DTP: Deadline-aware Transport Protocol

Hang Shi

Tsinghua University
shi-h15@mails.tsinghua.edu.cn

Feng Qian
University of Minnesota - Twin Cities
fenggian@umn.edu

ABSTRACT

More and more applications have deadline requirements for
their data delivery such as 360° video, cloud VR gaming and
autonomous driving. Those applications usually are band-
width hungry. Fortunately, the data of those applications
can be split into multiple blocks with different priorities
making it possible to reduce the bandwidth consumption by
prioritizing some blocks over others. However, the existing
transport layer is too primitive to accomplish that. So those
applications are forced to build their own customized and
complex wheels. In this work, we propose Deadline-aware
Transport Protocol (DTP) to provide deliver-before-deadline
service. The application expresses the deadline and metadata
of the data to DTP. Then DTP tries to meet the requirement
by scheduling blocks. Compared to existing protocols, DTP
provides meaningful service and reduces the burden of the
application developer.

CCS CONCEPTS

« Networks — Transport protocols; Network protocol
design; Public Internet.

KEYWORDS
Deadline, Multiplexed stream transport, QUIC

ACM Reference Format:

Hang Shi, Yong Cui, Feng Qian, and Yuming Hu. 2019. DTP: Deadline-
aware Transport Protocol. In 3rd Asia-Pacific Workshop on Network-

ing 2019 (APNet °19), August 17-18, 2019, Beijing, China. ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/3343180.3343191

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

APNet ’19, August 17-18, 2019, Beijing, China

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7635-8/19/08...$15.00
https://doi.org/10.1145/3343180.3343191

Yong Cui
Tsinghua University
cuiyong@mail.tsinghua.edu.cn

Yuming Hu
Tsinghua University
hym17@mails.tsinghua.edu.cn

1 INTRODUCTION

A wide spectrum of emerging applications such as VR, AR,
autonomous driving, ultra-low latency gaming, and large-
scale 10T systems are being quickly commercialized. Net-
working plays an increasingly important role in supporting
these applications as fostered by the ubiquitous wireless ac-
cess in the last mile, the proliferation of the edge/cloud infras-
tructures, and the advance of computation-intensive machine
learning and Al For example, a remote cloud pre-renders
HD VR scenes allowing the client to fetch and render them
at a very low cost [6]; AR applications offload sophisticated
object recognition tasks to a nearby edge [7]; self-driving
cars can communicate among themselves to make road de-
tection and path planning safer and more accurate [15]. All
these tasks need underlying support from robust, reliable,
and high-performance networking.

Compared to traditional network-intense applications such
as web, FTP, and multimedia streaming, the above emerging
applications exhibit several unique differences from the per-
spective of network traffic workload and QoE requirements.

(1) They need to deliver multiple concurrent blocks with
varying priorities. Take VR content delivery as an ex-
ample. In order to reduce the network bandwidth con-
sumption, recent systems [3, 13] spatially divide the
scene into tiles, and selectively transfer the tiles based
on the viewer’s orientation. Therefore, the priority of
a tile depends on the likelihood of it being perceived
by the viewer.

(2) The applications’ content delivery is delay-sensitive
with clearly definable deadlines. For VR content deliv-
ery, each tile’s deadline is its playback time minus local
processing time; for 3D environment sharing among
connected vehicles, the delivery deadline of a 3D ob-
ject (e.g., an incoming vehicle) can be calculated based
on the object’s distance and moving speed (the motion
vector [15]). If the content cannot be delivered by the
deadline, the delivery efforts may be wasteful.

(3) The application should be capable of dynamically ad-
justing the priority and the deadline, as well as cancel-
ing a data block even after it is passed to the transport

https://doi.org/10.1145/3343180.3343191
https://doi.org/10.1145/3343180.3343191

APNet ’19, August 17-18, 2019, Beijing, China

layer’s send buffer. This may occur when, for exam-
ple, the VR server has estimated a more accurate head
pose position, or when a self-driving car updates a 3D
object’s moving trajectory, distance, or speed.

