MP-H2: A Client-only Multipath Solution for HTTP/2

Ashkan Nikravesh*  Yihua Guo'

*University of Michigan — Ann Arbor

ABSTRACT

MP-H2 is a client-only, HTTP-based multipath solution. It
enables an HTTP client to fetch content (an HTTP object)
over multiple network paths such as WiFi and cellular on
smartphones. Compared to MPTCP, MP-H2 offers several
key advantages including server transparency, middlebox
compatibility, and friendliness to CDN, anycast, and load
balancing. MP-H2 strategically splits the file into byte range
requests sent over multipath, and dynamically balances the
workload across all paths. Furthermore, MP-H2 leverages
new features in HTTP/2 including stream multiplexing, flow
control, and application-layer PING to boost the performance.
MP-H2 also supports multi-homing where each path contacts
a different CDN server for enhanced performance. Evalua-
tions show that MP-H2 offers only slightly degraded perfor-
mance (6% on average) while being much easier to deploy
compared to MPTCP. Compared to other state-of-the-art
HTTP multipath solutions, MP-H2 reduces the file download
time by up to 47%, and increases the DASH video streaming
bitrate by up to 44%.
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1 INTRODUCTION

Multipath transport enables mobile applications to utilize
multiple network paths (interfaces) simultaneously to trans-
fer data, leading to significant improvement of performance
in terms of throughput, latency, or reliability [21, 24, 29, 31,
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33, 39, 44]. Multipath TCP (MPTCP [47]) is the state-of-the-
art solution of multipath transport. It is attractive in several
aspects such as application transparency, mobile-friendliness,
and good performance. However, there are several major hur-
dles that considerably slow down the deployment of MPTCP.
First, MPTCP requires changes on both the client and the
server side at the OS kernel level. Second, many middleboxes
are not compatible with MPTCP in that they strip MPTCP
options from TCP packets [44]. Third, MPTCP is not friendly
to many other critical protocols and infrastructures such as
Content Distribution Networks (CDN), anycast, and flow-
level load balancing. For example, today’s DNS-based CDN
server selection is not aware of MPTCP; as a result, the se-
lected CDN server is only a good choice for the primary sub-
flow and may incur poor performance for other (secondary)
subflows. All above issues among possibly other limitations
made MPTCP’s deployment extremely slow (§2.1).

This paper presents the design and implementation of
MP-H2, a client-only multipath solution for HTTP. MP-H2
enables an HTTP client to fetch content (an HTTP object)
over multiple network paths such as WiFi and cellular. Our
primary target workload is to fetch a single object with a
medium-to-large size such as a Dropbox file, a video chunk,
an MP3 song, and an image. MP-H2 strategically splits the
object over multipath to minimize the transfer time. We note
that there is another type of workload: fetching many small
objects when loading a web page. For this workload, a rec-
ommended approach for improving the network efficiency
over both single [30, 50] and multipath [32] is to merge the
small objects into bundles before transmitting them. In this
context, the concept of MP-H2 can still be applied to trans-
ferring a bundle, but the detailed realization is beyond the
scope of this paper.

Compared to MPTCP, MP-H2 provides similar perfor-
mance while offering several key advantages, thus signif-
icantly lowering the bar for its deployment. As a client-side
HTTP library extension, MP-H2 brings no change to the web
server and minimum user-level changes to the client; MP-H2
does not change the transport layer (e.g., not using any TCP
option), making it fully compatible to today’s middleboxes;
furthermore, MP-H2 is friendly to CDN, anycast, and load
balancing, because subflows in MP-H2 are fully decoupled as
regular transport channels. In particular, due to its fully de-
coupled subflows, MP-H2 can support multi-homing where
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its subflows contact different CDN servers, each selected by
the Local DNS server (LDNS) on the corresponding path.

Among a wide range of application protocols, we pick
HTTP on which MP-H2 is built, due to the dominance of
HTTP(S) on today’s Internet. The underlying idea of MP-
H2 is straightforward: the client sends multiple byte-range
requests to fetch different chunks of the file over multiple
paths, and reassembles the received chunks before deliver-
ing the file to the web client. HTTP byte range requests
have been a standard HT TP feature since the 1990s, and are
widely supported for fetching large objects (§3.1). The key
technical contribution we made is a client-side scheduler
that determines when to fetch which chunk (in terms of their
byte ranges) over which path, so that the overall download
time can be minimized. Designing such a scheduler is chal-
lenging mainly due to two reasons: (1) the scheduler resides
on the client side, slowing down MP-H2’s reaction to chang-
ing network conditions; (2) sending HTTP requests incurs
additional latency that also lengthens the download time.

