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ABSTRACT

Recent advances in mobile technologies such as 5G and WiFi 6E

do not seem to deliver the promised mobile access bandwidth. To

effectively characterize mobile access bandwidth in the wild, we

work with a major commercial mobile bandwidth testing app to

analyze mobile access bandwidths of 3.54M end users in China,

based on fine-grained measurement and diagnostic information. Our

analysis presents a surprising and frustrating fact—in the past two

years, the average WiFi bandwidth remains largely unchanged, while

the average 4G/5G bandwidth decreases remarkably. Our analysis

further reveals the root causes—the bottlenecks in the underlying in-

frastructure (e.g., devices and wired Internet access) and side effects

of aggressively migrating radio resources from 4G to 5G—with im-

plications on closing the technology gaps. Additionally, our analysis

provides insights on building ultra-fast, ultra-light bandwidth testing

services (BTSes) at scale. Our new design dramatically reduces the

test time of the commercial BTS from 10 seconds to 1 second on

average, with a 15× reduction on the backend cost.
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1 INTRODUCTION

Mobile access technologies have made significant progress in recent

years. For example, 5G and WiFi 6E, the latest cellular and WiFi

technologies, can support up to 20 Gbps and 9.6 Gbps bandwidth

respectively. Those exciting new mobile technologies are the key

enabler for a wide range of emerging applications such as Meta-

verse, autonomous vehicles, and 3D Ultra-HD videos. However,

despite the aggressive deployment of 5G and WiFi 6E, reports from

large-scale bandwidth testing services (BTSes) reveal that as of late

2021, the median 5G bandwidth merely reaches 135 Mbps in the

US and 304 Mbps in China, while the median WiFi bandwidth is

only 137 Mbps in the US and 153 Mbps in China [26]. Apparently,

the promises of new wireless technologies are significantly under

delivered in real-world deployments.

Understanding the root causes of undesirable wireless perfor-

mance in the wild is a first step towards improving the state of the

art. However, it is hampered by the complexity of wireless protocol

stacks, the wide spectrum of the mobile ecosystem, and a lack of

large-scale measurements. For example, existing studies on commer-

cial 5G performance are based on controlled experiments at limited

scales [54, 55, 74]. While some major BTSes do report the land-

scape of mobile Internet performance, their data are coarse-grained

and are limited by (mostly) web-based tools which are incapable of

capturing rich, cross-layer diagnostic data.

Cross-Layer and Cross-Technology Measurement. To fill the

critical gap, we take a unique opportunity to work with a major An-

droid BTS app named UUSpeedTest [38] (abbreviated as BTS-APP),

which has 17M users (mostly located in China) and serves ∼0.2M

bandwidth test requests per day on average. Its bandwidth testing

uses the standard “probing by flooding” approach [77] which is also

used by almost all the commercial BTSes today (e.g., Speedtest [27]

and SpeedOf [22])—upon a test request, BTS-APP first downloads

large files from a nearby server for ten seconds, and then samples

the throughput statistics over time to estimate the access bandwidth.

BTS-APP faces two fundamental challenges. First, the coarse-

grained data prevent it from pinpointing the root causes of undesir-

able mobile access bandwidth, which customers are eager to learn.

Second, the BTS infrastructure is not scalable—as the wireless ac-

cess bandwidth keeps increasing, the monetary cost for operating

the BTS infrastructure is growing considerably. Note that these two

challenges are faced by all the major BTS providers, as they are in

essence using the same testing approach described above.

Our collaboration with BTS-APP addresses both challenges. To

gain deep insights into the undesirable access bandwidth, we enhance
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the client of BTS-APP by continuously collecting important PHY-

and MAC-layer data through standard Android APIs during a band-

width test. Our enhancement is implemented as a lightweight plugin

for BTS-APP without requiring any additional privileges, making

it easy to deploy. Under informed user consent and a proper IRB,

over four months (Aug. to Nov. 2021), 3.54M customers used the

enhanced BTS-APP to perform 23.6M bandwidth tests, which cover

all four major ISPs in China, 2.04M cellular base stations (4G/5G),

and 4.47M WiFi APs (WiFi 4/5/6). To the best of our knowledge, this

constitutes one of the largest mobile Internet performance datasets

reported in the literature.

Data Analysis. Our analysis of the above dataset yields several

major findings. A surprising and frustrating finding is that, over the

past two years (2020 and 2021), despite the increasing deployment

of WiFi 6 and 5G, the average WiFi bandwidth remains largely

unchanged: 132 Mbps in 2020 vs. 137 Mbps in 2021, and the average

4G/5G bandwidth even decreases: 68/343 Mbps in 2020 vs. 53/305

Mbps in 2021. In this paper, we reveal the root causes of such

counter-intuitive results from cross-technology perspectives.

For 4G, we observe that three 4G LTE bands (Bands 1, 28, and 41),

which occupy 58.2% of the entire high-bandwidth LTE spectrum,

were “refarmed” for 5G use in early 2021 [56]. This leads to a sharp

decrease in the LTE performance observed in our data: from 2020 to

2021, the average 4G bandwidth has dropped by 22% to 53 Mbps,

achieving only 18% of the ISPs’ claimed 300 Mbps bandwidth.

On the other hand, we find that the top 6.8% of tests where the

bandwidth exceeds 300 Mbps were mostly conducted alongside

major urban roads where eNodeBs are equipped with LTE-Advanced

(with features such as carrier aggregation and enhanced MIMO) to

cope with large traffic volumes.

With regard to 5G, we still observe an 11% decrease in the average

bandwidth from 2020 to 2021. This is attributed to several factors.

First, spectrum refarming may play a negative role. For example,

the average bandwidth of the refarmed Band 1 and Band 28 is as

low as 103 Mbps and 113 Mbps respectively, because of the thin

(≤60 MHz) spectrum refarmed within each band. Second, our data

suggest that a strong received signal strength (RSS) level does not

necessarily translate into high 5G bandwidth: the average bandwidth

under excellent (level 5) RSS is even lower than that under weaker

(level 3 and 4) RSS. We find that excellent-RSS tests are more likely

to be performed in crowded urban areas where complex multipath

interference incurred by buildings [58], load balancing issues caused

by heavy population [76], and poor handover problems due to the

dense 5G gNodeBs [17] all become prominent. In contrast, in our 4G

data, RSS and measured bandwidth are more positively correlated,

given the much more mature, well-provisioned 4G infrastructure

deployed for more than 10 years.

As to WiFi access, we find that while WiFi 5 is superior to WiFi 4,

their average bandwidths are close (195 Mbps vs. 208 Mbps) over the

5 GHz band.1 Regarding the WiFi 6 access, its average bandwidth

goes up to 345 Mbps, which is still far below its advertised capability.

Our data indicate the reason to be the slow wired Internet, as ∼64%

of the WiFi customers are still using ≤200-Mbps fixed “broadband”

Internet access that offsets the advantages of WiFi 5/6.

1Note that WiFi 4 and WiFi 6 use both the 2.4 GHz and 5 GHz bands, while WiFi 5
uses the 5 GHz band only.

Implications. Combining the above analysis of 4G, 5G, and WiFi,

our analysis depicts a holistic, complete picture of today’s mobile

access bandwidth. In particular, it quantitatively reveals the side

effect of aggressively (and perhaps imprudently) migrating radio

resources from 4G, which still owns the vast majority of today’s

cellular users, to 5G. The side effect is further aggravated by the

bottlenecks of 5G and other infrastructures (e.g., devices and the

wired Internet access). Although spectrum refarming is inevitable

as cellular technology evolves, the current LTE spectrum resources

are severely fragmented. This makes contiguous high-bandwidth

spectrum available for refarming rather scarce, leading to low 5G

bandwidth as exhibited in our data.

Our results advocate more effective band defragmentation and

refarming strategies. Meanwhile, since 4G and 5G will coexist for

a very long time, our findings also call for strengthening existing

LTE infrastructure in a cost-effective manner, such as widening the

LTE-Advanced deployment. Our findings also bring implications for

other stakeholders. For example, wired ISPs and content providers

should take into account the emerging wireless technologies when

budgeting their network infrastructure. In addition, customers should

be better informed and educated to understand the performance and

bottlenecks of new technologies.

Rearchitecting BTS-APP. The study also provides deep insights

on rearchitecting the BTS-APP system to make it ultra-fast and ultra-

light, addressing the infrastructure scalability challenge. We make

two key observations from our data. First, for high-speed mobile

networks, TCP slow start accounts for a significant fraction of time

taken by a bandwidth test, but it does not contribute useful bandwidth

samples. This drives us to reduce BTS-APP’s bandwidth probing

duration. Second, we find that mobile access bandwidth can be well

modeled by a multi-modal Gaussian distribution for a given access

technology. This dictates a novel data-driven approach for selecting

the initial probing bandwidth without lengthy, expensive calibration:

using the bandwidth that best matches the client’s access technology

with high probability and then fine-tuning the probing data rate with

the client feedback for fast convergence.

We mechanize the above ideas by re-implementing BTS-APP’s

bandwidth testing logic, as well as several system-level improve-

ments such as a UDP-based protocol allowing customized bandwidth

probing and an informed server deployment strategy for accom-

modating the workloads. We deploy and evaluate the new system

(dubbed Swiftest) for a whole month, serving 0.2M users and 0.31M

test requests. The large-scale, real-world evaluation indicates that

Swiftest is highly effective on every dimension. For test duration,

Swiftest takes merely 1.19 seconds on average to accomplish a band-

width test, and 55% of tests are finished within one second (including

the initial PING latency). In contrast, BTS-APP takes 10 seconds

to complete a test. For infrastructure cost, Swiftest cuts the server

expense by ∼15×: it only requires 20 100-Mbps servers to support a

realistic workload of ∼10K tests per day (with margins) while BTS-

APP needs 50 1-Gbps servers. For accuracy, the average difference

between Swiftest and BTS-APP is as small as 5%.

Code/Data Release. We have released the code and data at https:

//MobileBandwidth.github.io/ to help the community understand

large-scale mobile access bandwidth and to develop Swiftest for

customized mobile measurements.
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2 STUDY METHODOLOGY

This section first presents BTS-APP’s bandwidth testing architecture,

and then describes the lightweight plugin we build for collecting

in-depth network information in the wild.

BTS-APP’s System Architecture. The bandwidth testing logic

and system deployment of BTS-APP are quite similar to those

of Speedtest, a state-of-the-art BTS system that owns the largest

user scale (around 15M user requests served per day) and server

pool (16,190 test servers deployed across the globe as of January

2022) [27]. Some additional adaptations are made by the develop-

ment team to fit the specific workload of BTS-APP.

