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Abstract—Many applications have deadline requirements for
their data delivery, such as real-time video, multiplayer gam-
ing, and cloud AR/VR. However, the current transport layers’
APIs are too primitive to accomplish that. Therefore, today’s
applications are forced to build their customized and complex
deadline-aware data delivery mechanisms. In this work, we
design Deadline-aware Transport Protocol (DTP) to provide
deliver-before-deadline service over the wild Internet. To fulfill
the diverse and sometimes conflicting requirements over the fluc-
tuating network, we design the Active-Drop-at-Sender scheduler
and adaptive redundancy. We build DTP by extending QUIC,
and then develop two applications that utilize DTP. Extensive
evaluations demonstrate that DTP is easy to use and can bring
significant performance improvement (1.2x to 5x) compared to
vanilla QUIC.

I. INTRODUCTION

Many applications have requirements for their data to arrive
before a certain time, i.e., deadline. Data missing the deadline
is useless to the application because it will be obsoleted by
newer data. Such applications include real-time media and
online multiplayer gaming. For example, the end-to-end delay
of a video conferencing system should be below a tolerable
threshold (about 100ms) to enable participants to interact
naturally [1]. Novel applications such as mobile virtual reality
(VR) offloading require the motion-to-photon latency below
25ms to avoid motion sickness [2]. For online multiplayer
gaming, the server aggregates each player’s actions every 60ms
and distributes those to other players, so each player’s state
is kept in sync with the server. Packets missing this round
of synchronization will be overwritten by future packets. In
other words, they all have a deadline requirement for their
transmission.

A large body of work in several communities aims at
meeting deadline requirements for data delivery. Layer 2
and 3 techniques [3], [4] and in-network cooperation effort
[5], [6] require either modification to in-network hardware
or cooperation between end hosts and in-network elements,
which is not feasible on the wild Internet. Traditional coupled
solutions [7], [8] and extension to transport protocols [9]–[12]
all suffer from deployment issues. In this work, we instead
focus on providing the deadline-aware delivery service for
applications over the wild Internet. Designing such a transport
protocol is challenging on multiple fronts.

1) Applications’ transmission requirements are highly di-
verse. The protocol should provide a general abstraction

for applications to express their requirements and pro-
vide useful metadata.

2) Unlike the data center network, we can neither change
the in-network hardware nor regulate other competing
connections’ behaviors, so the delay inside the network
is out-of-control.

3) Each block may have distinct and conflicting properties
such as deadline, priority, and dependency.

To address the above challenges, we first analyze the com-
mon requirements and properties of representative emerging
applications (Section II) and find that they all have multiple
data blocks of different priorities, making it possible to allocate
network resources to high priority ones. Based on those
insights we propose a generic and easy-to-use block-based
protocol, which we call DTP1, for deadline-aware data transfer.
We then analyze the latency components of the delivery
process and find that we can reduce the delay at the sender and
retransmission time by Active-Drop-at-Sender (ADS) schedul-
ing and using redundancy respectively (Section III). Our ADS
scheduler strategically balances multiple conflicting factors
including deadline, priority, and dependency when deciding
which block to send or drop. The redundancy module is only
activated when the deadline is about to miss, thus avoiding
retransmission delay without incurring too much overhead.

Using DTP, applications can convey the deadline require-
ments together with necessary metadata and get meaningful
feedback. DTP tries to fulfill needs of applications and notify
applications of delivery results. Moreover, DTP can carry
delivery results from the receiver to the sender and let the
sender adjust the requirements. DTP can thus significantly
reduce the burden on application developers.

QUIC [13], [14] is a promising protocol that provides
more precise RTT and bandwidth estimations, as well as loss
detection. QUIC prevents most of the interferences from mid-
dleboxes thus more deployable [14]. These may shed new light
on deadline-aware delivery improvement and deployment. We
implement DTP based on QUIC in a non-intrusive way (Sec-
tion IV) as full user-space system. The evaluation results show
that DTP can deliver 5x blocks before the deadline than QUIC
when the bandwidth is limited, and 1.2x blocks when there are
packet losses. We develop a 360° video streaming application.
The evaluation indicates that using DTP can improve the QoE
by 30% to 500%. We build a multi-party video conferencing
application using FFMPEG and TCP. Then we only modify

1Prototype of DTP is available at https://github.com/STAR-Tsinghua/DTP978-1-6654-8234-9/22/$31.00 ©2022 IEEE



98 lines of code out of 5K LoC to integrate DTP and get 30%
improvement on the QoE (Sections V and VI).

To summarize, our contributions are listed as follows:

1) We design DTP, a new transport protocol with deadline-
awareness support. At the sender, the application sends
the data and its metadata to DTP. DTP uses the prop-
erties of blocks to schedule block transmissions. Mean-
while, DTP leverages redundancy to avoid retransmis-
sion when the deadline is about to miss.

2) We implement DTP as an extension to QUIC. The
evaluation shows that the performance is 1.2x to 5x of
QUIC over a wide range of network conditions.

3) We develop two applications using DTP. Evaluation
shows DTP can improve their QoE up to 5x.

II. BACKGROUND AND MOTIVATION

Emerging applications such as 360° video and cloud
VR/gaming have the deadline requirement for their data trans-
fer. We first conduct case studies of these applications and then
motivate our new transport protocol.

A. Case studies

360° video streaming. Many researchers developed tile-based
streaming [15], [16] for 360° video. The panoramic scene
is divided into many tiles [17], [18] which get transmitted,
and decoded in parallel. The delay of any tile in the viewport
will stall the whole scene. Therefore, each tile has a deadline
for its transmission (= playtime - local decode time). To
reduce bandwidth consumption, only important tiles (based on
the user’s attention) are transmitted. Cross-tile encoding will
introduce a dependency between those tiles.

