MetaPush: Cellular-Friendly Server Push For HTTP/2

Bo Han*
AT&T Labs — Research
Bedminster, NJ
bohan@research.att.com

ABSTRACT

MetaPush is a novel server push framework aiming at reducing
web page load time. The key idea is to strategically leverage
Server Push, a built-in feature in HTTP/2, to preemptively push
web pages’ metadata, which can later be leveraged by the client
to early-fetch critical resources. We demonstrate MetaPush is
particularly suitable for cellular networks, providing negligible
bandwidth overhead (around 0.4%), improved page load time (up
to 45%), and reduced radio energy utilization (up to 37%) over
HSPA+ networks.

CCS Concepts

eNetworks — Application layer protocols;

1. INTRODUCTION

Modern web pages are rich and complex, even for their mo-
bile versions [17]. Loading a web page thus involves complex
interactions among multiple entities including the network, cache,
page parser, JavaScript/CSS evaluator, and rendering engine [20].
Accordingly, numerous optimization techniques have been pro-
posed to improve various aspects in this sophisticated system. For
example, CDNs are deployed to reduce network latency, pages are
rewritten to reduce the parsing time [1], multiplexing is introduced
to optimize transport-layer performance [3, 7], and compact image
formats [8] are used to reduce content sizes.

Despite these efforts, the Page Load Time (PLT) is still often
unsatisfactorily high due to various reasons. One important issue
among them is, when loading a web page, the network transfer
and local computation (HTML parsing, script evaluation, page
rendering) are interleaved, due to the complex dependencies among
web objects (i.e., resources). The key reason is, at the beginning of
loading a page, a browser has no knowledge of what resources it
will need. The page loading process therefore becomes a procedure
of iteratively discovering, fetching, and consuming resources by
expanding an initially unknown dependency graph.

* All authors made equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

AllThingsCellular’15, August 17-21, 2015, London, United Kingdom
© 2015 ACM. ISBN 978-1-4503-3538-6/15/08. .. $15.00
DOI: http://dx.doi.org/10.1145/2785971.2785972

Shuai Hao*
AT&T Labs — Research
Bedminster, NJ
haos@research.att.com

57

Feng Qian*
Indiana University
Bloomington, IN

fenggian@indiana.edu

Such an interleaved resource exploration pattern degrades web
performance and resource efficiency at various layers in cellular
networks. At the radio layer, fetching data intermittently makes
a device continuously occupy the high-power radio state and thus
increases its radio energy consumption [17]. At the network
layer, downloading resources in multiple round-trips increases the
page load time, in particular in cellular networks with moder-
ate to high RTT [19]. At the transport layer, a long idle gap
may reset the congestion window and cause potential bandwidth
under-utilization. At the application layer, fetching resources may
block other activities (e.g., synchronous JavaScript blocks HTML
parsing [20]) and lengthens the critical path in the dependency
graph. Quite a few work (e.g., WebProphet [16], WProf [20], and
Klotski [12]) has been done towards profiling and optimizing the
dependency.

A different approach is to break the dependency between network
transfers and local computation by obtaining all critical resources
at the beginning of loading a page. In this way, most afore-
mentioned inefficiencies at various layers will be eliminated or
significantly mitigated. To realize this, two approaches have been
proposed: Server Push and Server Hints. They allow a server to
preemptively push the resource data, or to provide resource hints
(i.e., a list of resource URLs) to facilitate fetching. However,
both approaches have limitations such as unnecessary push and
additional latency, which are in particular undesired in cellular
networks with metered links and high latency, as to be described
in §2.

In this paper, we propose a cellular-friendly server push frame-
work called MetaPush, which borrows ideas from Server Push and
Server Hints, while overcoming their limitations. The key idea
is to explicitly provide a client with cacheable hints to facilitate
early resource fetching. Specifically, when loading a page, a
server pushes hints (called meta files), which contain its own and
its subpages’ resource lists, to a client. The meta files are then
cached by the client. Later, when the client is requesting a subpage
with a cached meta file, it can then piggyback resource fetching
requests with the page request. In this way, the whole page with its
resources can be ideally downloaded in one round-trip with little
extra bandwidth overhead due to small sizes of meta files. We
present the design of MetaPush in §3.