Upon a test request, BTS-APP first measures the PING latency

from the user client to a subset of its deployed test servers, so as

to find a nearby server with the lowest latency. Then, during the

actual bandwidth testing process, it continuously downloads large

files from the selected server via HTTP connections to probe the

access bandwidth for 10 seconds, and acquires a bandwidth sample

every 50 milliseconds in the meantime (therefore generating a total

of 200 samples). Here the probing duration (10 seconds) is shorter

than that of Speedtest (15 seconds) because almost all of BTS-

APP’s user requests come from Mainland China (meaning shorter

RTTs for data transmission). In order to ensure that the user-side

access bandwidth is fully saturated, BTS-APP progressively sets

up new HTTP connections to other nearby test servers, if the latest

bandwidth sample reaches a predefined threshold (i.e., 25 Mbps,

35 Mbps, and so on, following Speedtest’s design).

To produce the test result, BTS-APP first partitions the collected

bandwidth samples into 20 groups, each containing 10 samples.

Then, to address the noises caused by TCP slow start and network

dynamics, it discards 5 groups (of samples) with the lowest average

bandwidth and 2 groups with the highest. The remaining groups’

average bandwidth is used as the final result. All the empirical

parameters used in this stage conform to those of Speedtest [27],

whose robustness has been extensively evaluated in the real world.

BTS-APP’s current infrastructure consists of 352 test servers

distributed across Mainland China, whose bandwidths range from

1 Gbps to 10 Gbps. In particular, 62 of the test servers are directly

provided by ISPs through commercial negotiations, which are close

to the Internet backbone networks (IXPs) and thus are especially

high-speed. In each test, 5 (out of the 352) geographically nearby

(determined by the IP addresses) servers are PINGed to find the

nearest server; in contrast, 10 out of the 16,190 servers are PINGed

in Speedtest. This seemingly “degraded” configuration is acceptable

in practice, as it can well handle the present workload of BTS-

APP (serving ∼0.2M user requests per day generally issued from

Mainland China) without harming the test accuracy.

Fine-Grained Data Collection. Despite being able to provide reli-

able and accurate bandwidth testing service in the past 7 years or so,

BTS-APP cannot give an in-depth analysis of its results, making it

hard to understand the root causes of undesirable access bandwidths.

This is because although BTS-APP is an Android app, the implemen-

tation of its bandwidth testing logic is mostly web-based (similar to

other BTSes introduced in §1). Thereby, BTS-APP cannot capture

critical underlying network information (such as frequency band and

signal strength) at the client side for in-depth performance analysis

and troubleshooting. To overcome the shortcoming, we build a data

collection module for BTS-APP to capture fine-grained data.

In order to run on heterogeneous mobile devices at scale, such a

module needs to be both lightweight and privacy-preserving. For the

former, we resort to passive monitoring of critical PHY- and MAC-

layer information during a bandwidth test using generic Android

APIs. For the latter, we carefully avoid any data collection that would

require additional privileges the original app does not possess, so

as to minimize users’ privacy concerns. Concretely, with respect to

cellular networks, we focus on user device-side signal conditions

(e.g., signal strength and signal-to-noise ratio), as well as base station

(BS)-side connection information (e.g., BS ID, frequency band, and

channel number). Regarding WiFi networks, we are interested in

the connected access points’ capabilities (e.g., WiFi standard, radio

frequency, and MAC-layer transmission speed), as well as the local

network status (e.g., states of the other WiFi APs that are detected).

The above module is implemented as a small-size (1K lines of

code and 110 KB binary) plugin that BTS-APP can dynamically

load at runtime. During a bandwidth test, the plugin carries out data

collection every second, which incurs negligible (≤2%) CPU and

(≤1 MB) memory overhead on even a low-end phone. After the test,

the result and the collected data are uploaded via WiFi (whenever

possible) to our data server for subsequent detailed analysis.

Crowdsourcing and Ethical Considerations. Thanks to BTS-

APP’s development team, we manage to deploy the plugin on almost

all of BTS-APP’s users (the remaining minority of users choose to

opt out). From Aug. 1st to Nov. 30th in 2021, a total of 3.54M users

perform 23.6M access bandwidth tests. None of our measurements

violate BTS-APP’s user agreements. The users involved in this study

opted in with informed user consent, and the analysis is conducted

under a well-established IRB. During the study, no personally iden-

tifiable information was collected, and we have no way of linking

the data with users’ actual identities.

3 MEASUREMENT FINDINGS

In this section, we first present the general statistics from our mea-

surement (§3.1), and then zoom in on the respective bandwidth

characteristics of 4G (§3.2), 5G (§3.3), and WiFi (§3.4) in terms of

both technical and non-technical factors.

3.1 General Statistics

During our four-month measurement, 3,542,179 user devices con-

ducted 23,636,352 access bandwidth tests, 99.97% of which are

located in China, involving four mobile ISPs, 2,041,586 BSes, and

4,473,362 WiFi APs. More specifically, we record the results of

21,051 3G tests, 1,632,616 4G tests, 905,471 5G tests, and 21,077,214

WiFi tests, along with the cross-layer, in-situ network information

as discussed in §2. To enable the longitudinal analysis, we also refer

to BTS-APP’s measurement reports in recent years when necessary.

Bandwidth Variation over Time. As the commercial prosperity of

5G and WiFi 6 commenced in late 2019, mobile access bandwidth

was expected to grow constantly in the subsequent years (2020 and

2021) in response to the increasing deployment of 5G BSes and

WiFi 6 APs. Nevertheless, we find that the average WiFi bandwidth

remains mostly unchanged: 132 Mbps in 2020 vs. 137 Mbps in

2021. More surprisingly, the average 4G bandwidth decreases from
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Figure 3: Average 4G, 5G and WiFi bandwidth

for different ISPs.

68 Mbps in 2020 to 53 Mbps in 2021, and the average 5G bandwidth

drops from 343 Mbps in 2020 to 305 Mbps in 2021. If it is any conso-

lation, the average overall cellular bandwidth (taking 2G/3G/4G/5G

all into consideration) increases from 117 Mbps in 2020 to 135 Mbps

in 2021, which is expected because the user percentage of 5G almost

doubled in 2021 (33%) as compared to that in 2020 (17%).

Furthermore, we closely examine the bandwidth variation with

regard to the same user group (that belong to the same ISP in the

same city), including those China Unicom, China Mobile, and China

Telecom users in Beijing, Shanghai, Guangzhou, and Shenzhen. We

also observe declines in average 4G and 5G bandwidths for the same

user group, which are 12%–31% and 5%–23%, respectively.

The above findings reveal that in real-world deployment, the

advance in wireless technologies is far from being fully exploited. In

particular for cellular access, the QoS for the majority of users (i.e.,

4G users) is in fact damaged despite the well expected improvement

of the “average overall” QoS. This, in our opinion, is unknown and

hardly acceptable to 4G users, and thus may hurt users’ confidence

and do harm to the mobile ecosystem. Worse still, even 5G users who

are prioritized are experiencing deteriorated QoS. We will investigate

the undesirable situations in the remainder of this section from cross-

technology and cross-layer perspectives.

Spatial Disparity. We further examine the bandwidth variation

across different cities in China during our measurement period (Aug.

to Nov. 2021), including 21 mega cities, 51 medium cities, and 254

small cities. In general, there is noticeable difference among the

access bandwidths of 4G (28–119 Mbps), 5G (113–428 Mbps), and

WiFi (83–256 Mbps) with regard to these cities. A mega city (such

as Guangzhou) does not necessarily possess high 4G, 5G, and WiFi

bandwidths (55 Mbps, 301 Mbps, and 136 Mbps, respectively) even

with dense infrastructure deployment, probably due to the severe

network resource contention among plenty of users. Besides, 41%

cities are subject to unbalanced development of 4G and 5G networks;

for example, Shanghai has higher 5G bandwidth (337 Mbps) as com-

pared to the national average (305 Mbps), while its 4G bandwidth

(48 Mbps) is 9% lower than the national average. On average, the

4G and 5G access bandwidth in urban areas is 24% and 33% higher

than that in the rural areas of the same cities, respectively, mostly

owing to their distinct densities of infrastructure deployment.

User-side Hardware and Software. We also study the impact

of user-side hardware and software (i.e., the Android system that

actually manages the wireless data connectivity) on the access band-

width. In our dataset, there are 191 mobile phone vendors and 2,381

device models whose hardware configurations vary from rather low-

end to very high-end. At first glance, it appears that mobile access

bandwidth is in general positively correlated with the superiority of

hardware. Closer examination, however, indicates that this is merely

a common illusion caused by missing a key factor at play—software

that bridges the hardware and mobile access networks.

Figure 2 lists the average 4G, 5G and WiFi bandwidth for differ-

ent Android versions, illustrating that it might well be the Android

version that essentially determines the access bandwidth (in a sta-

tistical sense). This is quite understandable in principle, given the

considerable improvements made in the cellular/WiFi management

modules by higher-version Android systems. In contrast, when a low-

end device model and a high-end device model are equipped with the

same Android version, usually we do not observe obvious difference

in mobile access bandwidth between them—the standard deviation

for the same access technology is ≤23 Mbps. Consequently, the fact

that higher-end mobile phones often (but do not necessarily) possess

higher access bandwidths is only because they have more up-to-date

hardware that is more often used for running higher-version OSes.

ISP-side Infrastructure Investment. Our study involves all the

four major ISPs in China: China Mobile, China Unicom, China

Telecom, and China Broadcast Network, who provide both cellular

and fixed broadband services for Internet users. They are referred

to as ISP-1, ISP-2, ISP-3, and ISP-4 henceforth. Figure 3 presents

their average 4G, 5G and WiFi bandwidths. As shown, while their

average 4G bandwidths are quite similar (probably owing to their

wide deployment of mature and similar 4G infrastructure), there

is noticeable difference among their average 5G bandwidths. In

particular, as a newly-founded ISP that focuses on 5G, ISP-4 bears

obviously lower 5G bandwidth, since its 5G service is based on

a special low-bandwidth 700 MHz band originally designated for

4G and radio broadcast services. In other words, ISP-4 is trading

bandwidth for low-cost deployment.

We also note that ISP-3 outperforms ISP-1 and ISP-2 in both

5G and WiFi bandwidths. The former is because ISP-3 deploys 5G

mostly on an advantageous frequency range of a dedicated 3 GHz

band (detailed in §3.3). The latter is due to ISP-3’s heavier invest-

ment in its fixed broadband infrastructure (detailed in §3.4).

3.2 4G (LTE) Access Bandwidth

As illustrated in Figure 4, the average 4G access bandwidth in our

measurement is only 53 Mbps, which is far below the ISPs’ claimed

bandwidth limit (i.e., 300 Mbps). According to BTS-APP’s measure-

ment reports, this is even 22% lower than that in 2020. While in the
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tests conducted on each LTE band.

Table 1: The nine LTE bands involved in our study, ordered by

their downlink (DL) spectrum.

Band DL Spectrum Max Channel Bandwidth ISPs

Band 28 758 – 803 MHz 20 MHz ISP-4

Band 5 869 – 894 MHz 10 MHz ISP-3

Band 8 925 – 960 MHz 10 MHz ISP-1, 2

Band 3 1805 – 1880 MHz 20 MHz ISP-1, 2, 3

Band 39 1880 – 1920 MHz 20 MHz ISP-1

Band 34 2010 – 2025 MHz 15 MHz ISP-1

Band 1 2110 – 2170 MHz 20 MHz ISP-2, 3

Band 40 2300 – 2400 MHz 20 MHz ISP-1

Band 41 2496 – 2690 MHz 20 MHz ISP-1

top 6.8% of tests the bandwidth exceeds 300 Mbps, in over a quarter

(26.3%) of tests the result is below 10 Mbps. In this part we explain

the above phenomena by delving into the radio characteristics of

LTE, the migration of radio resources from LTE to 5G, and the

deployment of the novel LTE-Advanced technology.