In §2, we showcase more examples that call for the above
features. Admittedly, they can be realized at the application
layer. Many existing systems indeed did that, with the down-
side being the additional development overhead and inflated
application code base. Realizing all transport features in the
application layer also violates layered principle in network-
ing, making the application hard to develop and maintain.
In addition, realizing some of the features such as canceling
a piece of committed data may even require highly intrusive
modification such as injecting an OS kernel module [13].

Motivated by the above use cases, in this position paper,
we propose DTP (Deadline-aware Transport Protocol), a
transport protocol to support the aforementioned features:
content priority, deadline, dynamic adjusting them, and can-
celing enqueued data. DTP thus lets developers focus on the
application logic (e.g., how to compute the deadline) instead
of the common transport-layer mechanism required by the
applications (e.g., how to enforce the deadline). We use QUIC
as the base transport protocol due to its increasing popu-
larity, its full user-space implementation, and its support of
concurrent streams[1] that provide a useful building block
for DTP.

Despite the straightforward idea, developing DTP and
integrating it into QUIC is challenging in several aspects.
How to properly design the application API? How to make
DTP’s data block based content delivery compatible with
QUIC’s byte stream oriented paradigm? How to allow a block
to be safely canceled? How to design a scheduler that jointly
considers the blocks’ priority and deadline? We provide high-
level solution directions in the remainder of this paper.

Overall, the contributions made by this paper is two-fold.
First, we identify common transport-layer requirements from
emerging applications such as AR, VR, and autonomous driv-
ing. Second, we propose DTP and sketch its key design. We
are currently implementing DTP, and plan to thoroughly
evaluate it on real applications and to make our implemen-
tation open-source.

2 BACKGROUND AND MOTIVATION

Emerging applications such as 360° video and cloud VR/gam-
ing has the deadline requirement for its data transfer. To get
a smooth user experience, they use similar techniques such
as viewport prediction and transfer prioritization. We first
conduct case studies of those applications and then motivate
our new transport protocol.

H. Shi et al.

2.1 Case study 1: 360° video streaming

360° video is gaining popularity on video platforms such as
YouTube and Facebook. User is free to change her view di-
rection when watching the video and get an immersive expe-
rience. It is realized by projecting the panoramic screen onto
the display based on the user’s viewport. Many researchers
developed tile-based streaming[9, 14] for 360° video. The
panoramic scene is divided into many tiles. Instead of stream-
ing the whole panoramic scene, it only streams those tiles
which fall into the user’s viewport[13], or stream in-viewport
tiles in high quality compared to non-viewport tiles[3]. Then
on the client side, the tiles are get decoded in parallel and
combined together. The delay of one tile will stall the whole
video streaming otherwise user will see the fragmented con-
tent.

The tile-based solution is simple and effective in reducing
the bandwidth requirement and smoothing the playback
experience. One key module of the tile-based streaming is to
rank and determine the tile set to stream. The tile to stream
should be chosen based on the attention of the user. The
more likely it is to be viewed by the user, the more important
is the tile. So researchers develop various viewport adaptive
methods[3, 13, 14] to facilitate the tile-based streaming. One
common approach is to predict the user’s head movement to
determine which tiles a user is going to watch in the next few
seconds then request those tiles. To cope with the prediction
error, the server needs to be able to update rankings of the
tile set based on the most recent prediction result.

2.2 Case study 2: cloud VR gaming

Virtual reality can provide user completely immersive expe-
rience. Due to the computing power and thermal limit of the
mobile phone, it is hard to realize high-quality VR experience.
To overcome those limitations, many studies try to leverage
the cloud/edge computation power to render high-quality
VR content and stream it back to the mobile device. They
split the VR scene to multiple slices and do parallel render-
ing, encoding and transferring. This is similar to the 360°
video. The difference with 360° video is VR game content
can be split into dynamic foreground object and relatively
static background scene. They have different movement pat-
terns. The foreground object is interactive and sometimes
maybe manipulated by the user. However, the background
scene is relatively static and only change when user trigger
movement in the virtual world and the speed of the virtual
world movement is not the same as the user movement in
the real world unlike the viewport change triggered by head
movement.