MetaPush can be easily integrated with HTTP/2, the recently
standardized next-generation HTTP [3], by strategically leveraging
its built-in Server Push feature. It can also be implemented in
today’s HTTP/1.1 where push can be realized by add-ons such
as WebSocket [9]. MetaPush is incrementally deployable with
small changes on client browsers. If deployed at proxies (e.g.,
Google’s mobile web proxy [11]), no change needs to be made
at remote servers. Our preliminary results indicate MetaPush is

ideal for cellular networks: it incurs negligible bandwidth overhead
compared to the bandwidth consumption of loading the actual page
(median 0.4% across 20 popular websites). Moreover, MetaPush
can reduce the PLT by up to 45% and the radio energy consumption
by up to 37% over real HSPA+ networks (§4).

2. BACKGROUND AND MOTIVATION

We first review two existing relevant proposals: Server Push and
Server Hints. We describe their strengths and limitations, which
motivate our MetaPush proposal.

2.1 Server Push

Server Push is a feature that allows a server to preemptively
send (i.e., push) resources to a client without requiring the client
to request the resource. The underlying assumption is the client
will need the resource very shortly (e.g., after parsing an HTML
page), thus pushing it in advance avoids the round-trip delay and
reduces the PLT. A pushed resource is usually cacheable so it will
be loaded from the local cache when the client needs it.

Both HTTP/2 [3] and SPDY [7] support Server Push. In HTTP/2,
to push a resource, the server first sends a PUSH_PROMISE frame
on an existing client-initiated stream. This frame has two purposes.
First, it notifies the client that the server will create a new stream
for pushing by including the stream ID. Second, it contains the
header information of the resource to be pushed. After sending
the PUSH_PROMISE frame, the server initiates the new stream over
which the resource data is sent.

Server Push can effectively reduce the PLT. However, its key
limitation is that it is often difficult for server to determine what
needs to be pushed [21]. In particular, if the client already has the
unexpired resource in its cache, then pushing it is wasteful. Pushing
unnecessary contents is in particular undesired in cellular networks
where customers are charged by the amount of transferred bytes.

2.2 Server Hints

Server Hints provides a way for a server to notify a client of a
resource that will be needed before it is discovered by the client.
Unlike Server Push, when using Server Hints, the server does
not send the actual resource data, but only its URL as a “hint”.
Therefore, the client only revalidates resources that are expired and
requests resources that are not in the local cache.

Server Hints is realized using the Link header to be standard-
ized in HTML 5. The server injects hints into response header
using one of the two ways: Link:<url>;rel=prefetch [5] or
Link:<url>; rel=subresource [6] where url is the resource
URL. The browser then collects (potentially multiple) embedded
hints, and (pre)fetches' them.

For the two methods above, Link rel=prefetch prefetches
resources only when the browser is idle. In other words, the
prefetching is given a low priority, and only happens after all regu-
lar resources in the current page are fetched and parsed. Therefore,
this method is suitable for prefetching resources of future pages.
Link rel=subresource has different semantics where fetching
the hints is given a high priority i.e., it happens before any regular
resource in the current page is fetched. This method is hence
suitable for early fetching resources of the current page.

Both methods address the client-side caching issue in Server
Push. However, they both have limitations. Link rel=prefetch

"Throughout this paper, we use “prefetch” to denote getting
resources of future pages, and use “fetch” or “early fetch” to refer
to obtaining resources in the current page. MetaPush performs
early fetching instead of prefetching.

58

is difficult to use because prefetching happens whenever the browser
is idle, and predicting which page the user is to browse next is
hard. Aggressively prefetching all resources in all subpages will
waste traffic, whereas conservatively prefetching only common
objects in all subpages limits the applicability of prefetching. Link
rel=subresource only works for the current page since the hints
are embedded in the response header of the current page that needs
to be requested first. Thus early fetching incurs an additional
round-trip, which can be up to several hundred milliseconds in
cellular networks.

3. MetaPush DESIGN

MetaPush is a novel server push mechanism aiming at reducing
the page load time that is the dominating factor affecting users’ web
browsing experience. Its design needs to address a key challenge
of minimizing PLT while avoiding unnecessary data transfers. In
other words, we need a unified scheme that provides benefits of
both Server Push and Server Hints while overcoming their limita-
tions. Other challenges include incremental deployment, low run-
time overhead, and minimal changes to the existing client/server
software.