Radio Characteristics. Frequency range (a.k.a, spectrum) and

channel bandwidth are among the key radio characteristics that de-

termine the performance of cellular access. Each LTE band is unique

in the two characteristics. In theory, lower-frequency bands have

less signal propagation loss, and thus can bring better radio coverage

and signal-to-noise ratio (SNR). On the other hand, channel band-

width has a more direct impact on the access bandwidth—the limit

of access bandwidth linearly grows as the maximum channel band-

width increases, as dictated by the Shannon-Hartley theorem [64].

Given the above theoretical radio features of different bands, we are

particularly interested in their actual impact on the access bandwidth.

We have captured all the nine LTE bands used in China, referred

to as Band 1, 3, 5, 8, 28, 34, 39, 40 and 41 following 3GPP’s defi-

nition [1]. Table 1 lists each band’s downlink spectrum (recall that

our study concentrates on the download bandwidths of mobile de-

vices), maximum supported channel bandwidth, and corresponding

ISP(s)—note that one band can be multiplexed by multiple ISPs.

According to 3GPP’s LTE specifications [1], the channel bandwidth

should reach 20 MHz to realize the theoretical bandwidth limit of

4G access, so we denote the bands that support the 20 MHz channel

bandwidth as high-bandwidth bands (H-Bands for short), and the

others as low-bandwidth bands (L-Bands for short).

Figure 5 lists the average access bandwidths of the nine LTE

bands. Note that Band 28, which is assigned to the 5G-first ISP-4,

was only used in two LTE bandwidth tests (see Figure 6) so its result

is highly biased here. Not surprisingly, H-Bands (except Band 28)

yield higher access bandwidths than L-Bands. However, the average

bandwidth of Band 39 is as low as 48.2 Mbps, even close to that

(47.1 Mbps) of Band 34 which is an L-Band. This is because Band

39 is dedicated to serving rural areas where LTE BSes are sparsely

deployed [32]. In comparison, Band 40 is used for penetrating indoor

environments where LTE BSes are usually densely deployed, and

thus offers better signal strength—an average of -88 dBm for Band

40 vs. -94 dBm for Band 39. These special purposes explain the

low correlation between spectrum and access bandwidth for certain

bands as shown in Figure 5.

Radio Resource Migration. Since H-Bands are superior to L-

Bands in terms of access bandwidth, most mobile users should be

served by H-Bands, which are reflected on Figure 6, where the

majority (85.6%) of LTE bandwidth tests are conducted on H-Bands.

In particular, Band 3 alone serves 55% tests. More specifically, for all

the three ISPs (ISP-1, ISP-2 and ISP-3) that deploy LTE on Band 3,

the percentage of Band-3 LTE bandwidth tests is the highest among

their used bands, i.e., 31%, 63% and 76% respectively.

We attribute this skewed workload distribution to the recent mi-

gration of radio resources from other LTE H-Bands to 5G. In early

2021, a large portion of LTE H-Band spectrum was “refarmed” for

5G usage [56]; the affected bands include Band 1, Band 28, and

Band 41, which in together occupy 58.2% of the entire H-Band

spectrum. Such an aggressive migration constitutes an important

cause of the sharp decrease in LTE access bandwidth from 2020 to

2021 (as mentioned in §3.1). In detail, the average bandwidths of

the refarmed Band 1 (63 Mbps) and Band 41 (58 Mbps) have fallen

below the average LTE bandwidth in 2020 (68 Mbps).

LTE-Advanced Deployment. As mentioned in the beginning

of this part, although the average LTE bandwidth is rather low

(53 Mbps), we do observe that in 6.8% LTE bandwidth tests the

result is higher than 300 Mbps, averaging at 403 Mbps and peak-

ing at 813 Mbps. A closer examination reveals that the majority

of these tests are performed alongside urban main roads, where

ISPs deploy the LTE-Advanced [18] technology for the nearby LTE

BSes (termed eNodeBs) to deal with the large traffic volume. LTE-

Advanced makes significant improvements on conventional LTE
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5G access in our measurement.
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Figure 8: Average access bandwidth of each

5G band involved in our study.
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Figure 9: Number of access bandwidth tests

conducted on each 5G band.

Table 2: The five 5G bands involved in our study, ordered by

their downlink (DL) spectrum.

Band DL Spectrum Max Channel Bandwidth ISPs

N28 758 – 803 MHz 20 MHz ISP-4

N1 2110 – 2170 MHz 20 MHz ISP-2, 3

N41 2496 – 2690 MHz 100 MHz ISP-1

N78 3300 – 3800 MHz 100 MHz ISP-2, 3

N79 4400 – 5000 MHz 100 MHz ISP-1, 4

bandwidth (which can only reach 150 Mbps) through a suite of in-

novations such as carrier aggregation, multi-antenna technology, en-

hanced MIMO and mobility. As a result, LTE-Advanced can achieve

up to 2 Gbps bandwidth, comparable to the bandwidth of today’s

commercial 5G. More importantly, LTE-Advanced is technically

mature, easy-to-deploy, and cost-effective.

3.3 5G Access Bandwidth

As the state-of-the-art cellular technology, 5G can offer up to 20

Gbps access bandwidth along with ultra-low latency (e.g., 5 ms) and

ultra-high service capacity (e.g., 1M devices per square kilometer).

Over the past two years, ISPs have made enormous investments

on 5G’s infrastructure and commercial promotion. Particularly, as

revealed in §3.2, even 4G’s infrastructure (radio spectrum) has been

refarmed to this end. Nevertheless, Figure 7 shows an undesired

outcome of the above efforts: the average 5G bandwidth is 303

Mbps, which has decreased by 11% as compared to that in 2020

(according to BTS-APP’s measurement reports). To demystify this

“lose-lose” situation of today’s cellular ecosystem (dominated by 4G

and 5G), we next examine in depth the key factors that lead to the

dilemma, regarding spectrum refarming and received signal strength.

Spectrum Refarming. As shown in Table 2, five bands are used

by the four ISPs for 5G deployment in China, dubbed N1, N28,

N41, N78 and N79 according to 3GPP’s specifications [2]. All these

bands are sub-6 GHz and three of them (N1, N28 and N41) are in

fact refarmed from the three LTE bands (Band 1, Band 28 and Band

41) respectively. N78 and N79, on the other hand, are dedicated to

5G usage, among which N78 is the core band that provides most
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Figure 10: Number of 5G tests and average 5G bandwidth in

different times of a typical day.

of 5G’s service capacity2 while N79 is still under test deployment.

There are only three N79-related tests in our measurement, so we

will exclude N79 from our analysis to avoid bias. We list the average

access bandwidth of each 5G band in Figure 8, and the number of

access bandwidth tests conducted on each band in Figure 9.

As shown, there exists a significant discrepancy among the aver-

age bandwidths of the three refarmed bands. Specifically, the average

5G bandwidth on N41 is 312 Mbps, which is comparable to that of

5G’s core band N78 (332 Mbps). In contrast, the results on the other

two refarmed bands (N1 and N28) are much lower, i.e., 103 Mbps

and 113 Mbps. A deeper investigation clears the mystery—a 100-

MHz contiguous spectrum (2515–2615 MHz) from Band 41 has

been refarmed into N41, which is quite wide to support relatively

high bandwidth. In contrast, the refarmed contiguous spectrum from

Band 1 and Band 28 is rather thin (i.e., 60 MHz and 45 MHz), lead-

ing to undesirable bandwidth. Thus, we conclude that refarming is a

major contributor to the decline of 5G’s average access bandwidth.

Diurnal Pattern. We also examine the number of 5G tests and the

average 5G access bandwidth at different times of the days during our

measurement period (Aug. to Nov. 2021). Figure 10 demonstrates

the data collected in a typical day. We observe that in most cases,

the average 5G bandwidth is negatively correlated with the number

of tests. This is because more bandwidth tests performed usually

2ISP-3 uses lower-frequency spectrum in N78, offering wider coverage while not
sacrificing bandwidth, so has higher signal strength and bandwidth.
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RSS level and average bandwidth.
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Figure 13: Bandwidth distribution for

WiFi access in our measurement.

indicate that more users are sharing the access network, leading to

heavier workloads and resource contention on the BSes.

Nevertheless, we find that the average bandwidth hits the bottom

(276 Mbps) between 21:00 and 23:00, during which the number

of tests is as small as 362 per hour. In contrast, even with 25%

more tests performed per hour from 15:00 to 17:00, the average

bandwidth in that time period is 10% higher (308 Mbps). Deeper

investigations show that the above phenomenon stems from the

sleeping strategy of 5G BSes, in which ISPs selectively turn off the

active antenna processing units of 5G BSes from 21:00 to 9:00 to

reduce energy consumption [16, 50, 61]. Notably, we observe that

despite the sleeping strategy, the average bandwidth in fact reaches

the peak (334 Mbps) between 3:00 and 5:00, since very few people

are using the network during this period (46 tests per hour).

In comparison, for 4G networks, we find that the average band-

width at different times of the days is in general positively correlated

with the number of tests conducted by users. This is because an LTE

BS consumes much less energy and thus does not adopt the sleeping

strategy of 5G BSes.

Received Signal Strength (RSS). In common sense, an excel-

lent RSS usually implies a higher SNR, and hence a higher access

bandwidth [64]. While our data show that RSS and SNR are indeed

positively correlated (Figure 11), a counter-intuitive finding is that

RSS and 5G access bandwidth are not. Figure 12 clearly depicts that

as the RSS rises from level-1 to level-4, the average 5G bandwidth

monotonously grows from 204 Mbps to 314 Mbps. However, when

the RSS becomes excellent (level 5), the average 5G bandwidth

sharply drops below that with level-3 and level-4 RSS. The situation

is similar when we examine the median 5G bandwidth.

To understand the above, we notice that the abovementioned

excellent-RSS 5G bandwidth tests are mostly performed in crowded

urban areas, where 5G BSes in close proximity tend to yield consis-

tently low bandwidth. Heavy population in such areas often requires

dense deployment of 5G BSes (termed gNodeBs) [54]. Although this

can provide higher signal strength, improper gNodeB placement and

antenna configurations can easily lead to cross-region coverage [3],

i.e., overlaps of different gNodeBs’ signal coverage, which can

aggravate the already complex multi-path and co-channel interfer-

ence [49, 75] in urban areas with dense buildings, as well as the var-

ious load balancing issues and poor handover problems [17, 48, 65].

This may especially be the case given that current 5G technology

and deployment are rather immature. In comparison, we do not ob-

serve such a phenomenon on 4G access, given its much more mature,

well-provisioned infrastructure deployed for 10+ years.