To address the above challenges, MP-H2 strategically per-
forms the chunk (byte range) split and schedules their HTTP
requests. Chunk split is performed in an online manner based
on network condition estimation over all paths. Ideally this
leads to all path completing their chunks simultaneously —
a necessary condition for optimal download time. In cases
where one path completes its assigned chunks earlier than
other paths due to imperfect network condition estimation,
some of the slower paths’ chunks will be dynamically of-
floaded to the fast path to balance the workload among all
paths. Also very importantly, we find that HTTP/2, the latest
HTTP standard [19] (also QUIC [14]), provides a set of new
features including stream multiplexing, flow control, and
application-layer PING that can be leveraged by MP-H2 to
significantly improve the performance. We leverage these
new HTTP/2 features to realize two core components in MP-
H2: pipelining HTTP requests and promptly modifying the
byte range of an on-going HTTP transaction, both helping
improve the network bandwidth utilization for MP-H2.

We implemented MP-H2 on commodity Android/Linux
client devices in ~2,000 LoC. We have successfully applied
MP-H2 to fetch contents from real content providers such as
Dropbox and commercial video platforms by changing only 5
to 15 lines of client-side application code for invoking the MP-
H2 library. We conduct extensive evaluations of MP-H2 over
real WiFi and cellular networks by comparing it with MPTCP,
mHTTP [37], and MSPlayer [22], with the latter two being
state-of-the-art HTTP-based multipath schedulers. Our key
evaluation results include the following.

e For downloading a medium-sized HT TP object, under sta-
ble network conditions, MP-H2 is 3% to 26% faster than
mHTTP [37]. Meanwhile, MP-H2 provides comparable per-
formance to MPTCP (only 0.1% to 11% slower than MPTCP

for 1IMB+ files). Under variable network conditions, MP-H2
brings a median download time reduction of up to 26% com-
pared to mHTTP and its performance is only 6% slower than
MPTCP on average. Under high bandwidth, MP-H2 outper-
forms mHTTP by 42% to 47% while being only 0.2% to 7%
slower than MPTCP. Note that MP-H2 is slightly slower than
MPTCP because of MPTCP’s server-side scheduling and pre-
cise byte-level control at TCP layer — between MP-H2 and
MPTCP there is an inherent tradeoff between performance
and intrusiveness. We believe MP-H2 strikes a good balance
by providing an easy-to-deploy alternative to MPTCP.
o We apply MP-H2 to DASH video streaming and compare it
with MPTCP and MSPlayer, an HTTP-based multipath sched-
uler designed specifically for video streaming. Under stable
(highly variable) network conditions, MP-H2 can provide
up to 44% (25%) higher average video bitrate than MSPlayer,
and MP-H2’s average bitrate is only 0.3% to 0.9% (2% to 8%)
lower than that of MPTCP.
o Under multi-homing, MP-H2 can reduce the file download
time by 4% to 19% compared to single-server scenarios.
Overall, we demonstrate that it is entirely feasible to de-
velop a client-only, user-space only, and high-performance
multipath solution over HTTP/2 by strategically leverag-
ing its new features. Our solution is readily deployable as a
regular browser or HTTP library upgrade.

2 MOTIVATION
We begin by presenting arguments that motivate MP-H2.

2.1 MPTCP Adoption

MPTCP can effectively improve the networking performance
on mobile devices and data center networks [21, 31, 44, 47].
However, after five years since MPTCP was standard-
ized by IETF, its adoption has been very slow. In 2015,
Mehani et al. [42] scanned the Alexa top 1M websites and
reported that less than 0.1% of the hosts on the Alexa list
support MPTCP. Recently (in 2018), we repeated the same
measurement on Alexa top 500 websites and observed that
this number has not changed much since 2015. Only one out
of 500 websites (0.2%) supports MPTCP.

Additionally, today’s middleboxes are not friendly to
MPTCP. As reported by [44], major U.S. cellular carriers
strip MPTCP options from the web traffic. Thus, establishing
MPTCP subflows on the cellular interface to the default
HTTP/HTTPS ports are not possible. We repeated the same
experiments in 2018, and observed that nothing has changed.

Furthermore, MPTCP requires modifications in the kernel
stack of both the client and server side. It lacks a flexible
interface for apps to enforce their policies [44], as all its logic
resides in the kernel space. All these practical limitations
may explain why the MPTCP adoption has been slow and
motivate us to design MP-H2.
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Figure 1: Impact of server selection on downloading Netflix video chunks.

