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Abstract
Firefly is an untethered multi-user virtual reality (VR) sys-

tem for commodity mobile devices. It supports more than 10

users to simultaneously enjoy high-quality VR content using a

single commodity server, a single WiFi access point, and com-

mercial off-the-shelf (COTS) mobile devices. Firefly employs

a series of techniques including offline content preparation,

viewport-adaptive streaming with motion prediction, adaptive

content quality control among users, to name a few, to ensure

good image quality, low motion-to-photon delay, a high frame

rate at 60 FPS, scalability with respect to the number of users,

and fairness among users. We have implemented Firefly in

17,400 lines of code. We use our prototype to demonstrate, for

the first time, the feasibility of supporting 15 mobile VR users

at 60 FPS using COTS smartphones and a single AP/server.

1 Introduction

Virtual Reality (VR) has registered numerous applications. In

this paper, we focus on multi-user VR where multiple users

jointly participate in exploring a VR scene. This enables

many applications that single-user VR cannot support such as

team training, social VR, group therapy, collaborative product

design, and multi-user gaming.

We envision the following use case with more than 10

collocated users in a VR room. To start multi-user VR, each

user simply launches the app on her smartphone and plugs the

phone into a VR headset (e.g., a $50 Samsung Gear VR [18] or

even a $10 Google Cardboard [9] with a $6 VR controller [5]).

These mobile devices fetch the VR content from an off-the-

shelf server based on the users’ real-time motion. The devices

and the server communicate wirelessly over a single WiFi

access point (AP). The users can enjoy the high-quality VR

content as if it is rendered by a desktop PC with a powerful

GPU. Meanwhile, each user can see and possibly interact with

other users in the virtual world.

This paper aims at realizing the above ambitious use case.

We design and implement Firefly, a novel multi-user VR sys-

tem for mobile devices. The goals of Firefly are the following.

First, Firefly works with affordable, commercial off-the-shelf

(COTS) mobile devices, server, and AP. This helps reduce the

deployment cost and facilitate the “bring-your-own-device”

(BYOD) policies that many enterprises adopt today [6]. Sec-

ond, Firefly employs untethered, wireless VR to overcome the

inconvenience and trip hazards incurred by wired cables [19].

This is important for multi-user VR where multiple users’

cables may easily get intertwined. Third, Firefly offers high

content quality, low “motion-to-photon” (M2P) latency, and a

high frame rate. An M2P higher than 16ms can cause nausea

to VR users [11]. We target Quad HD (1440p) resolution, 60

frames per second (FPS) that can provide a good experience

even for fast-paced VR gaming – the most demanding VR

task [10]. Fourth, Firefly aims at supporting ∼15 users who

can form a sizeable group of, for example, co-workers, stu-

dents, or patients. To our knowledge, no existing system can

achieve this using a single commodity server and WiFi AP.

Recent work on multi-user VR only demonstrated 4 concur-

rent emulated users [47]. Fifth, Firefly allows complex VR

scenes with both background and dynamic foreground objects,

such as other users’ avatars that users can interact with.

The above goals pose multiple challenges. The CPU/GPU

power of a smartphone is at least one order of magnitude

lower than its desktop counterpart [57], not to mention the en-

ergy/heat constraints; the heterogeneity of their computational

capabilities should also to be taken into consideration; the

bandwidth offered by a single AP is limited for multiple users;

another key challenge is multi-user scalability, which calls

for strategic decisions of splitting the client-server workload,

as well as scalable approaches for rendering and distributing

the content. To address the above challenges, Firefly makes a

series of judicious design decisions as follows.

• Firefly performs one-time, offline content preparation by

enumerating, pre-rendering, encoding, and storing the views

at all positions reachable in a virtual scene [27]. At runtime,

given a user’s position and viewing direction, the server di-

rectly retrieves the stored high-quality content and delivers

it to the user. This completely eliminates the online render-

ing overhead. Prior work [27] applies offline rendering to a

single mobile device for local VR scenes, while Firefly fur-

ther extends this concept to networked multi-user VR where

offline rendering is found to be an indispensable mechanism

ensuring scalability (§3.1).

• To reduce the network bandwidth consumption,Firefly takes

a viewport-adaptive approach: each user only requests for the

content that the user is about to perceive based on motion pre-

diction. We conduct a thorough analysis of 25 human users’

motion traces collected from an IRB-approved user trial. The

results shed light on developing a lightweight yet effective

motion prediction approach for Firefly. In the literature, sev-

eral studies [24, 33, 39] have examined 360° video viewers’
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viewing patterns that only involve rotational movement (yaw

and pitch). Our study instead investigates generic VR users’

motion that consists of both the rotational and translational

viewport movement as well as their interplay (§3.2).

• Firefly supports Adaptive Quality Control (AQC), which

determines the content quality of each user based on the total

network bandwidth, the bandwidth available to each user,

and the amount of to-be-delivered content. AQC essentially

extends traditional video bitrate adaptation [40, 41, 51, 66]:

from handling a single client to multiple clients, from dealing

with regular videos to immersive VR content, and from being

invoked at the second level to the millisecond level to adapt to

users’ motion. These differences require AQC to be effective,

lightweight, fair, and scalable as reflected in our design (§3.4).

• Firefly handles dynamic foreground objects in a scalable

and adaptive manner. Specifically, objects’ 3D models are dis-

tributed to the clients offline. They are then rendered locally

by the client. This eliminates the uncertainty caused by the

network as well as the potential resource competition from

other users compared to a server-side approach. To prevent too

many objects appearing in the viewport from slowing down

client-side rendering, Firefly supports adaptively reducing the

objects’ fidelity to maintain a high FPS (§3.6).

Additionally, Firefly has integrated several system-level op-

timizations, such as motion prediction error toleration (§3.3),

client-side hierarchical cache (§3.5), and AP-assisted band-

width estimation (§4). Our implementation on commodity An-

droid/Linux platforms involves 17,400 lines of code. We con-

duct extensive evaluations using commercial VR scenes, real

users’ motion traces, and off-the-shelf smartphones/AP/server.

We highlight the evaluation results as follows (§5).

• Firefly achieves very low motion-to-photon delay (≤15ms

for 99% of the frames), low stall duration (around 1 second per

minute), a frame rate at 60 FPS, and fairness among the users

when supporting 15 concurrent users with a single server and

a single 802.11ac AP (§5.2).

• Firefly is adaptive to users dynamically joining and leaving

the system as well as network bandwidth changes (§5.4,§5.5).

• Firefly significantly outperforms existing systems. We ex-

tend Furion [44], a state-of-the-art single-user VR system

over WiFi, to support multi-user VR. Due to its more efficient

content fetching strategy, Firefly exhibits 18% higher median

FPS, 6.9× lower stall duration, and much higher content qual-

ity, compared to multi-user Furion (§5.2). We also use our

15-user dataset to evaluate MUVR [47], a very recently pro-

posed multi-user mobile VR framework. Through simulation,

we find that for 27% of the time, the MUVR server still needs

to perform online rendering for more than 5 devices. This

makes MUVR not scalable to many users (§5.6).

• Firefly incurs acceptable CPU, GPU, and memory usage.

When tested on 5 modern smartphones, after 25-minute VR

sessions, the battery life percentage drops by 4% to 8%, and

the devices’ temperature reaches no higher than 50°C (§5.7).

Firefly is to our knowledge the first system that can scale

untethered multi-user mobile VR. We make multi-fold contri-

butions in this work: (1) the design of Firefly, (2) the study of

real VR users’ motion, and (3) our prototype implementation

that demonstrates the support of 15 VR users at 60 FPS using

COTS smartphones and a single AP/server. With emerging

wireless technologies (e.g., 802.11ax and 5G), we believe that

Firefly has the potential to scale up to even more users.

2 Motivation and Overview

Firefly enables multiple users (10+) to simultaneously enjoy

high-quality VR at 60 FPS using commodity smartphones, a

single off-the-shelf server, and a single WiFi access point. We

consider three high-level architectural design options.

A Serverless Design does not involve a server, so all the VR

content is stored on users’ mobile devices, which also per-

form full-fledged rendering. Most of today’s commercial 3D

games and VR mobile apps use this approach. However, pre-

vious studies [27,44] indicate that today’s commodity mobile

devices are far from being powerful enough to perform heavy-

duty real-time rendering for high-quality VR. Other concerns

include excessive energy consumption and heat dissipation.

Server Performing Online Rendering. This design option

offloads the rendering task to an (edge) server, which per-

forms real-time rendering of the VR scene for all users based

on their positions and viewports. The rendered scenes are then

distributed to the users wirelessly as encoded video frames.

This approach has been adopted by a prior single-user, cloud-

assisted VR system [44]. It drastically reduces the client-side

overhead, but in the multi-user scenario, the rendering and

video encoding workload becomes too high for a single server

to handle. To illustrate this, we perform an H.264 encoding ex-

periment on a high-end workstation equipped with an Nvidia

GTX 1080 GPU. The achievable encoding performance is

92 FPS, 199 FPS, and 342 FPS for 4K, 2K, and 1080p reso-

lutions, respectively. This clearly cannot support 10+ users,

each requiring a frame rate of higher than 60 FPS.

