bitrate is equivalent or even higher than
real 16K videos due to their complex content, so streaming them is
expected to be even more challenging than “real” 16K videos.
Table 3 compares the encoded bitrates (in Mbps) of the two
types of synthetic videos, using two encoders (FFmpeg H.264 and
H.265) and two quality levels (CRF 18 and 23). The results validate
the extrapolation from [26] that high-quality 16K videos require
up to 300Mbps bandwidth. We test both the interpolated videos
and the stitched videos on DeepVista, and observe very similar
performance in terms of decoding/reorganization/encoding latency
on the proxy side and the decoding/rendering latency on the client
side. Unless otherwise noted, we use the interpolated 16K videos
as 16K sources because our collected viewport traces are based on
their content. On the server side, they are encoded using H.265 +
CRF 18, an almost lossless encoding configuration [5]. We create
the PS for each video at ~2Mbps. All videos have an FPS of 30.
Therefore, despite the limitation of using synthetic 16K videos, we
believe that our evaluations are sound due to two reasons.
o The stitched 16K videos, whose content is more complex com-
pared to “real” 16K videos, show similar transcoding performance
compared to the interpolated ones.
o The bitrates of our transcoded VS streams at 8K match those of
real 8K videos (§5.5). Hence, using 16K synthetic videos does not
change the workload over wireless links.

Wenxiao Zhang et al.

Mode Edge Dec. | Edge Enc. | Phone Dec.
(1) 2GPU, 16K 32.3%0.1 56.7+0.2 37.9+0.1
(2) 1GPU, 16K 16.1+0.1 28.3+0.2 38.9+0.2
(3) 1GPU, 8K 60.6+0.0 109+2.6 88.8+0.1

Table 4: Hardware performance benchmark averaged over all
frames of Angel Falls video. The unit is FPS (frames-per-second).
Edge-side encoding and decoding are performed concurrently.

Mode ‘ Edge-only | % Skipped VS Frames
FPS (End-to-end at 30 FPS)
2GPU/16K 30.2+0.1 0.69%
1GPU/16K 16.0+0.1 46.7%
1GPU/8K 60.4+0.2 0

Table 5: Overall performance of DeepVista. The high skipped
frame ratio of 1IGPU/16K+PS is due to edge-side slowing down.

Viewport Movement Data. We conduct an IRB-approved user
study involving 42 voluntary participants (undergraduates, grad-
uate students, and faculty) from a large university, with 40% of
them being female. We ask each participant to watch the three
videos when wearing a Samsung Gear VR headset and capture their
viewport movement trajectories at 30 Hz. We notice that the head
movements and their predictability indeed exhibit high heterogene-
ity. Among the users, the linear regression prediction accuracy>
ranges from 51.0% to 96.5% (average: 76.8%, stdev: 7.9%). From the
42 users, we uniformly sample 12 users who are “representative”
in terms of their viewport prediction accuracy, which ranges from
59.6% to 94.9% (average: 76.7%, stdev: 9.5%). We replay their view-
port trajectories in our evaluation. Unless otherwise noted, in our
experiments, we use LSTM models trained from the remaining 30
users (not overlapping with the 12 users) for viewport prediction.
As described in §5.4, we train separate models for each video.

7.2 Benchmarking Hardware Performance

We begin with profiling our edge and client’s hardware capabil-
ity of video encoding and decoding. Note that this experiment
does not use DeepVista. Instead, we develop two simple benchmark
programs: one runs on the edge and performs simultaneous de-
coding and encoding (without transcoding); the other performs
decoding on the client. Table 4 shows the benchmarking results for
DeepVista’s three working modes (§6). On the edge, the bottleneck
is decoding: using two GPUs can barely reach 32 FPS due to the
immense resolution of 16K content. The phone alone can achieve a
satisfactory decoding FPS for viewport content. The above results
provide a performance upper bound for DeepVista, limited by the
hardware capability. They also imply that the edge must utilize the
deep pipelining approach (§6), otherwise the end-to-end FPS can
easily drop below 30 FPS. Using the videos stitched from four 8K
videos (§7.1) yields similar results.

7.3 DeepVista Overall Performance

Table 5 summarizes the overall performance of DeepVista. The
workload is the Angel Falls video replayed using the head move-
ment trace of an average user in terms of the viewport prediction
accuracy. The other videos (including the stitched videos) and users

3We use a prediction window of 500ms and a history window of 250ms. A prediction
is performed for every frame, and is considered to be accurate if the errors of both
the predicted latitude and longitude are less than 10°. The prediction accuracy of one
playback is defined as the fraction of accurate predictions over all predictions.