2.2 CDN Server Selection

We investigate the performance of Content Delivery Net-
work (CDN) server selection in the context of multipath.
To accelerate the delivery of web contents (e.g., a web page
or a video chunk) with global reach to the users, CDN repli-
cates the content across servers at multiple geographically
distributed locations. Then a user’s request will be directed
to a server which is usually close to the user, in order to
deliver the best user experience. Most CDNs rely on DNS to
select the best server and to balance the load on their servers.
DNS-based server selection can still work in multipath, but
it may not be optimal. When fetching a URL using MPTCP,
the DNS request to resolve the domain is only sent from the
interface of the primary path (as opposed to secondary paths).
The CDN’s authoritative DNS server is thus not aware of the
existence of other paths. As a result, the selected CDN server
may not be a good choice with respect to the non-primary
paths, leading to potentially suboptimal performance.

2.2.1 Case Study: Netflix. Modern CDNs deploy their
servers in strategic locations. For instance, Netflix, which
accounts for more than 37% of all downstream Internet
traffic in North America [15], has its own CDN (Open Con-
nect [11]). It partners with mainstream U.S. ISPs and deploys
its server infrastructures inside the ISPs’ access networks,
or peers directly with ISPs at one of their peering exchange
points. When these content servers are located inside an ISP,
the multipath performance might become suboptimal: the
traffic of other subflows will be “detoured” into the primary
interface’s access network, making the latency of other
subflows increase. We will shortly explain this in detail.
Figure 2 shows a real example (as measured by us) of Net-
flix deployment for a regional broadband ISP and a cellular
carrier (AT&T) in the US. A smartphone on our campus
is connected to the campus network through WiFi and to
AT&T network through cellular. To find where these content
servers are located, we use the information included in the
reverse domain names of the IP address that video chunks
are fetched from [20]. As shown, over WiFi, users’ traffic
is directed to a content server inside the regional ISP (i.e.,

Figure 2: Netflix server selection in MPTCP.

IPwir;) and over cellular, the traffic is directed to a content
server in an internet exchange point (i.e., IPcgrr). The RTT of
our client to IPy;f; is measured to be around 4ms over WiFi
and around 40ms over cellular. Similarly, the RTT to IPcgrp
is around 25ms over WiFi and around 40ms over cellular.

Next, we use the above setup to study the impact of CDN
server selection strategy on the network performance over
multipath. We consider two approaches: (1) using one server
for all paths, and (2) MP-H2’s multi-homing approach where
the subflows contact different CDN servers.

A Single CDN Server for All Paths. We use the follow-
ing example to facilitate our discussion. Consider a video
streaming session. At the beginning, only cellular (single
path) is available so the DNS lookup returns IPcgyy, which
is then cached by the browser. In the middle of the video
playback, WiFi becomes available due to, for example, the
user’s mobility, allowing the browser to use MPTCP. Note
that the cellular is always available so there is no handover.
If the browser continues using the cached IP address IPcgyy,
the multipath performance in terms of the RTT is suboptimal.
In the above example, contacting IPcgyy, leads to 5.25x RTT
inflation over WiFi, compared to using IPyig; (25 vs. 4ms).

To understand how much this extra latency affects the
download time of video chunks, we fetch a 1.6MB data chunk
from IPcgry, and IPwir. Figure 1 compares the (single path)
download time of fetching the file from these two servers
over WiFi under different bandwidth values (capped using
Linux tc). As shown in Figure 1(a), the extra 21ms latency
from the client to IPcgrp increases the download time by 10%
to 18%. Figure 1(b) shows the time increase for fetching a
small fraction of the 1.6MB file. The download time inflation
can reach up to 57% for the first 200KB of data.

When multiple paths are available, one may argue for the
following approach: performing DNS lookups over all paths
and pick the best server IP that yields an overall highest
“utility” to serve all paths. However this approach may still
under-utilize the overall system capacity, because a single
CDN server may not provide optimal performance for all
paths.



Multi-homing. We instead advocate a multi-homing mul-
tipath approach: on each path, the client performs a separate
DNS lookup and fetches the content from the selected CDN
server. In other words, the servers selected over different
paths might be different. In this way, the client can contact
the optimal server over each path, leading to full utiliza-
tion of each path’s capacity (assuming the CDN selection
algorithm works properly). In the aforementioned example,
this approach leads to using IPwir; for WiFi and using either
IPwir; or IPcgrL over cellular.

Since the original Netflix servers do not support MPTCP,
we next conduct emulations to quantify the benefits of the
multi-homing scheme. We set up an Apache web server with
MPTCP support inside our campus network, which is almost
identical to IPw;f; in terms of RTT. To emulate WiFi access-
ing IPcprr, we use the same server and add an extra 21ms
latency to the WiFi traffic using tc, to approximate the RTT
to IPcgry, over WiFi (Figure 2). Over cellular, the latency to
IPwir; and IPcgpy is adjusted similarly if needed. Given the
above setup, we conduct emulations by downloading files
of two sizes (512KB and 1MB) using off-the-shelf MPTCP
under two schemes: the solid curves in Figure 3 emulate the
multi-homing scenario, and the dotted curves correspond to
the suboptimal path selection where the client selects IPcgrr
over IPy;p; for the WiFi subflow. By comparing them, we see
that for the 512KB and 1MB file, the latter scheme increases
the average download time by 31% and 9%, respectively. Note
that with the recent advances in the access network technol-
ogy (e.g., 5G), the performance bottleneck is shifting from the
last mile to the wide area network, making CDN selection
even more important.

