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ABSTRACT
We organized an online fingerprint-based indoor localization
competition in 2021. It attracted 1,170 teams worldwide. The
teams were provided with a 60 GB dataset including WiFi,
BLE, IMU, and geomagnetic field strength data collected from
204 buildings to build their localization algorithms, which
were then evaluated against a separate test dataset. The com-
petition received 28,009 submissions. The top team achieved
an average accuracy of 1.50m. This paper reports the lessons
we learned from analyzing the submissions, as well as our
experiences in organizing the competition, through both
qualitatively studying the teams’ algorithms and quantita-
tively characterizing the competition results.

CCS CONCEPTS
• Information systems→ Location based services; Sen-
sor networks; Global positioning systems; • Networks →
Location based services.
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1 INTRODUCTION
Indoor localization has been an active research topic for
more than two decades. Among numerous technologies,
fingerprint-based indoor localization has attracted the most
attention in literature andwas the first (and probably the only
one) that has registered large-scale commercial deployment
in recent years [3, 14, 23, 32]. A fingerprint-based localiza-
tion system adopts a learning paradigm at its core. In the
offline training phase, system operators survey the site to
collect various features (e.g., RSSI of radio signals) as well as
the location ground truth, and use them to build a model. In
the online localization phase, end users’ devices (e.g., smart-
phones) collect the same features and use the model to infer
the current location. In practice, a well-designed system may
involve much more sophisticated, inter-disciplinary mech-
anisms to improve the accuracy, usability, and resource ef-
ficiency, such as signal processing, sensor fusion, machine
learning, crowdsourcing and edge/cloud offloading, to name
a few.
In 2021, we organized an online indoor localization com-

petition. This is to our knowledge the largest open-to-public
indoor localization competition in terms of the data size, as
well as the number of participants and received submissions.
It attracted 1,446 contestants from 64 countries making up
1,170 teams. The participating teams were provided with a
60 GB dataset (with location ground truth) and their cor-
responding floor plans to train/build their solutions. The
dataset was collected by professional surveyors hired by us
from 204 diverse buildings. The fingerprints include WiFi
RSSI, Bluetooth Low Energy (BLE) RSSI, inertial sensor data
(IMU), and geomagnetic field strength (GMF). Over 4 months,
the competition received 28,009 submissions, and the best
team achieved an average localization accuracy of 1.50m.

Compared to individual localization projects and previous
indoor localization competitions [25, 34], this online competi-
tion has its unique advantages: it reaches out to a muchwider
range of audiences with diverse background and expertise,
and provide a platform to evaluate various solutions using
the identical benchmarks from real-world building environ-
ments. By comparing the “crowd-sourced” solutions side by
side, we can get an unbiased, comprehensive view that helps

https://doi.org/10.1145/3570361.3592507
https://doi.org/10.1145/3570361.3592507


us understand the recent advances in fingerprint-based in-
door localization, and offers critical insights for improving
the state-of-the-art. From the participants’ perspective, an
online competition also provides an ideal venue where they
can exchange ideas and share experiences. Overall, we feel
that our efforts were well paid off in particular given that
the research community and public benchmarks of indoor
localization are far less mature than many other domains
(e.g., image recognition in machine learning).

This paper reports the lessons we learned from analyz-
ing the submissions, as well as experiences in organizing the
competition. Specifically, we would like to answer the follow-
ing questions. (1) What constitutes the overall architecture
of a successful localization solution? (2) How much can deep
learning, which is recently being fused into numerous mo-
bile computing applications, help improve the localization
accuracy? (3) What is the accuracy limit of fingerprint-based
localization, which, we believe, can be approximated by the
very top ones among more than 20,000 submissions? (4)
What are the common errors (i.e., poor localization accu-
racy) made by most teams? (5) How to improve the design
of future competitions?
We face two major challenges when attempting to an-

swer the above questions. The first challenge stems from
the high complexity of the teams’ solutions (i.e., their lo-
calization logic). Modern fingerprint-based localization sys-
tems are highly sophisticated. Multiple modules including
positioning (absolute localization based on the current fin-
gerprint), tracking (relative localization based on the pre-
vious trajectory), pre/post processing (e.g., using floor plan
to make corrections), floor estimation, online (re)training,
to name a few, need to work together to deliver accurate
results [2, 12, 20, 48, 57, 62]. Many modules also own large
parameter spaces. While we observe all these modules from
many teams’ solutions, fully understanding how they work
individually and collectively poses amajor difficulty. Tomake
it worse, we usually have no access to the teams’ source
code.1 To address this challenge, we quantitatively character-
ize the submitted localization results, whereas qualitatively
study the teams’ localization logic, by leveraging multiple
venues: we encourage teams to disclose their algorithms or
even source code on the competition website after the event;
we examine the commit history and its comment section to
learn the improvements made by teams over four months; we
also check posts in the competition forum and teams’ blogs
to obtain their high-level design decisions. Finally, after the
competition, we conducted an online panel discussion and

1This is because we only require the teams to submit answers (i.e., location
coordinates) for given trajectories in the test dataset. Running the teams’
code by ourselves will make grading very complex due to heterogeneous
development environments and programming languages used by the teams.

invited the top teams to share their solutions and experi-
ences. The second challenge comes from the large number
of the teams. To make our analysis tractable, we focus on
analyzing the top 18 teams’ solutions, which were found
to be already highly heterogeneous and thought-provoking.
Meanwhile, to avoid losing the big picture, we also provide
general statistics of all teams’ solutions.
Next, we summarize key findings and lessons from this

large-scale competition.
• Among the top 18 teams, 15 were from industry as op-
posed to academia. Almost all 18 teams’ solutions include
positioning, tracking, and optimization modules that vary
widely. The core positioning algorithm ranges from simple
machine learning (ML) such as KNN to sophisticated deep
learning such as CNN and LSTM. The tracking algorithms
are also heterogeneous, from traditional dead reckoning to
deep learning.
•Regarding the localization accuracy, the top 18 teams achieve
an average accuracy of no more than 3.7m (a median of no
more than 2.6m), sufficient for typical use cases of smartphone-
based indoor localization. The team who won the first place
achieved an average localization accuracy of 1.50m, which
is close to even outperforming the state-of-the-art accuracy
reported by academic publications [5, 21, 31] (using simi-
lar fingerprints, albeit in much smaller-scale lab settings).
We believe this approximates the limit of fingerprint-based
indoor localization usingWiFi/BLE/IMU/GMF signals. Mean-
while, fingerprint-based approaches work reasonably well
with simple engineering. Even for the 500th team, its mean
positioning error can reach 5.7m – still acceptable for many
indoor localization applications such as store/room naviga-
tion in malls/office buildings.
• For positioning (i.e., absolute localization), parameter tun-
ing is more important than model selection. With fine tuning
for a given floor or building, simple machine learning algo-
rithms can outperform deep learning algorithms. In fact,
somewhat surprisingly, we find that the top three teams all
adopt KNN as a main component in their positioning models.
• To achieve a high rank, in addition to good positioning
algorithms, accurate tracking (i.e., relative localization) is
indispensable. We find that a solution’s final score is more
correlated with its tracking accuracy (Pearson correlation
coefficient: 0.78) than its positioning accuracy (Pearson coef-
ficient: 0.34). Deep neural networks can effectively reduce
the tracking error by about 50% compared to the default dead
reckoning routines we provided.
• The top-3 teams’ success mostly owes to three designs: (1)
lightweight positioning models judiciously customized to
each site/floor; (2) learning-based tracking with high accu-
racy; (3) using floor plans to correct predicted trajectories.