MetaPush works over any type of networks, including, in partic-
ular, metered cellular networks with moderate to high latency and
high radio energy consumption. MetaPush consists of two phases:
push and early fetch. In the push phase, a server (or proxy?>) pushes
several meta files, which contain resource URLSs (i.e., hints) of the
current and/or future pages that are to be requested by a client. In
the early fetch phase, the client requests for some or all resources
according to the meta file, and batches the requests with the request
of the page. In this way, ideally the page together with all its
resources can be downloaded in one round-trip. This decouples the
network transfer and local computation, and breaks the complex
“load-parse-load” dependencies among objects, leading to reduced
PLT [21].

3.1 Contents of a Meta File

In MetaPush, each page has a unique meta file. As listed
in Table 1, a meta file has three parts. It begins with a header
consisting of its meta file ID (mID), its associated page URL, and
the expiration time. mIDs have one-to-one mappings with their
pages, and can be simply generated by hashing the page URL®.
The meta file itself is cacheable, with its own expiration time
potentially differing from that of its associated page. The header
is followed by a list of resources that a client may need when
fetching the page which the meta file belongs to. Each entry of
the resource contains the resource URL, and optionally a weight
and the resource’s expiration time/eTag. The optional fields will be
described later. URLSs in the list are properly ordered to observe the
resource dependency (for local computation). Thus, the client can
just issue early fetching requests according to the order*. The third
part is a list of subpage mIDs. Subpages are pages which users can
navigate to from the current page. They can be identified statically
(by identifying HTML links) or statistically (e.g., by observing
from the web server logs to capture dynamic navigations). Figure 1
exemplifies three pages with their meta files.

*MetaPush can work with either a web proxy or a web server. For
conciseness, we only use “server” in the rest of the paper.

3To handle dynamic pages, this can be generalized by associating
a meta file with a URL pattern instead of a unique URL. See §5.

* As the requests arrive at the server in a single batch, the server can
thus prioritize the corresponding responses for optimizing PLT. In
that case, the order of the URLs does not matter.

Table 1: Contents of a meta file. *[...]”" is an optional field.
//Part 1: a small header

meta file ID (mID), page URL, meta file expiration time
/[Part 2: list of resources belonging to this page
resource URL 1, [weight], [expiration time], [eTag]

resource URL n, [weight], [expiration time], [eTag]
//Part 3: list of mIDs of subpages
mID of subpage 1, ..., mID of subpage m

mID=100, URL=index.html,
exp=1d, resources={a.css, a.js},
subpage mID={101, 102}

mID=102,
URL=bar.html,
exp=1d,
resources={a.css,
a.js, 4.jpg, 5.jrg},
subpage mID={101}

mID=101, URL=foo.html, exp=1d,
resources={a.css, a.js, 2.jpg, 3.jpg},
subpage mID={102}

Figure 1: An example of web pages and their meta files. An
arrow from page x to y indicates users can navigate from x
directly to y.

3.2 Pushing Meta Files

For each page, meta files are propagated to clients in (at most)
two pushes, as shown in Figure 2. First, upon the reception of a
page request, a server immediately pushes the page’s meta file (Step
3). This helps a client early-fetch resources in the current page.
Second, when becoming idle (i.e., after delivering all essential
resources of the current page), the server pushes subpages’ meta
files (Step 5). Recall in Table 1 that the meta file contains subpages’
mlIDs.

The traffic overhead of push is expected to be small given the
small sizes of meta files (§4.1). In addition, two measures are
employed to reduce the push size. First, a cap can be applied
on the number of pushed meta files by either the client (using a
request header) or the server. For example, based on subpages’
popularity, we can push only the top-£ meta files with little loss of
the benefits from MetaPush. Second, the server does not need to
push meta files that are already cached by the client. To realize this,
MetaPush uses a lightweight cache hint and validation mechanism
to inform the server of the set of cached meta files. Specifically,
the client embeds a list into the page request. If the meta file of
the current page does not exist, the list is empty. In this case the
server will do a full push of meta files of the current page and all its
subpages unless a cap is set (Step 3 and 5 in Figure 2). Otherwise,
the list contains (mID, expiration time) pairs of the current page
and subpages whose meta files are cached. Thus the server will (1)
validate the meta files in the list and push updated versions if they
are out-of-date, and (2) push meta files that belong to subpages but
are not in the list. As a result, the client will have up-to-date meta
files of the current page and its subpages.