2.2.2 Crowd-sourced Measurement Study. To understand
how prevalent the above suboptimal server selection is across
today’s CDNs and ISPs, we conduct an IRB-approved crowd-
sourced measurement study using a custom measurement
app we released on Google Play. To minimize its intrusive-
ness, our measurement is limited to measuring the latency.

In this study, we investigate six popular CDN providers:
Google, LimeLight, Amazon CloudFront, Incapsula, Akamai,
and Fastly. For each CDN provider, we find at least one pop-
ular domain that it hosts, by loading top Alexa pages and
examining the domain names of their embedded objects.
Then, we schedule the following measurement task, which
takes the domain names as input, to run every hour on users’
Android devices. For each domain name, a device first per-
forms DNS lookups of the domain over WiFi and cellular to
obtain the corresponding IP addresses as IPwiri and IPcgry,
respectively. If IPw;p; and IPcgpp are different, the client will
then measure the RTT difference between the paths toward
IPvir; and IPcgrr over WiFi and then over cellular.

We collected the data for more than 5 months since Sep-
tember 2017. In total, 123K measurements are collected from

138 devices, covering 71 carriers across the world. We find
that for 48% of the measurements, the domains are resolved
to different IPs over WiFi and cellular. Across different CDNss,
the percentage of DNS lookups that resolved to different IPs
ranges from 21% to 88% (Incapsula: 21%, LimeLight: 35%,
Fastly: 47%, CloudFront: 77%, Google: 87%, Akamai: 88%).

The latency measurement results are shown in Figure 4.
The first (second) subplot measures the RTT increase over
WiFi (cellular) when the client switches from IPyw;ir; (IPcgLL)
to IPceLL (IPwir) for server selection over the WiFi (cellular)
path. As shown, over WiFi (Figure 4(a)), the median increase
is between 10% to 37% across the CDN providers. The median
increases for cellular (Figure 4(b)) are less than those for WiFi
(6% to 17%), as the RTT over cellular is usually longer. Both
figures also exhibit long tails.

2.3 Anycast and Load Balancing

MPTCP is not compatible with load balancers and anycast
servers. In anycast, a single IP address is assigned to multiple
hosts in different locations and this IP address is announced
through BGP. When using MPTCP, the handshake traffic of
primary and secondary subflows may be routed to different
physical servers that advertise the same IP address. Since the
server that is reached by the secondary subflow is not aware
of the MPTCP connection and is not maintaining the connec-
tion state, the secondary subflow will not be established. In
the case of load balancing, we have a similar situation, where
the subflows with different 5-tuple, i.e., protocol, src/dst ad-
dress, src/dst port, may be assigned to different servers. This
problem is recently addressed by [26], but the solution re-
quires changes in the implementation of anycast and load
balancers, as well as modifications in the OS kernel, making
it difficult to be adopted.

2.4 Server Transparency and Flexible
Transport Protocol Support

Adding multipath capabilities to transport protocols has
shown to be an effective way to improve their performance
and reliability. For instance, besides MPTCP, Multipath QUIC
(MPQUIC) [23], which is a recent extension to the QUIC
protocol [14], allows hosts to exchange data over multiple
interfaces or networks over a single QUIC connection.

A main limitation of these multipath solutions is that
adopting them requires modifying the server and client-side
code. For MPTCP, it requires modifying the kernel on both
sides; for MPQUIC, it also requires modifying the server-side
code. Instead, MP-H2 takes a different approach by realizing
the multipath logic in the application layer (client-side only)
and on top of HTTP. Doing so has two benefits. First, HTTP
is the dominating application protocol of today’s Internet
and it (including HTTP/2 and QUIC) can be realized upon
different transport protocols (e.g., TCP or UDP). Thus, an
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performance (emulation).

HTTP-based multipath solution can automatically work with
any transport layer protocol and even their mixture (e.g., one
subflow over TCP, the other subflow over QUIC). Second,
incorporating a new HTTP library with multipath support
requires only small changes to the client-side application.
It does not incur any change at lower layers (transport, IP,
etc)) on the client side or any change to the server, thus
significantly lowering the deployment bar.