Based on this observation, Zeqi et al. [6], Teemu et al. [5]
develop cooperative rendering architecture called Furion
and CloudVR. The mobile device is responsible to render the

DTP: Deadline-aware Transport Protocol

dynamic foreground object and the cloud server handles the
background scene rendering. CloudVR supports dynamic
object placement. When the user begins to interact with an
object, the object will be fetched from the server to be ren-
dered locally. Furion only has a single foreground interactive
object but it does prediction and pre-fetch of the background
scene based on user location and movement in the virtual
world. Luyang et al. [8] also develop a remote rendering
untethered VR system. It uses the display VSync signal to
synchronize the client displaying and remote server render-
ing. Missing the VSync signal can lead to severe display delay.
This VSync delay can be viewed as the deadline of the object
transmission.

2.3 Case study 3: cooperative augmented
vehicular reality

Autonomous vehicles use a variety of sensors such as Li-
DAR, Radar and stereo cameras to sense the surroundings.
These sensors scan the surrounding environment periodi-
cally. However, they have limited range and only have line-of-
sight visibility so they cannot perceive far away or occluded
objects. To overcome those limitations, Hang et al. [15] pro-
posed the Augmented Vehicular Reality(AVR), which extends
the visual horizon of vehicles by wirelessly sharing visual
information between each other.

Sharing the visual information wirelessly between vehicle
faces several challenges. First, the bandwidth requirement
of transmitting full visual information is far exceeding the
current Vehicle-to-Vehicle wireless technology. To reduce
the bandwidth requirement of communication, the sender
can prioritize some objects to others. The visual information
can be separated into two parts: static 3D map and dynamic
objects. Those dynamic objects can be split into multiple
tiers based on their distance/velocity. Then the sender can
choose to send only the critical objects to another vehicle,
saving the bandwidth.

Second, the latency requirement of that information is
stringent because the vehicle is fast moving and needs to
react quickly. By applying motion prediction on some objects
such as cars and human, it can avoid sending them. The
motion prediction can also facilitate the prioritization of
objects.

2.4 Common transport requirements of
emerging real-time applications

We summarize the common transport requirements of those

applications as follows.

Deadline requirement for its block-based data trans-
mission. Those applications all generate and process the
data in block fashion and each block has a clear deadline

APNet ’19, August 17-18, 2019, Beijing, China

requirement. A partial delivered block is useless for those
applications. Each block can be independently processed. In
360° video, each tile in one GOP is a block and the deadline
of tiles and objects is its render time minus local process-
ing time. In cloud VR gaming, each background scene and
foreground object is a block. Missing deadline will cause
the blank or stalled scene. In autonomous driving, each 3D
object is a block and its deadline can be calculated based on
its distance and moving speed.

Multiple blocks with different priorities and deadlines.
In those applications, there are many blocks need to be trans-
ferred. Those blocks have different impact on application
performance making it possible to reduce the bandwidth
consumption by prioritizing some blocks over others.

In 360° video, the priority of the tile can be set according
to the user’s viewport. The tile in the center of the viewport
has a higher priority compared to peripheral tiles.

In cloud VR gaming, the foreground objects and back-
ground scene are separate blocks. Foreground objects have a
higher priority than the background scene. The deadlines of
foreground objects are tighter than one of the background
scene. Different foreground objects can also have different
priorities and deadlines based on the possibility of user in-
teraction.

In autonomous driving, different dynamic objects have
different priorities. One way to set the priority of an object is
to set it by how dangerous it is to other vehicles if they do not
have the sight of that object. For example, the fast oncoming
vehicle has a higher priority to the following vehicle than a
slow-moving and far-away bicycle.

Predictive fetching and correction of the prediction.
To get a smooth user experience, those applications usually
use predictive fetching/rendering based on possible move-
ment trajectory. These predictions may have errors and need
to be corrected immediately.

In 360° video, the tile priority is determined based on the
viewport. And the viewport is constantly changing. It is
necessary to use the user head movement trace to predict
the viewport in the next few seconds. When the prediction
is updated, the tile priority should be updated too. If the
user completely turns its attention away from the previous
prediction, then the tile transmission should be canceled too.

In cloud VR gaming, the background scene is fetched based
on the avatar location and possible movement direction. The
foreground object is also dynamically changed based on the
user interaction intention. Similar to 360° video they both
involve the prediction and prefetch.