We expect the overhead of the above mechanism to be small.
Assuming a 4-byte mID and 6-byte expiration time, even validating
a list of 100 meta files consumes only 1KB data in the request
header, which can further be compressed in HTTP/2. Note the
length of the list is bounded by the number of a page’s subpages.

Example. In Figure 1, assuming a client is requesting the
landing page index.html. Consider two scenarios. (1) If the

59

3 Server pushes meta file of the current page (if not cached by client)
Time

v -
Fr = i

1 Client 2 Server 4 Client 5 Server pushes subpages’
sends receives early-fetches meta files (only those not
request request resources cached by client)

Figure 2: Timeline of two server pushes in MetaPush.

(c) (d)

N
>:/

Current page

— Page request/response

—»»> Push/prefetch/early-fetch data
——>D>> Prefetch/early-fetch requests
—<> Meta file(s) Previous page

Figure 3: Illustrations of four push/prefetching/early fetch-
ing schemes: (a) Server Push, (b) Server Hints using
rel=subresource, (¢) Server Hints using rel=prefetch, and
(d) MetaPush.

client has a cached copy of meta file 100 and 101, it will let the
server know that by embedding (100, exptime) and (101, exptime)
in the request. The server will validate them, and then push the
meta file 102 after the page is loaded because 102 is a subpage
of 100 and is not currently cached. If the meta file 100 is fresh
(the client knows that beforehand), loading index.html takes 1
round-trip in the ideal case. (2) If the client has an empty cache, the
server will push the meta file 100 immediately when the request is
received so the client can fetch a.css and a. js. After the page is
loaded, the server pushes 101 and 102. The whole page load takes
at least 2 round-trips, but the additional round-trip will be avoided
for subsequent loadings of foo.html and bar.html.

3.3 Using Meta Files
Meta files can be leveraged by a client in several ways.

e A meta file provides a manifest for early-fetching resources at
the beginning of loading a page.

e The client can use the weight field (Table 1) to better tradeoff be-
tween traffic volume and latency, by performing selective fetching.
A weight is a number between O and 1, denoting the probability
that the resource will be needed by the client. For resources that
are dynamically requested (e.g., by JavaScript), their weights can
be less than 1. To reduce bandwidth consumption, the client can
take a conservative approach by only fetching resources with large
weights.

e The client can leverage the optional expiration time and eTag
fields to conduct local cache validation for expired resources. In
this way, network cache validation (e.g., using If-Modified-Since)
can be avoided to further reduce PLT.

3.4 Comparison with Server Push and Hints

We illustrate the comparison in Figure 3.

Compared to Server Push, MetaPush gives more flexibility to
the client, which has much better knowledge of what needs to be
fetched than the server does. This prevents pushing unnecessary
data, leading to reduced network traffic.

Table 2: Statistics of meta file bundles.

Website # Sub- | # Total Size of meta file bundle in KB

Name pages | Res plain 2zip LZMA
stackoverflow.com | 456 5,328 258 (0.6) 17 (0.0) 15 (0.0)
nytimes.com 213 8,290 732 (3.4) 66 (0.3) | 51(0.2)
foxnews.com 171 4,198 342 (2.0) 27(0.2) | 23(0.1)
imgur.com 161 3,508 121 (0.8) 10 (0.1) 8 (0.1)
dealsea.com 158 2,773 132 (0.8) 9(0.1) 8 (0.0)
en.wikipedia.org | 154 6,039 603 (3.9) 85(0.6) | 67 (0.4)
kayak.com 145 11,001 | 741(5.1) 74 (0.5) | 54 (0.4)
abcnews.go.com | 138 7,968 493 (3.6) 43(0.3) | 30(0.2)
cnn.com 135 29,041 | 2,535(19) | 175(1.3) | 98 (0.7)
adobe.com 124 1,054 82 (0.7) 4(0.0) 4(0.0)
espn.go.com 121 3,362 227 (1.9) 21(0.2) 17 (0.1)
npr.org 116 3,163 322 (2.8) 52(0.5) | 39(0.3)
target.com 91 2,130 151 (1.7) 8 (0.1) 6(0.1)
ca.gov 76 1,785 82 (1.1) 2 (0.0) 2 (0.0)
att.com 72 2,074 139 (1.9) 10 (0.1) 8 (0.1)
umich.edu 52 233 20 (0.4) 1(0.0) 1(0.0)
weather.com 49 968 97 (2.0) 8(0.2) 7(0.1)
sigcomm.org 37 903 53 (1.5) 1(0.0) 1(0.0)
apple.com 28 631 39 (1.4) 4(0.1) 4(0.1)
skype.com 19 377 26 (1.4) 2 (0.1) 2(0.1)