• Large localization errors typically occur in corners and
dead ends in buildings. Floor estimations are usually quite
accurate, and their errors usually occur in the atrium area (a
large, open multi-storied space in a large building).
• Top teams attempt to leverage various techniques to re-
duce their errors. While some techniques are expected (e.g.,
leveraging the floor plan information for error correction),
some approaches are unexpected. For example, a few top
teams managed to “reverse engineer” the dataset to infer the
device types we used to collect the data (e.g., through the
IMU sampling interval), and use them as a feature in the ML
model.
• In addition to the above, we also learned valuable lessons
on organizing localization competitions. For example, future
competitions should minimize information leaks from side
channels, make test sets more diverse, avoid using key land-
marks as test points (to prevent easy guesses of answers), and
employ more cross-floor traces to emulate more real-world
usage scenarios. We report these experiences in §5.

Ethical Consideration. No data used in the competition
or in this paper contains personally identifiable information
(PII). All the analyses performed in this paper were based on
public information or information voluntarily provided by
the teams, as acknowledged by the teams and us as part of the
competition rules. The top teams that won this competition
were offered monetary awards. No team’s solution was used
in commercial products, nor do we intend to in the future.

Data Release.We have released the entire dataset (60 GB),
containing WiFi, BLE, GMF, IMU readings and groundtruth
locations collected by surveyors. The dataset URL is:

https://aka.ms/location20dataset

2 DESCRIPTION OF THE COMPETITION
This section describes the competition rules, its datasets,
grading procedure, and the participating teams. We also
compare our competition with a prior indoor localization
competition held in 2014 [34].

2.1 An Overview of the Competition
In 2021, we organized an online indoor localization compe-
tition that lasted about 4 months. The participating teams
were provided with a large scale real-world indoor dataset
collected by smartphones, which comprise WiFi/BLE radio
signals, inertial sensor data, and geomagnetic fields (GMF).
They also had the access to the site information, including the
floor plan and point of interest (POI). Besides, we provided
them with the default pedestrian dead reckoning (PDR) rou-
tines, which can count the steps of the target and calculate
the step length/heading.

The goal of each team is to predict the location (i.e., floor
and coordinate) of the target in the building. Note that each

building has multiple floors. We collected large-scale traces
as the training set, containing the indoor fingerprints and
the ground truth locations of targets. For some traces, we
removed the ground truth locations, and used them as the
test set. The test trace consists of a sequence of fingerprints
corresponding to a moving trajectory as well as a sequence of
timestamps {𝑡𝑖 }. The detailed characteristics of the selected
trajectories will be shown in §2.2 and §2.3. For each test
trace, a team is asked to submit its answer, which consists of
a sequence of locations {𝑙𝑖 }, where 𝑙𝑖 is the estimated location
at 𝑡𝑖 .
The competition received 28,009 submissions. Figure 1

plots the best score across all submissions and the number
of submissions per day over the course of the competition.
The teams only needed to submit answers (i.e., localization
results) to given traces as input queries. As shown in Figure 1,
the submissions gradually increased during the competition,
and surged in the last 7 days. The best score gradually de-
creased since February and reduced significantly in the last
week. Note that the score is a combination of positioning
error and floor error (the lower the better, see §2.3). Finally,
the best score has reached a localization accuracy of 1.50m.
The top 3 teams received 5,000, 3,000, and 2,000 U.S. dollars,
respectively, as monetary rewards.
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Figure 1: Competition results.

2.2 The Datasets
The participants in this competition were provided with a
60GB fingerprint dataset of 204 buildings, most of which are
shopping malls in China. Since we aimed to provide indoor
localization for smartphone users, the fingerprint collection
was also based on smartphones. We developed a custom
mobile application for data scanning, and hired professional
surveyors to collect the indoor fingerprints of the buildings.
The data were collected from 2018 to 2020, and contained
about 30,000 traces with a total distance of 2,257 km.
A challenge here is that we do not know the exact loca-

tion of the surveyor (i.e., the ground truth). We use visually
recognizable landmarks (e.g., pillar, door) in the building as
anchors. As illustrated in Figure 2, we generate waypoints in
walkable areas based on the floor plan. Surveyors were asked
to leverage these waypoints to plan their walking trajecto-
ries, during which they will scan data through smartphones
and store them in the trace file. Surveyors can also modify

https://aka.ms/location20dataset


the waypoints as needed to make data collection easier. For a
trace containing several waypoints, the surveyor walks from
the first point to the last point, and his/her smartphone will
record the fingerprints. When the surveyor passes a way-
point, he/shewill mark the current waypoint in the collection
application as the location ground truth.
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Figure 2: A sample of waypoints on the floor.

The fingerprint includes inertial measurement unit (IMU)
reading, radio signals, and geomagnetic field strength (GMF).
The IMU data consists of accelerometer and gyroscope. The
radio signals include both WiFi RSSI and Bluetooth Low
Energy (BLE) RSSI (if available). In addition, we provide the
metadata of each floor (image, size, floor plan, and POI data).
The test traces are selected based on the real-world user

trace length, and contain 626 traces at 26 sites. We removed
the location information of the waypoints (i.e., test points)
in each test trace, and the teams needed to estimate the floor
and coordinate of each test point based on the provided
fingerprints.