3.4 WiFi Access Bandwidth

As another widely-deployed mobile access technology, WiFi mainly

works in home and enterprise environments. In this part, we dig into

the access bandwidth of WiFi across its 4th, 5th, and 6th generations

of technical standards.

In our dataset, WiFi 4, 5 and 6 account for 57.2%, 31.3% and 11.5

% of the WiFi bandwidth tests, respectively. Figure 13 depicts their

bandwidth distributions. With the evolution of WiFi technologies

(4→5→6), the average bandwidth appears to substantially increase

(59 Mbps→203 Mbps→345 Mbps). In more detail, given that WiFi

5 only uses the 5 GHz band, we look at the 2.4 GHz and 5 GHz WiFi

bands separately (see Figures 14 and 15). We are surprised to find

that the average bandwidths of WiFi 4 and WiFi 5 are in fact fairly

close over the 5 GHz band—195 Mbps vs. 208 Mbps. This suggests

that the overall bandwidth improvement from WiFi 4 to WiFi 5 is

mostly because WiFi 4 users are also using the 2.4 GHz band, rather

than benefiting from the technical advances introduced in WiFi 5,

such as beamforming and downlink multi-user MIMO.

Delving deeper into the bandwidth distribution of WiFi 4/5/6,

we notice that for each generation, WiFi bandwidths tend to cluster

around certain 100× values, e.g., 100 Mbps, 300 Mbps, and 500

Mbps for WiFi 5 (as shown in Figure 16). Interestingly, we find

that these 100× values well match the promised bandwidths of ISPs’

typical fixed broadband plans [53, 69, 70]. In a sense, they reflect

the distribution of WiFi users’ purchased fixed broadband plans.

Based on this heuristic, the fixed broadband plans of ISPs, and other

public reports on the bandwidth distribution of fixed broadband

in China [7, 8], we can now roughly infer that ∼64% of the WiFi

users are still using ≤200-Mbps fixed “broadband” Internet access.

Consequently, the technical advantages of WiFi 5 are in fact largely

offset by the tardy evolution of wired Internet access.

For WiFi 6 that manifests the highest average bandwidth, there

are fewer (∼39%) users using the ≤200-Mbps fixed broadband,

indicating that WiFi 6 users are more likely to live in urban areas

(shown by their IP addresses) where wired broadband infrastructure

evolves more quickly. In particular, we notice that for an ISP (ISP-3)

that has made heavy investments in its fixed broadband infrastructure,
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Figure 14: Bandwidth distribution for

WiFi access using the 2.4 GHz band.
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WiFi access using the 5 GHz band.
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Figure 16: Probability distribution for

WiFi 5 access bandwidths in our study.

the corresponding WiFi access bandwidth is also the highest among

the studied four ISPs. Nevertheless, the average bandwidth of WiFi

6 is still far below its advertised capability, leading to significant

under-utilization of WiFi 6’s superiority.

4 IMPLICATIONS

The analysis results of 4G, 5G, and WiFi 4/5/6 in §3 depict a com-

plete picture of today’s mobile access bandwidth. On one hand, we

witness the power of emerging mobile access technologies such as

5G and WiFi 6—in certain cases, they do yield very high bandwidth

that is hardly achievable by their predecessors. On the other hand,

we note that traditional technologies (e.g., 4G LTE and WiFi 4/5) are

still serving the majority of mobile users and bearing more mature

deployment and stable performance. Most importantly, the devel-

opments of these technologies are closely intertwined (e.g., 4G and

5G compete for limited radio resources), forming an intricate and

complex ecosystem.

Our study illustrates the aggressive migration of radio resources

from 4G to 5G, and quantitatively reveals its side effect on both

4G and 5G access bandwidths. Although spectrum refarming is

usually considered inevitable during the evolution of cellular tech-

nologies, it should be carried out in a moderate and strategic manner

so as to avoid or minimize the side effect. In particular, one should

pay special attention to the fact that the current LTE spectrum re-

sources are severely fragmented, which can be ascribed to two major

reasons. First, the spectrum is often statically segmented among

different ISPs and regions [57], with necessary spectrum spacing

(called guard bands [68]) between adjacent bands to prevent signal

interference [12]. Second, as different mobile telecommunication

technologies (e.g., CDMA, WCDMA, GSM, LTE, and NR) often

work in a same band with non-overlapping spectrum [41], their het-

erogeneous requirements in channel bandwidth (e.g., CDMA needs

1.25 MHz bandwidth while LTE needs 20 MHz bandwidth) can

easily fragment the spectrum.

As a result, few of the LTE bands can provide sufficient contigu-

ous spectrum for refarming, while 5G usually requires nearly 100

MHz contiguous spectrum to enable a high data rate and low signal

interference among user devices. We therefore advocate more effec-

tive band defragmentation and refarming strategies, e.g., dynamic

spectrum allocation [60] and flexible band trading [43], to facilitate

better utilization of spectrum resources given the fast evolution of

cellular networks.

Since 4G and 5G will coexist for a very long time [19, 20], our

findings also call for strengthening existing LTE infrastructure in

a cost-effective manner. For instance, we suggest widening the de-

ployment of the LTE-Advanced technology, which has yielded up to

813 Mbps bandwidth in our measurement (comparable to the typical

bandwidth of commercial 5G). Moreover, LTE-Advanced’s carrier

aggregation feature can help combine non-contiguous channels (i.e.,

signal carriers) among fragmented bands into a single wide channel

to realize high data rate [78], leading to effective mitigation of the

spectrum fragmentation and improvement to the effect of refarming.

Our findings also bring implications for other players in the mo-

bile ecosystem. For example, in §3.4 we notice that slow broad-

band access can largely retard the access bandwidth of WiFi 4/5/6,

so wired ISPs and content providers should take into account the

emerging wireless technologies when budgeting their network in-

frastructure. Moreover, we encourage customers to be rational when

being bombarded with ISPs’ and phone vendors’ 5G advertisement

campaigns. They should be informed of 5G’s actual performance in

everyday usage, and that up-to-date mobile OS (rather than solely

superior hardware) is crucial to the access bandwidth of a mobile

device, as we discover in §3.1.

5 FAST AND LIGHT BANDWIDTH TESTING

SERVICE AT SCALE

As a fundamental tool for understanding end users’ Internet access

bandwidths, bandwidth testing services (BTSes) not only facilitate

large-scale characterization of network performance in the wild, but

also serve as a core component of many emerging bandwidth-hungry

applications (e.g., UHD streaming and AR/VR). However, main-

stream BTSes typically follow the “probing by flooding” approach,

which brings heavy burden on end users in terms of both test time

and data usage, as well as on service providers in terms of backend

server cost (cf. §2). Worse still, these issues have aggravated in recent

years given the advent of high-bandwidth 5G and WiFi 6 networks,

raising considerable concerns from BTS-APP’s operation team.

To tackle this, in this section we use our measurement insights to

rearchitect the BTS-APP system, so that it can be much faster and

lighter to accommodate the upcoming heavier workload. We first

take a data-driven approach to optimizing the bandwidth probing
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ferent congestion control algorithms.
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process (§5.1), and then devise a principled method to achieve cost-

effective server deployment (§5.2). Afterwards, we conduct real-

world implementation and evaluation for the new design (§5.3).

5.1 Data-Driven Bandwidth Probing

Recall in §2 that upon a bandwidth test request, BTS-APP probes

the user’s access bandwidth for 10 seconds by downloading large

files from a test server (more servers will be added if necessary), and

collects bandwidth samples in the meantime to generate the final

result. Through the in-depth measurement, we identify important

optimization opportunities for such a bandwidth probing process,

and adjust the bandwidth testing logic accordingly.

Negative Effect of TCP Slow Start. When examining the recorded

bandwidth samples of BTS-APP, we notice that as the user’s access

bandwidth increases, TCP slow start takes longer time in a band-

width test. As TCP slow start is in fact introduced by TCP congestion

control, we quantitatively investigate the effect of mainstream con-

gestion control algorithms (i.e., Cubic [30], Reno [11], and BBR [9])

on 15 test servers randomly picked from BTS-APP’s server pool

for two weeks after the measurement study. We manually configure

the congestion control kernel modules on these servers, and monitor

the duration of slow start with tcp_probe. For user devices, we

employ 10 mobile phones with diverse hardware configurations, An-

droid versions, and mobile access technologies (which turn out to

have little impact on this experiment).

As shown in Figure 17, Cubic obviously incurs longer slow start

time, while BBR behaves a little better than Reno. Even with the

emerging BBR algorithm, TCP slow start takes an average of around

2 seconds and 4 seconds during the access bandwidth tests of 100-

Mbps and 1-Gbps mobile networks, respectively, accounting for a

significant fraction of the total test time (10 seconds). However, the

bandwidth samples generated during the slow start phase are in fact

“noises” that do not contribute useful information to the final result.

To make matters worse, they can sometimes affect the accuracy of

test results if not properly filtered, particularly when they can be

triggered by spurious packet losses during transmission (common in

cellular networks [72]).

Solutions of Existing BTSes. To combat network noises introduced

by TCP slow start and common network fluctuations, today’s BTSes

employ diverse methods at different stages (including server selec-

tion, bandwidth probing, and bandwidth estimation) of a bandwidth

test. First, during server selection, existing BTSes often choose test

servers with the lowest latencies to the client to reduce network

noises. Then, during the bandwidth probing stage, some BTSes (e.g.,

Speedtest [27] and FAST [21]) perform large data transfers using

parallel connections to saturate the client’s bandwidth as quickly as

possible. Finally, when performing bandwidth estimation using the

bandwidth samples collected during the probing stage, existing BT-

Ses use dedicated algorithms to rule out noise samples and generate

the final result. For instance, Speedtest [27] adopts a static algorithm

to filter out the top 10% and bottom 25% bandwidth samples, and

then averages the remaining ones as the final result; in comparison,

FastBTS [77] uses the crucial interval-based sampling algorithm to

calculate the bandwidth interval with the highest concentration, i.e.,

the product of sample density and quantity.

All the above efforts can mitigate the impact of network noises in

practice. However, they cannot reduce the long duration caused by

TCP slow start, especially under the network environments with a

high bandwidth-delay product. For example, the slow start time may

increase to ∼6 seconds for 10 Gbps networks with 100 ms RTT.

Bandwidth Probing with Statistical Guidance. Essentially, the

long duration of TCP slow start stems from its gradual, cautious

probing of a user’s access bandwidth. To address this, our key finding

is that for a given access technology, its access bandwidth (𝑿) in

fact follows a multi-modal Gaussian distribution

P(𝑿 ) =

𝑘∑︁

𝑖=1

𝑤𝑖N(𝑿 |𝝁 𝒊,𝝈𝒊), (1)

which means that the occurrence probability of a certain bandwidth

value is a weighted (𝑤𝑖 ) combination of several independent Gauss-

ian distributions (N(𝑿 |𝝁 𝒊,𝝈𝒊)). For example, in Figure 18 and Fig-

ure 19, 4G and 5G networks’ bandwidth probability distributions can

both be described as multi-modal Gaussian distributions. Here one

“mode” (i.e., 𝝁 𝒊 of an individual Gaussian distribution) manifests as

a peak in the bandwidth probability distribution. Similar situations

are also identified for each WiFi technical standards, e.g., WiFi 5 as

shown in Figure 16.