DeepVista: 16K Panoramic Cinema on Your Mobile Device

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

1.0 —DV w/o Skip 1 1

0.8 DV w/ Skip 0.8 0.8 £
L 06 "gfmp:e "";‘;Eﬂ'"p L 06 L 06 £

imple w/ Skip A
So4 Soa4 . So4 ;
—DV i —DV
0.2 0.2 0.2 —simple 02 —-Simple
0.0 U 0 = 0 0 =
40 42 44 46 48 50 0.9 0.92 0.94 0.96 0.98 1 0.8 085 09 095 1 0 0.01 0.02 0.03 0 005 01 015 0.2

(a) VS Quality Level High Resolution Ratio (c)

Consumed Block Ratio (d)

Skipped Frame Ratio (€) temporal switch Ratio

Figure 4: Comparison of DeepVista (DV) and its simple version over unthrottled WiFi: (a) VS Quality Level, (b) High Resolution Ratio (HRR),
(c) Consumed Block Ratio (CBR), (d) Skipped Frame Ratio (SFR), and (e) Temporal Switch Ratio (TSR).

yield similar results. First, to measure the edge-side FPS, we con-
nect the edge to a dummy client and let the edge execute as fast
as possible. For 2GPU/16K, the edge manages to achieve 30.2 FPS,
only a 6.5% drop from the upper bound shown in Table 4. The drop
is mostly caused by block reorganization that competes for GPU
resources with encoding and decoding. The results confirm the
effectiveness of DeepVista’s pipelined approach. For 8K streaming,
the edge can achieve 60 FPS on a single GPU.

We next measure the percentage of skipped VS frames under
an end-to-end setting where the client is connected to the edge
over unthrottled 802.11n WiFi. The rightmost column of Table 4
indicates that for 2GPU/16K and 1GPU/8K (with the PS), DeepVista
can achieve an end-to-end FPS of 30 with negligible or no frames
being skipped. For 1GPU/16K, DeepVista cannot reach 30 FPS due
to the edge-side slowing down. Therefore, unless otherwise noted,
we evaluate 16K streaming using 2 GPUs in the rest of this section.

Last-mile Bandwidth Savings. Compared to the monolithic
approach of fetching the panoramic scene, DeepVista can signifi-
cantly reduce the last-mile bandwidth usage (more precisely, be-
tween the edge and the client). The actual savings depend on the
content and viewport trajectory. It can be quantified as 1— %
where By s, Bps, and Bpan are the consumed bytes of the VS, the
PS, and the panoramic stream (at the same quality as the VS), re-
spectively. Using the viewport trace of an average user (in terms of
the viewport prediction accuracy), we calculate the savings to be
69%, 71%, and 52% for the three videos when the bitrate of the VS
is 48Mbps. Lowering the VS bitrate leads to similar savings.

7.4 16K Streaming Quality of Experience (QoE)

We now assess the QoE of 16K video streaming. To make the exper-
iments reproducible, we lively replay the 12 representative users’
viewport traces of the three videos (§7.1).

We calculate five QoE metrics for each playback. (1) The Av-
erage VS Quality Level ranging from 1 (lowest) to 5 (highest).
They correspond to the five bitrate levels described in §5.5. (2)
The Average High Resolution Ratio (HRR) as defined in §5.5,
which quantifies the fraction of the viewport occupied by the VS
as opposed to the PS, across all frames. (3) The Consumed Block
Ratio (CBR), defined as the ratio between the total number of user-
consumed (i.e., perceived) blocks to the total number of transferred
blocks across all VS frames. A high CBR indicates high bandwidth
efficiency. (4) The Skipped Frame Ratio (SFR), defined as the
fraction of skipped VS frames. (5) The Temporal Switch Ratio
(TSR), defined as the number of total VS quality level changes
divided by the maximum possible number of VS level changes (4
levels per pair of consecutive V-chunks). A lower TSR is preferred

as rapid changes in the quality level are known to be detrimental
to the QoE [57]. (6) The Stall (Rebuffering) Duration, which is
found to be 0 in all the playbacks over WiFi, LTE, and 5G. This is
because DeepVista uses the PS whose exact purpose is to eliminate
stalls and blank areas not covered by the VS. We therefore focus on
the first five metrics in the remainder of this section.

Since we are not aware of any well-documented solution for 16K
360° video streaming, we compare DeepVista with its simplified
version. They differ in the rate adaptation module. The simple
version takes a greedy approach: the quality level of each V-chunk is
independently determined to be the highest level that the estimated
bandwidth can sustain.

WiFi Networks. We first evaluate DeepVista under 802.11n
WiFi. This represents the scenario where the edge and the client
are in the same wireless LAN at the user’s home or office. We
show the results in Figure 4, where the subplots correspond to the
aforementioned five metrics. Each curve consists of 12 users X 3
videos = 36 data points (playbacks). We highlight the key results
below. For DeepVista, since the bandwidth is quite high, the rate
adaptation properly determines the VS quality level to be between
4 and 5, as shown in Figure 4(a). Figure 4(b) indicates the median
HRR is around 98%, confirming that most area in the viewport is
covered by the VS. The “w/o Skip” and “w/ Skip” curves calculate
the HRR in different ways: the former ignores skipped frames, while
the latter assumes a skipped frame has an HRR of 0 (so the HRR
becomes statistically lower). Figure 4(c) shows the median CBR
is around 87%, implying that most downloaded blocks are indeed
consumed. Figure 4(d) demonstrates the low SFR: about 51% of
the playbacks do not experience any skipped frames, and the 90%
percentile of SFR is only 2.5% (1.5 sec per minute). Figure 4(e) shows
the low frequency of VS quality switches. Regarding the simple
rate adaptation scheme, due to its “shortsighted” greedy nature, it
underperforms DeepVista in the VS quality level and TSR.