2.3 Grading Submitted Solutions
To avoid overfitting, the evaluation of each team’s submis-
sion was divided into two parts, including a public and a
private part [4]. During the competition, the teams only
knew the public leaderboard, in which the score of each
team was calculated based on 15% of the test data. The pri-
vate leaderboard, which was determined by the other 85%
of the test data, remained confidential until the end of the
competition. The final ranking was based on the private
leaderboard, which was oftentimes different from the public
leaderboard. We only revealed the private leaderboard (and
thus the final ranking) after the competition.
In this competition, we primarily focus on the accuracy

metric, and leave assessing other metrics such as power
consumption and localization delay as future work (§5). We
consider both positioning error and floor estimation error to
calculate the final score as follows:

𝑠𝑐𝑜𝑟𝑒 =
1
𝑁

𝑁∑︁
𝑖=1

(√︁
(𝑥𝑖 − 𝑥𝑖 )2 + (𝑦𝑖 − 𝑦𝑖 )2 + 𝑝 · |𝑓𝑖 − 𝑓𝑖 |

)
(1)

where 𝑁 is the number of waypoints in the test set, (𝑥𝑖 , 𝑦𝑖 )
are the predicted locations for a given waypoint, (𝑥𝑖 , 𝑦𝑖 ) are
the ground truth location for a given waypoint, 𝑝 is the floor

penalty (set to 15), and 𝑓𝑖 , 𝑓𝑖 are the predicted and ground-
truth floor level (an integer) of a waypoint, respectively.
The length of the traces in the test set is illustrated in

Figure 3. We select the test trace length based on a separate
study of real users’ mobility in real buildings (references
omitted for anonymization). It is usually not easy to estimate
the initial position of the target due to limited fingerprints.
Furthermore, the accumulation of positioning errors might
lead to large errors in the long traces. Therefore, most of our
test traces (>80%) are in the range of 40–150 meters. We also
take a small selection of short (<40 meters) and long traces
(>150 meters) to test the robustness of each team’s solution.
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Figure 3: The length of the traces in the test set.

This competition is not real-time. Each team only needs
to make offline estimations and submit their answers to our
system (up to 5 times per day). The whole dataset, including
the training set (with ground truth) and the test set (without
ground truth), was provided to the teams in advance. This
design makes the grading system very easy to implement
and the competition rules easy to follow. It also helps scale
up the competition. Nevertheless, since the teams had the
fingerprints of the entire traces, they could possibly leverage
future information to correct their estimates of the previous
test points, especially for long traces (some real-world local-
ization systems perform similar optimizations of using the
current location to correct past trajectories [49]). We leave
holding large-scale real-time localization competitions as
future work.

2.4 Participating Teams
The competition attracted a total of 1,170 teams from all over
the world. 80% of the top 20 teams, and 60% of the top 50
teams, were from industry. Many participants chose to team
up (up to 5 members per team) so they could develop so-
phisticated solutions. For example, most of the top 20 teams
leveraged ensemble learning that makes use of different algo-
rithms developed by their members. Each team could submit
up to 5 solutions per day during the 4-month competition,
and the top 50 teams made an average of more than 200
submissions.
The basic statistics of the top 18 teams are listed in Ta-

ble 1. (Some data are missing and we mark them with “-”.)
The teams proposed various approaches to achieve accurate



Table 1: Top 18 teams that participate in the competition. The teams are listed in order of the private scores (85% of
the test set). The score is the weighted average of localization error and floor error.

Rank Background
Model Score

Floor Positioning Tracking Generalization Public Private

1 Industry - KNN & LGBM CNN F 0.89 1.50
2 Industry - KNN, MLP & RNN LSTM, PDR & MLP F 1.39 2.20
3 Industry - KNN GLM F 2.04 2.49
4 Industry - - - - 2.25 2.68
5 Industry CNN CNN CNN F 2.40 2.77
6 Industry - - - - 2.01 2.82
7 Industry MLP LSTM & LGBM WaveNet - 2.47 2.83
8 Industry - LSTM CNN T 2.53 3.07
9 Industry No GRU, LSTM & CNN GRU & LSTM T 2.54 3.11
10 Industry No RNN RNN - 2.57 3.12
11 Industry No LSTM PDR F 2.01 3.16
12 Industry KNN KNN PDR F 2.69 3.20
13 Academia LSTM LSTM & MLP MLP T 2.55 3.36
14 Industry - LGBM - - 2.65 3.54
15 Academia KNN LSTM & CNN LGBM & PDR T 2.91 3.54
16 Industry LGBM LSTM & MLP - T 3.00 3.56
17 Academia - LSTM - - 3.19 3.69
18 Industry - LGBM & MLP MLP & CNN F 2.75 3.74

indoor localization, including KNN [1], LGBM [27], MLP
[40], CNN [30], WaveNet [51], RNN [41], LSTM [22], BiL-
STM [17], GRU [7], etc. They usually calculated the absolute
and relative locations of the target separately, and then com-
bined them to predict the final location. For both positioning
(absolute localization) and tracking (relative localization),
most teams preferred to use neural network (NN)-based ap-
proaches. Besides, they tended to use more than one model to
predict the target’s location, and leverage ensemble learning
to improve the localization accuracy. The best scores reached
0.89m and 1.50m (lower is better) on public and private test
sets, respectively.

2.5 Comparison to the 2014 Competition
In 2014, Microsoft held an indoor localization competition
[34] at a hotel in Berlin. The competition attracted 22 teams
from the world, most of which (17 of 22) came from academia.
They mostly employed traditional (non-NN) methods to es-
timate the location of their targets, and it took them months
to years to build their systems. There were two types of
solutions, infrastructure-free and infrastructure-based. The
infrastructure-free approach used existing features (e.g.,WiFi,
GMF) to achieve indoor localization, whereas infrastructure-
based approach required deploying additional hardware. Fi-
nally, infrastructure-based solutions achieved an average
positioning error of 0.72m, and infrastructure-free solutions
could reach 1.56m.

Our competition is infrastructure-free only. It bears a
much larger scale in terms of the number of buildings and
participating teams. Regarding the solutions, we observe a
major paradigm shift: most teams chose to leverage neural
network (NN)-based methods, and it took them less than 4
months to build and tune their models. Despite that, some-
what surprisingly, we observe no noticeable improvement
in the accuracy for infrastructure-free approaches. The best
teams have achieved an average accuracy of 1.50m on the
private test set (taking into account the floor penalty) and
0.89m on the public test set.

■ Finding 1. Compared to the Microsoft competition [34]
in 2014, most teams in our competition adopt neural network
(NN)-based models. Despite the evolution of learning algo-
rithms, after seven years, however, there appears no significant
improvement of positioning accuracy. Fingerprint-based ap-
proaches have likely reached the limit of their potentials. Nev-
ertheless, the top 18 teams can all achieve an average accuracy
of <3.7m, sufficient for most everyday use. Surprisingly, the top
3 teams employ non-NN algorithms as the main component of
their positioning models, achieving an accuracy of <2.5m.

3 ANALYSIS OF TEAMS’ SOLUTIONS
In this section, we take a close examination of the teams’
solutions, focusing on the top 18 teams.