It is worth noting that such statistical bandwidth distribution

patterns of different mobile access technologies are not coincidences.

As a matter of fact, they are produced by the joint impact of different

access technologies’ bandwidth limits, infrastructure status, and

ISPs’ data plans, e.g., due to ISPs’ fixed broadband plans in the
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case of WiFi 5 (refer to §3.4). More importantly, we observe that

these factors and the resulting distributions are quite stable on a

moderate time scale (e.g., within a month). Therefore, by updating

the statistical model periodically, we can leverage it to guide the

selection of the initial data rate for bandwidth probing, thus avoiding

the lengthy ramp-up in TCP slow start.

Upon a bandwidth test request with respect to a certain mobile

access technology, we set the initial probing data rate as the most

probable bandwidth (i.e., the most significant mode) of the access

technology, based on its multi-modal probability distribution of ac-

cess bandwidths. Then, we select a reasonable number of nearby test

servers (with the lowest PING latencies among all the test servers) as

the actual test servers, whose total uplink bandwidth slightly exceeds

the initial probing data rate (since the uplink bandwidth of a test

server is typically an integral multiple of 100 Mbps).

During the actual probing process, we acquire a bandwidth sample

every 50 milliseconds (as the original BTS-APP does), and determine

whether the client’s access bandwidth is fully saturated by examining

whether the latest bandwidth sample falls below the current probing

data rate. If not (saturated), we further tune the probing data rate

to one of the larger “modal” bandwidth values (more servers will

be added if necessary)—similarly, we use the most probable one

among these larger “modal” bandwidth values as the next probing

data rate. Otherwise, we keep the current probing data rate. Finally,

if the latest ten bandwidth samples converge, we stop the test and

calculate the mean of the ten samples as the final test result. Here

we regard the samples as convergent if the difference ratio between

their maximum and minimum values is ≤3%, following the design

of FAST [21] (also a state-of-the-art BTS).

To instantiate the above design under large-scale scenarios, we al-

ter the transmission protocol from TCP to UDP, which is practically

feasible with the support of BTS-APP. Thereby, we can implement

the customized bandwidth probing mechanism from scratch at the ap-

plication layer without tampering the kernel network stack. Further,

while our more aggressive bandwidth probing mechanism may raise

the concern of network fairness, our network flows are in fact very

short-lived (∼1 second as to be shown in §5.3). In addition, wireless

networks have separate mechanisms for ensuring fairness at lower

layers (e.g., proportional-fair scheduling performed by BSes [40]).

Thus, we believe that fairness should not be a concern in our context.

5.2 Cost-Effective Server Deployment

As introduced in §1, due to the rapid increase of mobile access

bandwidth, the BTS infrastructure cost has become a key concern of

BTS-APP’s operation team. To address this, we carefully analyze the

workload traces of BTS-APP’s test servers. We observe that in most

(98%) time, the required bandwidth (i.e., the aggregated bandwidth

of all the users who are running tests at a same time) for bandwidth

testing does not reach even 5% of the total available bandwidth of

BTS-APP’s 352 test servers.

The rationale behind BTS-APP’s excessive server deployment is

to provide low latency for geographically distributed users. However,

some state-of-the-art BTSes (e.g., FastBTS) have demonstrated that

low latency enabled by nearby servers is in fact not necessary for

accurate bandwidth testing [77]. Recall from §5 that our proposed

approach uses UDP to avoid the slow start phase, and thus is not

sensitive to latency. This implies severe resource over-provisioning

in BTS-APP’s current Speedtest-like architecture. Therefore, we

can instead strategically deploy a much smaller number of geo-

distributed, budget servers to properly accommodate the expected

bandwidth testing workload with margins. The workload can be

practically estimated by jointly considering recent user scale and

their access bandwidths reflected in our data.

To realize this goal, another challenge is the selection from het-

erogeneous server purchase plans, involving a variety of (egress)

bandwidth configurations, numbers of available servers, and the sale

prices across different server providers, particularly the virtual ma-

chine (VM) server providers such as Amazon EC2, Aliyun ECS, and

OneProvider (the infrastructure provider of Speedtest). For example,

on OneProvider (as of Jan. 2022) we can find 336 server configura-

tions for purchase, with bandwidth ranging from 100 Mbps to 10

Gbps and price lying between $10.41/month and $2609/month; also,

these configurations have different numbers of servers available.

To make a cost-effective server purchase plan, for each server

configuration 𝑖 (0 ≤ 𝑖 ≤ 𝑘 − 1) with 𝑎𝑖 available servers, we first

need to decide its number of servers to be purchased (denoted as 𝑛𝑖 )

under the constraint that 0 ≤ 𝑛𝑖 ≤ 𝑎𝑖 . Also, the total bandwidth of all

the purchased servers should slightly (typically 5%–10% according

to BTS-APP operation team’s long-term experiences) exceed the

estimated overall bandwidth for serving user requests, so that these

servers are capable of handling the possible bursty workload.

Under the two (linear) constraints, we then set our goal to mini-

mize the total purchase expense while accommodating the estimated

workload. Given that all the variables to be decided (𝑛𝑖 ) should be

integers, the desired purchase plan can be formalized into an integer

linear programming problem [6]. Since the problem is NP-hard, we

choose to follow the common practice of “sweet spot” balancing,

i.e., to find a near-optimal solution with acceptable time complexity

(𝑂 (𝑘2)) using the branch-and-bound algorithm [42].

When the server purchase plan is determined, the placement of

test servers is pivotal to the BTS performance. In terms of Internet

data exchange, China Mainland consists of eight domains, each

containing a core IXP (Internet eXchange Point) located at Beijing,

Shanghai, Guangzhou, Nanjing, Shenyang, Wuhan, Chengdu, and

Xi’an, respectively. Thus, the servers should be evenly placed in

these domains and as close to the core IXPs as possible.

5.3 Implementation and Evaluation

We have implemented the above-described bandwidth probing and

server deployment schemes in a new system called Swiftest. We real-

ize both the client-side and server-side components as Android/Linux

user-space modules (using ∼1,200 lines of code) that can be dynam-

ically loaded and run by the original BTS-APP system.

To understand the real-world effectiveness of Swiftest, once again

we collaborate with BTS-APP’s operation team to conduct back-to-

back comparative experiments. Specifically, we upgrade BTS-APP

to include Swiftest’s client module and invite its users to participate

in the new study. From Dec. 20th, 2021 to Jan. 20th, 2022 (lasting

a whole month), a total of 0.2M users opted in, conducting 0.31M

back-to-back bandwidth tests (i.e., ∼10K tests every day).
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Figure 20: Test time of Swiftest for dif-

ferent access technologies.

4G 5G WiFi
0

100

200

300

D
at

a 
U

sa
ge

 (
M

B
)

Access Technology

 BTS-APP

 Swiftest

8.2x

9.0x

8.4x

Figure 21: Average data usage per test

by BTS-APP and Swiftest.
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Figure 22: Test result deviation between

BTS-APP and Swiftest.

At the client side, if a user chooses to opt in, she will conduct

sequential (back-to-back) bandwidth tests using Swiftest and BTS-

APP (referred to as a test pair), with one-second cooldown in be-

tween to avoid mutual interference. The execution order of Swiftest

and BTS-APP is randomized in each test for a fair comparison. As

compared to only using the original BTS-APP, the repeated testing

process incurs little extra data usage (∼30 MB on average for even a

5G test) on the opt-in users, given the fast and lightweight testing

logic of Swiftest as to be demonstrated shortly.

At the server side, to support ∼10K tests per day (∼5% of BTS-

APP’s daily workload, i.e., 0.2M tests), BTS-APP’s operation team

also allocate 5% of their overall server network capacity (measured

by the total bandwidth of their server pool), involving 50 1-Gbps

servers (providing a total of 50 Gbps network capacity). In practice,

we find such a capacity to be mostly sufficient, only incurring a bit

(∼10𝑚𝑠) increase of PING latency. As to Swiftest’s infrastructure,

we only purchase 20 100-Mbps servers from OneProvider (providing

a total of 2 Gbps network capacity), as dictated by our ILP-based

server selection strategy described in §5.2.

Test Time and Data Usage. Figures 20 and 21 depict the bandwidth

test time of Swiftest and the corresponding data usage in 4G, 5G

and WiFi networks. Owing to our data-driven bandwidth probing

mechanism that accelerates the convergence of tests, the average

(median) test time (excluding the initial PING latency) for 4G, 5G,

and WiFi is 1.05 sec (0.79 sec), 0.95 sec (0.76 sec) and 0.99 sec (0.75

sec), respectively, greatly outperforming BTS-APP’s 10-second fixed

time and Speedtest’s 15-second fixed time. In fact, even the longest

test time (4.49 seconds) is well below 10 seconds.

Note that the client of Swiftest currently PINGs all the 10 test

servers during the server selection phase, producing an average of

additional 0.2 second test time. Even when this PING latency is taken

into account, Swiftest requires merely 1.19 seconds on average to

accomplish a bandwidth test, and the majority (55%) of tests are

finished within one second.

Accompanying the considerable reduction of test time, the data

usage is reduced substantially by 8.2×–9× for 4G, 5G, and WiFi.

Most notably, even for 5G tests, the average data usage is only 32

MB, while BTS-APP consumes 289 MB.

Test Accuracy. BTS-APP adopts a Speedtest-like architecture,

whose robustness and accuracy have been extensively evaluated and

confirmed in the real world. Thus, we take BTS-APP’s test results

as the approximate ground truth, and calculate the difference be-

tween the results of Swiftest and BTS-APP, which are generated

back-to-back, to estimate Swiftest’s accuracy. In detail, the differ-

ence is computed as
|𝑅𝐵𝑇𝑆−𝐴𝑃𝑃 −𝑅𝑆𝑤𝑖𝑓 𝑡𝑒𝑠𝑡 |

𝑚𝑎𝑥 {𝑅𝐵𝑇𝑆−𝐴𝑃𝑃 ,𝑅𝑆𝑤𝑖𝑓 𝑡𝑒𝑠𝑡 }
, where 𝑅𝐵𝑇𝑆−𝐴𝑃𝑃 and

𝑅𝑆𝑤𝑖 𝑓 𝑡𝑒𝑠𝑡 denote the results generated by BTS-APP and Swiftest,

respectively, in each test pair. Figure 22 shows the distribution of

their results’ deviations. We can see that both the average and median

deviations are quite small: 5.1% and 3.0%, respectively.

On the other hand, we do notice that in a small (16%) portion

of tests, the deviation can exceed 10%. Carefully examining the

bandwidth samples collected during such tests, we find that the some

user devices should be experiencing severe network fluctuations

then, where the bandwidth samples collected by BTS-APP suddenly

dropped oftentimes. Therefore, these large deviations are in fact

the reflections of high network dynamics during the back-to-back

tests. In a minor portion (0.7%) of tests, the deviation can exceed

30%. This is most probably due to the traffic shaping exerted by

certain BSes or WiFi APs, because the network dynamics exhibit

clear patterns. In fact, this issue is pervasive in all BTSes and is more

noticeable for shorter test time.