Server Performing One-time, Exhaustive Offline Render-
ing. The server exhaustively enumerates all possible views

at all positions, renders them at a high quality, encodes them

into video frames, and saves the frames in the storage [27].

At runtime, the server simply retrieves and transmits the pre-

encoded frames based on each user’s position and viewport.

In this way, the rendering/encoding overhead at runtime is

completely eliminated, so the server can easily scale to tens

or even hundreds of simultaneous users. These benefits come

at the cost of high storage usage, which is largely not an issue

given the cheap storage today.

System Architecture. Firefly employs the third approach

given its good runtime performance and superior scalabil-

ity. Figure 1 plots the overall architecture. As shown, Firefly
consists of a content server and multiple commodity mobile
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Figure 1: The Firefly system architecture.

devices. They are wirelessly connected through a WiFi access

point (AP). This setup can be easily realized in enterprise

or home environments at a very low cost. Note that prior

work [27] applies offline rendering to a single mobile device

for local VR scenes, while Firefly further extends this concept

to networked multi-user VR where offline rendering is found

to be an indispensable mechanism ensuring the scalability.

The server consists of a content database that stores ren-

dered/encoded content indexed by a user’s position and view-

ing direction. The database is built by the Offline Rendering

Engine that performs the aforementioned exhaustive content

generation (§3.1). Another critical component is the AQC

module that is introduced to scale the system and to handle

the wireless bandwidth fluctuation. It determines in real-time

the content quality for each user. Designing AQC is challeng-

ing due to multiple requirements including boosting users’

QoE, maintaining good performance, ensuring scalability, and

achieving fairness. We detail its design in §3.4.

On the client side, there are two high-level design choices

on the content fetching strategy for background frames. First,

the client can prefetch all surrounding frames at every new vir-

tual position [44]. However, this technique may consume high

bandwidth with a considerable amount of wasted traffic (i.e.,
the fetched content is not viewed by the user, see our evalua-

tion in §5.2), making it infeasible for multi-user VR. Second,

to reduce the bandwidth footprint, the client can use its his-

torical motion trajectory to predict the future viewport and

to prefetch only the portions that will likely be consumed in

the near future. Firefly is the first to incorporate this viewport-

adaptative approach into generic VR using robust motion

prediction (§3.2,§3.3). The client also efficiently manages its

local cache (§3.5) and handles foreground dynamic objects in

an adaptive and scalable manner (§3.6).

3 System Design
3.1 Offline Rendering Engine
The offline rendering engine produces the content database.

The whole VR world is discretized into grids. At each grid

position that the user can reach, the rendering engine renders

a mega frame that captures the 360° panoramic view [28]

that the user can possibly perceive at a high quality. Firefly
uses Equirectangular projection [7] to generate the panoramic

representation, but other projection algorithms [8, 14, 67] can

also be applied. As shown in Figure 2, besides the color

frame (top), a mega frame also includes a panoramic depth

map (bottom) where the brightness of each pixel indicates its

distance from the user. The depth map will be used to ensure

the correct occlusion when overlaying foreground objects

such as avatars of other users onto the scene (§3.6).

We next apply the tiling technique [38, 53] by dividing

each mega frame into mega tiles. Each tile is independently

encoded and can be separately transmitted and decoded. The

rationale is that, since the user only sees a portion of the

whole panoramic scene at a given time, there is oftentimes

no need to fetch the entire mega frame. The mega tiles thus

allow users to (pre)fetch the content more adaptively at a finer

granularity, to reduce the network bandwidth consumption.

Note that although viewport-adaptive tiling has been used in

360° video streaming, applying this concept to generic VR

(in particular, multi-user VR) is new. Tiling requires the user

to predict its viewport, i.e., to determine which tiles to fetch

based on the observed viewport trajectory (both translational

and rotational), as to be detailed in §3.2 and §3.3.

A decision we need to make is to determine the number

of tiles and their layout. While having more tiles provides

more bandwidth saving opportunities, in the meantime it in-

creases the decoding overhead and makes compression less

efficient. After carefully studying the above tradeoffs using

real users’ viewport trajectory data (§3.2), we decide to verti-

cally segment each mega frame into four mega tiles as shown

in Figure 2. We choose vertical segmentation because accord-

ing to our data collected from 25 users, users tend to keep their

sight vertically centered (i.e., looking at the equator) while

moving the viewport horizontally. This makes horizontal seg-

mentation at the equator (0° latitude) inefficient because the

vertically centered viewport will always overlap with at least

two tiles, i.e., one above and the other below the equator.

As described above, at each position, the offline rendering

engine generates four tiles capturing the panoramic view and

depth. Each tile is then independently encoded into video

frames with multiple quality levels. The rendered and encoded

tiles are stored in the content database, indexed by the user’s

grid (translational) position, the tile ID (rotational position, 1

to 4), and the quality level.

3.2 VR Viewport Movement:
Characterization and Prediction

Users’ motion makes VR immersive and interactive. In the lit-

erature, many studies have investigated users’ head rotational
movement when watching 360° videos [24, 33, 39]. Generic

VR differs from 360° videos in that it further involves trans-
lational movement. To our knowledge, no prior study has

comprehensively investigated VR users’ motion patterns and

their predictability, which are our focus here.

Collecting Viewport Movement Data from Real Users.
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Figure 3: Users’ translational

trajectories (the Office scene).

Figure 4: Users’ translational

trajectories (the Museum scene).
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speed (P=Pitch, Y=Yaw).
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We conduct an IRB-approved user study involving 25 vol-

untary participants recruited from a large university. Among

the 25 users, 9 are female. The users are from 8 departments

as undergraduate (16), master (4), and Ph.D. students (5). Dur-

ing the study, each subject wears an Oculus Rift headset [15]

connected to a high-end PC. The subject can freely make

rotational movement by moving her head as well as perform

translational movement using the handheld controller.

We obtain two large VR scenes from the Unity store:

Office [16] (30m×26m) and Museum [13] (35m×30m, L-

shape). We then develop a custom VR system that loads each

scene for the users to explore. Our system logs from each user

the precise viewport trajectory. We let each subject explore

each scene in a random order for 5 minutes, with an arbitrarily

long break allowed between the two sessions.

Motion Trace Characterization. We now characterize the

unique dataset above to reveal VR users’ motion dynamics

and to provide insights for Firefly’s design. To begin with,

Figures 3 and 4 plot the translational movement trajectories

of all users, represented by different colors, for the two VR

scenes. As shown, in most locations, the users’ trajectories are

highly heterogeneous. This finding suggests that the server

should not use broadcast or multicast, simply because users

typically see different content at a given time.

Fast motion may cause difficulties for viewport prediction.

We thus quantify the users’ motion speed. The translational

movement speed is fixed at 1m/s (set based on reported ex-

periences from another user study) when the user presses the

controller button. Figure 5 plots the distributions of rotational

movement speed, calculated by sliding a 500ms window over

the trajectory, across all window positions for five randomly

selected users. As shown, the users exhibit different speeds,

whose medians range from 1.3°/s to 18.6°/s for yaw and from

0.5°/s to 7.0°/s for pitch. The median speed across all 25 users

is 10.2°/s and 2.4°/s for yaw and pitch, respectively. Interest-

ingly, such speeds match those for typical 360° users [53],

implying that translational movement does not necessarily

slow down the rotational movement.

Another challenging scenario is users’ sudden movement

after a stationary period. How often do stationary periods

(SPs) occur? Figure 6 plots the distributions of SP duration

per pause, which by our definition has to last at least 500ms.

Figure 7 plots the total SP duration per user. As shown, an SP

is typically short: 69% of translational SPs and 89% of rota-

tional SPs are shorter than 2 seconds. However, Figure 7 indi-

cates that they occur frequently: within a 5-min VR session,

a typical user spends 43 seconds (median) being stationary.

Such frequent SPs lead to bursty, non-continuous movement

patterns that pose difficulties for viewport prediction. To deal

with SPs, we design mechanisms such as conservative tile

scheduling (§3.3) and bandwidth reservation (§3.4). We also

find that translational and rotational SPs are not correlated,

i.e., a user is typically looking at a fixed direction while mov-

ing, or looking around while standing still. This motivates us

to separate the translational and rotational dimensions when

performing viewport prediction (see below).

Viewport (Motion) Prediction is required by the tiling

scheme (§3.1). We make two decisions regarding Firefly’s

viewport prediction scheme. First, we decide to run it distribu-

tively on client devices to make the server scalable. Second,

given the above measurement results, we predict each dimen-

sion separately (yaw/pitch for rotational movement and X/Y/Z

for translational movement), and then combine them into the

final predicted view. We find that this strategy greatly reduces

the computational complexity while achieving a decent accu-

racy – a desirable tradeoff we want to strike. Regarding the

actual algorithm, we continuously train a linear regression

(LR) model using the motion trajectory observed within a

history window of H milliseconds; we then use this model

to predict the future trajectory within a prediction window
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of P milliseconds before discarding the model. The simple

LR model is found to be very lightweight yet effective for

360° videos [53]; here we investigate its effectiveness for

generic VR motion prediction. Further improvement using

more powerful machine learning tools is our on-going work.