3.1 Assessment Methodology
Recall from §1 that we face a major challenge that we do not
have the code of each team. This is because the teams were
only requested to submit their prediction results during the
competition. Although some competitors have voluntarily
released their high-level designs, their implementation de-
tails remain unknown, let alone the details of their algorithm
evolution. To overcome this challenge, we investigated mul-
tiple sources, including blogs, commit history, forum posts,
and source code (if shared publicly). To ensure our obtained
teams’ algorithm logic is correct, we perform thorough cross-
checks using the above sources. All the results presented in
the remainder of paper were cross-checked from at least two
sources. In addition, except for the forum posts, all the other
information was either not available to other teams during
the competition or published after the competition, so there
is little incentive for teams to falsify their posted informa-
tion. We therefore believe our results are convincing and
derived through a scientific approach. Specifically, (1) Many
of the top 18 teams disclosed their logic after the competi-
tion. Based on this, we manage to obtain a reasonably good
overall picture of their design and key tradeoffs they balance.
(2) Some teams specified the module and algorithm in their
submission history. Recall from §2.4 that each team was al-
lowed to submit up to 5 times per day. We have recorded all
the submitted files and their scores, and kept the prediction
results for each test point. Many submissions had names
with various “meta data” (e.g., algorithm name) that indicate
their corresponding solution versions. We can thus calculate
the performance improvement brought by each module by
comparing the scores of different versions of the submission
file. (3) Competitors were encouraged to discuss the issues
they encountered and the corresponding solutions during
the competition. Therefore, we can know the algorithms
they adopted and their roles in the overall solution. Besides,
a small group of competitors noted in their discussions the
dates they incorporated certain techniques into their models.
Correlating this information with the submission history
offers us more detailed information. (4) We invited top teams
to a workshop and panel discussions to learn their solution.
(5) Some teams have also released part of their source code.

Using the above approaches, we can qualitatively learn the
solution structure, input, output, algorithm of each module,
and the corresponding performance improvement brought
by each module. Furthermore, we are able to quantitatively
evaluate the performance of each submission and assess
the impact of the delta across submissions. Note that many
teams did not publish their models or discuss them with
others. Fortunately, almost all of the top 18 teams, which we
focus next, have shared their solutions through one or more
channels described above.

3.2 An Overview of Solutions
Figure 4 illustrates the basic architecture of most (top-18)
solutions, including positioning, tracking, and various opti-
mization modules. There may not be a separate floor estima-
tion model, as some positioning models can also predict floor
levels. Positioning aims to estimate the absolute location of
a target, usually using radio signals (§3.3). The scanning fre-
quency of radio signals on smartphones is oftentimes limited
(e.g., 4 times per 2 minutes [15]), and there might not be
radio signals in some areas, thus we cannot always achieve
absolute localization. Therefore, in addition to positioning,
we need tracking, which uses inertial data to calculate the
walking distance and direction of the target. In our competi-
tion, participants usually leveraged tracking algorithms to
estimate the distance between two test points (waypoints,
see §3.4). In addition, top teams often employed various
post-processing techniques. For example, most competitors
strategically combined positioning and tracking results to
improve the accuracy.

Table 2: Correlation between modules and final score.

Factors Input
type

Positioning
error

Tracking
error

Optimization
method

Correlation 0.31 0.34 0.78 0.40

Table 3: Improvement brought by each module.

Modules Ensembling Combine
Pos.&Tck.

Snap-to-
landmark

Device ID

Imp. (m) 0.02–0.2 0.4–0.9 0.3–1.4 0.03–0.4

Table 2 shows the Pearson correlation coefficients between
{input type, positioning error, tracking error, optimization
method} and final score across the top 18 teams, which are
{0.31, 0.34, 0.78 and 0.4}, respectively. The input type (e.g.,
WiFi, BLE) and optimization method (e.g., snap-to-landmark)
are non-numeric, therefore we binary encode their entries.
We find that tracking error is highly correlated with the final
score. The importance of tracking will be further detailed
in §3.4.
Table 3 illustrates the improvement that each module

brings to the positioning models of the top 18 teams. Ensem-
bling, combining positioning and tracking, snap-to-landmark,
and device ID can enhance the localization accuracy by 0.1m,
0.6m, 0.8m and 0.3m on average, respectively. We will detail
these components in §3.3, §3.4, §3.5.

3.3 Positioning (Absolute Localization)
Positioning models are designed to locate the target using
the currently observed fingerprint. The fingerprint signals
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Figure 4: The basic procedure of most top teams’ solutions. Most teams would build positioning and tracking
models separately, combine them by using linear methods, and then leverage optimization techniques to improve
the localization accuracy. Device ID is inferred by reverse engineering, not explicitly given.

include WiFi, BLE, and GMF. Since only a subset of buildings
in our dataset had BLE beacons deployed, most teams only
used WiFi signals for positioning. In the top 18 teams, only
the team ranked 1st, 8th, 13th and 14th incorporated BLE
signals into their models (the information of the 4th and
6th teams is missing). In addition, only the 1st team used
geomagnetic fields (GMF) for positioning, and they claimed
GMF did little to boost the localization accuracy. Most teams
used cosine similarity and Pearson correlation (as opposed
to Euclidean distance) for feature matching.

Solution Categories.We categorize the positioning solu-
tions into two types, namely the non-neural network (non-
NN) and NN-based ones.
• Non-NN solutions include k-nearest neighbors (KNN) and
decision trees (top teams use LGBM).
• NN-based solutions comprise recurrent neural network
(RNN) and its variants (e.g., LSTM), multilayer perceptron
(MLP), and convolutional neural network (CNN) and its vari-
ance (e.g.,WaveNet).
Most of the top 18 teams adopted NN-based models. The

most popular positioning model is LSTM, which can deal
with sequence data. Although CNN is typically used to han-
dle image data, it reaches up to the 5th place. Surprisingly, the
method that performs best turns out to be KNN, a lightweight
non-NN solution. KNN is considered a lazy learner [67] since
there is no training in KNN. It is also easier to implement,
update, and interpret compared to NN models. Furthermore,
lightweight models such as KNN are more resource- and
energy-efficient than NN-based models. The top-3 teams
mainly employed KNN as their positioning model, and the
3rd-place team only used KNN. Another non-NN model used
by top teams is LGBM, which is built upon decision trees.
The top-1 team combined KNN and LGBM to build their
positioning model. Other popular non-NN algorithms in the
literature such as particle filtering [10] were not used by top
teams.
Model Generalization. In indoor environments, radio

signals are often influenced by a building’s layout, materials,

etc. Therefore, it is difficult to derive a general model for
signal fading and propagation. Most of the top teams (e.g.,
top-5 teams) therefore adopted per-site models in this com-
petition, as shown in the “Generalization” column in Table 1.
Nevertheless, 5 out of the 18 top teams chose to train a single
model for all sites, using NN-based models. These general
models also performed reasonably well despite not ranking
at the top.

An important prerequisite for lightweight non-NNmodels
is to tune the parameters for each site and even each floor,
as it is difficult to generalize such models to all sites: the
number of neighbors and the weight of each neighbor in
weighted KNN models may vary across sites and floors. This
incurs additional overhead for parameter tuning, but turns
out to be worthwhile, as indicated by the competition results.