Comparisons with Other State-of-the-Art BTSes. Apart from

extensively evaluating the performance of Swiftest in the wild, we

also conduct benchmark experiments to compare its performance

with that of two representative state-of-the-art BTSes: FAST and

FastBTS, which have both claimed to provide fast bandwidth tests

to Internet users. For the proprietary FAST BTS, we reimplement

its key testing logic, which has been thoroughly reverse-engineered

by prior work [77]. For FastBTS, we use its latest open-source

version as of Jan. 5th, 2022. We then deploy the server side of

FAST and FastBTS on the same server pool of Swiftest (detailed

in §5.3) for a fair comparison. Regarding the client side, we evenly

deploy ten Android 11 phones in five mega cities of China (including

Beijing, Shanghai, Guangzhou, Shenzhen, and Chengdu) with the

same hardware configurations (Qualcomm Snapdragon 765G CPU

with 5G capability, 6 GB memory, and 128 GB storage).

We denote one test group as the back-to-back bandwidth tests

conducted on the same smartphone using the three BTSes (Swiftest,

FAST, and FastBTS) and BTS-APP in a random order, where BTS-

APP’s test results are used as the approximate ground truth for

evaluating the test accuracy of the other three BTSes. In total, we

perform 13,500 groups of tests, i.e., 10 phones × 15 days (from Jan.
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Figure 24: Average data usage per test

of the three evaluated BTSes.
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three evaluated BTSes.
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Figure 26: Average bandwidth utilization of Swiftest’s servers

during the one-month evaluation.

5th to Jan. 20th in 2022) × 3 different times in each day (0:00, 8:00,

16:00) × 3 different access types (4G, 5G and WiFi) × 10 repetitions.

We compare the test time, data usage, and test accuracy of the

three BTSes in 4G, 5G, and WiFi networks. As illustrated in Fig-

ures 23–25, Swiftest outperforms FAST and FastBTS by yielding

2.9×–16.5× shorter test time, 3×–16.7× smaller data usage, and

8%–12% higher accuracy. In particular, we observe that although

FAST adopts a bandwidth estimation algorithm similar to Swiftest

(§5.1), its TCP-based bandwidth probing is easily affected by noises

introduced by TCP slow start and congestion control, leading to

its long test duration (13.5 seconds on average) and high data us-

age (295 MB on average), especially under high-speed networks.

Meanwhile, FastBTS has relatively short test time and small data

usage as compared to FAST, but it yields the worst accuracy (0.79

on average) in practice. This is because its crucial interval-based

bandwidth estimation algorithm (refer to §5.1) tends to prematurely

generate the test result before the user’s bandwidth is fully saturated,

thus underestimating the access bandwidth.

Infrastructure Cost. As described before, BTS-APP’s operation

team allocate a proportional amount of server capacity, i.e., 50 1-

Gbps servers, to support the evaluation workload (∼10K bandwidth

tests per day). In comparison, based on our cost-effective server

planning, we purchase 20 100-Mbps VM servers distributed around

China to support the same workload with Swiftest. It turns out

that our purchased fewer budget servers can well accommodate the

workload with considerable margins. In detail, Figure 26 shows that

in 99% cases, the average bandwidth utilization of Swiftest’s servers

is ≤45%. In total, the backend infrastructure expense is reduced by

15× by Swiftest as compared to that of BTS-APP.

6 RELATED WORK

This section reviews prior measurement studies on mobile bandwidth

and existing approaches to realizing bandwidth testing services. We

also compare them to our study and the resulting new BTS.

Mobile Bandwidth Measurements. In the past 15 years, the re-

search community have conducted a plethora of studies to understand

realistic cellular and WiFi bandwidths through either field measure-

ments or crowdsourcing. For example, Huang et al. perform crowd-

sourced measurements of 3G [37] and 4G LTE [35, 36] bandwidths

in various application scenarios. Sommers et al. compare the cellu-

lar and WiFi bandwidth from different aspects in metro areas [66].

More recently, as 5G makes its debut, Narayanan et al. measure 5G

bandwidth through controlled experiments and drive tests [54, 55];

a similar characterization is performed by Xu et al. [74].

Some other studies focus on mobile bandwidth in particular con-

texts such as multipath [13], high-speed train [44, 72], mobile virtual

operators [45, 73], cellular upload [29], and crowded events [63],

to name a few. Complementing academic publications, the indus-

try have also published whitepapers and reports on mobile band-

widths [23–25]. In a broader scope, there is a number of work on

estimating mobile bandwidth [36, 62, 77], incorporating bandwidth-

awareness into application design [15, 46, 52, 67, 79], and saving

mobile bandwidth on metered links [10, 31, 39, 47].

Compared to the above, our measurement study features a much

larger scale, a special cross-technology (covering WiFi 4/5/6 and

4G/5G) perspective, and a variety of new insights.

Bandwidth Testing Approaches. Almost all commercial BTSes,

such as SpeedTest [27], XFinity [28], and SpeedOf [22], take a “prob-

ing by flooding” approach to fully saturate the access bandwidth.

In spite of its accuracy, this approach may consume considerable

(metered) bandwidth and device energy when applied to mobile net-

works. In the literature, there are also much less invasive approaches,

such as IGI [34], TOPP [51], and pathChirp [59], that use strate-

gically crafted packets to probe the bandwidth. However, they are

known to suffer from high measurement errors in particular over

high-speed wireless links [33, 77].
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Recently, some BTSes such as FAST [21] and FastBTS [77]

take a more balanced strategy that reduces the probing traffic while

maintaining high accuracy. Despite these efforts, we find that when

serving real-world cellular and WiFi customers, they still incur vari-

ous limitations such as premature convergence during slow start and

bandwidth re-probing for progressively added servers. Our proposed

Swiftest BTS addresses these limitations by leveraging the statis-

tical wisdom from big data, and demonstrates its effectiveness by

real-world deployment serving a great number of users.

7 DISCUSSION

Global Applicability of Measurement Results. Among our anal-

ysis results of sub-6GHz 5G access, the received signal strength

(RSS)-related ones are also applicable to mmWave 5G. Specifically,

mmWave 5G requires dense deployment of base stations (BSes),

which could also easily cause improper BS placement, antenna

configurations, and cross-region coverage problems. Consequently,

similar to sub-6GHz 5G, mmWave 5G may also yield undesirable

access bandwidth even with excellent RSS. In contrast, our analysis

results regarding frequency bands are not applicable to mmWave 5G,

since it works on higher frequency bands with contiguous spectrum,

rather than fragmented mid-bands.

With respect to spectrum refarming from 4G to 5G, we note that

different ISPs across the globe adopt diverse refarming methods. For

example, Chinese ISPs mainly adopt static methods that divide the

existing spectrum into several pieces for different services [14]. In

comparison, ISPs in the US usually adopt dynamic methods to enable

different services within the same frequency band [5, 71]. In practice,

both methods could incur bandwidth degradation in 4G and 5G

networks [4], thus calling for more effective band defragmentation

and utilization strategies.

Design Choices of Swiftest. We devise Swiftest as a UDP-based

BTS to eliminate the impact of TCP slow start. However, we should

clarify that the adoption of UDP is just one of the feasible design

choices, and similar benefits can also be achieved by not giving

up TCP. For example, we can customize the TCP congestion con-

trol algorithm to realize in part the data-driven bandwidth probing

mechanism (§5.1), while retaining TCP’s fairness properties. How-

ever, this approach involves heavy modifications to the congestion

control of TCP, and requires many efforts in adapting to the other

mechanisms of TCP (e.g., TCP retransmission).

8 CONCLUSION

As 5G and WiFi 6 flourish over the past two years, this paper presents

a timely study on the status quo, evolution, and optimization oppor-

tunities of mobile access bandwidth. Our study is featured by its

cross-layer and cross-technology measurement at scale in the wild,

which is enabled by our collaboration with a major mobile bandwidth

testing app that serves around 0.2M user requests per day. Based on

the fine-grained data we collected from 23.6M bandwidth tests, we

discover critical performance gaps between the advertised mobile

access bandwidth and what is actually delivered in the wild. For the

first time, we reveal the root causes of these gaps by jointly consider-

ing the impact of user devices, ISP infrastructure investment, radio

resource allocation and migration, and recent advances in cellular

technology, with potential solutions to filling these gaps. Further-

more, our study provides insights on building efficient bandwidth

testing services; real-world deployment demonstrates the remarkable

improvement in test time and infrastructure cost.
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9 ARTIFACT APPENDIX

Abstract

Swiftest’s artifacts are publicly available at GitHub. To facilitate a

better understanding of Swiftest, we provide detailed instructions

on how to build, deploy, install and use Swiftest, as well as how

to compare Swiftest with other state-of-the-art bandwidth testing

services. Please refer to our README file at https://github.com/

mobilebandwidth/Artifacts for details.

Scope

The artifacts can be used to reproduce all the major results of

Swiftest.

Contents

The artifacts include the client-side and server-side source code of

Swiftest, binaries of both Swiftest and BTS-APP, and our evaluation

data/figures.

Hosting

Both the code/binary and data are hosted in the main branch of the

Artifacts repository.

• Swiftest Code and Binary.

https://github.com/mobilebandwidth/Artifacts/tree/main/Swiftest.

• BTS-APP Binary.

https://github.com/mobilebandwidth/Artifacts/tree/main/BTS-APP.

• Evaluation Data and Figures.

https://github.com/mobilebandwidth/Artifacts/tree/main/plots.

• DOI for the Artifacts.

10.5281/zenodo.6782121.

REFERENCES
[1] 3GPP. 2008. Evolved Universal Terrestrial Radio Access (E-UTRA); User Equip-

ment (UE) Radio Transmission and Reception (Release 8). The 3rd Generation

Partnership Project (2008).
[2] 3GPP. 2020. 5G; NR; User Equipment (UE) Radio Transmission and Reception;

Part 1: Range 1 Standalone (Release 16). The 3rd Generation Partnership Project

(2020).

126

https://github.com/mobilebandwidth/Artifacts
https://github.com/mobilebandwidth/Artifacts
https://github.com/mobilebandwidth/Artifacts/tree/main/Swiftest
https://github.com/mobilebandwidth/Artifacts/tree/main/BTS-APP
https://github.com/mobilebandwidth/Artifacts/tree/main/plots


[3] Md Maruf Ahamed and Saleh Faruque. 2021. 5G Network Coverage Planning
and Analysis of the Deployment Challenges. Sensors 21, 19 (2021), 6608.

[4] Amr Ashraf. 2021. Dynamic Spectrum Sharing for 4G LTE and 5G NR Deploy-
ments. https://digis2.com/dss/. (2021). (Accessed on May 25, 2022).

[5] AT&T. 2020. Technology Report on Dynamic Spectrum Sharing: From Labs
to Live. https://about.att.com/innovationblog/2020/05/dynamic_spectrum_sharin
g.html. (2020). (Accessed on May 25, 2022).