Our approach also overcomes key limitations of Server Hints.
Compared to Link rel=prefetch, MetaPush employ more tar-
geted early fetch. Instead of prefetching when the browser is
idle, MetaPush delays that until requesting the actual page by
explicitly associating resource lists (i.e., meta files) with pages,
in order to reduce unnecessary transfers. Compared to Link
rel=subresource, MetaPush makes meta files cacheable and
reusable, so the server does not need to attach the hints to every
page’s response. This eliminates additional round-trip for getting
the hints, and makes hint delivery more efficient by bundling
multiple pages’ hints (to be described in §4.1). Finally, MetaPush
combines the two Server Hints approaches into a unified frame-
work, and provides additional benefits such as selective fetching
and local cache validation.

It can be seen that meta files capture both infra-page metadata
(i.e., resources in a page) and inter-page metadata (i.e., the connec-
tivity among pages within a website). A lack of such information
is the root cause of many web performance issues. Our approach
thus facilitates early resource fetching by making such information
explicitly available to the client.

4. PRELIMINARY RESULTS

We show two key results to demonstrate the feasibility of using
MetaPush in cellular networks. (1) Meta files’ sizes are small,
especially when multiple meta files are bundled together (§4.1). (2)
MetaPush can significantly reduce PLT and device radio energy
consumption (§4.2).

4.1 Characterizing Meta Files

We conduct a measurement study of meta files using the follow-
ing methodology. We pick 20 popular websites listed in Table 2.
For each website, we used HTTrack Website Copier [2], an offline
browsing tool, to download the landing page (e.g., www.cnn. com)
together with its all subpages by setting the maximum mirroring
depth to 2. We then wrote a custom tool that parses each page,
extracts URLs of all embedded resources, and constructs the page’s
meta file. Popular resources include images, JavaScript, and CSS
files. Next, for each website, we created a meta file bundle, which
is simply a file consisting of concatenation of all meta files, to take

60

1r
0.9r

— Raw
— — ~ Separate
='='Bundle

0.8r

07
0.6
0.5t !

CDF

045 -
0.3} 1
02}

01r

?OB

il i i
100B 1KB 10KB
Avg meta file size across websites

Figure 4: Average meta file size across all sites: uncompressed,
gzip-ed individually, and gzip-ed into a bundle (showing
average bundle contribution per page).

into account that multiple meta files are usually pushed in a batch
in practice.

We noticed two limitations of the above approach. First, since
we examine the pages statically, some resources dynamically re-
quested by JavaScript might be missing in the generated meta files.
Second, not all resources in the meta files will be fetched by the
client since we are blindly looking for any resource address in a
page when extracting them. Despite these limitations, we believe
the results well approximate the true statistics about meta files in
the wild.

The results are described in Table 2. Column 2 is the total
number of subpages, and column 3 shows the total number of
identified resources across all subpages and the landing page. Due
to the diverse complexity across websites, the subpage and resource
counts exhibit high variation. Column 4 to 6 measure the meta
file bundle size in three encoding schemes: no compression, gzip
compression, and LZMA compression [4]. The numbers in the
parentheses correspond to the per-page contribution to the bundle
(i.e., its size divided by the number of pages).

We make two key observations. First, meta file bundles are
highly compressible, because they are in plain text and more
importantly, different pages of the same website share many com-
mon resources [22]. Due to this, as demonstrated in Figure 4,
compressing multiple meta files into a bundle and pushing the
whole bundle is preferred over compressing and pushing each meta
file individually. In addition, as shown in Table 2, using advanced
compression techniques (e.g., LZMA) further reduces the size of
meta file bundles.