Commercial LTE and 5G Networks. We now present the re-
sults of live experiments over commercial LTE/5G networks. At
each location (§7.1), we repeatedly play the Angel Falls video for
50 times using the 12 users’ head movement traces in a random
order at different times of the day. Each curve in Figure 5 thus
consists of 200 runs for LTE and 150 runs for 5G. We spent more
than 400 GB of LTE/5G data on the experiments. We first examine
the LTE results. Compared to Figure 4, several metrics in Figure 5
degrade: the limited bandwidth reduces the median VS quality level
to 3.8; the bandwidth/RTT fluctuation makes rate adaptation more
challenging and thus increases the SFR. Despite these, DeepVista
maintains decent performance: the median HRR is 95.6% (98.9%)
when the skipped frames are accounted (ignored). The median SFR

WWW °21, April 19-23, 2021, Ljubljana, Slovenia

Wenxiao Zhang et al.

Yovery L pv e 1 L, !
0.8 |--Simple (LTE)" 0.8 |--Simple (LTE) 0.8 0.8 0.8
—DV (5G)” --DV (5G) / H
0.6 . o % 0.6 R } % 0.6 % 0.6 % 0.6 3
8 ~Simple'(5G 87 |-Simple (56) 8 —DV (LTE) 8 J —overey S =DV (LTE)
0.4) 0.4 / 04 --Simple (LTE) 04 ~-simple (LTE) 04 7 --Simple (LTE)
0.2 0.2 0.2 —DbV (5G) 0.2 —DV (56) 0.2 —DV (5G)
--Simple (5G --Si --Si
o) o 0 imple (5G) 0 Simple (5G) 0 Simple (5G)
25 3 35 4 45 5 0.9 0.920.940.960.98 1 0.8 085 0.9 0.95 1 0 0.02 0.04 0.06 0 0.05 0.1 0.15 0.2 0.25
(a) VS Quality Level (b) High Resolution Ratio (c) Consumed Block Ratio (d) Skipped Frame Ratio (e) Temporal Switch Ratio

Figure 5: Comparison of DeepVista (DV) and its simple version over live LTE/mmWave 5G Networks. Subplot (b) shows HRR with skips.

Mode Decoding Reorg. Encoding
(ms) (ms) (ms)

2GPU/16K | 31.0£0.1 2.6+0.0 17.6+0.1

1GPU/16K | 61.9+0.1 0.3+0.0 35.5+0.0

1GPU/8K | 16.5+0.0 0.1£0.0 9.2+0.3

Table 6: DeepVista edge performance breakdown.

remains as low as 2.6% — equivalent to skipping 1.56-second worth
of VS content every minute. Note that even if a VS frame is skipped,
the PS frame is still played so the viewer will not perceive any stall.

More excitingly, we observe excellent results for mmWave 5G
attributed to its high bandwidth and low RTT variation (§7.1). The
median quality level and SFR across all runs are 4.8 and 0.1%, re-
spectively, close to the perfect QoE. The other metrics including
HRR, CBR, and TSR are also satisfactory. Note that the quality level
is slightly lower than 5.0 because it needs to gradually ramp up at
the beginning of a playback. Overall, the results in Figure 5 indicate
that DeepVista can provide good QoE even when the edge is not
in the immediate vicinity of the client.

PS’s Impact on Image Quality. In DeepVista, a viewport may
consist of both the VS and PS content. To understand the impact of
the PS on the image quality (i.e., the impact of a non-perfect HRR
that is less than 1), we calculate the SSIM [52] for three viewport
streams: Perfect VS (generated offline using the real viewport trajec-
tory, so HRR=1), Predicted VS + PS (DeepVista’s approach, HRR<1),
and Predicted VS Only (removing the PS). The ground truth is the
viewport stream extracted from the original 16K video. We use the
viewport trajectory trace of one average user (in terms of the HRR),
the Angel Falls video, and the 48Mbps VS bitrate to conduct the
calculation. The above three streams yield an average SSIM of 0.985,
0.980, and 0.969, respectively, across their frames. These numbers
already take the quality loss due to video codec into account (so
that the first number is less than 1). Note that an SSIM index higher
than 0.98 implies that the image is visually lossless compared to the
ground truth [28]. The results indicate that (1) compared to only
showing the predicted VS, adding the PS can enhance the perceived
quality; and (2) compared to the prefect VS, the small area patched
by the PS has a very small impact on the image quality.