3 DESIGN OF MP-H2
We now describe our design of MP-H2 in detail.

3.1 System Overview

MP-H2 is a client-side, HTTP-based multipath solution for
fetching HTTP objects over multiple heterogeneous paths.
We describe our design for two paths. We name them WiFi
(the primary path) and cellular (the secondary path) just
for good readability; MP-H2 does not impose constraints on
the actual link types. Later we show how our design can be
generalized to more than two paths in §3.3.

The main goal of MP-H2 is to provide a multipath solu-
tion that is easy-to-deploy (requiring minimal changes to
the client and no server-side change). Furthermore, to pro-
vide flexibility in terms of supporting various transport layer
protocols, we design MP-H2 at the HTTP layer. This allows
changing the underlying transport protocols transparently.
HTTP, which accounts for more than 88% of today’s mobile
Internet traffic [35], has two major versions: HTTP/1.1 [27]
and HTTP/2 [19]. As its name suggests, MP-H2 is designed
on top of HTTP/2 due to two reasons. First, HT'TP/2 is get-
ting increasingly popular. Second, HTTP/2 introduces new
features such as multiplexing, flow control, and app-layer
PING that provide perfect building blocks for MP-H2 (§3.4).
High-level idea. To simultaneously utilize WiFi and cel-
lular paths to fetch an HTTP object, we can send separate
HTTP byte-range requests over both paths to fetch different
portions (i.e., chunks) of the file. Then, on the client side,
we reassemble the received chunks before delivering the
whole object to the web client. The key logic of MP-H2 that

crease of IPyr; compared to IPcgyy, over cellular.

fetching 512KB and 1MB files.

we detail in the remainder of this section is the client-side
scheduler design, which dictates when to fetch which chunk
(in terms of their byte ranges) over which path. Contrary to
MPTCP, we assume a stateless, single-path server as our
scheduling logic resides fully on the client side. In MP-H2,
different paths are completely decoupled and independent
from the transport-layer perspective. Therefore, different
chunks can be fetched from different servers. In other words,
MP-H2 naturally supports the “multi-homing” concept de-
scribed in §2.2.1.

To fetch different portions of a file, MP-H2 relies on
HTTP byte range requests, a built-in feature of HT TP (both
HTTP/1.1 and HTTP/2) since the 1990s. All mainstream web
servers support this feature. We also investigate the Alexa
top 50 global sites that provide video contents, and found
that all of them support byte range request for fetching
video data. Also more than half of these sites use HTTP/2 or
SPDY (an early version of HTTP/2).

Requirements and challenges. To minimize the download
time, we have to fully utilize the bandwidth provided by both
paths. This translates to two requirements:

® R1: both paths need to complete their transfers simultane-
ously (as measured from the receiver side). Otherwise we can
derive an even better download schedule by moving some
bytes from the slow path to the fast path.

e R2: over each path, the bandwidth needs to be fully uti-
lized. Chunks need to be consecutively downloaded without
network idle periods between them.

Compared with MPTCP, placing the scheduler on the
client side complicates the design, making achieving the
above two goals challenging. First, it is difficult to achieve
R1, because of the potential fluctuating network condition on
both downlink and uplink, which affects both the data plane
and the control-plane communication between the scheduler
and the sender. In particular, the control-plane communica-
tion, which slows down MP-H2’s reaction to changing net-
work conditions, does not exist in MPTCP. Second, achieving
R2 is trivial in MPTCP but challenging in MP-H2, because
sending HTTP requests incurs idle periods on downlink.



There are other unique challenges that MP-H2 faces. First,
we will describe later in §3.4 that complex cross-layer inter-
actions between the transport layer and HTTP complicate
our design. Second, typically MP-H2 has no prior knowledge
of the object size, which is a critical piece of information that
the scheduler needs to craft byte range requests.

3.2 Suboptimal Alternative Designs

We begin with a simple design: split the file into two equal-
sized chunks, each then being fetched over one path using
an HTTP byte-range request. This clearly does not satisfy
R1 unless both paths have the same bandwidth and latency.

To better account for the heterogeneity among the paths,
another approach would be to split the file into smaller and
fixed-sized chunks (e.g., 200KB each) and fetch the chunks
sequentially on each path [37]. With smaller chunk sizes,
more chunks will be downloaded over the fast path, allowing
us to get closer to R1. However, this also means more HTTP
requests, which incur longer idle periods (at least one RTT
per request), thus leading to R2 not being satisfied.

We implemented the second design. Figure 5 shows how
download time changes with smaller chunk sizes, when
a client downloads a 512KB and a 1MB file over cellular
(10Mbps) and WiFi (5Mbps), using two concurrent persistent
HTTP sessions, one over each path. For both files, the down-
load time initially decreases as we reduce the chunk size from
256KB to 128KB (improving on R1). But with smaller chunk
sizes, the download time increases due to the overhead of
HTTP requests (degrading on R2). Note that the optimal
chunk size differs over different network conditions and file
sizes, making this approach even less attractive.