Ideally, P should be set to the duration of the entire tile pro-

cessing pipeline (form request being sent to tiles being de-

coded) plus some safety margin. Guided by this, we set P to

150ms based on empirical profiling. We set H to 50ms based

on cross-validating different values of H, which is found to

not qualitatively impact the prediction accuracy. Note that

when integrated with Firefly, the prediction is performed in

an online manner: at runtime, Firefly continuously (1) trains

a linear regression model based on the motion trajectory ob-

served within a window (H), (2) uses this model to predict

the viewport, and (3) discards this model immediately.

Figure 8 and 9 plot the prediction results for transla-

tional and rotational movement, respectively, across all users

(H=50ms, P=150ms, the Office scene), with the SPs excluded.

The accuracy metric is the mean absolute error (MAE, in

distance or degree). The overall accuracy is high: the me-

dian MAE is around 1.4 cm for translational movement,

and 1.6°/7.4° for vertical (pitch) / horizontal (yaw) rotational

movement. The results for the Museum scene are similar. We

discuss how Firefly further tolerates prediction errors in §3.3.

3.3 Client-side Tile Fetching Scheduling
The client needs to judiciously decide which (mega) tiles

to fetch and in which order. Recall that the client contin-

uously predicts the viewport trajectory within a prediction

window (§3.2). The trajectory is a time series of 6-tuples

{t,x,y,z, pitch,yaw} where t is the (future) timestamp; x, y,

and z are the grid position (translational movement); pitch,

and yaw are the viewing direction (rotational movement). The

timestamp difference between two consecutive tuples is 1/F ,

where F is the frame rate. In other words, each tuple corre-

sponds to the predicted viewport of a future frame. The client

then translates yaw and pitch of each tuple into a list of tiles

according to the projection algorithm (e.g., Equirectangular).

The client now has a preliminary list of tiles to be fetched.

It next prunes the list using two rules. First, if a tile is already

in a client-side cache (§3.5), it will be removed from the list.

Second, if a tile appears multiple times in the list, only the

earliest appearance (with the smallest t) will be kept. This

pruned list where the tiles are ordered by their t values will

then be sent to the server. To adapt to users’ motion, the above

scheduling process is performed continuously on a per-frame

basis. The server therefore sees a stream of mega tile lists for

each user. We describe how the server processes it in §3.4.

Tolerating Viewport Prediction Errors. Due to users’ ran-

domness, viewport prediction errors are inevitable. Firefly
employs three mechanisms to tolerate them. First, it uses large

tiles (90°×180°) that can absorb rotational prediction errors,

as a tile needs to be fetched as long as the predicted viewport

has any overlap with it. Second, to further tolerate rotational

prediction errors, we virtually enlarge the field-of-view by

p% in each direction when calculating the to-be-fetched tiles.

p is configured to 10% given the rotational prediction MAE

shown in Figure 9. Third, recall from §3.2 that sudden trans-

lational movement after a stationary period (SP) is difficult to

predict. To address this issue, when the user is stationary, we

add the tiles (corresponding to the current viewing direction)

of all four neighboring grids to the predicted tile list. In this

way, no matter which direction the user moves towards, the

corresponding tiles are always in the to-be-fetched list.

3.4 Adaptive Quality Control (AQC)
AQC takes as input the lists of tiles requested by the users,

and outputs each user’s appropriate quality level. It runs on

the server that has the global knowledge of all users. An ideal

AQC algorithm has the following features. (1) For each user,

AQC will maximize the quality level while minimizing the

stall (rebuffering); meanwhile, the number of quality switches

should be minimized to provide a smooth user experience.

(2) The selected quality levels should be fair across all the

users; in other words, the quality levels should be largely

proportional to the users’ wireless channel capacities. (3)

AQC needs to execute in a fast-paced manner (ideally at the

per-frame granularity for each user) to adapt to users’ motion.

(4) AQC should scale well for multiple users.

At a first glance, AQC is similar to a video bitrate adap-

tation algorithm where a plethora of studies have been con-

ducted [40,41,51,66]. However, AQC in Firefly is much more

challenging. In particular, requirements (2), (3), and (4) do

not appear in typical bitrate adaptation algorithms running on

a single client for regular video-on-demand services.

In our initial design, we attempt to establish a principled

optimization framework that maximizes a QoE (Quality of

Experience) utility function. However, we find that this ap-

proach is computationally infeasible on a per-tile basis, as the

solution space expands exponentially as the number of users

increases. To this end, we develop a lightweight, heuristic-

based algorithm that produces empirically good quality se-

lection decisions. Our design considers all four requirements

mentioned above. It runs efficiently on commodity servers,

achieving frame-level scheduling for 10+ users.

AQC Algorithm. We now walk through the detailed logic

of the algorithm listed in Figure 10. It uses the available

bandwidth obtained from the wireless AP and the recently

received to-be-fetched tiles (§3.3) to adjust the quality level

(Q[i]) for each user i. In each invocation, AQC gets the total

available downlink bandwidth across all users (Line 01), as

well as each individual user’s available downlink bandwidth

from the AP (Line 03). They represent the global and local

network bandwidth constraints respectively (see §4 for their

details). λ (empirically set to 90%) adds a safety margin for
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T = get_total_bw_from_AP() * λ
Q’[1..n] = Q[1..n]
B[1..n] = get_individual_bw_from_AP([1..n]) * λ
foreach user i:

while (bw_util(Tiles[i],Q’[i])≥B[i] and Q’[i] is not lowest):
Q’[i] = Q’[i] - 1

T = T – min(B[i], max(RESERVE, bw_util(Tiles[i], Q’[i])))
if (T < 0):

lru_decrease(Q’[1..n]) until (T≥0 or Q’[1..n] are lowest)
else:

lru_increase(Q’[1..n]) until (T≈0 or Q’[1..n] are highest)
Q[1..n] = Q’[1..n]

01
02
03
04
05
06
07
08
09
10
11
12

n: total number of users
T: total available bandwidth across all users
Q: users’ current quality levels (input & output)
Tiles: users’ to-be-fetched tile lists (input)
Q’: local copy of Q
B: individual user’s available bandwidth
λ: bandwidth usage safety margin
RESERVE: reserved bandwidth for each user

Figure 10: The multi-user AQC algorithm.

tolerating the bandwidth fluctuation. Lines 05–06 deal with

the local bandwidth constraint. For a given user i’s tiles to be

fetched (Tiles[i]), as long as their bandwidth utilization

(calculated by bw_util()) exceeds the available bandwidth

B[i], the quality is lowered to avoid stalls. Line 07 then

subtracts the user’s used/reserved bandwidth from the global

bandwidth budget T. An important design decision we make

is to reserve a certain amount of bandwidth (RESERVE) for

each user to handle the user’s sudden movement (§3.2) that

may incur unexpected bandwidth utilization. The reserved

bandwidth for each user is set to ηT/n where T is the AP’s

total bandwidth, n is the number of users, and η is a tunable

parameter. A large η reserves more bandwidth, which can

help increase the resilience to users’ bursty movement at the

cost of a lower flexible (i.e., non-reserved) bandwidth of other

users. We empirically choose η=0.75 that yields a satisfactory

tradeoff between the two above factors.

We next consider how to estimate the tiles’ bandwidth

requirement, i.e., realizing bw_util() in Line 05. Recall

from §3.3 that each tile has its display deadline. Let the total

size (in bytes) of the tiles at quality level q with a deadline at or

before ti be Si,q. Let t0 be the current time, tc be the estimated

decoding time, and ts be the server-side queuing delay. t0 and

tc are reported by the user and ts is estimated by the server.

In order to not miss the deadline ti, the required bandwidth

should be at least b(ti) = Si,q/max{0,(ti − t0 − tc − ts)} (it

can be ∞ when a stall occurs). Then the overall required

bandwidth is conservatively estimated as maxti{b(ti)}.

Lines 08 to 11 deal with the global bandwidth constraint. If

the global bandwidth budget T is depleted (Line 08), then we

reduce the users’ quality levels (Line 09); otherwise we try to

increase them (Line 11). To facilitate fairness and make the

quality switch smooth, the decrease/increase of the quality

levels is performed in a “least recently used (LRU)” manner,

one user at a time, i.e., the user whose quality level was least

recently changed is selected. The quality level increase is

subject to the local bandwidth constraint.

Since users’ requests arrive asynchronously, AQC needs

to be invoked to update Q[1..n] whenever a new request

arrives. Then the tile transmission thread will retrieve the tiles

from the content database and put them into the tile trans-

mission queues. If the requested tiles for a user change, or if

AQC produces a different schedule in a future invocation for

this user, the not-yet-transmitted tiles in the user’s queue will

be updated. Thanks to AQC’s lightweight nature, users’ mo-

tion and network bandwidth fluctuation will be immediately

reflected in the tiles’ quality levels, making Firefly robust.

3.5 Client-Side Hierarchical Cache
When a user receives mega tiles from the server, the tiles

will be cached, decoded, and rendered. Since tile decoding

takes non-negligible time, it needs to be performed in advance.