Cloud VR gaming. Many studies try to leverage the cloud or
edge computation power to render high-quality VR content and
stream it back to the mobile device. Lai et al. [2], Kämäräinen
et al. [19] develop a cooperative rendering architecture. The
mobile device fetches and renders the dynamic foreground
object while the cloud renders the background scene, and then
streams it as a panoramic scene. Liu et al. [20] use the display
VSync signal to synchronize the client displaying and remote
server rendering. Missing the VSync signal can lead to severe
display delay. This VSync signal can be viewed as the deadline
of the object transmission.

Cooperative augmented vehicular reality. Autonomous ve-
hicles use a variety of sensors such as LiDAR, Radar and
stereo cameras to sense their surroundings. However, they have
limited range and only have line-of-sight visibility, so they
cannot perceive far away or occluded objects. To overcome
those limitations, Qiu et al. [21] proposed the Augmented
Vehicular Reality (AVR), which extends the visual horizon
of vehicles by sharing visual information between each other
wirelessly. To reduce the bandwidth requirement of commu-
nication, the sender can prioritize some objects over others
based on their distance/velocity.

B. Insights

We summarize the common transport requirements of those
applications as follows:

Deadline requirement for block-based data transmission.
Those applications all generate and process the data in a block
fashion and each block has a clear deadline requirement. The
block is defined as the minimal usable unit of data for
applications. A partially delivered block is useless for those
applications. For example, video/audio encoders produce the
encoded streams as a series of blocks (I, B, P frame, or GOP).
In multiplayer games, the player’s commands and world state
will be bundled as a message. For web browsing, HTML, CSS,
and JS can be treated as objects. Even for file syncing, most
file cloud system syncs the data on chunk bases.

The meaningful deadline for an application is the block
completion time, i.e., the time between when the block is
generated at the sender and submitted to the application at the
receiver. If a block cannot arrive before the deadline, the QoE
will be affected and the whole block is useless (obsoleted by
newer blocks or no longer needed). In 360° video, each tile in
one GOP is a block and the deadline of tiles and objects is its
render time minus the local processing time. If the deadline is
missed, the video will stall or go black. In cloud VR gaming,
each background scene and foreground object is a block. A late
arrival object is useless because the user’s interest changes. In
autonomous driving, each 3D object is a block and its deadline
is set to the time when it is no longer occluded.

Multiple concurrent blocks with different properties. There
are usually many blocks that need to be transferred in parallel.
These blocks have different impacts on application perfor-
mance, making it possible to reduce bandwidth consumption
by prioritizing some blocks over others.

In 360° video, the priority of the tile can be set according
to the user’s viewport. The tile in the center of the viewport
has a higher priority compared to peripheral tiles.

In cloud VR gaming, foreground objects have a higher
priority and tighter deadline than background scenes. Differ-
ent foreground objects can also have different priorities and
deadlines based on the possibility of user interaction.

In autonomous driving, different dynamic objects have
different priorities. One way to set the priority of an object is to
set it by how dangerous it is to other vehicles. For example, the
fast oncoming vehicle has a higher priority over the following
vehicle than a slow-moving and far-away bicycle.

Block dependency. Applications may use complicated encod-
ing to compress the block data, which usually involves cross-
block delta compression. A typical example is I/P frames in
H264 and base/enhance layers in the SVC codec. Those cross-
block compressions can significantly reduce the bandwidth
requirement but introduce dependencies between blocks. If the
depended block can not arrive in time, then there is no point
for the depending block to arrive. Therefore, the dependency
should be respected when sending blocks.



Application level adaptation. To deal with network fluctu-
ation, the applications usually develop their adaptation logic.
For example, they usually try to match the data sending rate
to the monitored/predicted bandwidth. 360° video streaming
uses an ABR algorithm to pick the video quality. Cloud VR
gaming reduces the frame rate or resolution of the background
scene. How to adjust the behavior is highly specific to each
type of application. The adaptation may happen at the sender
or receiver. However, they all need network status feedback
from the transport layer, at least the delivery results of blocks.

C. Limitations of current transport protocols

TABLE I: Comparison of different transport protocols

Features TCP UDP SCTP QUIC DTP

Block-based No No No No Yes
Deadline-aware No No No No Yes
Multiplex No No Yes Yes Yes
Dependency No No No No Yes
Priority No No No Yes Yes

In short, those applications need a transport protocol that
can provide a multi-block based deliver-before-deadline ser-
vice. It should support multiplex, i.e., transferring multiple
blocks in parallel. Each block needs to have its own prop-
erty such as deadline, priority, and dependency. No existing
transport protocol can provide such a service (Table I).

Without proper transport protocol support, applications are
forced to build their own wheels. A typical example is the
WebRTC which incorporates everything from encoding to
transport, resulting in millions lines of code. Instead, those
applications often opt to use off-the-shelf protocols such as
TCP which may result in inferior performance. Moreover,
some wheels are not suitable to be mounted in the application.
For example, although the application can reduce the delay
caused by packet loss using redundancy, doing so will be
complex or ineffective because it needs information about
packets sent, loss detection and other transport layer features.
Ideally, the application only cares about what to send and the
transport layer determines how to send. We propose Deadline-
aware Transport Protocol (DTP) to provide such a service.
DTP uses the Active-Drop-at-Sender scheduler to address
delay at the sender, and the adaptive redundancy to relieve
the delay caused by loss recovery.

III. DESIGN

The design of DTP follows three principles: 1) End-to-end
principle so that DTP does not require the modification of in-
network devices. DTP should place the data at the endpoint
which it can control as much as possible. 2) Adaptive to
diverse application requirements such as deadline, priority, and
dependency. 3) Reduce the burden on application developers.
DTP handles the short-term fluctuation and the application
only needs to select the appropriate setting according to the
long-term QoE or data delivery results.