■ Finding 2. Lightweight models (e.g., KNN) can achieve
high positioning accuracy and outperform neural network-
based solutions. The top three teams use KNN as the main com-
ponent of their positioningmodels, with some hyper-parameters
carefully tuned for each site/floor.

Ensemble Learning. Ensemble learning leverages many
weak learners to achieve better prediction results. We ex-
pected to see significant improvements in positioning accu-
racywhen combiningmultiple learning algorithms. However,
the results suggest the opposite. For top teams, they have
already trained strong learners using multiple input features
and/or deep neural networks. After building these individual
models, most top teams directly used the weighted average
of the models’ output to estimate the target’s location. En-
sembling these strong learners brings little improvement
(< 0.1 m) in average localization accuracy compared to the
team’s best individual model.

■ Finding 3. Ensemble learning does notmake a significant
performance boost (<0.1m) to the top-ranked teams’ solutions.
This is because they have already trained strong learners.



3.4 Tracking (Relative Localization)
Due to hardware limitations and energy-saving considera-
tions, most smartphones infrequently scan the radio signal
(e.g., twice in one minute for WiFi scan [15]). This is reflected
in our dataset, as there might be no WiFi/BLE scanning ac-
tivity (and therefore no radio signal) as the surveyor walks
past a test point. In contrast, the IMU samples have a much
higher frequency (50 HZ in our dataset). This renders track-
ing, which uses IMU data for continuous, relative localization,
highly important. We find that some teams used IMU data
to interpolate radio fingerprints at the test points, whereas
some directly applied Pedestrian Dead Reckoning (PDR) to
infer a test point’s location from a previous location esti-
mated from radio signatures (i.e., positioning). Recall from
Table 2 that the importance of tracking is also reflected in
its high correlation with the final score (0.78).
One question faced by the teams is whether to combine

positioning and tracking into a single model, or keep them
separate. We find that almost all the top teams chose the
latter: they built positioning models and tracking models
separately, and then combined their outputs to get the final
localization result. A possible explanation is that, since the
relationship between relative and absolute positioning can
be analytically reasoned, there is no need to mix them into,
for example, a neural network model.

Recall that the teamswere providedwith a default tracking
model (i.e., a simple PDR implementation). Nevertheless,
most top teams chose to build their tracking models based on
neural network (NN), or use NN to train the hyperparameters
of the default model. We find that compared to the default
PDR implementation we provided, NN-based methods can
reduce the tracking error by up 60%.
■ Finding 4. Many teams spent great effort on develop-

ing positioning models. However, they did not achieve high
rankings due to a lack of accurate tracking models. As shown
in Table 2, the Pearson correlation between tracking results
and the final score is as high as 0.78. To achieve high tracking
accuracy, top teams adopt neural network models that reduce
the errors by up to 60% compared to traditional PDR methods.

Combining Positioning and Tracking Results. Track-
ing is also used by many teams to estimate the next test
point’s location from the previous test point (whose loca-
tion has already been inferred). Then a problem faced by
these teams is how to combine the positioning and tracking
results. As a classical problem in robotics, it can be solved
using methods such as particle filtering [10] and Kalman
filtering [8]. However, these methods are not easy to imple-
ment. Interestingly, we find that most top teams solve them
using a simple linear model as follows. Assume that there
are two consecutive waypoints 𝑋𝑖 and 𝑋𝑖+1. Their locations
estimated based on radio signals are denoted as 𝑋𝑖 and 𝑋𝑖+1,

and the displacement from 𝑋𝑖 to 𝑋𝑖+1 calculated based on
IMU data (i.e., tracking) is denoted as Δ𝑋𝑖 . We then want to
minimize the weighted sum of positioning error and tracking
error over the 𝑁 test points. That is,

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑁∑︁
𝑖=1

𝛼𝑖 ∥𝑋𝑖 −𝑋𝑖 ∥2 +
𝑁−1∑︁
𝑖=1

𝛽𝑖 ∥(𝑋𝑖+1−𝑋𝑖 ) −Δ𝑋𝑖 ∥2 (2)

Note that Equation 2 just exemplifies a simple cost func-
tion; many teams add other components to it. The optimiza-
tion is easy to solve and has a closed-form solution. For the
weights (𝛼 and 𝛽), some teams empirically pick their values
for all the sites, whereas some teams further use machine
learning to train them for different sites or even floors.

■ Finding 5. There is no need to build complex methods
to combine positioning and tracking models. Top teams choose
to combine them using the simple linear method shown in
Equation 2. It has a closed-form solution, and its parameters can
be trained through machine learning, leading to satisfactory
localization results.

3.5 Other Optimization Techniques
Top teams employ many optimization techniques to improve
their localization accuracy. We find that they can be grouped
into four categories, namely snapping to nearby landmarks,
device identification, using floor plan, and online training.
Based on the available data (Table 3), snapping to landmark
and device identification can boost the localization accuracy
by 0.8 m and 0.3 m, respectively, on average. It is difficult for
us to quantify the benefits of the other two optimizations
due to insufficient data.

Snapping to Nearby Landmarks. Our surveyors often-
times use visually recognizable landmarks (e.g., pillars and
doors) as waypoints because of their convenience. The same
applies to the waypoints in the test dataset because the test
set was sampled from the surveyed waypoints. We find that
a few top teams “snap” their localization results to nearby
landmarks, given that landmark locations are more likely
to be a test point’s answer compared to non-landmark loca-
tions. Some teams even manually label the landmarks using
the provided floor plan to increase the chance of capturing
landmarks in the test set. This “optimization” may not be
effective in real-world usage scenarios because a real user
may invoke localization services at any location. Future lo-
calization competitions should thus add more non-landmark
locations to the test dataset.
Device Identification. We find that a few teams man-

aged to “reverse engineer” the dataset to infer the devices
we used to collect the data. Figure 5 shows one example of
using the IMU sampling interval as the (pseudo) device ID.
We set the sampling frequency of all surveyors’ smartphones



to 50 HZ. However, due to their hardware differences and/or
manufacturing variations, there exist subtle but steady dif-
ferences among the devices, which can be distinguished by
identifying the “cliffs” in the sampling interval distribution
observed from the data. Similarly, the hard iron distortion
of magnetometers [13] was used by some teams as a smart-
phone identifier. The (pseudo) device IDwas then used by the
teams as a feature of their positioning and tracking models
to improve the accuracy. Note that this approach can also be
used in real-world localization systems by directly capturing
the (real) device ID/model information.

19.8 20.0 20.2 20.4
Interval (ms)

0.0
0.2
0.4
0.6
0.8
1.0

CD
F

Figure 5: The interval between accelerometer readings.

■ Finding 6. The organizer did not provide device IDs in
the dataset. However, we find that some high-ranking teams
“reverse engineered” the dataset to infer the pseudo ID of each
device (e.g., through IMU sampling interval and hard iron
distortion of magnetometers). Using the pseudo ID as a feature
helped further improve the positioning accuracy of top teams
by 0.3m. This confirms the big impact of device heterogeneity
on localization accuracy [5] in the wild.