3.3 The Basic Design of MP-H2

We now detail the design of MP-H2’s client-side scheduler.
We begin with an ideal scenario where both the file size and
network condition of both paths are perfectly known. In this
case, we only need to divide the file into two chunks, each
transferred over one path, of different sizes. The chunk sizes
can be calculated by solving the equation of T; = T}, where T;
is the time taken to download the chunk with size D; on path
i. Since the scheduler has to send an HTTP request before
receiving each chunk, we have T; = RTT; + BD—M",i, where BW;
and RTT; are the bandwidth and RTT of path i, respectively.
Then by letting T; = T; (j is the other path), we calculate the

chunk size D; as:

_ D BW; + BW;BW,(RTT; — RTT))

D; = (1)
BW; + BW,

where D = D; + D; is the file size. Note that since we split the
file into D; and D;, we only need to send one HTTP request

over each path. One can show that this fetching scheme
satisfies both R1 and R2 (proof omitted).
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Figure 6: Two iterations of the byte range re-adjustment. The gray
area shows the downloaded parts of the data chunks.

The above scheme is ideal in that the client needs to know
in advance both the file size and the network conditions of
both paths. Now let us relax these requirements.

Regarding the network condition information, MP-H2 pre-
dicts both paths’ bandwidth and RTT by computing the mov-
ing average of the bandwidth and latency samples collected
passively. One challenge here is the bootstrapping phase: at
the very beginning of the file transfer, MP-H2 has no knowl-
edge of either path’s network condition so it cannot use
Equation 1 to split the file. To address this issue, MP-H2 ini-
tially performs an even split i.e, D; = D; = D/2, allowing
both paths to start accumulating samples of network condi-
tion readings. Due to the heterogeneity of the paths, typically
one path will finish earlier than the other. In this case, the
fast path helps the slow path through downloading part of
the data that was originally assigned to the slow path. Also,
since at this moment we already have samples for network
condition estimation, we can apply Equation 1 to update the
byte ranges. This process is illustrated in Figure 6. As shown,
initially each path is assigned to handle half of the file. Then
assume the cellular path completes its portion earlier than
WiFi does. Accordingly, MP-H2 uses Equation 1 to compute
D¢ and Dyy, the updated bytes-to-fetch for cellular and WiFi,
respectively. Subsequently, on the fast (cellular) path, MP-H2
sends a new byte-range request to download the D¢ bytes
assigned to that path; on the slow (WiFi) path, MP-H2 re-
adjusts its byte range end to the number of bytes that have
already been downloaded plus Dy, in order to avoid the
overlap between the slow and fast paths. If the bandwidth
and RTT predictions are accurate, the above process will
complete in two iterations as illustrated in Figure 6. Other-
wise, due to imperfect network condition estimation, some
path will again complete sooner than the other path. This
leads to another iteration involving re-computing the byte
ranges, re-adjusting the byte range end for the slow path,
and issuing a new request over the fast path. The procedure
may be repeated for multiple iterations until the difference
between the estimated completion time of the two paths is
less than a threshold.

Now we describe how to deal with the missing file size
information. A simple way for the client to learn the file size
is to issue an HTTP HEAD request, which will be replied with
the HTTP response header containing the Content-Length
field. Its drawback is that it incurs one additional RTT. MP-
H2 instead employs a more efficient approach as follows. The
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Figure 7: Performance of the MP-H2 scheduler for downloading a 2MB file. The WiFi and cellular bandwidth are 10Mbps and 5Mbps,
respectively. The Y-axis shows the byte ranges transferred over different paths.

client initially requests for the whole file over the primary
(WiFi) interface using a regular HTTP GET to obtain the
file size as well as to start receiving the data. When the
file size becomes available, MP-H2 issues a request for the
second half of the file over the secondary (cellular) path. For
what happens next, let us consider two cases. First, if WiFi
is slower, then anyway WiFi’s byte range end needs to be
adjusted (recall that the slow path’s byte range end needs to
be adjusted) so we save one RTT compared to using HTTP
HEAD. Second, if cellular is slower, then MP-H2 adjusts
WiFi’s byte range end to the midpoint of the file (where
the cellular path initially starts) to prevent WiFi’s overshoot.
This is done in a “lazy” manner when the WiFi’s progress hits
the midpoint, and only takes place once in the first iteration.

We focus on two paths in the current design, as it is the
most common mobile multipath use case today. Our design
can be applied to more than two paths. For example, over
three paths, the file is split into three chunks for each path
to fetch. Once the file size and estimated network conditions
are available, the scheduler can find the sizes of chunks to
be downloaded over each path by solving the equations of
T; = Tj and T; = Ty, where k is the third path, and deriving
a solution similar to Equation 1.