In autonomous driving, only part of the frame which is
out of line-of-sight is shared with other vehicles. The relative
position the occlusion is constantly changing. It is necessary
to predict the occlusion status to determine the priority of the

APNet ’19, August 17-18, 2019, Beijing, China

object. The movements of other objects need to be predicted
to determine its priority too. Those predictions may be wrong
and should be updated too.

2.5 Lack of support in current transport
protocols

In short, those applications need a transport solution which
can provide a dynamic, multi-block based and deliver-before-
deadline service. No existing transport protocol can provide
such a service. TCP and UDP are single-stream oriented.
And it is not aware of the deadline of the data transmission.
QUIC has multi-stream support. Each stream can be assigned
with a priority according to its RFC[4]. However, it lacks the
deadline support and the priority usage in the scheduler is
not well studied too. QUIC is also providing reliable delivery
which conflicts with the real-time nature of the above ap-
plications. Those applications prefer the data freshness over
reliability. Real-time Transport Protocol(RTP)[16] does favor
freshness over reliability but it is not aware of the deadline
and does not provide block-based delivery either. The lack
of support of current transport protocols are summarized in
table 1.

Features TCP UDP RTP QUIC Ideal
Block-based No Yes No No Yes
Deadline-aware No No No No Yes
Timeliness No No Yes No Yes
Prioritization No No Static Static Dynamic

Table 1: Comparison of different transport protocols

Without proper transport protocol support, applications
are forced to build their own wheels. Each application has to
handle the prioritization, sending and acknowledging of data
etc. which are tedious and complex, resulting in a bloated
code base. Otherwise, they just use some off-the-shelf proto-
cols such as TCP which results in the inferior performance.
We propose Deadline-aware Transport Protocol (DTP) to
provide such a service. DTP follows the classic principle of
separating policy and mechanism. Application provide the
requirement and necessary metadata of the data to transport
layer. The metadata indicates the policy for how the data
should be transmitted. Transport layer provides the common
mechanism to implement the policy. The details of the policy
execution process is encapsulated at the lower level, which
frees the application from the micro management job of the
data delivery.

3 DESIGN

DTP is extended based on QUIC because QUIC provides
many useful building blocks including full encryption, flexi-
ble congestion control and multiplexing without head-of-line

H. Shi et al.

blocking etc. QUIC is also a user space library and has many
well-supported implementations. In this section, we discuss
the design of DTP.

3.1 Architecture

The sender side architecture is shown in section 3.1. When
block along with its metadata is sent from the application
to the transport layer, it will be put into a dedicated buffer.
Then scheduler will choose the block to send. After that, the
packetizer will divide those blocks into packets. A congestion
control module is responsible to send packets, collects ACK,
do packet loss detection. Then it will put the lost data back
to the retransmission queue of each block. And send back
network status such as bandwidth and RTT to the scheduler
to facilitate the schedule decision.

We made several changes to QUIC architecture. First and
foremost, DTP extend the QUIC to support the block based
delivery without changing the wire-format. QUIC RFC[4]
requires QUIC implementation to support the stream priori-
tization. So an intuitive way of mapping block to stream is
to put blocks with same priority into one stream. In this way,
we can reuse most part of a QUIC scheduler for prioritization.
However, this mapping faces an inherent problem. QUIC’s
reliable byte stream nature conflicts the timeliness and dy-
namic of block delivery. Suppose one block in the middle of
stream 1 passed its deadline and is decided to be dropped.
There is no easy way to mark the specified block as obsolete.
Existing extension to add unreliable or partial reliable trans-
mission to QUIC cannot accomplish that. Lubashev et al. [10]
propose to mark parts of the stream(to a certain byte offset)
as unreliable. Both solutions cannot specify a byte range to
be unreliable. This solution also introduces many other com-
plexities. Such as the conflict between max block size and
the max stream data size for flow control. What if the total
block size exceeding the flow control limit of the stream?
And we also need another framing sub-protocol(specifying
delimiter) to assemble blocks to stream. This will introduce
extra processing and transport overhead.