Using Floor Plan. We find that many top teams lever-
aged the floor plan to correct the localization results. Due
to the constraint of the building layout, the areas accessible
by a target are limited. If the estimated moving trajectory of
the target fully or partially falls outside the walkable area,
the teams use various heuristics to shift the trajectory back
to the walkable area based on the floor plan. This optimiza-
tion is performed as a post-processing step after positioning
and tracking. It is well applicable to real-world localization
systems if the floor plan information is available.

Online Training. Several top teams (re)trained their mod-
els online. Specifically, if a localization result is considered
reliable, the result and its corresponding fingerprints will be
added to the training set, and the model will be retrained.
We find that the teams used various heuristics to determine
the reliability. For example, the localization result of a way-
point is considered reliable if its timestamp is close to the
time when the radio scan activity occurs. In another exam-
ple, when ensemble learning is used, a result is regarded
as reliable if the variance of all learners’ outputs is small.
We observe that the teams have applied online training to
multiple modules such as positioning, tracking, and floor
estimation.

3.6 Floor Estimation
There are two approaches for floor estimation. (1) Floor esti-
mation is integrated into the positioning module. (2) There
is a standalone model to predict the floor level. We find that
both approaches worked very well. As shown in Table 1,
among the 3 teams taking Approach (1), only 1 team (10th
place) has a floor prediction error of 0.38%, while the other
2 teams have no floor error. Among the 6 teams taking Ap-
proach (2), only 1 team (13th place) has a floor error of 0.18%,
while the other 5 teams have no floor error. Floor prediction
models are usually more lightweight than the positioning
models. More discussions on floor estimation accuracy and
the limitation imposed by our competition can be found
in §4.4.

3.7 A Case Study of the Top Three Teams
We conduct a case study of the top 3 teams to investigate
why they ranked very top. We find that their key efforts
mostly consist of the following. (1) Their positioning models
were carefully tuned for each site and even floor. Although
the models were based on lightweight algorithms (e.g., KNN),
their performance is comparable to or even better than neu-
ral networks after fine-tuning. (2) Among the top 18 teams,
the top 3 teams achieved the highest tracking accuracy. Their
tracking models were mainly learning-based, helping reduce
up to 60% of errors compared to the default PDR design we
provided. (3) They all leveraged floor plans to correct erro-
neous trajectories by shifting them from unwalkable areas
to corridors, as described in §3.5. Note that the top-3 teams
also employed other optimization techniques (e.g., snapping
to nearby landmarks, §3.5) to boost the localization accuracy.
However, these optimizations with similar logic were also
used by many of the other top teams (ranked from 4th to
18th). Therefore, they are unlikely the main contributors of
the top-3 teams’ success.

■ Finding 7. The top-3 teams’ success mostly owes to three
designs: (1) lightweight positioning models judiciously cus-
tomized to each site/floor; (2) learning-based tracking with
high accuracy; (3) leveraging floor plans to correct predicted
trajectories. All three strategies are applicable to real-world
indoor localization systems.

4 CHARACTERIZING SOLUTIONS’
LOCALIZATION ACCURACY

This section complements our qualitative analysis in §3 by
quantitatively characterizing the accuracy of the teams’ solu-
tions. In addition, we extend our analysis to the top 50 teams
unless otherwise noted.



4.1 Error Distribution across Teams
We first describe how localization error is calculated. For
a trace with 𝑛 waypoints (ground truth) {𝐴0, ..., 𝐴𝑛−1}, as-
suming that their localization results are {𝐵0, ..., 𝐵𝑛−1}, then
|𝐴𝑖𝐵𝑖 | is referred to as the final localization error of 𝐴𝑖 . This
is the error calculated based on the teams’ submitted answers.
In addition, we also define the relative localization error to
estimate the teams’ tracking inaccuracy. To calculate the rel-
ative localization error, we translate 𝐵𝑖 to 𝐵𝑖 +

−−−→
𝐵0𝐴0 (denoted

as 𝐵𝑖 ′), i.e., 𝐵0 is shifted to the ground truth 𝐴0. Then |𝐴𝑖𝐵𝑖
′ |

represents the relative localization error of 𝐴𝑖 . If unspecified,
the localization error refers to the final localization error in
the remainder of this subsection.
Overall Score Distribution. The score of each team is

calculated based on Equation 1, and the results are demon-
strated in Figure 6a, which is generated based on the private
test set (§2.3). Overall, among the top 50 teams, the perfor-
mance gap between the top-ranked teams is greater than that
of the bottom-ranked teams. Specifically, we find that there
are three score clusters among the top 50 teams. The top 5
teams form the first cluster of the leader board, and their
scores differ significantly from the other 45 teams. They have
achieved a mean score of 2.33m with a standard deviation of
0.46m. The mean of their first-order difference (i.e., difference
between two scores ranked next to each other) is 0.32m, and
the difference between the top 2 teams is as high as 0.7m.
The second score cluster consists of the teams ranked 6–15,
who have a mean score of 3.17m with a standard error of
0.24m. Their mean first-order difference is 0.08m. The third
score cluster comprises teams ranked 16–50, who have an
average score of 4.24m with a standard deviation of 0.32m.
Their average first-order difference of 0.03m is the smallest
of the three clusters.
Final vs. Relative Error Distribution. Figure 6b plots

the final localization errors across the top 50 teams. We do
not take into account the floor estimation error here, and
the localization errors represent the mean prediction error
of all traces, including both public and private test sets. The
mean accuracy of all 50 teams is 3.67m, and the best accuracy
can reach 1.33m. The overall distribution is similar to that
in Figure 6a. Figure 6c plots the relative localization errors
across teams. Recall that a relative location corresponds to
the location relative to the anchor point, which in our case is
the initial location ground truth. The mean relative localiza-
tion error is 4.73m, and the minimum relative error is 2.10m,
which is achieved by the 1st ranked team. Compared with
the final localization errors in Figure 6b, the relative local-
ization errors are approximately 1m larger. In addition, the
relative error is much more fluctuating than the final error.
The above results suggest that achieving accurate tracking

is challenging. Meanwhile, as shown in Table 2, tracking
remains critical for determining a team’s rank.

Table 4: Locations of test traces withmean errors > 9m.

Error Location Dead End Corner Other
Ratio 33.3% 27.8% 38.9%

4.2 Error Distribution across Traces
The localization error depends on many factors. In this sub-
section, we explore the localization accuracy across different
traces (trajectories) that represent diverse environments in a
building.