Firefly, a decoding scheduler determines which tiles to de-

code. Its logic is similar to the tile fetching scheduler (§3.3),

by using the viewport prediction results. Predicted tiles with

a closer display deadline take a higher decoding priority.

To handle large VR scenes, Firefly needs to fetch and de-

code a large number of tiles. Firefly thus employs a 3-layer

hierarchical tile cache. Borrowing the CPU cache terminolo-

gies, we name the three layers L1, L2, and L3. Residing in

the GPU memory, The L1 cache stores decoded mega tiles

that can be immediately rendered by the GPU. It is the fastest

cache, but its capacity is the smallest (hundreds of tiles) due

to the large size of decoded tiles and limited GPU memory.

The L2 cache stores encoded tiles in the main memory with a

capacity of thousands of tiles. The L3 cache dumps encoded

tiles in the persistent storage; it has the largest size but is the

slowest. When a tile arrives, it is first stored in L2 cache; if

L2 is full, some old tiles in L2 may be swapped to L3 in an

LRU manner. The L2-to-L3 swap involving writing to flash

drive, and is thus performed in a batched manner for good

write performance. Swapping back from L3 to L2 is triggered

by the decoding schedulers’ decisions. This typically occurs

when a user visits a previously explored grid position.

3.6 Handling Dynamic Foreground Objects
A VR scene may consist of a background view as well as

one or more foreground objects. The background view at

a specific virtual location is static. Due to its large area and

complexity, its rendering typically dominates the workload for

preparing the scene. In contrast, foreground objects are more

dynamic and less complex than a background scene. Their

examples include moving objects (e.g., other users’ avatars)

and interactive objects (e.g., a virtual control panel). Despite

being less complex than the background view, due to their

dynamic and interactive nature, failure to render foreground

objects in time may also cause considerable QoE degradation.

Firefly employs two mechanisms to handle foreground ob-

jects. First, objects’ 3D models (polygons, textures, etc.) are

distributed to the clients offline. This reduces the network

bandwidth consumption and eliminates the server’s rendering

workload at runtime. In a typical VR scene, the objects’ 3D
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Quality High Medium Low

# Polygons, Size (MB) 30016, 3.30 14566, 1.30 7283, 0.68

Table 1: Three quality levels of the avatar object.

Client Device High Medium Low

Samsung Galaxy S8 (SGS8) �,�,� �,�,� �,�,�

Samsung Galaxy S10 (SGS10) �,�,� �,�,� �,�,�

Samsung Galaxy Note 8 (SGN8) �,�,� �,�,� �,�,�

Motorola Moto Z3 (Z3) �,�,� �,�,� �,�,�

Table 2: Rendering profiles for different phones: whether 60+ FPS

can be achieved with 3,6,9 concurrent objects in different qualities.

models are not large (e.g., tens of MBs in total) so they can

be bundled with the app installation package or be fetched

when the app launches for the first time.

Second, foreground objects are rendered locally by the

client. This eliminates the uncertainty caused by the network

as well as the potential resource competition from other users

compared to a server-side approach. A challenge here is that

the number of objects appearing in the viewport may change

dynamically. If there are too many objects, the local rendering

may still become the bottleneck. For example, in multi-user

social VR, a user “sees” other users as 3D avatars; depend-

ing on the users’ position, more than 10 avatars may appear

in the viewport, incurring high rendering overhead. To ad-

dress this challenge, Firefly supports trading off the rendering

quality for a high frame rate. Specifically, the client creates

low-quality versions for each object type by downsampling

its polygon meshes. Table 1 shows an example of an avatar

object originally with 30K polygons. Firefly downsamples

them (using Blender [4]) to the medium and low quality with

14.6K and 7.3K polygons respectively. This downsampling

process is an offline, one-time effort. Then at runtime, depend-

ing on the number of objects to be rendered, their qualities

are dynamically determined to facilitate 60 FPS. Downsam-

pling may also use more sophisticated polygon simplification

techniques such as bounded-error polygon simplification [42],

progressive encoding [45], or adaptive display elision based

on the size of the object and its position in the scene [34].

To properly determine the objects’ qualities, each client

creates a rendering profile offline. Let us first assume that

there is only one object type (e.g., the avatar). As exemplified

in Table 2, for each quality level, the profile maps the number

of concurrent objects (3, 6, 9 are shown) to whether 60+ FPS

can be achieved. Note that we assign the same quality to all

objects to simplify the quality selection. The profile is created

by the client through automated tests. During a test, the client

is also performing tile decoding/rendering to mimic the work-

load of generating the background view. Then at runtime, the

client can directly consult its profile to determine the objects’

quality level. For example, when there are 6 objects, SGS8

should use the medium quality (Table 1) to achieve 60 FPS.

When there are multiple types of objects, it may be infeasible

to exhaustively enumerate their combinations. In this case, we

can apply simple machine learning to predict the rendering

performance, using features such as the number of objects, the

total number of polygons, etc. We leave this as future work.

4 System Implementation

Client and Server. We have integrated the components in §3

into the holistic Firefly system that works on commodity An-

droid/Linux OSes. The client is implemented using Android

SDK with a total line of code (LoC) of 14,900. Tile decoding

is realized using the low-level Android MediaCodec API [3].

We leverage multiple concurrent hardware decoders, whose

optimal number depends on the device, to boost the decod-

ing performance. We use OpenGL ES to perform tile pro-

jection/rendering, and use the OpenGL FBO (Framebuffer

Object) to realize the L1 decoded cache (§3.5). We have suc-

cessfully tested Firefly on four mobile devices: SGS8, SGS10,

Moto Z3, and SGN 8 (full names in Table 2). These devices

can be readily plugged into affordable VR headsets. The rota-

tional and translational motion is provided by the on-device

motion sensors and the VR headset controller, respectively.

The server is implemented on Ubuntu 16.04 with about 1,000

LoC. The clients and the server communicate over TCP.

WiFi AP. The clients and server are wirelessly connected by

a commodity WiFi AP. Since the server is only one wireless

hop away from the users, AQC can directly obtain accurate

global and per-user available bandwidth from the AP (Line 01

and 03 in Figure 10). This avoids the error-prone bandwidth

estimation process widely used in Internet video streaming.

To obtain the AP-wide overall bandwidth, we modify the

AP’s firmware to collect statistics on the maximum PHY rates

of the clients, the wireless bandwidth used (20–160MHz in

5GHz Wi-Fi bands), and the busy channel time from hardware

registers. To estimate each user’s available bandwidth, we

also collect statistics on the PHY rate and the frame error

rate. The available bandwidth for a client i is estimated as

Φi(1−εi)(1−U)OTCP/N, where Φi is its PHY rate, εi is the

error rate, U is the channel busy airtime, N is the number of

clients taking into account that the airtime will be shared fairly

among clients, OTCP is the TCP overhead estimated offline

through bandwidth saturation experiments. Similar statistics

are available on other APs via interfaces such as WebUI.

The Offline Rendering Engine (§3.1) consists of a rendering

engine (developed in C# using Unity) and a mega tile encoder

(developed in Python) with a total LoC of 1,500. We use

H.264 encoding supported by all mainstream mobile devices.

5 Evaluation
5.1 Evaluation Setup

Content Preparation. We use two commercial VR scenes

purchased from the Unity store: Office [16] (30m×26m) and

Museum [13] (35m×30m, L-shape). The offline rendering

engine (§3.1) discretizes both scenes into 5cm×5cm grids,

which are fine-grained enough to provide a smooth transla-

tional movement experience. The offline engine renders each

panoramic frame in 1440p (Quad HD, 2560×1440) resolu-
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Figure 11: Our equipment: phones, Raspberry Pis, and WiFi AP.

tion, and encodes each mega tile into four quality levels, using

the following CRF (Constant Rate Factor) values: 19, 23, 27,

31. A higher CRF corresponds to a lower quality and a lower

encoded bitrate. The CRF values are selected by following

prior recommendations [17, 20] where the encoded bitrate

ratio between two neighboring quality levels is approximately

1:1.5. The content database size is 137 GB and 99 GB for

Office and Museum, respectively. When exploring each scene,

a user can see other users as avatars, which are rendered by

the client as foreground objects. The statistics of the avatar’s

three quality levels are listed in Table 1.

Hardware and Software. As shown in Figure 11, we use 15

client devices. 5 of them are COTS smartphones with differ-

ent computational capabilities: SGS8×2 (released in 2017),

SGN8 (2017), Z3 (2018), and SGS10 (2019). They all run

unmodified Android 9.0. For the remaining clients, we use

10 Raspberry Pi 4 (model B) to emulate them, each having a

quad-core ARM Cortex-A72 CPU @ 1.5GHz and 2GB mem-

ory. The Pis run Raspbian OS (Debian v10 with Linux kernel

4.19). We run full-fledged Firefly on the 5 smartphones. For

the Pis, we create an emulated version of Firefly by replacing

the decoding and rendering components with their emulated

counterparts. The decoding/rendering latency is properly em-

ulated using the numbers profiled from the 5 smartphones.