7.5 DeepVista Performance Breakdown

We study the performance breakdown of the edge (Table 6) and
client (Table 7), using the same workload as that used in Table 5. For
the edge, we again let it execute as fast as possible by connecting it
with a dummy client. Table 6 shows the per-frame execution time
for three major tasks: decoding, block reorganization, and VS encod-
ing. For 2GPU/16K, the ratio among them is about 12:1:7, consistent
with our findings in Table 4 that decoding remains the performance
bottleneck. The block reorganization phase for 2GPU/16K takes a

much longer time than that for 1IGPU/16K (2.6ms vs. 0.3ms) due to
the cross-GPU block exchange (§5.2), which is the only performance
penalty incurred when dual GPUs are used.

Table 7 profiles the client performance when the client is con-
nected to the edge over unthrottled 802.11n WiFi. It shows per-
frame execution time of three major client-side components: decod-
ing a frame, copying a decoded frame to the buffer, and CubeMap
rendering. Decoding still remains the most time-consuming task.

7.6 Comparison with Flare

We compare DeepVista with Flare [47], a representative viewport-
adaptive 360° video streaming system. Flare employs a client-only,
tile-based approach (§2). Since Flare does not support 16K video
streaming, we compare DeepVista with it at 8K resolution. To en-
sure apple-to-apple comparisons, we take the following measures.
(1) Both DeepVista and Flare use the same three videos and 12 view-
port traces on the same testbed as described in §7.1. We prepare
three segmentation schemes for Flare: 2x4 (Figure 2), 4x4, and 4X6.
(2) We disable both systems’ rate adaptation by using only one
quality level. (3) Both use linear regression for viewport prediction.
(4) DeepVista uses the “1GPU, 8K” mode in Table 4 with 2 decoding
threads; Flare uses 3 decoding threads, which is the best decoder
configuration on SGS8.

We show the results in Figure 6 where each bar corresponds
to 3 videos X 12 users = 36 playbacks. Figure 6(a) compares the
HRR: DeepVista achieves a median HRR of around 0.98 whereas
Flare always has an HRR of 1, because Flare needs to fetch all the
tiles within the viewport (i.e., the player will stall when any tile is
missing). Figure 6(b) compares the CBR. The CBR for Flare has a
similar definition except that we consider tiles instead of blocks.
This figure shows that compared to Flare, DeepVista improves the
CBR by a factor of 1.4X to 1.9x. The reason is that Flare inherently
needs to fetch much more tiles than actually consumed in order to
combat inaccurate viewport prediction. While DeepVista also deliv-
ers additional blocks, it is less aggressive; instead, DeepVista uses
the PS as a “protection” for missing VS blocks within a viewport.

Figure 6(c) examines the network traffic size. DeepVista drasti-
cally reduces the median downloaded bytes by a factor of 3.0x to
3.6x compared to Flare. Note that for each video, we make sure
the encoded content inside the viewport has roughly the same bi-
trate between DeepVista and Flare. The PS is also counted when
calculating the downloaded bytes for DeepVista. There are three
main reasons for such great disparities. First, Figure 6(b) already
shows that Flare is much more aggressive than DeepVista in terms
of fetching content. Second, spatially, a block is much smaller than
a tile so that DeepVista can more precisely follow the contour of
a predicted viewport than Flare. Third, in Flare, video frames are

DeepVista: 16K Panoramic Cinema on Your Mobile Device

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

Edge Decoding FPS | Edge Encoding FPS Overall Edge FPS

Mode frame — Texture CubeMap Mode 1080 Ti | 2080 Ti | 1080Ti | 2080 Ti | 1080 Ti | 2080 Ti
Decoding Copying Rendering 2GPU,16K | 323%0.1 | 60.6£08 | 56.7202 | 52.4%0.0 | 30.2+0.1 | 45.9+0.6

2GPU/I6K+PS | 26.4+0.1 18.6+22 4711 : o= 0. S A 2. =D
OPUNGK.PS | 257502 1475046 47511 1GPU,I6K | 16.140.1 | 312202 | 283+0.2 | 257403 | 16.020.1 | 24.6+0.2
D oo oo .620. 1£0. +2. +2. 440, 5+1.
TCPUISKAPS | 113500 47506 34506 1GPUSK | 60.640.0 | 118.1203 | 109+2.6 | 101423 | 60.4+0.2 | 88.5+1.7

Table 7: Client performance breakdown (in ms).

Table 8: Hardware performance benchmark averaged over all frames of the Angel
Falls video, using 1080Ti vs. 2080Ti GPU(s).