We take another simple approach: mapping block to QUIC
stream one to one. If the block is decided to be dropped, we
just utilize the standard stream cancellation process of exist-
ing QUIC protocol, which is sending the RESET_STREAM
frame to cancel the stream. The RESET_STREAM frame will
trigger the flow control update as the normal QUIC. Using
this mapping, we can reuse the max stream data size as the
max block size too so don’t need to introduce a new trans-
port parameter during the handshake. We can also map the
block id to stream id without breaking the stream id semantic
using eq. (1). The stream type bits is defined in QUIC RFC[4].
By using the FIN bit of the STREAM frame, the receiver can
easily determine whether the block transmission is finished.

DTP: Deadline-aware Transport Protocol

> Control flow
— Data flow

App level : Transport level Network

Congestion
Control

Figure 1: The architecture of DTP

stream_id = (block_id << 2) & stream_type_bits (1)

Second, we disable the multiplexing of different streams
into one packet as suggested in QUIC RFC[4]. The reason
is twofold. First is to avoid one packet loss blocks multiple
blocks’ progress. Second is to simplify the retransmission
process when one of blocks get dropped. Without multi-
plexing, retransmission of the lost packet will involve fewer
payload changes.

Third, the scheduler obtains networking estimate from the
congestion control module. The bandwidth can be calculated
using the congestion window (like Cubic) or the delivery rate
(like BBR). We set the default congestion control algorithm
to BBR because it won’t fill the in-network buffer.

3.2 API

As pointed out in section 2.4, what applications really need is
a block-based delivery. When we talk about the deadline, the
meaningful deadline to the application is the block comple-
tion time i.e., the time between when the block is generated
at the sender and when the block is submitted to the appli-
cation at the receiver. We extend the BSD socket API to let
application attach metadata along with the data block, as is
shown in fig. 2. Those metadata is listed as follows.

(1) Each block has a unique identifier, represented by an
integer id. The id will be sent to the receiver so sender
and receiver can use this to identify the block. This
argument should be carried when requesting an update
or retreat of a block.

(2) Each block has a deadline requirement. The deadline
argument represents the desired block completion time
in milliseconds.

(3) Each block has its own importance to the user experi-
ence. The application can assign the block a priority
to indicate the importance of the block. The lower the
priority value, the more important the block thus the
more likely the block get delivered.

APNet ’19, August 17-18, 2019, Beijing, China

Sender:

int send(int fd, void =block, size_t size, int id,
int priority , int deadline);

int update(int fd, int id, int priority , int deadline);
int retreat (int fd, int id);
Receiver:

int receive (int fd, void *block, size t size, int «id);

Figure 2: Interfaces of DTP

The API of DTP is shown in fig. 2. The fd is the QUIC
connection id. The update and retreat function is used to up-
date or cancel the block sending. The return value of update
and retreat function indicate the success of the action. Both
functions will return 0 if succeeds, -1 if fails.

Both send and receive are running in non-block mode. The
return value of send is the delivery rate of blocks with the
same priority. The application can utilize this information
to adjust the sending rate of each priority. For example, if
the application finds the lowest priority blocks always get
dropped due to the limited bandwidth, the application can
stop generate those blocks to save the computation power.

The receive function will copy the receiving block into
the buffer allocated by the caller (Specified by void * block
and size_tsize). The id of the block will be put into the id
argument. receive function will only copy the full received
block. If there is still packets of the block that has not ar-
rived, receive will not return those block to application. That
is because the block may get canceled or dropped by the
sender. A partial block will cause confusion of the receiver.
The return value of receive is the actual size of the block.
If the block size specified in the receive function is smaller
than the size of the receiving block, then the block will be
partial copied. Next time receive function is called, the re-
maining block will be copied and the id will be the same.
This fragmentation will give extra burden to applications. To
avoid the fragmentation, sender and receiver can negotiate
a max block size when handshaking.

3.3 Deadline-aware scheduler

We extend the scheduler in QUIC to take into account many
factors when picking blocks in sender buffer to send. The
goal of the schedule is to deliver as much as high priority
data before the deadline and drop obsolete or low-priority
blocks. To achieve this, the scheduler utilizes both bandwidth
and RTT measurement provided by the congestion control
module and the metadata of blocks provided by the applica-
tion to estimate the block completion time. The scheduler
will run each time ACK is received or the application push
the data.