All other components such as AQC, viewport prediction, tile

fetching scheduler, decoding scheduler, L2/L3 caching are

identical to those running on a real Firefly client. The server

is a desktop PC with an octa-core CPU @ 3.6GHz, 16 GB

memory, 1TB disk, and Ubuntu 16.04. The server does not

have a dedicated GPU. Clients and server are connected by

an Aruba AP running 802.11ac on 80MHz bandwidth.

Physical Environment. The experiments are conducted in a

typical office room (7.9m×7.3m) where all the devices, the

server, and the AP are located. We distribute the devices at

random locations. We find that their locations have a small

impact on network performance. For a single device, placing

it at the spot nearest to the AP and the spot furthest from the

AP yields a throughput difference no more than 11%.

Experimental Approach. To ensure reproducibility, our

high-level experimental approach is to replay real users’ mo-

tion traces collected in §3.2. Recall that we have 25 user traces

and 15 devices. In each run, we randomly pick 15 users and

assign them in a random order to the devices. Each device

then replays the corresponding user’s motion trace by feeding

the sensor stream to Firefly with precise timing. By default,

each experiment consists of 5 back-to-back runs with different

user-to-device assignments. We set the users’ field-of-view

(FoV) to a typical value of 100°×90° [53]. Unless otherwise

mentioned, the presented results are based on the Office scene

as the results for the Museum scene are qualitatively similar.

5.2 Overall Performance Comparison
We first evaluate the overall performance of Firefly, with the

following metrics. (1) Missed Frame Count (MFC). In our

client implementation, a high-precision rendering timer is trig-

gered every 15ms (or 66.67 Hz). If a frame is not ready at the

current timer event, it needs to wait for the next timer event,

i.e., after 15ms. In this case the client reports one MFC. MFC

is highly correlated with the motion-to-photon delay [69], the

time needed for a user’s motion to be reflected on the display.

When MFC=0 (the ideal case), the motion-to-photon delay is

minimized to no longer than 15ms, i.e., the motion is reflected

in the immediate next frame. When MFC>0, a stall occurs.

(2) Average frame rate is measured by sliding a 1-second

window over a VR session and calculating the average FPS

within each window. Our target FPS is 60. (3) Stall duration
is the rebuffering time experienced by a user. We normalize it

to seconds per minute for a VR session. This metric is corre-

lated with the MFC. (4) Content Quality. Recall that a tile’s

quality is defined by the CRF value ∈{19,23,27,31} (§5.1).

We then define the quality of a frame as the average quality

of all tiles visible in the viewport. (5) Inter-frame Quality
Variation is measured by sliding a 1-second window over

a VR session and calculating the standard deviation of all

frames’ quality values (defined above) within each window.

Since frequent quality switches degrade the QoE [66], a lower

value of this metric is preferred. (6) Intra-frame Quality
Variation of a frame is defined as the standard deviation of

the quality values of all tiles appearing in a frame’s view-

port. Similar to the inter-frame quality variation, we prefer a

lower intra-frame quality variation. Metrics (4), (5), and (6)

are defined for the background view only. We evaluate the

adaptation mechanism for foreground objects in §5.3.

Approaches to Compare. We compare three approaches: (1)

full-fledged Firefly, (2) full Firefly with perfect prediction,

and (3) the multi-user version of Furion [44]. Approach (2)

represents an ideal scenario where users’ viewport trajectories

are known a priori. It helps us understand how much perfor-

mance improvement we can further gain by having the perfect

knowledge of users’ motion. Regarding Approach (3), Furion

is the state-of-the-art solution for single-user untethered VR.

We create a multi-user version of Furion as follows. We use

the full Firefly as the base (to handle multi-user), and then

make (and only make) the following modifications accord-

ing to Furion’s design. First, we remove viewport prediction

that Furion does not perform. Second, Furion does not use

viewport-adaptation; the client instead always requests for all

tiles belonging to all four neighboring grids; we thus modify
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Figure 15: Content quality.
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Figure 16: MFC (Museum).
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Figure 17: Quality (Museum).
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Figure 18: FPS fairness.
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Figure 19: Quality fairness.

the tile scheduling module (§3.3) accordingly.

We next present the results for the Office scene. Fig-

ures 12, 13, 14, and 15 plot the distributions of the aforemen-

tioned four metrics: MFC (across all timer events), average

FPS (across all 1-sec windows’ measurements), stall (across

all users’ sessions), and average content quality (across all

users’ sessions). Thanks to its adaptiveness to available net-

work/computation resources and its resilience to motion pre-

diction inaccuracy, Firefly achieves overall good performance

across all these metrics, which are the same or only slightly

worse compared to Firefly with perfect prediction. Specifi-

cally, (1) 99% of the timer events (99% for perfect prediction)

have MFC=0, i.e., a motion-to-photon delay ≤15ms; (2) for

90%/99% of the 1-sec windows (95%/99% for perfect predic-

tion), the average FPS is at least 60/50 FPS; (3) the median

stall duration is only 1.2 sec/min (1.0 sec/min for perfect pre-

diction); (4) the median content quality is around CRF 24.2

(CRF 22.2 for perfect prediction). In Figure 15, the slightly

lower quality compared to that of perfect prediction is due to

the additionally fetched tiles. The bandwidth consumed by

these tiles is wasted because they are not viewed by the users

due to viewport prediction errors.

The multi-user Furion exhibits much worse performance.

This is because without prediction, it can only blindly fetch

an excessive number of tiles without any prioritization. As a

result, the bandwidth consumed of many tiles is wasted, lead-

ing to a much lower content quality; wasted tiles may also

cause head-of-line blocking for useful tiles, causing stalls and

a lower FPS. The results for the Museum scene are qualita-

tively similar, as exemplified in Figures 16 and 17, which plot

the MFC and content quality results, respectively.

We also measure the inter/intra-frame quality variations,

and find them to be low. For Firefly, the 25th, 50th, and 75th

percentiles of the inter-frame quality variation (across all 1-

sec windows’ measurements) are 0, 0.2, and 0.3, respectively;

the 90th percentile of the intra-frame quality variation is 0.

Both metrics are very close to Firefly with perfect prediction.

The low quality variations are attributed to AQC’s quality

selection mechanism. It (1) assigns the same quality to all the

tiles in a viewport and (2) performs LRU-style quality changes

that not only ensure fairness (to be shown next) across users

but also facilitate smooth quality switches for a given user.

Fairness. Figures 18 and 19 plot the distributions of FPS and

content quality respectively, for five smartphones. Note that

although the instantaneous available bandwidth may differ

across the devices, in the long run, each device largely gets an

equal share of the bandwidth (as verified by us). Also, since

each device replays multiple human users’ motion traces,

this should largely smooth out the impact of motion diversity

among the human users. In addition, the devices’ compu-

tational power heterogeneity is considered by the adaptive

object quality selection mechanism (§3.6). Therefore, we ex-

pect the distributions to be similar among the devices. This is

indeed shown in Figures 18 and 19, confirming that AQC can

achieve a decent level of fairness among the devices.

Real Phones vs. Emulated Devices. We observe small per-

formance differences between the two device groups: the 5

real smartphones and the 10 Raspberry Pis. Their average stall

duration (across all users’ sessions belonging to each group)

differs by less than 2%; for both groups, 99% of the timer

events have MFC=0; both groups also exhibit very similar

FPS distributions; the median content quality is CRF 24.2

and 26.1 for the phone and the Pi group, respectively. This

difference is likely attributed to the conservative emulation

settings (e.g., decoding latency) used in emulation. Overall,

We believe that Firefly is accurately emulated on the Pis.

5.3 Micro Benchmarks
We now present several micro benchmarks to showcase the

impact of key design decisions of Firefly.

Impact of AQC. Figure 20 plots the stall duration across all

VR sessions with AQC enabled vs. disabled. When AQC is

disabled, we consider two extreme cases: always fetching
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the highest quality (CRF=19) and always fetching the lowest

quality (CRF=31). As shown, the former suffers from very

long stalls (median: 9.6 sec/min); the issue with the latter is

the low content quality (CRF 31). AQC instead strikes a much

better tradeoff: the achieved average quality is CRF 23.8,

while the stall duration is only slightly increased compared to

statically using CRF=31 without AQC.

Impact of Bandwidth Reservation in AQC. Recall

from §3.4 that we make an important design decision in AQC

by reserving for each user a fixed amount of bandwidth to

handle the user’s sudden motion that may incur unexpected

bandwidth utilization. Figure 21 indicates that this mecha-

nism is highly beneficial. If bandwidth reservation (BWR) is

disabled, the median stall duration increases drastically from

1.2 sec/min to 8.8 sec/min.

Impact of Viewport Prediction. To justify our viewport pre-

diction design, we consider four variations shown in Fig-

ure 22. “LT+LR” is Firefly’s approach where we use Linear

regression (LR) for both the Translational movement and

Rotational movement prediction; “ST+SR” represents a naïve

Static strategy: directly using the current viewport as the pre-

dicted viewport by assuming the user is stationary in both the

translational and the rotational dimensions; “LT+SR” corre-

sponds to using LR for translational prediction and Static for

rotational prediction; “ST+LR” represents using Static and

LR for translational and rotational prediction, respectively.

Here, we consider all 25 users’ motion traces by replaying

them sequentially using one Samsung Galaxy Note 8 phone.