1.00 — 1.0 i 50 1.00 w/ Skipped
) . W, Ippe
0.98 0.9 Los ? Za0 PP = ,?
096 & 07 306 530 . 0.95
£ 0094 o 4: 504 220 T
05 £ = 0.90
0.92 s 0.2 & 10 w/o Skipped
0.90 03 0.0 0 0.85
(a) oV X (b) bv 8 Fi6 F24 () ov Fs Fi6 F24 (d) ov Fs Fi6 F24 130 13 Ril30 13 R

Figure 6: Comparison of DeepVista with Flare on 8K streaming. Schemes: DV = DeepVista, F8 = Flare with
2x4 tiles, F16 = Flare with 4x4 tiles, F24 = Flare with 4x6 tiles. Subplots: (a) High Resolution Ratio (HRR),
(b) Consumed Block/Tile Ratio (CBR), (c) Downloaded bytes (normalized), (d) Stall (seconds per minute).

aggregated into 1-sec chunks. Even if only one frame is required,
the entire chunk needs to be downloaded. This restriction does not
exist in DeepVista, which makes the decision frame-by-frame due
to its real-time transcoding nature.

The most striking difference is shown in Figure 6(d). Flare incurs
long duration of stalls because of the high tile decoding overhead.
Based on our experience, given the same panoramic video, segment-
ing it into multiple tiles will increase the decoding overhead, in
particular when the number of to-be-decoded-tiles is larger than
the number of hardware decoders. This explains why Flare, which
uses a tile-based approach, incurs high decoding overhead when
streaming 8K 360 videos - for every chunk, up to 24 tiles in Flare
(36 in Rubiks [35]) need to be decoded. This issue does not exist in
DeepVista, where viewport extraction is offloaded to the edge.

7.7 Impact of Edge-side GPU

We wonder how a more powerful GPU can help improve the over-
all performance of DeepVista. Table 8 compares the performance
of two models: NVIDIA GTX 1080 Ti (launched in Q1 2017) and
NVIDIA RTX 2080 Ti (Q4 2018). We consider three working modes:
2GPU/16K, 1GPU/16K, and 1GPU/8K. Recall that all our results
reported in other subsections are obtained using 1080 Ti, whose
corresponding numbers in Table 8 are copied from Tables 4 and 5.

We make some interesting observations from Table 8. First, 2080
Ti’s decoding capability is superior — its decoding FPS almost dou-
bles compared to 1080 Ti. This shifts the edge-side bottleneck to
the encoding stage, which, to our surprise, is not improved. Due
to its significantly improved decoding performance, 2080 Ti yields
an FPS increase of 52%, 54%, and 47% for 2GPU/16K, 1GPU/16K,
and 1GPU/8K, respectively, compared to 1080 Ti. However, due to
16K videos’ extremely high resolution, a single 2080 Ti GPU is still
incapable of transcoding them at 30 FPS, not to mention an even
higher FPS such as 60 or 90. This makes DeepVista’s dual-GPU
transcoding scheme essential.

7.8 Viewport Prediction

Figure 7 compares the HRR under three viewport prediction meth-
ods: LSTM trained using 30 users (L30), LSTM trained using 3

Figure 7: Impact of
three viewport prediction
schemes on HRR.

randomly selected users (L3), and linear regression (R). For linear
regression, the history window is set to be half of the prediction
window according to Flare [47]. The workload is the Angel Falls
video replayed using the 12 users’ head movement traces over
unthrottled WiFi. The results confirm the effectiveness of LSTM:
compared to linear regression, it improves the median HRR by 7%
(96.4% vs. 89.4%, assuming skipped frames have an HRR of 0) or
5.3% (99.4% vs. 94.1%, ignoring skipped frames).

We make an interesting observation that the models trained
from 3 and 30 users yield similar HRR. This makes applying LSTM
easier, but appears to be counter-intuitive to our initial expectation
that LSTM requires a large number of users’ head movement data
for training. One possible reason might be that there exist some
intrinsic similarities among viewers when watching the same 360°
video. Another possible explanation is that, although LSTM outper-
forms linear regression by capturing non-linear patterns, the LSTM
models may still underfit the data due to the inherent complexity
of human head movement. Exploring whether more sophisticated
models can capture such complexities is our future work.

7.9 CPU, GPU, Memory, and Energy Usage

Edge-side. We report the resource consumption of DeepVista using
the same workload as that used in §7.3. We consider the 2GPU/16K
mode. The edge uses up to three logical CPU cores, and its maximum
main memory usage is 1.86 GB. We use the nvidia-smi tool [45] to
monitor the GPU usage. For each individual GPU, its maximum
utilization is 62%. The GPU memory usage is configurable by ad-
justing the decoded cache size (§5.3). When we set the cache size
to 60 half-16K frames, the maximum memory usage for each GPU
is 6.7 GB (out of 11 GB offered by GeForce GTX 1080 Ti).
Client-side Hardware Resource Utilization. We monitor the
client-side resource utilization using Android Profiler [31]. During
a 16K video playback, the maximum CPU usage is only 23%, and
the total memory usage is 0.6GB due to its shallow cache design.
Note that SGS8’s video memory is shared with its main memory.
Client-side Energy and Thermal Overhead. We fully charge
the SGS8 and then play the 16K Angel Fall video for 30 minutes us-
ing DeepVista. After that, the battery level drops to 91%. Our SGS8

WWW ’21, April 19-23, 2021, Ljubljana, Slovenia

does not expose an interface to measure the device’s internal tem-
perature. Nevertheless, after a 30-minute playback, the phone feels
only moderately warm. We believe the thermal overhead should
not be a concern given DeepVista’s low energy consumption.