Figure 6d plots the distribution of (final) localization errors
over all 626 test traces used to grading. For each trace, we
calculate its localization error of all the top 50 teams and take
their average as the localization error. The median and mean
error for these test traces are 2.87m and 3.41m, respectively.
Figure 6d suggests a long-tail distribution: most traces have
an accurate localization result, but there is a long tail of errors.
For example, the 25th percentile of the estimation error is
only 1.83m, while the 75th percentile can reach 4.24m, not
to mention that the maximum error can reach up to 21.38m.
To dig into the root causes, we categorize the locations

where large errors occur, and show the results in Table 4.
Here we define localization errors being greater than 9.0m
as large errors, which account for 2.9% of the test traces.
Note that we do not take the floor estimation error into
consideration here. We then classify the large-error traces
into three categories, namely dead end2, corner, and other
(also referred to as default areas). Approximately 33.3% of
the traces with large localization errors are located at dead
ends, where there are fewer strong radio signals compared to
default areas. Some traces are even in unused spaces where
there are no WiFi APs nearby. 27.8% of the large errors oc-
cur in a building’s corners. This is because signal strength
attenuation in corners is more dynamic and complex than
that in open areas due to excessive signal reflection. The
remaining 37.8% of the large errors happen in default areas
due to various reasons. In contrast, within all the test traces
(regardless of their mean errors), more than 80% belong to
default areas. Overall, large errors in dead ends and corners
are caused by a lack of strong signals and the complex atten-
uation (multipath fading) incurred by indoor layouts.

■ Finding 8. More than 60% of test traces with large lo-
calization errors (mean error > 9𝑚) belong to dead ends and
corner areas due to a lack of strong radio signals and more
complex signal attenuation compared to default areas.

2If more than 50% of the test points within a trace belong to dead ends or
corners, we classify the trace as the dead end or corner category, respectively.
The remaining traces are classified as “Other”.
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Figure 6: The localization results of the top 50 teams. The score is calculated based on Equation 1.
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Figure 7: localization errors of different trace segments.

4.3 Error Distribution across Segments
We now investigate how errors occur at different stages
within a trace (trajectory). We divide each test trace into
three segments: front, middle, and rear, which consist of the
first 1/3, the second 1/3, and the last 1/3 of the trace’s test
points, respectively. For each segment, we define its local-
ization error as the average error across all its test points.
Figure 7 plots the localization errors of the top-50 teams
across all front, middle, and rear segments, for both final
and relative localization. In terms of final localization errors
(Figure 7a), there is no significant difference among the front,
middle and rear segments. As shown in Figure 7b, the case
of relative localization is vastly different, as the relative lo-
calization error accumulates along a trace. The top 50 teams
have an average localization error of 3.75m, 4.90m, and 5.39m
for the front, middle and rear segments, respectively. Recall
that we align the initial position with the ground truth when
calculating the relative localization error. Combining Fig-
ure 7a and Figure 7b, we can find that accumulated errors in
tracking (approximated by relative localization errors) can
be effectively mitigated by positioning and various other op-
timizations (§3.5). For example, the difference in localization
errors between the rear and front segments is reduced from
1.64m (relative localization) to 0.11m (final localization).

4.4 Floor Estimation
The top 50 teams leveraged various models for floor estima-
tion, and the vast majority of them achieved high accuracy.

As shown in Figure 8, the floor estimation accuracy across
all 50 teams is at least 97.5%. Moreover, more than half of
them have achieved 100% accuracy in floor estimation.

0 10 20 30 40 50
Ranking

0.0
0.5
1.0
1.5
2.0
2.5

Er
ro

r (
%

)
Figure 8: Floor estimation error.

In this competition, because the teams do not need tomake
real-time prediction and because our test set does not con-
tain cross-floor traces, the teams can possibly use features
observed in a late stage of a trajectory to determine the floor.
We observe that most teams indeed adopt this strategy. For
example, there may not be sufficient features to estimate the
floor at the beginning of a test trace. When receiving strong
WiFi signals in the middle or even towards the end of a trace,
one can leverage them to estimate the floor level. Note that
the aforementioned strategy is not applicable in real-world
indoor localization systems where floor information is a pre-
requisite for localization. Therefore, we regard the high floor
estimation accuracy (99.5%) as an overestimate compared to
numbers reported in the literature (e.g., 97% reported in [63]).
To make the competition more realistic, future localization
competitions should introduce more cross-floor traces or
require teams to report the floor at the beginning of a test
trajectory.

Table 5: Locations of test traces with floor errors.

Floor-error Location Atrium Dead End Other
Ratio 73.1% 5.2% 21.6%

The locations where floor errors occur are shown in Ta-
ble 5. We classify each floor into three types of areas, namely



atrium, dead end, and other (default areas). An atrium is a
large, open multi-storied space in a large building where
smartphones can receive radio signals from other floors. As
a result, it has witnessed most (73.1%) of the floor estimation
errors. 5.2% of the floor errors occur at dead ends, and they
are mainly caused by a lack of strong radio signals.

We find that in the atrium and dead-end areas, KNN-based
approaches (used by the 1st and 3rd-ranked team) do not
exhibit the best accuracy for floor estimation (Figure 8), al-
though they can achieve very high accuracy in positioning.
LSTM-based methods can mitigate the floor estimation er-
rors. Among the top 20 teams (see Table 1), the 7th, 8th, 9th,
11th, 15th and 16th ranked teams all had 100% floor accuracy,
while the 13th and 17th ranked teams also achieved a floor
accuracy of 99.8% and 99.9%. These teams all use LSTM-based
methods for floor estimation. This result suggests that there
is no single method that performs best for all localization
modules (positioning, tracking, floor estimation, etc.).

■ Finding 9. Most floor estimation errors occur in atrium
areas. Unlike positioning where lightweight ML achieves the
best accuracy, deep learning helps further boost the floor esti-
mation accuracy. Future competitions should introduce more
cross-floor traces or require teams to report the floor at the
beginning of a test trajectory.

5 DISCUSSIONS AND LIMITATIONS
Through the entire process of organizing this competition,
we have obtained rich experiences and noticed several limi-
tations of our competition as summarized below. We hope
they will help future organizers of similar events.
• As described in §3.1, the localization logic of each team is
usually not directly provided by the team, but inferred by
us from public information. We do not require submitting
source code because teams use heterogeneous tools, environ-
ments, and languages. Even if the source code is available,
understanding their logic requires considerable human effort
given the scale of our competition. Therefore, we take the
approach of quantitatively characterizing the localization re-
sults, whereas qualitatively studying the teams’ localization
logic by leveraging multiple sources.
• In our competition, each team only needs to make offline
estimations for waypoints in a test trace and submit the
answers. This makes the grading system very easy to imple-
ment and the competition rules easy to follow. It also helps
scale up the competition. However, it differs from typical
real-world indoor localization systems that provide users
with real-time location results. Future organizers may con-
sider making their competitions more realistic by adding
more real-time components, while keeping the rules simple
and the grading overhead low.