Figure 22 shows that Firefly’s approach, LT+LR, achieves

the overall highest FPS. Also, LT+SR significantly outper-

forms ST+LR and ST+SR. This suggests that translational

prediction accuracy plays a more important role in determin-

ing the system performance compared to rotational prediction

accuracy. The reason is that large tiles (90°×180°) can shield

many rotational prediction errors (§3.3) but not any transla-

tional prediction error.

Impact of Adaptive Object Quality Selection. By analyz-

ing the logs produced by the experiments in §5.2, we find that

oftentimes many avatars indeed appear in the viewport: in

more than 40% (10%) of the viewports, 4 (8) or more avatars

need to be rendered, and this number can reach 10. Too many

foreground objects incur high local rendering workload in par-

ticular for computationally weak devices. This overhead can

be effectively mitigated by the object quality selection scheme

(§3.6), which adaptively reduces the fidelity of foreground

objects (in our experiments, the users’ avatars) to maintain

a high FPS. Figure 23 suggests that by disabling this feature

(the “Static” curve, which always renders the objects at the

highest quality), the FPS drops significantly: the fraction of

1-sec windows with <60 FPS increases from 8% to 37%.

5.4 Adaptiveness to Number of Users
We conduct an experiment to demonstrate that Firefly can

properly handle users dynamically joining and leaving the

system. We begin with 5 randomly chosen devices at t=0; at

t=60s, 5 randomly chosen devices join the system; at t=120s,

5 more devices start their VR sessions; at t=180s, 5 devices

leave the system; finally at t=240s, 5 more devices leave.

Figures 24 and 25 plot the average FPS and average CRF

across all users, respectively, over time. As shown, regardless

of the user dynamics, the frame rate almost always stays above

60 FPS. Meanwhile, the content quality well adapts to the

bandwidth available to each individual device. When there are

no more than 10 devices, each device can enjoy the highest

content quality at CRF 19. With 15 devices, AQC reduces the

average quality level to ∼24 due to bandwidth scarcity while

maintaining fairness across users (Figures 18 and 19). The

fluctuations in Figures 24 and 25 (also in Figures 26 and 27 to

be described in §5.5) are attributed to our averaging method

(first over a 1-second window and then over all users) for
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calculating each FPS and content quality sample.

5.5 Adaptiveness to Available Bandwidth
We conduct two experiments to investigate how Firefly adapts

to changing network bandwidth. In the first one, we begin

with unthrottled bandwidth (around 200 Mbps as reported by

the AP) at t=0; we then use the Linux tc tool [12] to throttle

the AP-wide bandwidth to 140 Mbps at t=60s; the bandwidth

throttling is removed at t=180s. The second experiment is the

same except that the bandwidth throttling is set to 100 Mbps.

For both experiments, we fix the number of devices to 15.

Figures 26 and 27 plot the average FPS and average content

quality across all users, respectively, over time. When the total

bandwidth reduces, the content quality immediately drops to

the lowest in order to maintain a high frame rate. For 140Mbps

bandwidth throttling, AQC manages to stabilize the frame rate

at 60+ FPS. For 100Mbps throttling, each device gets only

∼6.7Mbps bandwidth on average that can barely support even

the lowest quality level at CRF=31. As a result, the frame rate

occasionally drops below 60 FPS.

5.6 Comparison with MUVR
MUVR [47] is a recently proposed, state-of-the-art multi-

user mobile VR framework. It is also (to our knowledge) the

most relevant work to Firefly. In MUVR, a server maintains

a centralized cache that stores the rendered and encoded VR

content. Given a user’s translational position, the server can

directly transmit the view if it is cached; otherwise the server

needs to render the view and properly cache it. In their evalu-

ation, the authors emulated 4 concurrent users of MUVR.

We quantify the effectiveness of MUVR on our Office

dataset using simulation. The setup is similar to §5.2 where

we replay 15 randomly selected users’ motion traces 5 times.

Meanwhile, we simulate the centralized cache: for every

frame, all devices simultaneously “send” their translational

positions to the server; upon cache misses, the server will “ren-

der” the corresponding positions and add them to the cache.

We assume the cache is initially empty and has unlimited ca-

pacity. We find that for 27% of the time, there are more than

5 concurrent cache misses, i.e., the server needs to render for

more than 5 devices. According to our pilot experiment in §2,

this cannot be supported by even a high-end GPU, leading to

poor scalability. Firefly eliminates this issue by performing

exhaustive offline rendering (§3.1). It also introduces other

important components that MUVR does not have such as

AQC, viewport adaptation, and handling foreground objects.

5.7 Resource Usage and Thermal Overhead

CPU, GPU, and Memory. Firefly incurs acceptable runtime

overhead and resource footprint on mobile devices. During a

VR session, the CPU usage (reported by the Android Studio

Profiler) is no higher than 30% across the five smartphones.1

The overall memory usage (CPU+GPU) is no higher than 1.6

GB, which is mostly spent on L1 and L2 cache. Note that the

cache capacities (L1, L2, and L3) are adjustable in Firefly.

Energy Usage and Thermal Characteristics. To profile the

energy usage, we fully charge the five phones, and then repeat

the experiment in §5.2 by running on each phone five back-

to-back VR sessions. After that (25 minutes later), we record

the remaining battery percentage, which ranges from 92% to

96% (average 93.8%) depending on the device’s power con-

sumption and battery capacity. We also monitor the CPU/GPU

temperature. After continuously playing the VR content for 25

minutes, the highest temperature (either GPU or CPU) among

the devices is 50°C, which only feels moderately warm. Over-

all we think the above energy and thermal characteristics are

completely acceptable for mobile VR.

6 Related Work

360° Video Streaming. There exist a plethora of work on

streaming 360° videos. Prior systems such as Flare [53], Ru-

biks [38], Freedom [60], and POI360 [62] also take a viewport-

adaptive streaming approach. Some other studies focus on

viewport prediction for 360° videos [24,33,39]. Compared to

the work above, Firefly extends the viewport-adaptation idea

to generic VR that involves both the rotational and transla-

tional viewport movement. In particular, we demonstrate how

viewport adaptation can benefit multi-user VR systems.

Single-user Mobile VR has also been well investigated.

Flashback [27] and Furion [44] demonstrate high-quality

single-user VR on COTS smartphones. Flashback is a com-

pletely local system (on a single device, content stored in

SD card). We leverage its core concept of offline rendering to

support high-quality, networked multi-user VR. We extend Fu-

rion to a multi-user version and quantitatively compare it with

Firefly in §5.2. MoVR [22, 23] employs 60 GHz mmWave

wireless for mobile VR. Liu et al. [48] proposed system-level

optimizations for the mobile VR rendering pipeline. Tan et al.
explored supporting mobile VR over LTE [61]. None of the

above work explicitly focuses on the multi-user scenario.

Multi-user VR/AR. Despite a plethora of work on single-

user VR, much fewer studies have been conducted on its

multi-user counterpart. The most relevant work to Firefly is

MUVR [47] that is described in detail in §5.6. Bo et al. devel-

oped a multi-user 360° video streaming system based on mul-

ticast [25]. A recent positioning paper [49] discusses several

practical issues of designing a multi-user VR system (with-

out implementation). Some studies investigated multi-user or

collaborative augmented reality (AR) [54, 55, 68]. Compared

to the above work, Firefly is a generic multi-user VR system.

It achieves much better scalability compared to MUVR.

1Android Studio Profiler does not report the GPU utilization.
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7 Discussion

Efficient Offline Rendering. Future VR applications can

involve large and complex scenes, drastically increasing the

overheads of offline rendering. Firefly plans to explore well-

known rendering optimization techniques [29, 50] which use

different hierarchical structures for adapting to the surface

tessellation and level of detail.

Handling Dynamic Background. While significantly boost-

ing scalability, Firefly’s offline rendering assumes the back-

ground content is static (but can be arbitrarily complex). Sim-

ple dynamic content involving short animation sequences can

still be rendered offline. Complex dynamic content (involving

lighting, reflection, etc.) has to be rendered at runtime.

Enhancing Firefly using Computer Graphics and Multi-
media Techniques. While the contributions of Firefly are

mostly on the system side, we are aware that Firefly can be

enhanced by various techniques developed from the com-

puter graphics and multimedia community. For example, the

3D models of foreground objects can be simplified using

techniques proposed by [31, 32, 35, 56]; visibility or distance

culling [34, 36, 52] can be applied to reduce the runtime ren-

dering overhead while maintaining objects’ visual qualities;

more sophisticated partitioning [58, 59] can be employed

to make caching more efficient for both static background

and dynamic foreground; more efficient video codec such as

H.265 [37] and the next-generation H.266 standard [1] can

be leveraged to further reduce the bandwidth footprint for

background content delivery; powered by recent advances in

deep learning, deep neural networks (super-resolution) can

be applied to enhance the image quality [30, 65]. The above

approaches are orthogonal to Firefly’s exhaustive rendering

paradigm and are compatible with the AQC scheme.