To accomplish the deliver-before-deadline task, we first
need to understand where the latency comes from. We can
divide the block delivery time into three parts:

Fig. 1: The architecture of DTP

1) Delay at the sender. When the application’s data rate is
higher than the bottleneck bandwidth, the data will be
buffered. This delay will affect all later blocks.

2) Delay in the network. This includes the data transmis-
sion delay( Blocksize

bandwidth ) and RTT.
3) Delay at the receiver. The receiver needs to wait for the

lost or reordered packets to arrive. Loss detection and
retransmission also take time. They can not be ignored
especially when the tail packets of the block lost.

The delay in the network is determined by how many
network resources the connection can get. A TCP-friendly
transport can not get more bandwidth than its fair share. The
RTT is affected by the amount of occupied network buffer.
Buffer-filled congestion control may get higher bandwidth but
also higher RTT and possibly higher loss.

We use an Active-Drop-at-Sender Scheduler (Section III-B)
to reduce the sender queue, thus reducing the delay at sender,
especially for important blocks. To get low RTT and keep
schedulable data in the sender as much as possible, DTP needs
to employ congestion controls that do not aggressively fill the
network buffer. When the link is lossy and the deadline is
tight, the loss of tail packets will cause the block to miss its
deadline. The redundancy module Section III-C can mitigate
that problem by recovering lost packets without waiting for
loss detection and retransmission.

A. Architecture

The architecture of DTP is shown in Fig. 1, in which the
transport service modules are organized in a pipeline. DTP
uses standard low-latency congestion control algorithm (BBR
v2 [22]) to get the lowest RTT. By using BBR, DTP shifts the
queue from the network to the sender where DTP can control.
Other congestion control algorithms which do not result in
much in-network queue, such as Vegas [23], are also suitable.



DTP does not customize the congestion control thus inducing
no bandwidth sharing issues such as fairness problems.

Each block along with its metadata is firstly stored in a ded-
icated sending queue. Then the Scheduler module will select
the block to send and drop stale blocks. The Packetizer and
Redundancy module will break the block into a packet stream
and generate redundant packets to reduce the retransmission
delay if necessary. These packets will be sent to the packet
sending and congestion control module which sends packets,
collect ACK and detect loss, similar to QUIC/TCP. The lost
packet is put in front of the respective sending queue thus
prioritized naturally. The congestion control module monitors
the network condition and provides estimation of bandwidth,
RTT and loss rate to the scheduler and redundancy module,
facilitating the scheduling and redundancy decision. On the
receiver, the transport layer will receive data and reassemble
blocks. The process is symmetrical to the sender.

To calculate the block completion time, the sender and the
receiver need to sync some information with each other. The
receiver needs to know the block begin time (when the block
arrives at the DTP). The sender needs to know the block end
time (when all packets of a block are received or restored
by receiver). We choose to send the block begin time to the
receiver and send back the packet receive time back along
with the ACK to the sender (see Section IV-B). In this way,
both sides can know the block completion time. Sender can
estimate the one way delay using the timestamp from ACK.
We also design mechanisms to handle the unsynchronized
clock between endpoints (see Section IV-D).

B. Active-drop-at-sender (ADS) scheduler

As discussed in the previous section, the scheduler is
responsible for manipulating the sender side queue to reduce
the queuing delay for those important blocks. The goal of
the scheduler is to deliver as many high priority blocks
as possible before the deadline, dropping those unimportant
blocks if necessary. Meeting the goal is challenging because
there are multiple conflicting factors involved when making
the scheduler decision. The first is the conflict between higher-
priority blocks far from deadlines versus lower-priority blocks
with close deadlines. Sending the former may cause the latter
to miss the deadline, while sending the latter may hinder the
delivery of the former. The second is the conflict between
blocks in transmission versus more important blocks waiting
to be transmitted. Preemptively transmitting the latter means
dropping the former, causing waste of network resources,
while waiting for the former to finish may cause the latter
to miss their deadlines.

Regarding the multiple factors mentioned above, a naive
algorithm will only consider the priority when picking the
block to send. However, this simple algorithm may not get
optimal results. Suppose the bandwidth reduces and the sched-
uler chooses not to send the low priority block. Then the
bandwidth is restored. The data block with lower priority is
closer to the deadline than the high priority block. If in this
round the scheduler still chooses to send the high priority

block, then the low priority block may miss the deadline
next round and become useless. In some cases, the scheduler
can choose to send a low priority block because it is more
urgent. However, it should do so without causing the high
priority blocks to miss their deadlines. This example reveals a
fundamental conflict between the application specified priority
and deadline implicated priority. We need to take both types
of priorities into consideration when scheduling blocks.

Another decision the scheduler should make is when to
interrupt the transmission of a block and switch to a new
one, i.e., preemption. A non-preemptive scheduler is clearly
not optimal. Consider this simple case. While a big block is
already in the transmission, a higher priority tight-deadline
block comes and needs to be sent immediately; otherwise it
will miss the deadline. If the scheduler is not preemptive, the
new block will not get sent while the bandwidth is wasted to
transfer the older, less-important block. Therefore, the sched-
uler must be preemptive. But when to perform a preemptive
transfer? If the scheduler preempts too aggressively, blocks
will be switched in and out too frequently and none of them
may finish before the deadline. DTP uses the block unsent
ratio (how much data of a block has not been already sent
yet) to determine if the block should be switched out.

remain time = deadline− remain size

estimated bandwidth
− passed time− one way delay (1)

f(remain time) =

{
remain time

deadline , remain time > 0

min(−remain time
deadline , 1) + β, otherwise

(2)
Weighted p = ((1− α)× f(remain time)

+ α× priority

pmax
)× unsent ratio (3)

ADS scheduler uses Eq. (3) to compute a Weighted p
(smaller value means higher priority) from the following
factors:

1) Remaining time to the deadline (Eq. (1)). Once a block
is deemed overdue, it will get a bigger Weighted p
value by adding β (Eq. (2)). The bigger β is, the more
strict the deadline is. When the β is large enough, blocks
that are judged to be missed will only be considered if
there are no fresh blocks to send.