APNet ’19, August 17-18, 2019, Beijing, China

Currently, the scheduler in QUIC will only consider the
priority of the stream. However, this simple algorithm can-
not get optimal result in some cases. Suppose the bandwidth
reduces and the scheduler choose not to send the low pri-
ority stream. Then the bandwidth is restored. In this time,
the data block with lower priority is closer to the deadline
then the high priority stream. If in this round the scheduler
still chooses to send the high priority stream, then the low
priority stream may miss the deadline next round and get
dropped. In some cases, the scheduler can choose to send a
low priority stream because it’s more urgent. But it should
do so without causing the high priority stream missing the
deadline.

Another factor which needs to be taken into account is the
block remaining size to transfer. Dropping a block when it is
about to finish transmission will waste all previous resource
because partial delivery of a block is meaningless.

remaining size RTT

bandwidth 2
(2)

We use a function f(deadline, priority, remaining size, RTT,
bandwidth) to combine all those factors into a Real Priority
value (smaller value means higher priority). Then the sched-
uler just picks the block with the smallest value. One example
function is shown in eq. (2). The function calculates the block
remaining transmission time using % + g then
compare it to the deadline. The more close to the deadline,
the smaller the real priority value. In this way, the scheduler
can take into account the deadline approaching and priority
into account. Blocks which are severely overdue will get big
real priority value and can be dropped accordingly.

The scheduler algorithm works as follows. First, the sched-
uler updates the Real Priority value based on the function
specified by the application. If the Real Priority is bigger
than a threshold o which is also set by the application. Then
it will drop the block and send the RESET STREAM frame
to notify the other end. After that the block with the lowest
Real Priority value is returned.

)

Real Priority = priorityx|deadline—(

4 RELATED WORK

Traditional real-time application optimization There
is a lot of work regarding how to improve traditional real-
time application performance. The typical example is video
conferencing. Many solutions couples the application level
rate adaptation along with network transport.

WebRTC, Google Hangouts, Apple Facetime both take a
reactive approach to adjust the bitrate of the video. When
congestion happens, it will send the already encoded frame
anyway, then reduce the encoding bitrate for future frames.
This reactive process is slow and can not mitigate congestion.

H. Shi et al.

Salsify[2] propose to codesign the encoder and transport
layer together to fine-tune the encoded frame size accord-
ing to network capacity. However, this approach requires
to replace the whole stack and does not support hardware
encoder and decoder.

Real-time transport protocol There are also many trans-
port protocols to support these real-time applications. RTP
and RTCP were designed at the mid-1990s when the network
condition is suboptimal. To make use of such a network,
they design many complex mechanisms such as redundancy,
time sync etc.. However, due to its complexity and many
optimizations just for media transportation, it is not easy
to deploy and adapt to newer applications and networking
environment.

Perkins et al. [12] discuss the mapping between RTP and
QUIC and extend QUIC to support real-time media transport.
Palmer et al. [11] propose extension for QUIC to support
video streaming. Compared with their proposals, our pro-
posal is more general and focus on deadline requirements
for emerging applications instead of optimizing for specific
existing application.

5 CONCLUSION

Motivated by emerging real-time applications, we design a
new transport protocol DTP to meet the deadline require-
ment of data delivery. We further design a new scheduler to
prioritize some blocks when network bandwidth is limited.
Our protocol is extended based on QUIC and fully compat-
ible with QUIC wire format. Using our protocol can free
the application developer from worrying about the network
conditions.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback on
the paper. This work is supported by National Key R&D
Program of China (no. 2018YFB1800303) and NSFC Project
(No. 61872211).

REFERENCES

[1] Yong Cui, Tianxiang Li, Cong Liu, Xingwei Wang, and Mirja Kith-
lewind. 2017. Innovating transport with QUIC: Design approaches
and research challenges. IEEE Internet Computing 21, 2 (2017), 72-76.

[2] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S
Wahby, and Keith Winstein. 2018. Salsify: Low-Latency Network Video
through Tighter Integration between a Video Codec and a Transport
Protocol. In NSDI 18.

[3] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng Li, and Lei
Han. 2018. Rubiks: Practical 360-Degree Streaming for Smartphones.
In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services. ACM, 482-494.

[4] Jana Iyengar and Martin Thomson. 2019. QUIC: A UDP-Based Multi-
plexed and Secure Transport. Internet-Draft draft-ietf-quic-transport-19.