Improving Motion Prediction. Firefly employs online lin-

ear regression for motion prediction. Despite being simple,

it is experimentally demonstrated to be efficient and effec-

tive. The prediction accuracy could be further improved using

more sophisticated prediction methods. For instance, over 3-

DoF (degree-of-freedom) head movement data, deep learning

approaches such as LSTM (Long Short-Term Memory) was

found to outperform classic machine learning in particular

when the prediction window is long [64]. Another promis-

ing direction is to enrich the feature set using, for example,

velocity, acceleration, and even VR content features such as

saliency [33]. We plan to explore the above directions in our

future work.

7.1 Lessons Learned
We learned several important lessons from Firefly, which may

guide the design of future multimedia systems.

First, Wirth’s law [21] also applies to multimedia: the con-

tent resolution/quality increase may outpace the graphics

technology evolution. While 3D computer games already

use some pre-computation techniques such as projecting pre-

rendered 2D panoramic background [2] and rendering faraway

3D objects as 2D sprites, we believe that more extensive of-

fline computation and caching will remain a core technique

that can scale up high-quality content rendering on commod-

ity hardware, in particular in emerging multimedia services

such as mixed reality and cloud gaming.

Second, scheduling content delivery in a multi-user system

requires considering a wide range of factors: network band-

width, device rendering capability, users’ QoE, users’ inter-

action, and cross-user fairness. Our experience of developing

AQC indicates that while establishing a full-fledged optimiza-

tion framework may be difficult, a robust heuristic-driven

algorithm can work well in practice. In addition, to adapt

to users’ fast-paced, bursty interactions, the scheduling algo-

rithm needs to run at a frequency that is much higher than tra-

ditional videos’ bitrate adaptation algorithms [40, 41, 51, 66].

Third, from traditional videos (0 DoF) to 360° videos (3-

DoF) and then to VR/volumetric (6-DoF), multimedia content

tend to become more immersive and interactive. To embrace

such trends, future multimedia systems need more intelli-

gence, which is not limited to motion prediction as showcased

in Firefly. Elements such as users’ eye movement [43, 46],

users’ voice, salient visual content [33], and sound source,

to name a few, can all be leveraged to infer viewers’ inten-

tion and henceforth to facilitate system-level decision making

such as content prefetching and scheduling.

Fourth, in addition to content, client devices, and server,

the network (in particular, the wireless one) is also a key

component whose interplay with the multimedia system needs

to be carefully optimized. The lower-layer wireless channel

information could be leveraged to guide network resource

allocation. In Firefly, we demonstrate this over 802.11ac WiFi

(§4). Similar cross-layer design could be conducted for other

WiFi standards (802.11ax [26]) and cellular networks [62,63].

8 Concluding Remarks

We have demonstrated with Firefly that it is feasible to sup-

port 15 VR users at 60 FPS using COTS smartphones and a

single AP/server. Our design makes judicious decisions on

(1) partitioning the workload (offline vs. runtime, client vs.

server), (2) making the system adaptive to the available net-

work/computation resources, both collectively and locally to

each user, and (3) handling users’ fast-paced, bursty motion.

We believe that the core concepts of Firefly are applicable to

other multi-user scenarios such as those of augmented reality

and mixed reality.

ACKNOWLEDGEMENTS
We thank the voluntary users who participated in our study, the

anonymous reviewers for their valuable comments, and Philip

Levis for shepherding the paper. This work was supported in

part by NSF Award #1903880 and #1915122.

954    2020 USENIX Annual Technical Conference USENIX Association



References

[1] 3 New Codecs Coming in 2020. . https://nofilmsc
hool.com/three-new-codecs-are-coming.

[2] An Adventure in Pre-Rendered Backgrounds.

https://justinmeiners.github.io/pre-rende
red-backgrounds/.

[3] Android MediaCodec API. https://developer.an
droid.com/reference/android/media/MediaCod
ec.html.

[4] Blender. https://www.blender.org/.

[5] Bluetooth VR controller. https://www.amazon.com
/VR-Bluetooth-Controller-Kasonic-Smartphon
es/dp/B01E7Z72NQ/.

[6] BYOD Popularity. https://www.forbes.com/sites
/larryalton/2017/03/27/how-important-is-a
-byod-policy-5-strategies-for-millennials/.

[7] Equirectangular Projection. http://mathworld.wolf
ram.com/EquirectangularProjection.html.

[8] Google AR and VR: Bringing pixels front and center in

VR video. https://blog.google/products/googl
e-ar-vr/bringing-pixels-front-and-center-v
r-video/.

[9] Google Cardboard. https://vr.google.com/card
board/.

[10] How to Build a PC for Virtual Reality. https://www.
logicalincrements.com/articles/vrguide.

[11] Keeping the virtual world stable in VR.

https://www.qualcomm.com/news/onq/2016/0
6/29/keeping-virtual-world-stable-vr.

[12] Linux TC. http://man7.org/linux/man-pages/m
an8/tc.8.html.

[13] Museum Unity Asset. https://assetstore.unity
.com/packages/3d/environments/museum-vr-c
omplete-edition-89652.

[14] Next-generation video encoding techniques for 360

video and VR. https://code.fb.com/virtual-rea
lity/next-generation-video-encoding-techn
iques-for-360-video-and-vr/.

[15] Oculus Rift. https://www.oculus.com/rift-s/.

[16] Office Unity Asset. https://assetstore.unity.c
om/packages/3d/environments/urban/qa-offic
e-and-security-room-114109.

[17] Per-Title Encode Optimization. https:
//medium.com/netflix-techblog/per-title
-encode-optimization-7e99442b62a2.

[18] Samsung Gear VR. https://www.samsung.com/gl
obal/galaxy/gear-vr/.

[19] The very real health dangers of virtual reality.

https://www.cnn.com/2017/12/13/health/virt
ual-reality-vr-dangers-safety/index.html.

[20] What Is Per-Title Encoding? https://bitmovin.com
/per-title-encoding/.

[21] Wirth’s Law. https://www.techopedia.com/defin
ition/24381/wirths-law.

[22] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina

Katabi. Cutting the cord in virtual reality. In Proceed-
ings of the 15th ACM Workshop on Hot Topics in Net-
works, pages 162–168. ACM, 2016.

[23] Omid Abari, Dinesh Bharadia, Austin Duffield, and Dina

Katabi. Enabling high-quality untethered virtual reality.

In 14th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 2017), pages 531–544,

2017.

[24] Yanan Bao, Huasen Wu, Tianxiao Zhang, Albara Ah

Ramli, and Xin Liu. Shooting a moving target: Motion-

prediction-based transmission for 360-degree videos. In

2016 IEEE International Conference on Big Data (Big
Data), pages 1161–1170. IEEE, 2016.

[25] Yanan Bao, Tianxiao Zhang, Amit Pande, Huasen Wu,

and Xin Liu. Motion-prediction-based multicast for 360-

degree video transmissions. In 2017 14th Annual IEEE
International Conference on Sensing, Communication,
and Networking (SECON), pages 1–9. IEEE, 2017.

[26] Boris Bellalta. Ieee 802.11 ax: High-efficiency wlans.

IEEE Wireless Communications, 23(1):38–46, 2016.

[27] Kevin Boos, David Chu, and Eduardo Cuervo. Flash-

back: Immersive virtual reality on mobile devices via

rendering memoization. In Proceedings of the 14th
Annual International Conference on Mobile Systems,
Applications, and Services, pages 291–304. ACM, 2016.

[28] Shenchang Eric Chen. Quicktime vr: An image-based

approach to virtual environment navigation. In Pro-
ceedings of the 22nd annual conference on Computer
graphics and interactive techniques, pages 29–38, 1995.

[29] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti, Fabio

Marton, Federico Ponchio, and Roberto Scopigno.

Bdam – batched dynamic adaptive meshes for high per-

formance terrain visualization. In Computer Graphics

USENIX Association 2020 USENIX Annual Technical Conference    955



Forum, volume 22, pages 505–514. Wiley Online Li-

brary, 2003.

[30] Mallesham Dasari, Arani Bhattacharya, Santiago Vargas,

Pranjal Sahu, Aruna Balasubramanian, and Samir R Das.

Streaming 360-degree videos using super-resolution. In

IEEE INFOCOM 2020-IEEE Conference on Computer
Communications. IEEE, 2020.

[31] Xavier Décoret, Frédo Durand, François X Sillion, and

Julie Dorsey. Billboard clouds for extreme model sim-

plification. In ACM SIGGRAPH 2003 Papers, pages

689–696. 2003.

[32] Carl Erikson and Dinesh Manocha. Gaps: General and

automatic polygonal simplification. In Proceedings of
the 1999 symposium on Interactive 3D graphics, pages

79–88, 1999.

[33] Ching-Ling Fan, Jean Lee, Wen-Chih Lo, Chun-Ying

Huang, Kuan-Ta Chen, and Cheng-Hsin Hsu. Fixation

Prediction for 360 Video Streaming in Head-Mounted

Virtual Reality. In Proceedings of the Workshop on
Network and Operating Systems Support for Digital
Audio and Video, pages 67–72. ACM, 2017.

[34] Thomas A Funkhouser and Carlo H Séquin. Adap-

tive display algorithm for interactive frame rates during

visualization of complex virtual environments. In Pro-
ceedings of the 20th annual conference on Computer
graphics and interactive techniques, pages 247–254,

1993.