Second, the meta file bundle sizes are small, with the 25-th,
50-th, and 75-th percentiles being 3.9KB, 8.3KB, and 32.6KB,
respectively, for LZMA encoding across the 20 websites. The
average per-page contribution (i.e., bundle size / # pages) to the
bundle is only 0.05KB, 0.1KB, and 0.2KB, respectively, for the 25-
th, 50-th, and 75-th percentiles. Figure 5 plots the ratios of meta file
bundle size to its landing page size (including its resources). The
ratios are quite small for most websites (median: 0.4%). The only
outlier is en.wikipedia.org, whose meta file bundle size (67KB
in LZMA) is non-trivial compared to the small landing page size
(410KB). In this case, the server can push only top k£ meta files
as described in §3.2. Also recall that meta files are cacheable, and
thus the bundle sizes shown in Table 2 and Figure 5 are in fact upper
bounds.

0.8

0.6

CDF

0.4

0.2

0

0 5% 10% 15%
Bundle size / landing page size

Figure 5: Ratios of bundled meta file size (LZMA encoding) to
the landing page size (including resources in original encoding)
across all sites.

T T
No Push i
Server Push =3
MetaPush (Upper Bound) =3 B

= N
0 N O w
T T

o
&)

Page Load Time (seconds)

o

x.edu

y.com z.gov

Figure 6: PLT for No Push, Server Push, and MetaPush.
“N” and “L” denote time spent in network transfer and local
computation, respectively. We report the upper bound PLT for
MetaPush.

4.2 No Push, Server Push and MetaPush

We compare MetaPush with the default request-response-based
page loading (No Push) and standard Server Push. (1) For No Push,
we use off-the-shelf Chrome browser (version 41.0.2272.101) and
Apache server 2.4.7 with mod-spdy version 0.9.4.1 in default
settings. (2) For Server Push, we enable the push feature of the
mod-spdy module. Since there is no standard about how to per-
form the push, we employ a simple policy of pushing all resources
to the client. Studying other policies, which may consume less
bandwidth but increase the PLT [21], is our future work. (3) We
implemented an emulator of MetaPush, which consists of two
parts: downloading all resources in a batch (using parallel async
XMLHttpRequest [10]) and loading the whole web page offline
from cache. We measure their consumed time using a Chrome
extension and the Chrome DevTools, respectively, and estimate the
overall PLT as the sum of the two components. It is important to
note that, by doing so, the emulator only gives an upper bound
(i.e., worst case) of the PLT since in reality, the two components
can potentially be performed in parallel, leading to a lower PLT. To
make the experiments reproducible, we mirrored the landing pages
of three websites from a university (x.edu), a retailer (y.com)
and a state government (z . gov), by slightly moditying their source
code to disable access to third-party sites and confine all traffic to
our own Apache server. All three schemes use SPDY (v3.1) [7],
which is the basis of HTTP/2.

Figure 6 plots the PLT for the three schemes over a commercial
HSPA+ network, based on 10 runs of each scheme/website pair. We

61

make three observations. First, MetaPush outperforms No Push
by 45%, 27%, 11%, for the three sites, respectively, implying the
potential performance benefits brought by decoupling the network
transfer and local computation. Second, surprisingly, Server Push
exhibits worse performance than MetaPush (ideally their PLTs
should be similar). This is likely due to an implementation issue of
SPDY’s Server Push mechanism that needs further investigation®.
Third, we show the local computation (“L”) and the network
transfer (“N”’) components of MetaPush’s PLT. When the network
transfer dominates the overall PLT (the z . gov case), the benefits of
MetaPush diminishes. This is because z.gov has a large content
size, and for all three schemes, the page loading is throttled by the
limited HSPA+ bandwidth. We repeated the same experiment on
an LTE network, and observed MetaPush brought more than 20%
of PLT reduction compared to No Push.

Radio Energy Saving. We use an HSPA+ energy model based
on [18] to study the radio energy saving brought by MetaPush.
The radio power consumed by the cellular interface accounts for
1/3 to 1/2 of the overall handset power consumption [18]. Across
the three sites, compared to the No Push case, MetaPush reduces
the radio energy consumption by 25% to 37%. Note that we did
not include the local computation energy that will likely be similar
between the two schemes.