• In our competition, a solution is evaluated purely based
on its accuracy. However, other factors such as localization
delay, energy consumption, infrastructure cost, and usability,
to name a few, are also important. Future competitions may
consider adding additional components to the gradingmetric.
More research is needed on deriving good and fair metrics
that can reflect users’ true experience – this will benefit
the design of real-world localization systems as well. Also,
we do make several findings with implications on resource
usage, energy efficiency, etc. For example, top solutions do
not necessarily use deep learning that is heavy-weight in
terms of resource usage (§3.3).

In addition, despite using accuracy as the primary metric,
the key goals of our study include decomposing modern
localization solutions from diverse designers, identifying
their common design patterns, and finding common pitfalls.
These lessons are beneficial for future indoor localization
systems.
• In our competition, the top 18 teams achieve an average
accuracy of no more than 3.7m. Even for the 500th team,
its mean positioning error can reach as low as 5.7m (§1).
One may argue that for real-world indoor localization use
cases, there is not much difference between the above re-
sults. However, high tail errors exhibited by state-of-the-art
localization solutions (e.g., commercial systems such as [63]
and top teams in our competition) may still impact users’ ex-
perience. Therefore, maintaining low errors (in particular in
challenging scenarios) remains challenging and important.
• Our competition misses cross-floor test cases, making it
easier for floor estimation. Also, in our dataset, landmarks
have a higher probability of being an answer because, for
their convenience, surveyors oftentimes leverage visually
recognizable landmarks as waypoints during data collection.
This lowers the bar for participating teams to “guess” the an-
swer. Future organizers should pay attention to these details.
• The organizers should be aware of possible “side channels”
that the teams may exploit. For some side channels that real-
world systems can also use (e.g., device fingerprinting, §3.5),
organizers may consider providing the data directly, so that
the teams do not need to reverse engineer the dataset.

6 RELATEDWORK
Competitions. Microsoft held the very first indoor localiza-
tion competition in 2014 [34], which took place in two rooms
and a hallway of a hotel in Berlin. Competitors could deploy
their own devices, including WiFi APs that support chan-
nel state information (CSI) [19], ultrasonic chirps, LED, and
other signal transmitters. Most teams adopted traditional
positioning algorithms (e.g., fingerprinting, AoA [38]), and 2
teams leveraged neural network models to achieve indoor
localization. In the next three years, Microsoft continued to



hold the competition in different locations [33]. IPIN [24]
held its indoor localization competition [25] since 2014, con-
sisting of both onsite and offsite tracks. In addition to radio
signals and IMU data, they also provided images, 5G data
and channel information for different competition tracks.
Our competition focused on infrastructure-free localiza-

tion. The dataset was collected from real-world sites with
off-the-shelf smartphones. Compared to Microsoft and IPIN
competitions, our competition involved large-scale evalua-
tion, of which the test set consisted of 625 traces in 24 sites.
Most of the top 20 teams in our competition used neural
network models to predict the locations of targets. Besides,
the implementation time was reduced from several years to
less than four months.
Sensor Data for Indoor Localization. As the accuracy

of GPS drops significantly in indoor scenarios, researchers
leverage many other data sources to facilitate indoor localiza-
tion. SmartPDR [26] tracks the target by only using the IMU
data. As PDR performance improves [39, 50], many works
combine IMU data with radio signals (e.g., WiFi) for local-
ization. The prevalence of smartphones makes WiFi RSSI
[6, 16, 37, 54] and its physical-layer information [28, 43, 60]
popular in positioning. Compared to WiFi, Ultra Wideband
(UWB) has higher bandwidth, and is promising to achieve
lower positioning errors [18, 42, 47, 55]. Bluetooth Low En-
ergy (BLE)-based system [5, 9, 12, 46] can avoid privacy
issues that occur in WiFi scanning. BLE beacons can be pow-
ered by batteries, making them available for large-scale de-
ployments. Besides, optical [29, 66], acoustic [48, 64], and
magnetic [45, 57] data is also exploited in indoor localization.

Localization Algorithms. A variety of positioning algo-
rithms have been proposed. Smartphones can scan the ambi-
ence fingerprint (e.g., radio and acoustic signals), and many
researchers leverage fingerprinting-based techniques [2, 12,
20, 48, 57, 62] to estimate the target’s location. Chintala-
pudi et al. [6] use crowdsourcing to collect indoor signatures
without knowing floor plans or AP locations. Since WiFi
APs are common in indoor environments, fingerprinting-
based indoor positioning systems have been deployed in
the real world at a large scale. Yang et al. [61] use the dif-
ference in the arrival time of acoustic signals to locate the
smartphone in the car. Vision-based solutions leverage the
anchors (including its size and angle) in the image to locate
the target [11, 53]. Some WiFi APs support providing the
developer with CSI [19]. Therefore, researchers make use of
Angle of Arrival (AoA) to locate the target [28, 58]. SAIL [36],
ToneTrack [59], and Chronos [52] leverage Time of Flight
(ToF) to achieve sub-meter localization accuracy. PinLoc [44]
regards CSI as unique features for fingerprinting. In gen-
eral, CSI-based methods achieve much higher localization
accuracy but require physical layer information, which most
commercial WiFi APs cannot provide.

Commercial Localization Systems. Recently, several
localization systems have registered impressive large-scale
commercial deployment. For example, IODetector [68] uti-
lizes BLE beacons to track couriers and schedule on-demand
food deliveries; MLoc [63] combines BLE beacons and geo-
magnetic fields to provide localization services for shopping
malls; Tencent [37] built a Wi-Fi based indoor localization
system that leverages crowdsourcing to collect fingerprints.
Our paper has a different focus and complements the above
works: instead of characterizing a single commercial local-
ization system, we focus on the breadth of solutions and aim
at understanding the common design patterns and pitfalls of
localization solutions built by top researchers and engineers.
Survey of Localization Techniques. Researchers have

also published literature survey papers on localization tech-
niques [35, 56, 65]. Our work differs from these survey papers
in several aspects. First, we organize the whole localization
competition and contribute the dataset (with ground truth)
to the community. Second, we conduct strategic data analysis
to a large number of solutions and their results. Third, we
contribute new findings and lessons instead of summarizing
existing published works.

7 CONCLUDING REMARKS
We organized to our knowledge the largest open-to-public
indoor localization competition in terms of the data size,
the number of teams, and the number of received submis-
sions. The main purpose of organizing this competition was
to advance the field and to foster the indoor localization
community. We have described the lessons learned from an-
alyzing the submissions and experiences in organizing the
competition. Overall, we were impressed by the technical
merit and engineering efforts of many of the 1,170 teamswith
diverse background and expertise. The qualitative analysis of
their localization algorithms and quantitative characteriza-
tion of the competition results help significantly advance our
understanding of fingerprint-based indoor localization. We
believe many of the lessons and experiences are not limited
to indoor localization competitions; they could potentially be
applied to other competitions in mobile computing, which
play a key role in developing and nurturing our research
community.
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