DTP: Deadline-aware Transport Protocol

[10

—

[t

IETF Secretariat. http://www.ietf.org/internet-drafts/draft-ietf-quic-
transport-19.txt

Teemu Kamarainen, Matti Siekkinen, Jukka Eerikdinen, and Antti Yla-
Jaaski. 2018. CloudVR: Cloud Accelerated Interactive Mobile Virtual
Reality. In 2018 ACM Multimedia Conference on Multimedia Conference.
ACM, 1181-1189.

Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, and Ningwei Dai. 2017.
Furion: Engineering High-Quality Immersive Virtual Reality on To-
day’s Mobile Devices. In Proceedings of the 23rd Annual International
Conference on Mobile Computing and Networking. ACM, 409-421.
Luyang Liu, Hongyu Li, and Marco Gruteser. 2019. Edge Assisted
Real-time Object Detection for Mobile Augmented Reality. In ACM
MobiCom.

Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin Liu, Jiansong
Zhang, Lintao Zhang, and Marco Gruteser. 2018. Cutting the cord: De-
signing a high-quality untethered VR system with low latency remote
rendering. In Proceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services. ACM, 68-80.

Xing Liu, Qingyang Xiao, Vijay Gopalakrishnan, Bo Han, Feng Qian,
and Matteo Varvello. 2017. 360 innovations for panoramic video stream-
ing. In Proceedings of the 16th ACM Workshop on Hot Topics in Networks.
ACM, 50-56.

Igor Lubashev. 2018. Partially Reliable Message Streams for QUIC.
Internet-Draft draft-lubashev-quic-partial-reliability-03. IETF Sec-

retariat. http://www.ietf.org/internet-drafts/draft-lubashev-quic-

[11]

[12]

[13]

[14]

[15]

[16]

APNet ’19, August 17-18, 2019, Beijing, China

partial-reliability-03.txt

Mirko Palmer, Thorben Kriiger, Balakrishnan Chandrasekaran, and
Anja Feldmann. 2018. The QUIC Fix for Optimal Video Streaming.
In Proceedings of the Workshop on the Evolution, Performance, and
Interoperability of QUIC. ACM, 43-49.

Colin Perkins and Jorg Ott. 2018. Real-time Audio-Visual Media Trans-
port over QUIC. In Proceedings of the Workshop on the Evolution, Per-
formance, and Interoperability of QUIC. ACM, 36-42.

Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakrishnan. 2018.
Flare: Practical viewport-adaptive 360-degree video streaming for mo-
bile devices. In Proceedings of the 24th Annual International Conference
on Mobile Computing and Networking. ACM, 99-114.

Feng Qian, Lusheng Ji, Bo Han, and Vijay Gopalakrishnan. 2016. Op-
timizing 360 video delivery over cellular networks. In Proceedings of
the 5th Workshop on All Things Cellular: Operations, Applications and
Challenges. ACM, 1-6.

Hang Qiu, Fawad Ahmad, Ramesh Govindan, Marco Gruteser, Fan
Bai, and Gorkem Kar. 2017. Augmented vehicular reality: Enabling
extended vision for future vehicles. In Proceedings of the 18th Interna-
tional Workshop on Mobile Computing Systems and Applications. ACM,
67-72.

H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. 2003. RTP:
A Transport Protocol for Real-Time Applications. STD 64. RFC Editor.
http://www.rfc-editor.org/rfc/rfc3550.txt

http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-19.txt
http://www.ietf.org/internet-drafts/draft-ietf-quic-transport-19.txt
http://www.ietf.org/internet-drafts/draft-lubashev-quic-partial-reliability-03.txt
http://www.ietf.org/internet-drafts/draft-lubashev-quic-partial-reliability-03.txt
http://www.rfc-editor.org/rfc/rfc3550.txt

	Abstract
	1 Introduction
	2 Background and motivation
	2.1 Case study 1: 360° video streaming
	2.2 Case study 2: cloud VR gaming
	2.3 Case study 3: cooperative augmented vehicular reality
	2.4 Common transport requirements of emerging real-time applications
	2.5 Lack of support in current transport protocols

	3 Design
	3.1 Architecture
	3.2 API
	3.3 Deadline-aware scheduler

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