2) Priority. The priority in Eq. (3) considers both the
application specified priority and deadline implicated
priority. The α adjusts the weight between them. The
larger the α value is, the more important the application-
specified priority becomes.

3) Unsent ratio. If the block is almost completed, then we
would better finish its remaining part so that we do not
waste the network resource.

The scheduler will run when ACK is received or the
application pushes the data so that it can react fast to the
network fluctuation and the change of the application’s sending
pattern. At each run, the scheduler updates the Weighted p
values of the nondepending blocks and picks the block with



the lowest Weighted p. If the calculation shows a block
cannot meet the deadline (remain time < 0), DTP tends
to suspend sending but not drop it. A block will be dropped
when it already missed the deadline on the sender side. In
other words, dropped blocks are generally severely expired.
When deadline setting is unreasonable which causes severe
drops, the application needs to adjust the deadline.

The scheduler maintains a Directed Acyclic Graph (DAG)
graph of blocks’ dependencies. If there is a circular depen-
dency, the graph will consolidate the circular depending blocks
to a big block thus maint the acyclicity. Only blocks with zero
in-degree (not dependent on any other blocks) are taken into
consideration by the scheduling. A block is removed from the
dependency graph once it is delivered or canceled.

C. Deadline-aware adaptive redundancy

The block picked by the ADS scheduler will be broken into
a packet stream which will go through the redundancy module
to get protection against loss. To reduce the computation and
bandwidth overhead without losing redundancy protection, we
design the redundancy module to be adaptive to the application
sending pattern and the network.

The redundancy module is activated only for those packets
which cannot afford retransmission delay. It is possible for a
single block that part of the packets carrying its data trigger
redundancy while others do not. The loss detection of a packet
takes up one RTT (three duplicate ACKs) and the retransmis-
sion of the packet takes up one RTT. When a packet has less
than two RTTs to meet its deadline, the redundancy module
will be activated. Then the redundancy module will encode n
redundant packets for following m consecutive packets using
a block-based Forward Error Correction (FEC) scheme. These
m + n packets form a redundancy group. If there are not
enough m packets from the application, we will use empty
packets as original ones. Receiving any m packets of the group
can decode all m original packets. We send redundant packets
after original packets so that the encoding/decoding process
can run in parallel with normal packet sending/receiving. The
performance of redundancy module depends on the choice of
m and n. Larger m and n can get better protection but also
introduce higher overhead. The empty packets are also another
overhead. We strategically set and adjust m,n to accomplish
the restoration before the deadline without much overhead.

A larger m can provide better protection against burst loss
but introduce higher overhead; also the decoding delay may
be higher because receiver needs to wait at most m packets
to decode. If the application has less than m packets to send,
then the rest of original packets will be empty packets, wasting
bandwidth. We choose m to be the biggest value satisfying
that every packet in the group will not miss its deadline, i.e.,
m×MSS
bandwidth + 2 × RTT < deadline. If more than half of the
original packets are empty, we reduce the m by half. Another
choice to address the problem is to avoid sending those empty
packets but attach a flag with the last original packet. However,
the loss of this packet will cause decoding to fail. It will make

the protocol more complex to achieve the original protection
effectiveness.

A larger n can also provide better protection against loss but
will incur a higher overhead. Ideally, n should be able to cover
the loss rate, i.e., n > m ∗ loss rate. However, the loss rate
measurement may be inaccurate and the loss pattern (bursty or
random) is unknown. We choose n based on the redundancy
group decoding result during the last 8 RTT (8 RTT is also the
duration of a round of BBR cycle). When a redundancy group
is finished (all packets inside it are either lost or ACKed),
we check the packet loss rate of each group. Then we set n
to cover the maximum loss rate over the last 8 RTT. Since
the redundancy only applies to the close-to-deadline packets,
there may not be any redundancy group finished during the
cycle. In this case, we reset n using the loss rate measurement
n = m∗ loss rate. Picking the maximum loss rate will make
n slightly bigger than the ideal value but will increase the
chance of successful decoding.

IV. IMPLEMENTATION

We build DTP by extending QUIC because QUIC already
provides many useful building blocks. Designs of DTP can
also be implemented on other protocols such as SCTP and
TCP. Our implementation is based on Cloudflare’s quiche [24]
which implements the IETF QUIC using Rust programming
language. The implementation is split into the core QUIC state
machine which has no I/O and socket management which
can be written using platform-native API. In this way, the
implementation can run on many platforms. Since QUIC is
a protocol under fast development, our extension should be
non-intrusive so that we can quickly follow the new features
of QUIC and it is easier for those applications using QUIC to
adopt DTP.

A QUIC packet is composed of a header and one or several
frames which carry control information and application data.
QUIC defines 20 types of frames such as STREAM, ACK,
HANDSHAKE DONE etc. The natural way to extend QUIC
is to change its frame format or define a new one. To sync the
block metadata between the receiver and sender, DTP defines
two new frame types: BLOCK INFO and BCT. To estimate
one-way delay, DTP adds timestamp in ACK frame. FEC
frame is added to implement the redundancy module. To make
the deployment of DTP incremental, the version negotiation
and transport parameter advertisement during handshake is
modified to negotiate DTP features. If the negotiation fails,
it will fall back to the vanilla QUIC.