8 CONCLUDING REMARKS

By judiciously offloading sophisticated tasks such as viewport-
adaptive transcoding and deep viewport prediction to the edge,
DeepVista enables streaming 16K 360° videos to commodity mo-
bile devices at the line rate. It makes an important initial step to-
wards efficient delivery and processing of extremely high-resolution
panoramic content. We believe that many concepts of DeepVista
are applicable to other multimedia applications such as volumetric
video streaming [34] and real-time VR/AR streaming [40, 44, 48].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments. This work
was supported in part by NSF Award #1903880 and #1915122, Project
16214817 from the Research Grants Council of Hong Kong, and the
5GEAR and FIT projects from Academy of Finland.

REFERENCES

[1] 2019 New Year Illumination in Moscow, Russia (360 Video). https://www.youtub
e.com/watch?v=LdpzR_pZ9-w.

[2] Android MediaCodec APIL. https://developer.android.com/reference/android/me
dia/MediaCodec.

[3] Angel Falls (360 Video). https://www.youtube.com/watch?v=L_tqK4eqelA.

[4] Big Screens, Big Data: The Future For Smartphones. https://www.npd.com/wps/
portal/npd/us/blog/2018/big-screens-big- data-the-future-for-smartphones/.

[5] CRF Guide (Constant Rate Factor in x264, x265 and libvpx). https://slhck.info/v
ideo/2017/02/24/crf-guide html.

[6] Explaining 360 video resolution: how to measure it, quality comparisons, and
other metrics to look at. https://www.immersiveshooter.com/2017/08/31/explai
ning-360-video-resolution-how-measure-quality-comparisons/.

[7] Google AR and VR: Bringing pixels front and center in VR video. https://blog.g

oogle/products/google-ar-vr/bringing- pixels-front-and-center-vr-video/.

Google Cardboard. https://vr.google.com/cardboard/index.html.

Google Compute Engine Pricing. https://cloud.google.com/compute/pricing.

Google Stadia. https://stadia.com/.

[11] Keras: The Python Deep Learning library. https://keras.io/.

[12] Making 12K 360° VR Streaming a Reality. https://medium.com/visbit/making- 12k-

360%C2%BA-vr-streaming-a-reality-why-and-how-we-did-it-ce65e9aa0bc3.

[13] New 8K OLED Displays for Tablets and Laptops: 8.3 and 13.3 Inches. https:

//www.anandtech.com/show/13742/new-8k-oled-displays.

[14] New York City VR 360 Drive (360 Video). https://www.youtube.com/watch?v=

2Lq86MKesG4.

Next-generation video encoding techniques for 360 video and VR.

https://code.fb.com/virtual-reality/next- generation-video-encoding-

techniques-for-360-video-and-vr/.

[16] Nvidia CUDA Runtime API https://docs.nvidia.com/cuda/cuda-runtime-api/.

[17] NVIDIA Launches Edge Computing Platform to Bring Real-Time AI to Global

Industries. https://nvidianews.nvidia.com/news/nvidia-launches-edge-comput
ing-platform-to-bring-real-time- ai- to- global-industries.

[18] Nvidia Video Codec SDK. https://developer.nvidia.com/nvidia-video-codec-sdk.

[19] NVIDIA Video Encode and Decode GPU Support Matrix. https://developer.nvid

ia.com/video-encode-decode-gpu-support-matrix.

Per-Title Encode Optimization. https://medium.com/netflix-techblog/per-title-

encode-optimization-7e99442b62a2.

[21] Programming with pcap. https://www.tcpdump.org/pcap.html.

[22] Roller Coaster (360 Video). https://www.youtube.com/watch?v=s14wKgPPQ-c.

[23] O. Abari, D. Bharadia, A. Duffield, and D. Katabi. Enabling High-Quality Unteth-

ered Virtual Reality. In Proceedings of NSDI, 2017.

[24] S. Afzal, J. Chen, and K. Ramakrishnan. Characterization of 360-Degree Videos.

In Proceedings of the Workshop on VR/AR Network, pages 1-6. ACM, 2017.

S. Aggarwal, S. Paul, P. Dash, N. S. Illa, Y. C. Hu, D. Koutsonikolas, and Z. Yan.

How to evaluate mobile 360° video streaming systems? In ACM HotMobile, 2020.

[26] P.R. Alface, M. Aerts, D. Tytgat, S. Lievens, C. Stevens, N. Verzijp, and J.-F. Macq.

16K Cinematic VR Streaming. In ACM Multimedia, 2017.