[6] Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe. 2004. Convex Opti-

mization. Cambridge University Press.
[7] CAITC. 2020. White Paper on Broadband Development in China (in Chinese).

https://pdf.dfcfw.com/pdf/H3_AP202010161421652745_1.pdf?160284701000.
(2020). (Accessed on May 27, 2022).

[8] CAITC. 2021. White Paper on Broadband Develop-
ment in China (in Chinese). https://pdf.dfcfw.com/pdf/
H3_AP202109291519270217_1.pdf?1632921062000.pdf. (2021). (Accessed on
May 27, 2022).

[9] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2017. BBR: Congestion-Based Congestion Control. Commun.

ACM 60, 2 (2017), 58–66.
[10] Li Chen, Justinas Lingys, Kai Chen, and Feng Liu. 2018. Auto: Scaling Deep

Reinforcement Learning for Datacenter-Scale Automatic Traffic Optimization. In
Proc. of ACM SIGCOMM. 191–205.

[11] Ben Cox, Jan G Laufer, Simon R Arridge, Paul C Beard, A Jan G Laufer, and
A Simon R Arridge. 1984. Long Range Dependence: A Review. In Iowa State

University.
[12] Erik Dahlman, Stefan Parkvall, and Johan Skold. 2016. 4G, LTE-advanced Pro

and the Road to 5G. Academic Press.
[13] Shuo Deng, Ravi Netravali, Anirudh Sivaraman, and Hari Balakrishnan. 2014.

WiFi, LTE, or Both? Measuring Multi-Homed Wireless Internet Performance. In
Proc. of ACM IMC. 181–194.

[14] DVBCN. 2021. China Spectrum Division Policies (in Chinese). https://www.yun
xihuixiang.com/2021/0910/90028.html. (2021). (Accessed on May 25, 2022).

[15] Jeongyoon Eo, Zhixiong Niu, Wenxue Cheng, Francis Y Yan, Rui Gao, Jorina
Kardhashi, Scott Inglis, Michael Revow, Byung-Gon Chun, Peng Cheng, and
Yongqiang Xiong. 2022. OpenNetLab: Open Platform for RL-based Congestion
Control for Real-Time Communications. In Proc. of APNet.

[16] Ericsson. 2021. 5G Energy Consumption: What’s the Impact of 5G NR in Real
Networks? https://www.ericsson.com/en/blog/2021/10/5g-energy-consumption
-impact-5g-nr. (2021). (Accessed on May 15, 2022).

[17] Amina Gharsallah, Faouzi Zarai, and Mahmoud Neji. 2018. SDN/NFV-Based Han-
dover Management Approach for Ultradense 5G Mobile Networks. International

Journal of Communication Systems 32, 17 (2018), e3831.
[18] Amitava Ghosh, Rapeepat Ratasuk, Bishwarup Mondal, Nitin Mangalvedhe, and

Tim Thomas. 2010. LTE-Advanced: Next-Generation Wireless Broadband Tech-
nology. IEEE Wireless Communications 17, 3 (2010), 10–22.

[19] CNMO Group. 2022. 5G And 4G Will Coexist for A Long Time (in Chinese).
https://www.sohu.com/a/353383047_115831. (2022). (Accessed on Jan. 20,
2022).

[20] Media Tek Group. 2022. 5G and 4G Are Complementary Technologies in The
Context of Latin America. https://impactotic.co/en/latam-4g-5g-complementary-
chipset-in-latam-mmlc21/. (2022). (Accessed on Jan. 20, 2022).

[21] Netflix Group. 2022. FAST Internet Speed Test. https://fast.com/. (2022). (Ac-
cessed on Jan. 20, 2022).

[22] SpeedOf.Me Group. 2019. SpeedOf.Me: Internet Speed Test for All Your Devices.
https://www.speedof.me/. (2019). (Accessed on Dec. 15, 2021).

[23] SpeedTest Group. 2022. 5G in Europe: EU Targets Require a Rethink. https:
//www.speedtest.net/insights/blog/eu-5g-targets-require-rethink/. (2022). (Ac-
cessed on Jan. 20, 2022).

[24] SpeedTest Group. 2022. Growing and Slowing: The State of 5G Worldwide
in 2021. https://www.speedtest.net/insights/blog/state-of-worldwide-5g-2021/.
(2022). (Accessed on Jan. 20, 2022).

[25] SpeedTest Group. 2022. Speedtest Global Index Market Analyses Are Now
Available for 41 Countries. https://www.speedtest.net/insights/blog/global-index-
market-analyses-q4-2021/. (2022). (Accessed on Jan. 20, 2022).

[26] SpeedTest Group. 2022. SpeedTest Insights. (2022).
[27] SpeedTest Group. 2022. The Global Broadband Speed Test by Ookla. http:

//www.speedtest.net/. (2022). (Accessed on Jan. 20, 2022).
[28] XFinity Group. 2021. Xfinity Speed Test. http://speedtest.xfinity.com/. (2021).

(Accessed on Oct. 27, 2021).
[29] Yihua Guo, Feng Qian, Qi Alfred Chen, Zhuoqing Morley Mao, and Subhabrata

Sen. 2016. Understanding On-device Bufferbloat for Cellular Upload. In Proc. of

ACM IMC. 303–317.
[30] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: A New TCP-Friendly

High-Speed TCP Variant. ACM SIGOPS Operating Systems Review 42, 5 (2008),
64–74.

[31] Bo Han, Feng Qian, Lusheng Ji, and Vijay Gopalakrishnan. 2016. MP-DASH:
Adaptive Video Streaming over Preference-Aware Multipath. In Proc. of ACM

CoNEXT. 129–143.

[32] IT Home. 2018. All You Need to Know About 4G (in Chinese). https://tech.sin
a.cn/mobile/pc/2018-11-23/detail-ihmutuec2853641.d.html. (2018). (Accessed
on May. 20, 2022).

[33] Ningning Hu, Li Li, Zhuoqing Morley Mao, Peter Steenkiste, and Jia Wang. 2004.
Locating Internet Bottlenecks: Algorithms, Measurements, and Implications. ACM

SIGCOMM Computer Communication Review 34, 4 (2004), 41–54.
[34] Ningning Hu and Peter Steenkiste. 2003. Evaluation and Characterization of

Available Bandwidth Probing Techniques. IEEE Journal on Selected Areas in

Communications 21, 6 (2003), 879–894.
[35] Junxian Huang, Feng Qian, Alexandre Gerber, Z Morley Mao, Subhabrata Sen,

and Oliver Spatscheck. 2012. A Close Examination of Performance and Power
Characteristics of 4G LTE Networks. In Proc. of ACM MobiSys. 225–238.

[36] Junxian Huang, Feng Qian, Yihua Guo, Yuanyuan Zhou, Qiang Xu, Z Morley
Mao, Subhabrata Sen, and Oliver Spatscheck. 2013. An In-Depth Study of LTE:
Effect of Network Protocol and Application Behavior on Performance. ACM

SIGCOMM Computer Communication Review 43, 4 (2013), 363–374.
[37] Junxian Huang, Qiang Xu, Birjodh Tiwana, Z Morley Mao, Ming Zhang, and

Paramvir Bahl. 2010. Anatomizing Application Performance Differences on
Smartphones. In Proc. of ACM MobiSys. 165–178.

[38] UUSense Inc. 2021. UUSpeed Bandwidth Testing Services. http://uuspeed.uute
st.cn/. (2021). (Accessed on May 25, 2022).

[39] Jaehong Kim, Youngmok Jung, Hyunho Yeo, Juncheol Ye, and Dongsu Han.
2020. Neural-Enhanced Live Streaming: Improving Live Video Ingest via Online
Learning. In Proc. of ACM SIGCOMM. 107–125.

[40] Harold J Kushner and Philip A Whiting. 2004. Convergence of Proportional-Fair
Sharing Algorithms under General Conditions. IEEE Wireless Communications 3,
4 (2004), 1250–1259.

[41] Youngsun Kwon, Duk Kyu Park, and Hongjai Rhee. 2017. Spectrum Fragmen-
tation: Causes, Measures and Applications. Telecommunications Policy 41, 5-6
(2017), 447–459.

[42] Eugene L Lawler and David E Wood. 1966. Branch-and-Bound Methods: A
Survey. Operations Research 14, 4 (1966), 699–719.

[43] Feng Li, Kwok-Yan Lam, Nan Zhao, Xin Liu, Kanglian Zhao, and Li Wang. 2018.
Spectrum Trading for Satellite Communication Systems with Dynamic Bargaining.
IEEE Transactions on Communications 66, 10 (2018), 4680–4693.

[44] Li Li, Ke Xu, Tong Li, Kai Zheng, Chunyi Peng, Dan Wang, Xiangxiang Wang,
Meng Shen, and Rashid Mijumbi. 2018. A Measurement Study on Multi-Path TCP
with Multiple Cellular Carriers on High Speed Rails. In Proc. of ACM SIGCOMM.
161–175.

[45] Yang Li, Jianwei Zheng, Zhenhua Li, Yunhao Liu, Feng Qian, Sen Bai, Yao
Liu, and Xianlong Xin. 2020. Understanding the Ecosystem and Addressing
the Fundamental Concerns of Commercial MVNO. IEEE/ACM Transactions on

Networking 28, 3 (2020), 1364–1377.
[46] Zhenhua Li, Yafei Dai, Guihai Chen, and Yunhao Liu. 2016. Content Distribution

for Mobile Internet: A Cloud-based Approach. Springer.
[47] Zhenhua Li, Weiwei Wang, Tianyin Xu, Xin Zhong, Xiang-Yang Li, Yunhao Liu,

Christo Wilson, and Ben Y Zhao. 2016. Exploring Cross-Application Cellular
Traffic Optimization with Baidu TrafficGuard. In Proc. of USENIX NSDI. 61–76.

[48] Jiajia Liu, Yuichi Kawamoto, Hiroki Nishiyama, Nei Kato, and Naoto Kadowaki.
2014. Device-to-Device Communications Achieve Efficient Load Balancing in
LTE-Advanced Networks. IEEE Wireless Communications 21, 2 (2014), 57–65.

[49] Wanzhi Ma, Hongzhi Zhao, Ying Liu, Shihai Shao, and Wensheng Pan. 2018. A
Co-Channel Interference Rejection Method for 5G Ultra Dense Heterogeneous
Networks. In Proc. of IEEE ICC Workshops. 1–5.

[50] Sue Marek. 2022. Marek’s Take: The greening of the Gs. https://www.fiercewire
less.com/5g/mareks-take-greening-gs. (2022). (Accessed on May 16, 2022).

[51] Bob Melander, Mats Bjorkman, and Per Gunningberg. 2000. A New End-to-End
Probing and Analysis Method for Estimating Bandwidth Bottlenecks. In Proc. of

IEEE GlobeCom. 415–420.
[52] Zhao Ming, Xiuhua Li, Chuan Sun, Qilin Fan, Xiaofei Wang, and Victor CM

Leung. 2022. Sleeping Cell Detection for Resiliency Enhancements in 5G/B5G
Mobile Edge-Cloud Computing Networks. ACM Transactions on Sensor Networks

(TOSN) 18, 3 (2022), 1–30.
[53] China Mobile. 2021. China Mobile Data Plan for Fixed Broadband (in Chinese).

http://www.10086.cn/kdzq/bj/index_100_100.html. (2021). (Accessed on May
21, 2022).