[35] Michael Garland and Paul S Heckbert. Surface simpli-

fication using quadric error metrics. In Proceedings of
the 24th annual conference on Computer graphics and
interactive techniques, pages 209–216, 1997.

[36] Enrico Gobbetti and Fabio Marton. Far voxels: a mul-

tiresolution framework for interactive rendering of huge

complex 3d models on commodity graphics platforms.

In ACM SIGGRAPH 2005 Papers, pages 878–885. 2005.

[37] Dan Grois, Detlev Marpe, Amit Mulayoff, Benaya

Itzhaky, and Ofer Hadar. Performance comparison of h.

265/mpeg-hevc, vp9, and h. 264/mpeg-avc encoders. In

2013 Picture Coding Symposium (PCS), pages 394–397.

IEEE, 2013.

[38] Jian He, Mubashir Adnan Qureshi, Lili Qiu, Jin Li, Feng

Li, and Lei Han. Rubiks: Practical 360-degree streaming

for smartphones. In Proceedings of the 16th Annual In-
ternational Conference on Mobile Systems, Applications,
and Services, pages 482–494. ACM, 2018.

[39] Xueshi Hou, Sujit Dey, Jianzhong Zhang, and Madhukar

Budagavi. Predictive View Generation to Enable Mobile

360-degree and VR Experiences. In Proceedings of the

Workshop on Virtual Reality and Augmented Reality
Network, pages 20–26. ACM, 2018.

[40] Te-Yuan Huang, Ramesh Johari, Nick McKeown,

Matthew Trunnell, and Mark Watson. A Buffer-Based

Approach to Rate Adaptation: Evidence from a Large

Video Streaming Service. In Proceedings of SIGCOMM
2014, pages 187–198. ACM, 2014.

[41] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving

Fairness, Efficiency, and Stability in HTTP-Based Adap-

tive Video Streaming With Festive. In Proceedings of
CoNEXT 2012, pages 97–108. ACM, 2012.

[42] Alan D Kalvin and Russell H Taylor. Superfaces: Polyg-

onal mesh simplification with bounded error. IEEE Com-
puter Graphics and Applications, 16(3):64–77, 1996.

[43] Conor Kelton, Jihoon Ryoo, Aruna Balasubramanian,

and Samir R Das. Improving user perceived page load

times using gaze. In 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI
2017), pages 545–559, 2017.

[44] Zeqi Lai, Y Charlie Hu, Yong Cui, Linhui Sun, Ning-

wei Dai, and Hung-Sheng Lee. Furion: Engineering

high-quality immersive virtual reality on today’s mo-

bile devices. IEEE Transactions on Mobile Computing,

2019.

[45] Jiankun Li and C-CJ Kuo. Progressive coding of 3-d

graphic models. Proceedings of the IEEE, 86(6):1052–

1063, 1998.

[46] Tianxing Li and Xia Zhou. Battery-free eye tracker

on glasses. In Proceedings of the 24th Annual Interna-
tional Conference on Mobile Computing and Network-
ing, pages 67–82, 2018.

[47] Yong Li and Wei Gao. Muvr: Supporting multi-user mo-

bile virtual reality with resource constrained edge cloud.

In 2018 IEEE/ACM Symposium on Edge Computing
(SEC), pages 1–16. IEEE, 2018.

[48] Luyang Liu, Ruiguang Zhong, Wuyang Zhang, Yunxin

Liu, Jiansong Zhang, Lintao Zhang, and Marco Gruteser.

Cutting the cord: Designing a high-quality untethered

vr system with low latency remote rendering. In Pro-
ceedings of the 16th Annual International Conference
on Mobile Systems, Applications, and Services, pages

68–80. ACM, 2018.

[49] Xing Liu, Christina Vlachou, Feng Qian, and Kyu-Han

Kim. Supporting untethered multi-user vr over enter-

prise wi-fi. In Proceedings of the 29th ACM Workshop
on Network and Operating Systems Support for Digital
Audio and Video, pages 25–30, 2019.

956    2020 USENIX Annual Technical Conference USENIX Association



[50] Frank Losasso and Hugues Hoppe. Geometry clipmaps:

terrain rendering using nested regular grids. In ACM
Siggraph 2004 Papers, pages 769–776. 2004.

[51] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh.

Neural Adaptive Video Streaming with Pensieve. In

Proceedings of SIGCOMM 2017, pages 197–210. ACM,

2017.

[52] Soraia R. Musse, Christian Babski, Tolga Capin, and

Daniel Thalmann. Crowd modelling in collaborative

virtual environments. In Proceedings of the ACM Sympo-
sium on Virtual Reality Software and Technology, pages

115–123, 1998.

[53] Feng Qian, Bo Han, Qingyang Xiao, and Vijay Gopalakr-

ishnan. Flare: Practical viewport-adaptive 360-degree

video streaming for mobile devices. In Proceedings
of the 24th Annual International Conference on Mobile
Computing and Networking, pages 99–114. ACM, 2018.

[54] Hang Qiu, Fawad Ahmad, Fan Bai, Marco Gruteser, and

Ramesh Govindan. Avr: Augmented vehicular reality.

In Proceedings of the 16th Annual International Con-
ference on Mobile Systems, Applications, and Services,

pages 81–95. ACM, 2018.

[55] Xukan Ran, Carter Slocum, Maria Gorlatova, and Jiasi

Chen. Sharear: Communication-efficient multi-user mo-

bile augmented reality. In Proceedings of the 18th ACM
Workshop on Hot Topics in Networks, pages 109–116,

2019.

[56] Rémi Ronfard and Jarek Rossignac. Full-range approxi-

mation of triangulated polyhedra. In Computer Graphics
Forum, volume 15, pages 67–76. Wiley Online Library,

1996.

[57] Mahadev Satyanarayanan, Wei Gao, and Brandon Lu-

cia. The computing landscape of the 21st century. In

Proceedings of the 20th International Workshop on Mo-
bile Computing Systems and Applications, pages 45–50.

ACM, 2019.

[58] Gernot Schaufler and Wolfgang Stürzlinger. A three di-

mensional image cache for virtual reality. In Computer
Graphics Forum, volume 15, pages 227–235. Wiley On-

line Library, 1996.

[59] Jonathan Shade, Dani Lischinski, David H Salesin, Tony

DeRose, and John Snyder. Hierarchical image caching

for accelerated walkthroughs of complex environments.

In Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques, pages 75–82,

1996.
[60] Shu Shi, Varun Gupta, and Rittwik Jana. Freedom: Fast

recovery enhanced vr delivery over mobile networks.

In Proceedings of the 17th Annual International Con-
ference on Mobile Systems, Applications, and Services,

pages 130–141. ACM, 2019.

[61] Zhaowei Tan, Yuanjie Li, Qianru Li, Zhehui Zhang, Zhe-

han Li, and Songwu Lu. Enabling Mobile VR in LTE

Networks: How Close Are We? In Proceedings of SIG-
METRICS 2018. ACM, 2018.

[62] Xiufeng Xie and Xinyu Zhang. Poi360: Panoramic

mobile video telephony over lte cellular networks. In

Proceedings of the 13th International Conference on
emerging Networking EXperiments and Technologies,

pages 336–349. ACM, 2017.

[63] Xiufeng Xie, Xinyu Zhang, Swarun Kumar, and Li Erran

Li. pistream: Physical layer informed adaptive video

streaming over lte. In Proceedings of the 21st Annual
International Conference on Mobile Computing and
Networking, pages 413–425, 2015.

[64] Tan Xu, Bo Han, and Feng Qian. Analyzing viewport

prediction under different vr interactions. In Proceed-
ings of the 15th International Conference on Emerging
Networking Experiments And Technologies, pages 165–

171, 2019.

[65] Hyunho Yeo, Youngmok Jung, Jaehong Kim, Jinwoo

Shin, and Dongsu Han. Neural adaptive content-aware

internet video delivery. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
2018), pages 645–661, 2018.

[66] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno

Sinopoli. A Control-Theoretic Approach for Dynamic

Adaptive Video Streaming over HTTP. In Proceedings
of SIGCOMM 2015, pages 325–338. ACM, 2015.

[67] Matt Yu, Haricharan Lakshman, and Bernd Girod. A

framework to evaluate omnidirectional video coding

schemes. In Proceedings of the Symposium on Mixed
and Augmented Reality (ISMAR) 2015, pages 31–36.

IEEE, 2015.

[68] Wenxiao Zhang, Bo Han, Pan Hui, Vijay Gopalakrish-

nan, Eric Zavesky, and Feng Qian. Cars: collaborative

augmented reality for socialization. In Proceedings of
the 19th International Workshop on Mobile computing
Systems & Applications, pages 25–30. ACM, 2018.

[69] Jingbo Zhao, Robert S Allison, Margarita Vinnikov, and

Sion Jennings. Estimating the motion-to-photon latency

in head mounted displays. In 2017 IEEE Virtual Reality
(VR), pages 313–314. IEEE, 2017.

USENIX Association 2020 USENIX Annual Technical Conference    957