S. DISCUSSIONS

In this section, we discuss several remaining issues not addressed
in §3 and §4.

Deployment considerations. For end-to-end deployment, our
proposed MetaPush does require changes to both the client and
the server. However, the MetaPush logic can be integrated into
middleboxes to make it transparent to remote web servers. Such
middleboxes have been widely deployed by, for example, cellular
ISPs [14] and Google [11]. On the client side, MetaPush can be
implemented as browser plugins that can even be developed by
third parties. Note that MetaPush is incrementally deployable as
the meta files will not be pushed unless a specific field containing
the (potentially empty) cached mID list is found in the header re-
quest (§3.2). The key building blocks needed to realize MetaPush
i.e., push and batched fetching, have already been supported and
standardized. MetaPush can be easily integrated with HTTP/2
where Server Push is a built-in feature. It can also be implemented
on HTTP/1.1 where push can be realized by add-ons such as
WebSocket [9].

Generating meta files. Meta files can be generated using a
combination of several methods. Statically embedded resources
can be identified by parsing the page offline. Server logs from many
users can be leveraged to statistically capture resources that are
dynamically requested by JavaScript [11], as well as their weights.
Subpages can be identified using similar approaches.

Dynamic pages. In §3, we assume a one-to-one mapping
between pages’ URLs and their meta files. For dynamic pages,
the URLs often contain parameters so ideally we need to as-
sociate a meta file with URLs showing the same pattern (e.g.,
foo.com/bar?para=+) that contains the same or very similar
resources. This can be addressed by using regular expressions
(regex) instead of unique URL strings to match pages, and the mID
can thus be generated by hashing the regex. We leave the design
of the regex extraction algorithm (e.g., based on server logs) as our
future work.

>In our experiments, when Server Push is enabled, the Chrome
Browser crashed several times.

HTTPS. MetaPush works well for HTTPS. However, as a
well-known issue, handling HTTPS using a man-in-the-middle
proxy breaks HTTPS’ end-to-end security, unless the proxy is fully
trusted [19].

6. RELATED WORK

We review existing work on understanding and improving mo-
bile web performance besides Server Push and Server Hints.

Web object dependency is known to adversely affect the web
performance. Prior systems such as WebProphet [16], WProf [20],
and Klotski [12] either focus on the construction of the dependency
graph, or use the graph for various purposes. WebProphet [16] is
a system that captures the dependencies among web objects and
automates the prediction of user-perceived web performance. It
first constructs the dependency graph of a web page based on the
observation that the delay of loading an object will propagate to all
other objects that depend on it. It then simulates the web page load
process and predicts the page load time for different optimizations.
Wang et al. [20] built an in-browser profiler, called WProf, that can
generate a dependency graph among the browser activities when
loading a web page. Klotski [12] is a system that improves the
quality of user experience for mobile web browsing by dynamically
reprioritizing web resources. Instead of reducing page load time
directly, the goal of Klotski is to deliver as many as possible high
priority resources within the first 3-5 seconds when loading a web
page. In contrast, MetaPush attempts to break the dependency
between local computation and network transfers to address various
inefficiencies (§1).

SPDY performance. Qian ef al. investigated the prevalence of
SPDY usage for the top 500 mobile websites [17]. Erman ez al. [13]
identified poor interaction between SPDY and TCP for cellular
networks. Wang er al. [21] investigated how different factors, such
as RTT, packet loss rate, and bandwidth, affect the performance
of HTTP and SPDY. These studies provided valuable insight in
various aspects of SPDY that is the base protocol for HTTP/2.
Our proposal instead focuses a different aspect of strategically
leveraging the server push feature.

Push. Wang et al. [21] demonstrated on emulated network that
Server Push can reduce PLT. PARCEL [19] leverages a proxy to
push web contents in one or several bundles to the mobile device,
which reduces the PLT and the mobile device energy consumption.
However, it suffers from the same limitation as Server Push: it is
difficult for the proxy to know the clients’ cache status. To address
this issue, the proxy has to maintain per-client state, incurring
overhead and complexity [19]. A recent proposal [15] attempts
to address this by using cache hints: the client encodes its cached
entries into several bloom filters and sends them to the server to
facilitate Server Push. However, bloom filters may incur false
positives as the cache becomes large. In contrast, MetaPush only
pushes small meta files, and lets the client decide what to fetch.