,—‘
= ——
2.2,

[15

[20

[25

[27

[28

[29]

(30]

(33]
(34]
(35]
(36]

[37

@
&,

[39

[40]

(41

[42

[43]

= s
AT)

N
)

[60

Wenxiao Zhang et al.

B. Chen, Z. Yan, H. Jin, and K. Nahrstedt. Event-driven stitching for tile-based
live 360 video streaming. In ACM MMSys, 2019.

E. Cuervo, A. Wolman, L. P. Cox, K. Lebeck, A. Razeen, S. Saroiu, and M. Musu-
vathi. Kahawai: High-Quality Mobile Gaming Using GPU Offload. In Proceedings
of ACM MobiSys, 2015.

M. Dasari, A. Bhattacharya, S. Vargas, P. Sahu, A. Balasubramanian, and S. R.
Das. Streaming 360 videos using super-resolution. In IEEE INFOCOM, 2020.
C.-L. Fan, J. Lee, W.-C. Lo, C.-Y. Huang, K.-T. Chen, and C.-H. Hsu. Fixation
Prediction for 360 Video Streaming in Head-Mounted Virtual Reality. In ACM
NOSSDAYV, 2017.

Google. Android Profiler. https://developer.android.com/studio/profile/android-
profiler.

M. Graf, C. Timmerer, and C. Mueller. Towards bandwidth efficient adaptive
streaming of omnidirectional video over HTTP: Design, implementation, and
evaluation. In Proceedings of MMSys 2017, pages 261-271. ACM, 2017.

Y. Guan, C. Zheng, X. Zhang, Z. Guo, and J. Jiang. Pano: Optimizing 360 video
streaming with a better understanding of quality perception. In SIGCOMM, 2019.
B. Han, Y. Liu, and F. Qian. ViVo: visibility-aware mobile volumetric video
streaming. In ACM MobiCom, 2020.

J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical 360-Degree
Streaming for Smartphones. In Proceedings of MobiSys 2018. ACM, 2018.
S.Hochreiter and J. Schmidhuber. Long Short-Term Memory. Neural Computation,
9(8):1735-1780, 1997.

X. Hou, S. Dey, J. Zhang, and M. Budagavi. Predictive View Generation to Enable
Mobile 360-degree and VR Experiences. In Proceedings of the Workshop on Virtual
Reality and Augmented Reality Network, pages 20-26. ACM, 2018.

J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in
HTTP-Based Adaptive Video Streaming With Festive. In ACM CoNEXT, 2012.
T. Kdmariinen, M. Siekkinen, J. Eerikdinen, and A. Yla-Jaaski. Cloudvr: Cloud
accelerated interactive mobile virtual reality. In ACM Multimedia, 2018.

Z.Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai. Furion: Engineering high-quality
immersive virtual reality on today’s mobile devices. In ACM MobiCom 2017.

Y. Li and W. Gao. Muvr: Supporting multi-user mobile virtual reality with
resource constrained edge cloud. In IEEE/ACM Symp. on Edge Computing, 2018.
L. Liu, R. Zhong, W. Zhang, Y. Liu, J. Zhang, L. Zhang, and M. Gruteser. Cutting
the cord: Designing a high-quality untethered vr system with low latency remote
rendering. In ACM MobiSys, 2018.

H. Mao, R. Netravali, and M. Alizadeh. Neural Adaptive Video Streaming with
Pensieve. In Proceedings of SIGCOMM 2017, pages 197-210. ACM, 2017.

J. Meng, S. Paul, and Y. C. Hu. Coterie: Exploiting Frame Similarity to Enable
High-Quality Multiplayer VR on Commodity Mobile Devices. In ASPLOS, 2020.
NVIDIA. NVIDIA System Management Interface. https://developer.nvidia.com
/nvidia- system-management-interface.

S. Petrangeli, V. Swaminathan, M. Hosseini, and F. De Turck. An HTTP/2-based
adaptive streaming framework for 360° virtual reality videos. In ACM MM 2017.
F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical viewport-adaptive
360-degree video streaming for mobile devices. In ACM MobiCom, 2018.

X. Ran, C. Slocum, M. Gorlatova, and J. Chen. ShareAR: Communication-efficient
multi-user mobile augmented reality. In ACM HotNets, 2019.

S. Shi, V. Gupta, M. Hwang, and R. Jana. Mobile vr on edge cloud: a latency-driven
design. In ACM MMSys, 2019.

S. Shi, V. Gupta, and R. Jana. Freedom: Fast recovery enhanced vr delivery over
mobile networks. In ACM MobiSys, 2019.

L. Sun, F. Duanmu, Y. Liu, Y. Wang, Y. Ye, H. Shi, and D. Dai. Multi-path multi-tier
360-degree video streaming in 5g networks. In ACM MMSys, 2018.

Z.Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing,
13(4):600-612, 2004.