A. Block-based delivery

DTP extends the QUIC to support the block-based delivery.
Each block has its own deadline and priority. And some blocks
may get dropped by the sender during transmission. QUIC
only supports delivering multiple streams reliably. We need
to find a way to map the block semantic to stream in QUIC.
A QUIC implementation is required by QUIC RFC [13] to
support the stream prioritization feature. Based on that, an
intuitive way of mapping block to stream is to put blocks with



the same priority into one stream. In this way, we can reuse
most parts of a QUIC scheduler for prioritization without any
modification of QUIC wire format. However, this mapping
faces an inherent problem: QUIC’s reliable byte stream na-
ture conflicts with the timeliness of dynamic block delivery.
Suppose that one block in the middle of the stream passes
its deadline and is decided to be dropped, then the sender
needs to mark the specific bytes range as dropped, which
means the stream delivery is no longer reliable. This will
break the ack processing procedure and stream management,
which makes the extension complicated. Existing extensions
to add unreliable or partially reliable transmission to QUIC
cannot accomplish that either. Tiesel et al. [25] propose a
DATAGRAM frame to carry application data without requiring
retransmission. Using DATAGRAM alone is not enough to
implement block semantics since it does not support stream
multiplexing.

We take another approach: mapping block to QUIC stream
one to one. If the block is decided to be dropped, we just
utilize the standard stream cancellation process of the existing
QUIC protocol, which is sending the RESET STREAM frame
to cancel the stream. Using this mapping, we can reuse the
max stream data size as the max block size. The block id
can be mapped to the stream id without breaking the stream
id semantic using Eq. (4). Since QUIC stream id is encoded
using variable-length integer and the max value is (262 − 1).
It is enough to hold block numbers during one session. Even
if the block number is running out, we can easily process the
wrap-around. By using the existing FIN bit of the STREAM
frame [13], the receiver can easily determine whether the block
transmission is finished. Unless mentioned, the DTP block
features such as multiplexing are the same as the QUIC stream.

stream id = (block id << 2) | stream type bits (4)

B. Metadata sync

As discussed in Section III-A, DTP needs to sync some in-
formation between the sender and receiver. First, DTP extends
the ACK frame in QUIC with the packet received timestamp
of the last packet within each packet range. Second, the block
size is unknown to the receiver until the last chunk of the
block arrives since QUIC is a stream-oriented protocol. DTP
adds a new frame type BLOCK INFO to convey the block
metadata such as block size, block beginning time, deadline
and priority to receiver. Each field is optional and encoded
using a variable-length integer (1-4 bytes). It is sent prior to
any block data frame. Third, DTP adds a new frame type BCT
to convey the time difference between the expected and actual
block completion time. When the receiver side application tells
the difference to DTP, it will send a BCT frame back to sender.
Both BLOCK INFO and BCT frames are transmitted reliably,
which means they will trigger ACK.

C. Redundancy

DTP follows a similar approach as QUIC-FEC [26] to use
the clear text packet payload as a source symbol. Instead

of supporting multiple FEC schemes, we choose the Reed-
Solomon codec scheme to implement the redundancy module
because it strikes the balance between computational overhead
and efficiency. By fixing the scheme, we can make a few
simplifications based on [26].

The first simplification is that DTP can avoid splitting the
repair symbol by carefully picking the source symbol size.
QUIC-FEC [26] designs the FEC frame to contain an offset
field to handle the case when the repair symbol is bigger than
a single FEC frame. Doing so may result in the repair symbol
being split into two QUIC packets, making the decoding time
hard to estimate. Since the repair symbol’s size is the same as
the source symbol size, if we consider the possible overhead
when picking the clear text payload of a packet as the source
symbol, we can avoid the repair symbol split across packets.

The source symbol size picking process is as follows.
Normally, QUIC packet size is a constant value (MSS). There
are a few edge cases that payloads may have different sizes.
The first one is that packet headers have different lengths.
QUIC uses a short header format for application packets after
the handshake. The only field with varying length is the
packet number field encoded using variable-length integers
(can be 1/2/4 bytes). When the packet number is about to cross
the length border, we leave the extra space when filling the
payload with block data so that the size of the payload across
the border is unified. The second one is when the last chunk
of a block cannot fill the packet. If the next block uses the
same redundancy rate, we bundle the data together. If not, we
fill the payload with the PADDING frame which is naturally
understood by QUIC protocol. We modify the FEC frame to
contain the metadata of the redundancy group such as group
id, index of the payload inside the group, m, n and the symbol.

The second simplification is that DTP stops the retransmis-
sion without defining any new frame type. QUIC-FEC [26]
proposes a new RECOVERED frame containing the packet
number which has been successfully recovered. For the re-
ceiver to know the recovered packet number, the packet num-
ber of each packet needs to be included in the source symbol
which will take extra space. The header protection process [27]
will mask the packet number field, which makes the encoding
more complicated. DTP avoids the RECOVERED frame by
leveraging the property of Reed-Solomon codec to derive the
recovered event from ACK at the sender without doing the
actual decoding. Consider a redundant group that contains m
original packets and n redundant packets. Since QUIC packets
are authenticated, receiving any m packets means the whole
group can be recovered. DTP requires the block-based codec
to support this simplification and does not support sliding
window solutions such as RLC. The successful running of
DTP depends on enough buffer for the codec scheme.

D. Handling clock synchronization error

Using the timestamp of the sender and receiver to get
the block completion time and one-way delay requires clock
synchronization between hosts. NTP [28] can usually maintain
time to within a few milliseconds [29] over the Internet



Sender:

int send( int fd , void *block, size t size ,
int id , int deadline , int priority ,
int *depending ids, size t depending);

int update( int fd , int id ,
int priority , int deadline ,
int *depending ids, size t depending);

int cancel ( int fd , int id ) ;
void on dropped(int fd , int id , int priority ,

int deadline , int goodbytes) ;
void on delivered ( int fd , int id , int priority ,

int deadline , int delta , int goodbytes) ;
Receiver:

int recv( int fd , void *block, size t size , int id );
int expect ( int fd , int id , int delta );

Fig. 2: Interfaces of DTP

which is good enough for DTP. But the error can reach
100ms or more in extreme cases. DTP addresses this problem
by leveraging knowledge from application. When a block
misses its deadline, the QoE of the application will be af-
fected and receiver side application will notice that (video
stream stall, game sync missing this round). If the missing
happens consistently, then the deadline setting is unrealistic
under current network (either because of long RTT or clock
synchronization error). The sender is supposed to adjust its
deadline requirement.