[54] Arvind Narayanan, Eman Ramadan, Jason Carpenter, Qingxu Liu, Yu Liu, Feng
Qian, and Zhi-Li Zhang. 2020. A First Look at Commercial 5G Performance on
Smartphones. In Proc. of ACM WWW. 894–905.

[55] Arvind Narayanan, Xumiao Zhang, Ruiyang Zhu, Ahmad Hassan, Shuowei Jin,
Xiao Zhu, Xiaoxuan Zhang, Denis Rybkin, Zhengxuan Yang, Zhuoqing Morley
Mao, et al. 2021. A Variegated Look at 5G in the Wild: Performance, Power, and
QoE Implications. In Proc. of ACM SIGCOMM. 610–625.

[56] China Ministry of Industry and Information Technology. 2022. Three Major
ISPs in China Are Authorized to Re-Farm Mid-Band and Low-Band for 5G Use
(in Chinese). https://m.mp.oeeee.com/a/BAAFRD000020201223400806.html.
(2022). (Accessed on Jan. 10, 2022).

127

https://digis2.com/dss/
https://about.att.com/innovationblog/2020/05/dynamic_spectrum_sharing.html
https://about.att.com/innovationblog/2020/05/dynamic_spectrum_sharing.html
https://pdf.dfcfw.com/pdf/H3_AP202010161421652745_1.pdf?160284701000
https://pdf.dfcfw.com/pdf/H3_AP202109291519270217_1.pdf?1632921062000.pdf
https://pdf.dfcfw.com/pdf/H3_AP202109291519270217_1.pdf?1632921062000.pdf
https://www.yunxihuixiang.com/2021/0910/90028.html
https://www.yunxihuixiang.com/2021/0910/90028.html
https://www.ericsson.com/en/blog/2021/10/5g-energy-consumption-impact-5g-nr
https://www.ericsson.com/en/blog/2021/10/5g-energy-consumption-impact-5g-nr
https://www.sohu.com/a/353383047_115831
https://impactotic.co/en/latam-4g-5g-complementary-chipset-in-latam-mmlc21/
https://impactotic.co/en/latam-4g-5g-complementary-chipset-in-latam-mmlc21/
https://fast.com/
https://www.speedof.me/
https://www.speedtest.net/insights/blog/eu-5g-targets-require-rethink/
https://www.speedtest.net/insights/blog/eu-5g-targets-require-rethink/
https://www.speedtest.net/insights/blog/state-of-worldwide-5g-2021/
https://www.speedtest.net/insights/blog/global-index-market-analyses-q4-2021/
https://www.speedtest.net/insights/blog/global-index-market-analyses-q4-2021/
http://www.speedtest.net/
http://www.speedtest.net/
http://speedtest.xfinity.com/
https://tech.sina.cn/mobile/pc/2018-11-23/detail-ihmutuec2853641.d.html
https://tech.sina.cn/mobile/pc/2018-11-23/detail-ihmutuec2853641.d.html
http://uuspeed.uutest.cn/
http://uuspeed.uutest.cn/
https://www.fiercewireless.com/5g/mareks-take-greening-gs
https://www.fiercewireless.com/5g/mareks-take-greening-gs
http://www.10086.cn/kdzq/bj/index_100_100.html
https://m.mp.oeeee.com/a/BAAFRD000020201223400806.html


[57] Constantinos B Papadias, Tharmalingam Ratnarajah, and Dirk TM Slock. 2020.
Spectrum Sharing: The Next Frontier in Wireless Networks. John Wiley & Sons.

[58] Faizan Qamar, MHD Nour Hindia, Kaharudin Dimyati, Kamarul Ariffin Noordin,
and Iraj Sadegh Amiri. 2019. Interference Management Issues for the Future 5G
Network: A Review. Telecommunication Systems 71, 4 (2019), 627–643.

[59] Vinay Joseph Ribeiro, Rudolf H Riedi, Richard G Baraniuk, Jiri Navratil, and Les
Cottrell. 2003. Pathchirp: Efficient Available Bandwidth Estimation for Network
Paths. In In Proc. of PAM Workshop.

[60] Rakibul Islam Rony, Elena Lopez-Aguilera, and Eduard Garcia-Villegas. 2021.
Dynamic Spectrum Allocation Following Machine Learning-Based Traffic Predic-
tions in 5G. IEEE Access 9 (2021), 143458–143472.

[61] Fatima Salahdine, Johnson Opadere, Qiang Liu, Tao Han, Ning Zhang, and Shao-
hua Wu. 2021. A Survey on Sleep Mode Techniques for Ultra-Dense Networks in
5G and Beyond. Computer Networks 201 (2021), 108567.

[62] Natsuhiko Sato, Takashi Oshiba, Kousuke Nogami, Anan Sawabe, and Kozo
Satoda. 2017. Experimental Comparison of Machine Learning-Based Available
Bandwidth Estimation Methods over Operational LTE Networks. In Proc. of IEEE

ISCC. 339–346.
[63] Muhammad Zubair Shafiq, Lusheng Ji, Alex X Liu, Jeffrey Pang, Shobha

Venkataraman, and Jia Wang. 2013. A First Look at Cellular Network Performance
during Crowded Events. In Proc. of ACM SIGMETRICS. 17–28.

[64] Claude Elwood Shannon. 1948. A Mathematical Theory of Communication. The

Bell System Technical Journal 27, 3 (1948), 379–423.
[65] Min Sheng, Chungang Yang, Yan Zhang, and Jiandong Li. 2013. Zone-Based

Load Balancing in LTE Self-Optimizing Networks: A Game-Theoretic Approach.
IEEE Transactions on Vehicular Technology 63, 6 (2013), 2916–2925.

[66] Joel Sommers and Paul Barford. 2012. Cell vs. WiFi: On the Performance of
Metro Area Mobile Connections. In Proc. of ACM IMC. 301–314.

[67] Tiao Tan, Ming Zhao, and Zhiwen Zeng. 2022. Joint Offloading and Resource
Allocation Based on UAV-Assisted Mobile Edge Computing. ACM Transactions

on Sensor Networks (TOSN) 18, 3 (2022), 1–21.
[68] Techopedia. 2020. Definition of Guard Band. https://www.techopedia.com/de

finition/7494/guard-band-telecommunications. (2020). (Accessed on May. 23,
2022).

[69] China Telecom. 2021. China Telecom Data Plan for Fixed Broadband (in Chinese).
https://www.189.cn/hd/ywdj/?intaid=fj-sy-daohang-04-ywdj. (2021). (Accessed
on May 21, 2022).

[70] China Unicom. 2021. China Unicom Data Plan for Fixed Broadband (in
Chinese). https://m.10010.com/queen/new-broadband-web/new-broadband-we
b.html?activeId=8818100954349604. (2021). (Accessed on May 21, 2022).

[71] Verizon. 2020. Verizon Completes Successful Dynamic Spectrum Sharing Tech-
nology Trials in Advance of 5G Nationwide. https://www.verizon.com/about/ne
ws/verizon-dynamic-spectrum-sharing-technology. (2020). (Accessed on May
25, 2022).

[72] Jing Wang, Yufan Zheng, Yunzhe Ni, Chenren Xu, Feng Qian, Wangyang Li,
Wantong Jiang, Yihua Cheng, Zhuo Cheng, Yuanjie Li, Xiufeng Xie, Yi Sun,
and Zhongfeng Wang. 2019. An Active-Passive Measurement Study of TCP
Performance over LTE on High-Speed Rails. In Proc. of ACM MobiCom. 1–16.

[73] Ao Xiao, Yunhao Liu, Yang Li, Feng Qian, Zhenhua Li, Sen Bai, Yao Liu, Tianyin
Xu, and Xianlong Xin. 2019. An In-Depth Study of Commercial MVNO: Mea-
surement and Optimization. In Proc. of ACM MobiSys. 457–468.

[74] Dongzhu Xu, Anfu Zhou, Xinyu Zhang, Guixian Wang, Xi Liu, Congkai An,
Yiming Shi, Liang Liu, and Huadong Ma. 2020. Understanding Operational 5G: A
First Measurement Study on Its Coverage, Performance and Energy Consumption.
In Proc. of ACM SIGCOMM. 479–494.

[75] Sheng Xu. 2018. Co-Channel Interference Cancellation for 5G Cellular Networks
Deploying Radio-over-Fiber and Massive MIMO Beamforming. In Broadband

Communications Networks-Recent Advances and Lessons from Practice. Inte-
chOpen.

[76] Xiaolong Xu, Xihua Liu, Zhanyang Xu, Chuanjian Wang, Shaohua Wan, and
Xiaoxian Yang. 2020. Joint Optimization of Resource Utilization and Load
Balance with Privacy Preservation for Edge Services in 5G Networks. Mobile

Networks and Applications 25, 2 (2020), 713–724.
[77] Xinlei Yang, Xianlong Wang, Zhenhua Li, Yunhao Liu, Feng Qian, Liangyi Gong,

Rui Miao, and Tianyin Xu. 2021. Fast and Light Bandwidth Testing for Internet
Users. In Proc. of USENIX NSDI. 1011–1026.

[78] Guangxiang Yuan, Xiang Zhang, Wenbo Wang, and Yang Yang. 2010. Carrier
Aggregation for LTE-Advanced Mobile Communication Systems. IEEE Commu-

nications Magazine 48, 2 (2010), 88–93.
[79] Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo

Zhang, Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, Qing An, Hai Hong,
Hongqiang Harry Liu, and Ming Zhang. 2021. XLINK: QoE-Driven Multi-Path
QUIC Transport in Large-Scale Video Services. In Proc. of ACM SIGCOMM.
418–432.

128

https://www.techopedia.com/definition/7494/guard-band-telecommunications
https://www.techopedia.com/definition/7494/guard-band-telecommunications
https://www.189.cn/hd/ywdj/?intaid=fj-sy-daohang-04-ywdj
https://m.10010.com/queen/new-broadband-web/new-broadband-web.html?activeId=8818100954349604
https://m.10010.com/queen/new-broadband-web/new-broadband-web.html?activeId=8818100954349604
https://www.verizon.com/about/news/verizon-dynamic-spectrum-sharing-technology
https://www.verizon.com/about/news/verizon-dynamic-spectrum-sharing-technology

	Abstract
	1 Introduction
	2 Study Methodology
	3 Measurement Findings
	3.1 General Statistics
	3.2 4G (LTE) Access Bandwidth
	3.3 5G Access Bandwidth
	3.4 WiFi Access Bandwidth

	4 Implications
	5 Fast and Light Bandwidth Testing Service at Scale
	5.1 Data-Driven Bandwidth Probing
	5.2 Cost-Effective Server Deployment
	5.3 Implementation and Evaluation

	6 Related Work
	7 Discussion
	8 Conclusion
	9 Artifact Appendix
	References