3.4 More Design Aspects of MP-H2

In §3.3, we left two key building blocks unrealized: issuing
a new request and adjusting the HTTP byte range end. We
describe their design in this section.

3.4.1 lIssuing New Requests over the Fast Path. Recall that in
each iteration, once the download of a chunk is completed on
the fast path, the scheduler needs to send an HTTP request
to fetch a new data chunk offloaded from the slow path.
Sending a new request incurs a downlink idle period time of
one RTT due to the HTTP request, causing inefficiencies for
R2. For example, Figure 7(a) shows downloading a 2MB file
on a smartphone connected to 10Mbps WiFi and 5Mbps LTE.
The three curves in the figure correspond to the one chunk
transferred over cellular (the slow path) and the two chunks
(S1 and S2) transferred over WiFi (the fast path). When WiFi
completes S1 at around 910ms, it sends a request for S2, and

gets the response at 1220ms. As shown, the WiFi path wastes
308ms on waiting for S2’s response. To address this issue, we
take a pipelining approach, whose basic idea is to send the
new request one (application-layer) RTT before the previous
chunk download finishes (on the fast path). By doing so, the
idle period incurred by requesting the next chunk is masked
by the on-going data transfer of the previous chunk. If the
RTT estimation is correct, the client can immediately start
receiving the data on the fast path when the download of
the previous chunk finishes, thus facilitating R2.

In HTTP/1.1, pipelining HTTP transactions has numerous
restrictions and is virtually not used in practice [7, 8] so
the client has to establish multiple TCP connections to sup-
port parallelism, incurring high overhead. Fortunately, the
HTTP/2 protocol suite (including QUIC) provides inherent
protocol support for intra-connection parallelism through
multiplexing streams within the same connection. Therefore,
in MP-H2, to send a new request, the fast path reuses its
connection by creating a new stream associated with it.

Next, let us consider how to predict the application layer
RTT, which, as mentioned above, corresponds to the time
from sending a request to receiving the first byte of its re-
sponse. The challenge here is to accurately sample them
for prediction. We consider three possible approaches. First,
performing direct sampling of the HTTP response delay suf-
fers from a low sampling rate. For example, in Figure 7(a),
there are only two samples over WiFi (26ms and 308ms),
making prediction difficult. Second, an alternative approach
is to use transport-layer or network-layer RTT samples (e.g.,
UDP/ICMP Ping) to approximate the app-layer RTT. Do-
ing so may provide a high sampling rate but low accuracy.
Figure 7(b) compares the ICMP Ping RTT (“+”) versus the
HTTP response delay (“0”), with the latter being significantly
higher. This is attributed to the additional buffering delay
that a client-issued UDP/ICMP Ping does not experience.
Such delays are typically incurred at the server application
and/or the server-side TCP send buffer [43, 46].

Given neither approach above works well, we resort to
the third approach of using HTTP/2 PING frames, part of the
HTTP/2 specification [19]. HTTP/2 PING is mainly designed



for determining whether an idle connection is still alive.
Unlike TCP Ping or ICMP Ping, HTTP/2 PING operates at
the app layer, so its frame experiences the same delay as the
HTTP response delay, which includes the potentially high
buffering delay on the server side - exactly what we need.

In MP-H2, the client uses HTTP/2 PING frames to com-
pute the application-layer RTT. Specifically, the client sends
a PING frame every 100ms over each path, and uses the mov-
ing average of the last 5 samples to estimate the app-layer
RTT of the corresponding path. Note that the overhead of
sending these PING frames is negligible given their small
sizes. The app-layer RTT is then used to approximate the
HTTP response delay. As shown in Figure 7(b), the delay
of the second HTTP response (“0”) is similar to the recent
HTTP PING samples collected over the WiFi path (“‘m”).
3.4.2 Adjusting the HTTP Byte Range End. Now we consider
how to adjust the HTTP byte range end. Recall from §3.3 that
this needs to be done under two scenarios to avoid download-
ing the same data over both paths: (1) in the first iteration,
adjust the primary path’s byte range end to prevent it from
overshooting the midpoint, and (2) in every iteration, adjust
the slow path’s byte range end when a fast path finishes.

Neither HTTP/1.1 nor HTTP/2 provides a direct way to
modify the byte range end of an on-going byte-range trans-
action. In HTTP/1.1, the only way to realize this appears
to be terminating the underlying TCP connection and es-
tablishing a new one. In HTTP/2, we find a more efficient
method by leveraging the HTTP/2 RST_FRAME frame, which
cancels an on-going stream without tearing down the un-
derlying transport-layer channel. The client can simply send
this frame once it reaches the desired byte range end.