Another possible situation is the endpoint(s) do not sync
time. DTP uses system error parameter to find and resolve
this problem. We assume that when the RTT is stable, the
one-way delay is stable too. For each packet, the packet
arrival time is send time+one way delay+system error.
system error includes the error of the one-way delay esti-
mation and the time sync inaccuracy between the sender and
receiver. The sender compares the real and estimated arrival
time when the RTT is stable to adjust the system error.
When RTT changes, the system error will be re-calibrated.
This method is similar to NTP’s basic interaction mechanism
and achieves close precision in our practice.

E. Abstraction and API

We extend the socket API to allow the application attaching
metadata along with the data block, as is shown in Fig. 2. The
fd is the connection id. The depending ids, depending is the
array of ids of block which current block depends on directly.
The update and cancel function is used to update the metadata
of the block or cancel the block. We design on dropped
and on delivered to report the delivery result of each block.
The amount of data delivered before deadline is stored in
goodbytes. The difference between block completion time and
the deadline in milliseconds is stored in delta. Receiver side
application can use expect to tell DTP the difference between
expected and actual block completion time.

DTP provides in-order and reliable delivery within the block
but does not guarantee all blocks will be delivered before

the deadline due to network limitations. For each block, DTP
provides the delivery result such as block completion time
when the block is completed and block completion ratio when
a block is dropped. The application can use delivery results to
optimize its performance.

V. DEVELOPING APPLICATION UPON DTP

In this section, we will discuss how applications can use
DTP. To use DTP, the application needs to determine the
deadline, priority, and dependency of each block. The choice
of these parameters should base on the application-specific
mechanisms that affect QoE. For example, a conference ap-
plication could prioritize audio frames higher and set deadlines
based on acceptable communication delays or jitter buffer size.
We develop two applications using DTP shown in Table II.

A. 360° video streaming emulation

We build a 360° video streaming emulation. The emulation
framework is similar to Figure 2 of Flare [17] without the
actual decoding and display. The app uses the user’s head
movement trace to predict the future head movement and
converts that to viewport and requests tiles inside the viewport
from the server. Each block has several different quality
versions. To choose the quality version, the app runs a simple
ABR algorithm that aggregates the network capacity using
on delivered callback over the last second and chooses the
highest quality version allowed by the deadline of blocks.

B. Video conferencing

We implement a lightweight video conferencing application
using DTP and FFMPEG. The server sends multiple video
streams to the app. The server divides the video stream into
a series of frames. Each frame inside the same video stream
has the same priority. The app will put these blocks into each
stream’s jitter buffer. Video decoder will wait for the jitter
buffer to contain at least 100 ms data to begin its decoding. The
application determines what to transfer and DTP determines
how to transfer it. The codec and transport protocol is not
as coupled as in WebRTC. We implement it based on TCP,
considering TCP is still the most widely used protocol. Thanks
to the similarity between DTP’s API and BSD sockets and
compatibility with popular event-driven frameworks, we only
modify 98 lines of code out of 5K LoC to replace TCP with
DTP. Interfaces of many other existing protocols such as UDP
and SCTP are also close to or compatible with the socket API,
thus the migration cost will not be too great.

VI. EVALUATION

In this section, we evaluate DTP under various network
conditions and different applications. Unless otherwise spec-
ified, experiments in this section are conducted between two
PCs (Intel Core i5 3.4GHz, 8GB memory) running Ubuntu
18.04 communicate through emulated network. The clock time
of two PCs is synchronized. We run tc [30] in a separate
router to simulate various network conditions since we find
similar erroneous results as Kakhki et al. [31] when using



TABLE II: Deadline-aware applications using DTP

Application Block Deadline Priority Dependency

360° video streaming Tile Predicted playback time Area inside viewport No
Video conferencing Frame 100 ms Activeness of the stream Frame dependency

tc at endpoint. We compare DTP with QUIC and SCTP. For
the QUIC competitor, we select the default setting of the
quiche release DTP based on. We use no reset operation to
drop streams of QUIC, because the application cannot know
when to cancel a stream without information maintained and
provided by the DTP. We implemented the default SCTP
scheduler (First-come, First-serve) with cancel of stale data
based on QUIC (Denoted SCTP'). DTP, QUIC and SCTP'
are running the same BBR congestion control algorithm and
block-to-stream mapping for apple-to-apple comparison. For
DTP, unless otherwise specified, we set α = 0.5 to equally
consider deadline and priority, and set β as the lowest priority
value, which means a tendency to give up about-to-miss-
deadline blocks when there are fresh ones.

We first study the behavior of DTP using artificial sim-
ple network and application traces (Section VI-A), and then
demonstrate the performance under more realistic scenarios
(Sections VI-B and VI-C).

A. Transport layer performance

First, we evaluate the transport layer performance using a
dummy app so that we can test different traffic patterns under
different network conditions. We measure the CPU time used
by the dummy app, and find no observable difference in CPU
consumption between the DTP-based and QUIC-based version
when sending the same amount of data. In the following
experiments, we consider 3 variants of DTP: (1) only consider
deadline (α = 0, denoted DTP-D); (2) only consider priority
(α = 1, denoted DTP-P); (3) consider both deadline and
priority (denoted DTP). We run all tests 10 times. Each test
is running for one minute.