Prefetching. Wang er al. [22] proposed a technique called
speculative loading where the client predicts and prefetches sub-
resources a web page will need. While MetaPush has a similar
high-level concept, it makes a key difference that the server can
simply provide the subresource list to the client. This leads to a
simpler system, and eliminates the client-side learning overhead
and prediction inaccuracies.

7. CONCLUDING REMARKS

We have described the MetaPush framework and demonstrated
its feasibility in cellular networks. By explicitly exposing the
intra-page and inter-page metadata to client browsers, our design

62

trades off small bandwidth usage for significantly reduced PLT. For
cellular networks, MetaPush can improve PLT of web browsing by
up to 45% and save energy consumption on mobile devices by up
to 37%. We are currently prototyping the MetaPush framework,
with the goal of conducting field trials using cellular middleboxes
and evaluating its effectiveness on real mobile web workloads.

Acknowledgments

We thank Lusheng Ji for initial discussions on the concept of
MetaPush. We also thank anonymous reviewers for their valuable
comments. This research was sponsored in part by Indiana Univer-
sity Faculty Research Support Program (FRSP) — Seed Funding.

81 REFERENCES

Google modpagespeed. https://code.google.com/p/modpagespeed/.
HTTrack Website Copier. https://www.httrack.com/.

Hypertext Transfer Protocol version 2 (RFC 7540).
https://tools.ietf.org/html/rfc7540.

LZMA SDK. http://www.7-zip.org/sdk.html.

Server Hint (prefetch). https://developer.mozilla.org/en-US/docs/
Web/HTTP/Link_prefetching_FAQ.

Server Hint (subresource). https://www.chromium.org/spdy/
link-headers-and-server-hint/link-rel-subresource.

SPDY Protocol — Draft 3.1. http:
/Iwww.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1.
WebP: A new image format for the Web.
https://developers.google.com/speed/webp/.

WebSocket. https://www.websocket.org/.

XMLHttpRequest. https://xhr.spec.whatwg.org/.

V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan, B. Greenstein,
S. McDaniel, M. Piatek, C. Scott, M. Welsh, and B. Yin. Flywheel:
Google’s Data Compression Proxy for the Mobile Web. In NSDI,
2015.

M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar.
Klotski: Reprioritizing Web Content to Improve User Experience on
Mobile Devices. In NSDI, 2015.

J. Erman, V. Gopalakrishnan, R. Jana, and K. Ramakrishnan.
Towards a SPDY’ier Mobile Web? In CoNeXT, 2013.

J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and
O. Spatscheck. An In-depth Study of LTE: Effect of Network
Protocol and Application Behavior on Performance. In SIGCOMM,
2013.

J. Khalid, S. Agarwal, A. Akella, and J. Padhye. Improving the
performance of SPDY for mobile devices. In HotMobile (Poster
Session), 2015.

Z.Li, M. Zhang, Z. Zhu, Y. Chen, A. Greenberg, and Y.-M. Wang.
WebProphet: Automating Performance Prediction for Web Services.
In NSDI, 2010.

F. Qian, S. Sen, and O. Spatscheck. Characterizing Resource Usage
for Mobile Web Browsing. In Mobisys, 2014.

F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck.
Profiling Resource Usage for Mobile Applications: a Cross-layer
Approach. In Mobisys, 2011.

A. Sivakumar, S. P. Narayanan, V. Gopalakrishnan, S. Lee, S. Rao,
and S. Sen. PARCEL: Proxy Assisted BRowsing in Cellular
networks for Energy and Latency reduction. In CoNEXT, 2014.

X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and

D. Wetherall. Demystifying Page Load Performance with WProf. In
NSDI, 2013.

X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and

D. Wetherall. How Speedy is SPDY? In NSDI, 2014.

Z. Wang, F. X. Lin, L. Zhong, and M. Chishtie. How Fast Can
Client-Only Solutions Go for Mobile Browser Speed. In WWW,
2012.

—_—

[2
3

—_

[4]
(5]

(6]
(71
(8]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