L. Xie, X. Zhang, and Z. Guo. Cls: A cross-user learning based system for
improving qoe in 360 video adaptive streaming. In ACM Multimedia, 2018.

X. Xie and X. Zhang. POI360: Panoramic Mobile Video Telephony over LTE
Cellular Networks. In Proceedings of CONEXT 2017, pages 336-349. ACM, 2017.
T. Xu, B. Han, and F. Qian. Analyzing viewport prediction under different VR
interactions. In ACM CoNEXT, 2019.

Z.Yan and C. W. Chen. RnB: Rate and Brightness Adaptation for Rate-distortion-
energy Tradeoff in HTTP Adaptive Streaming over Mobile Devices. In ACM
MobiCom, 2016.

X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic Approach for
Dynamic Adaptive Video Streaming over HTTP. In ACM SIGCOMM, 2015.

A. Zare, A. Aminlou, M. M. Hannuksela, and M. Gabbouj. HEVC-compliant tile-
based streaming of panoramic video for virtual reality applications. In Proceedings
of MM 2016, pages 601-605. ACM, 2016.

Y. Zhang, Y. Guan, K. Bian, Y. Liu, H. Tuo, L. Song, and X. Li. EPASS360: QoE-
aware 360-degree Video Streaming over Mobile Devices. IEEE Transactions on
Mobile Computing, 2020.

Y. Zhang, P. Zhao, K. Bian, Y. Liu, L. Song, and X. Li. DRL360: 360-degree Video
Streaming with Deep Reinforcement Learning. In IEEE INFOCOM, 2019.

https://www.youtube.com/watch?v=LdpzR_pZ9-w
https://www.youtube.com/watch?v=LdpzR_pZ9-w
https://developer.android.com/reference/android/media/MediaCodec
https://developer.android.com/reference/android/media/MediaCodec
https://www.youtube.com/watch?v=L_tqK4eqelA
https://www.npd.com/wps/portal/npd/us/blog/2018/big-screens-big-data-the-future-for-smartphones/
https://www.npd.com/wps/portal/npd/us/blog/2018/big-screens-big-data-the-future-for-smartphones/
https://slhck.info/video/2017/02/24/crf-guide.html
https://slhck.info/video/2017/02/24/crf-guide.html
https://www.immersiveshooter.com/2017/08/31/explaining-360-video-resolution-how-measure-quality-comparisons/
https://www.immersiveshooter.com/2017/08/31/explaining-360-video-resolution-how-measure-quality-comparisons/
https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/
https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/
https://vr.google.com/cardboard/index.html
https://cloud.google.com/compute/pricing
https://stadia.com/
https://keras.io/
https://medium.com/visbit/making-12k-360%C2%BA-vr-streaming-a-reality-why-and-how-we-did-it-ce65e9aa0bc3
https://medium.com/visbit/making-12k-360%C2%BA-vr-streaming-a-reality-why-and-how-we-did-it-ce65e9aa0bc3
https://www.anandtech.com/show/13742/new-8k-oled-displays
https://www.anandtech.com/show/13742/new-8k-oled-displays
https://www.youtube.com/watch?v=2Lq86MKesG4
https://www.youtube.com/watch?v=2Lq86MKesG4
https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://code.fb.com/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://docs.nvidia.com/cuda/cuda-runtime-api/
https://nvidianews.nvidia.com/news/nvidia-launches-edge-computing-platform-to-bring-real-time-ai-to-global-industries
https://nvidianews.nvidia.com/news/nvidia-launches-edge-computing-platform-to-bring-real-time-ai-to-global-industries
https://developer.nvidia.com/nvidia-video-codec-sdk
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix
https://developer.nvidia.com/video-encode-decode-gpu-support-matrix
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
https://medium.com/netflix-techblog/per-title-encode-optimization-7e99442b62a2
https://www.tcpdump.org/pcap.html
https://www.youtube.com/watch?v=s14wKgPPQ-c
https://developer.android.com/studio/profile/android-profiler
https://developer.android.com/studio/profile/android-profiler
https://developer.nvidia.com/nvidia-system-management-interface
https://developer.nvidia.com/nvidia-system-management-interface

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Motivation
	4 DeepVista Overview
	5 System Design
	5.1 Server-side Content Preparation
	5.2 16K-to-8K Viewport-aware Transcoding
	5.3 VS/PS Coordination & Buffer Management
	5.4 Viewport Prediction
	5.5 Rate Adaptation for Real Time Transcoding
	5.6 Client-side Design

	6 System Implementation
	7 Evaluation
	7.1 Experimental Setup
	7.2 Benchmarking Hardware Performance
	7.3 DeepVista Overall Performance
	7.4 16K Streaming Quality of Experience (QoE)
	7.5 DeepVista Performance Breakdown
	7.6 Comparison with Flare
	7.7 Impact of Edge-side GPU
	7.8 Viewport Prediction
	7.9 CPU, GPU, Memory, and Energy Usage

	8 Concluding Remarks
	Acknowledgments
	References