1) Bandwidth variance: We first investigate how DTP
performs under varying bandwidth conditions. The app sends
three blocks of 200 KB with distinct priorities every 100
ms. The app sorts the sending order of blocks based on
their priorities. The deadline for each block is 200 ms. The
bandwidth requirement for all blocks to arrive before the
deadline is 6 MBps. We vary the bandwidth between 1 MBps
and 10 MBps. We set the RTT to 5 ms and the random loss
rate to 0.01%. Fig. 3a shows the ratio of blocks that are
delivered before the deadline. Note the bandwidths marked
on the horizontal axis are the emulated values using tc. The
achieved throughput is always slightly smaller than the set
value, even when we use iperf [32] to send enough UDP
packets. When the bandwidth is sufficient (> 6M ), all blocks
can arrive before the deadline. When the bandwidth is limited,
QUIC’s performance degrades fast because it does not drop
stale blocks.

DTP-D and DTP-P perform slightly worse than DTP but
way better than QUIC. This proves that considering the
deadline or priority can improve the deadline delivery per-
formance and combining those two factors can get even better
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Fig. 3: Various static bandwidth

performance. DTP-D performs worse than DTP-P because
only considering the deadline will result in lots of preemption.
Take the 5 MBps case as an example, the DTP-P scheduler will
send the first two high priority blocks and they can complete
before the deadline. However, the DTP-D scheduler will still
choose to send the block with the lowest priority when it
becomes the most close-to-deadline block. After sending the
block for a while, the scheduler will find other blocks closer
to deadline and it will switch again, wasting the bandwidth to
transfer the lowest-priority block.

When bandwidth is 5/3 MBps (which is only enough to
finish two/one of three blocks before deadline each round),
the performance of SCTP' is the same as DTP-P. Recall that
the app sorts the sending order of blocks based on their
priority each round. Both SCTP' and DTP-P will finish the
first two/one blocks each round and cancel the remaining
blocks. When bandwidth is 6/4 MBps, the achieved throughput
is smaller than 6/4 MBps. SCTP' performs worse than DTP-
P. When a new round of block arrives, SCTP' will continue
to send old blocks until they miss their deadline but DTP-P
will switch to higher priority blocks immediately. Only when
higher priority/new blocks finish and old blocks are still not
canceled, DTP-P will consider unsent ratio and finish the
block which has less remaining data. This demonstrates that
strategic preemption based on priority and unsent ratio can
improve the performance.

When bandwidth is 6 MBps, the first two blocks of each
round can finish before deadline. As for the third block, DTP-
D will predict that it will miss the deadline, so it will not send
it. But SCTP' will continue to send the old one until it misses
deadline. This demonstrates that proactively giving up the
about-to-miss-deadline blocks can reduce the bandwidth waste
thus get better performance. Combining all above factors, DTP
consistently performs best.

We measure the data that has arrived before the deadline
(good bytes). Then we divided the good bytes by total bytes
to get the good bytes ratio. Most bytes sent by QUIC miss
their deadline while bytes from all other four competitors can
reach about 100% good bytes ratio. This indicates that DTP
can make better use of bandwidth to deliver fresh data.

We also measure the complete-before-deadline ratio of



blocks with the highest priority. The result is shown in Fig. 3b.
SCTP' behaves like DTP-P except when the bandwidth is 2
MBps. In this case, the bandwidth requirement of the highest
block is 2 MBps and actual throughput is smaller than 2 MBps.
DTP will choose to give up old blocks but DTP-P and SCTP'
will stick to them. Therefore, DTP performs better than DTP-P
and SCTP'. DTP-D will switch between different blocks when
the bandwidth is smaller than the total required (6 MBps).
Therefore, it performs worse than DTP-P, DTP and SCTP'.
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Fig. 4: Deadline meeting rate
under dynamic bandwidth

Fig. 5: Deadline meeting rate
under different loss rates

To further understand where the improvement comes from,
we measure the average waiting time at the sender of each
completed block (figure omitted due to space limitation).
QUIC does not drop and the sender queue will accumulate
when lacking enough bandwidth. The DTP reduces the waiting
time without the sacrifice of blocks’ deadline meeting. None
of the variants can achieve such balance, either sacrificing the
low priority blocks completion rate, or repeatedly switching
and making the delay at sender larger.

To evaluate how DTP reacts to the dynamic bandwidth, we
vary the bandwidth during one test. The bandwidth is reduced
suddenly at 5 seconds from 12 MBps to 4 MBps and restored
at 10 seconds (indicated by the grey area in Fig. 4). Each point
represents the block completion rate in the past second. Similar
to the static bandwidth results, DTP consistently performs best.

2) Loss variance: We then investigate the performance of
DTP when facing network loss. We evaluate the effectiveness
of the redundancy module under three different traffic patterns.
For each scenario, we vary the loss rate from 1% to 20%. We
set the bandwidth to be big enough for all sending blocks.

The first traffic pattern is sending three blocks of 100 KB
with distinct priority each 100 ms. The RTT is 20 ms. In
this scenario, thanks to adaptive redundancy, only the tail data
needs to be protected. We verify that by counting the additional
data sent. For example, only about 3% extra data is sent by
the redundancy module when the loss rate is 10%. For the
second and third traffic patterns we simulate online gaming.
Each gaming command is very small, usually smaller than
MSS. Therefore, we set the block size to 1 KB. We set the
RTT to be 60 ms so that any packet lost will result in the
block missing its deadline. All packets will get redundancy
protection. The results are similar. We only show the sparse
small blocks’ result in Fig. 5 due to space limitation. DTP
constantly outperforms QUIC under all scenarios. This shows
that the redundancy module is capable of handling diverse
application traffic patterns and losses.
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Fig. 6: Video conferencing performance

B. QoE of applications

In this section, we evaluate two applications built on top of
DTP. The baseline is using QUIC instead of DTP.

1) Video conferencing: We feed 8 different video streams
into the video conferencing server. The bandwidth is varied
from less than the smallest stream to bigger than 8 streams
combined. The loss rate is set to 0.01% and the RTT is set
to fluctuate between 50 to 90 ms. Those 8 streams are shown
as 8 squares on the receiver screen. The active stream (with
higher priority) will have a bigger area on the receiver’s screen
thus a bigger impact on image quality. We count the stall of
the highest stream as a stall for the application. As is shown
in Figs. 6a and 6b, DTP can reduce stall and increase the
video quality because it can increase the highest priority block
completion rate. When the bandwidth is set to 6 Mbps, DTP
can achieve over 5x video quality than QUIC.

2) 360° video: We run our 360° video emulator using a
wide variety of real traces. We use the user head movement
trace from [17]. We use the head movement over the last three
seconds to do a linear prediction for the next one second. Our
360° video traces contain car tracing, concert, wild animal and
skydive. The network traces contain 3G, 4G, Hotel Wi-Fi and
are scaled to match the video bitrate. We randomly pick five
combinations of those traces as the configuration for the test.
Each test runs for five minutes and is repeated 10 times.

We first measure the average bitrate of tiles inside the
viewport (Fig. 7a). Since DTP drops low priority block (out
of sight tiles), more bandwidth is allocated to tiles inside
viewport thus DTP can achieve higher bitrate than QUIC. We
also measure the stall time per unit time. DTP achieves lower
stall time than QUIC (figure omitted due to space limitation).
Finally we measure the bitrate change frequency (Fig. 7b).
Since DTP has no send buffer accumulation, it can give more
smoothed network feedback to the application. As a result,
ABR rate change happens less frequently in DTP than QUIC.

(a) Average bitrate of tiles inside view-
port (Higher is better)

(b) ABR rate change frequency (Lower
is better)

Fig. 7: QoE of 360-degree video streaming
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Fig. 8: Performance of varying video traces under cellular

C. Real-world network evaluation

To test the performance under real-world network, we
conducted two tests over WLAN or cellular network.

1) Application traffic pattern over cellular network: We
conduct the video streaming experiment between a desktop
client, tethered to commercial 4G network, and an Ali Cloud
server located in Asia. We use various video streaming traces
to evaluate how DTP reacts to different block sizes and dy-
namic network. Fig. 8 shows results for these tests. The results
are similar to transport layer test under varying bandwidth
(Fig. 3a), except the DTP-D performs better than SCTP'. This
potentially from that timely preemption provides more benefit
under changing network.

TABLE III: Real world QoE improvement over QUIC
Scenario Home Restaurant

QoE metric Bitrate Stall Bitrate Stall
Improvement 13% 30% 15% 43%

2) 360° video over WLAN: We run the 360° simulator
between a laptop and AWS server located in North America.
We run the test from home and restaurants. When running
in the home, other computer in the same WLAN is running
a bandwidth-hungry application such as streaming 4K video.
In this way, we can test the performance of DTP under
other flows’ interference. When the bottleneck resides in the
network, the queue will accumulate at the sender. DTP can
reduce the queue size at the sender, thus can improve the QoE
as shown in Table III.

VII. RELATED WORK

Layer 2 and 3 techniques to improve the latency. Many
efforts provide deterministic latency on layer 2 (TSN [4]) and
layer 3 (DetNet [3]). They require modification to the switch
and router hardware.

Deadline-aware solution requiring in-network cooperation.
Many solutions provide deadline-aware delivery by coopera-
tion between end hosts and in-network elements. For example,
D3 [5] modifies the switch to allocate the rate based on
the deadline. D2TCP [6] uses ECN in existing switches to
adjust the sending rate to meet the deadline. The in-network
cooperation makes these solutions more powerful in deadline
meeting but also make them difficult to deploy on the Internet.

Traditional real-time application optimization. Salsify [7]
co-design the codec and transport to proactively set the encod-
ing rate to match the available bandwidth. It requires replacing

the whole stack and does not support existing hardware en-
coder and decoder. AWStream [8] proposes a new API for the
application to supply the rate adaptation function such as skip
frames and reduce resolution. It uses offline profiling to learn
the accuracy of adaptation methods. At runtime, it matches
the sending rate and available bandwidth by using the learned
configuration. These tightly cross-layer coupled solutions are
complex and hard to port to emerging applications.

Extension to traditional end-to-end transport protocols.
SCTP supports life time parameter [10] for the message.
Mukherjee et al. [11] modify TCP to only send data before the
deadline but make it not wire-compatible with TCP. McQuistin
et al. [12] extend the idea by using COBS encoding to make it
wire-compatible with TCP. But the encoding introduces high
overhead and complex modifications to the kernel.

These proposals are good steps toward a deadline-aware
transport protocol. However, first, they do not do anything to
improve the deadline delivery. Only dropping the stale data is
not enough as show in Section VI. Second, they all suffer from
deployment issues. SCTP and TCP are restricted by middle-
boxes [33] and kernel changes. Our proposal improves delivery
before the deadline and can be deployed incrementally.

Preliminary version. In a published short paper [34], we
studied deadline requirements of emerging applications and
provided high-level solution directions about block-based de-
livery, deadline-aware scheduler and API of deadline-aware
transport. In this work, we present critical advancements
including the Active-drop-at-sender scheduler, adaptive redun-
dancy, and protocol extensions on QUIC, including frame
extending, block mapping and packetizer design. We also
implement DTP based on QUIC and address problems like
metadata sync. In addition, we employ DTP in two applica-
tions and extensively evaluate its performance and behavior.

VIII. CONCLUSION

In this paper, we propose a new transport-layer proto-
col called DTP. It employs two key mechanisms, deadline-
aware Active-Drop-at-Sender (ADS) scheduling and adaptive
redundancy, to boost the application performance. We build
and evaluate several applications on top of DTP. Compared
to vanilla QUIC, DTP can improve applications’ QoE by
1.2x to 5x, while incurring very small burden on application
developers.
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