Figure 7(c) repeats the experiment in Figure 7(a), with the
integration of pipelining (§3.4.1) and byte range adjustment
using RST_FRAME. We first make a positive observation that
both mechanisms indeed work: over WiFi, S2 is requested
before S1 completes, and the byte range end of S1 (the pri-
mary path) in the first iteration is properly adjusted so it
does not overshoot the cellular chunk. However, we notice
that S2 yields a lower goodput than S1 does as indicated
by their different slopes. We discover that this is caused by
cross-layer interactions between TCP and HTTP/2 streams.
Specifically, upon the reception of RST_FRAME, the server
application stops sending data over the closed stream. How-
ever, all its remaining data in the TCP send buffer, which can
become fairly large, will still be transmitted to the client [43].
Because the server application does not have any control
over the in-kernel TCP buffer, such unwanted bytes, which
are called “tail bytes” [43], cannot be removed.

As a side effect of using RST_STREAM, the tail bytes are
wasteful: they consume the network bandwidth but are dis-
carded by the client. As a result, in Figure 7(c), the tail bytes of
S1 cause reduced goodput for S2 as shown in the highlighted

area. Next, we describe a novel solution to realize byte range
end adjustment without incurring tail bytes. The basic idea
is to leverage HTTP/2 flow control to limit the amount of data
sent to the client. Our approach is fully compatible with the
HTTP/2 specification [19].

Different from TCP flow control, HTTP/2 flow control
provides app-level APIs to regulate the delivery of individ-
ual streams. It can be used to prevent the sender from over-
whelming the receiver with data it may not want or be able to
process [7]. It applies to individual streams with the follow-
ing mechanism. When an HTTP/2 connection is established,
the client and server advertise their initial stream-level flow
control windows using the SETTINGS frame!. A stream’s
window on the sender side imposes a cap on the amount of
data it can send to the receiver side over that stream. Note
different streams may have different window sizes. For an
HTTP/2 download, the server-side window size is reduced
whenever the server sends a DATA frame to the client, and
is incremented when the server receives a WINDOW_UPDATE
frame from the client. When the window size becomes < 0,
the sender cannot send new DATA frames over the corre-
sponding stream until it receives a WINDOW_UPDATE frame
that causes the window to become positive.

To ensure the server does not go beyond the desired byte
range end, MP-H2 limits its window size in such a way that
after the server sends the last byte in the desired byte range,
its window size becomes zero. As a result, the server emits
no byte outside the byte range into TCP send buffer or the
network. We realize this by strategically issuing the SETTING
and the WINDOW_UPDATE frames to adjust the server-side win-
dow size?. Note that this also needs to be done in advance -
one HTTP PING RTT (§3.4.1) before the completion time of
the stream according to the desired byte range end, to ensure
the server’s timely reception.

We repeat the experiment in Figure 7(c) while changing the
byte range adjustment mechanism from using RST_FRAME to
using HTTP/2 flow control. We confirm that the tail bytes
are almost fully eliminated. This is reflected in Figure 7(d)
where the goodput of S1 and S2 are almost identical.

3.5 Put Everything Together

We now describe the overall scheduling algorithm (Algo-
rithm 1), which is triggered when the client receives data on
either path. Note that for a given object being downloaded,
at any given time, we have at most one connection over each
path, and each connection may include at most two HTTP/2

1With the SETTINGS_INITIAL_WINDOW_SIZE parameter.

2 A practical limitation is that WINDOW_UPDATE can only increase a window.
So when we need to decrease a particular stream’s window, we first send a
SETTING frame to reduce all streams’ windows to 0, and then use multiple
WINDOW_UPDATE to adjust each individual stream’s window. Note all above
control frames can be sent in a single batch.



Algorithm 1: The MP-H2 Client-side Scheduling Algorithm.

Input: Interface this and other that transmit data over
either WiFi or cellular. This function is called when
we receive bytes on this interface.

Output: A new stream to be created on the fast interface if

this is faster than other, otherwise NULL.
1 thisDLTime « bytesToDL(this) / getBw(this);
2 otherDLTime « bytesToDL (other) | getBw(other);
3 if otherDLTime — thisDLTime > § then
4 if thisDLTime < estimatedRespDelay(this) &
numStreams (this) < 2 then
5 newByteRangeToDLOnNThis «
computeBytesRatio(bytesToDL (other) ,
getBw(other), getBw(this),
estimatedRespDelay (this));

6 adjustByteRangeEnd(other,
newByteRangeToDLOnThis.start —1);

7 if getType(this) == WiFi &
isInitialStream(this) then

8 L adjustByteRangeEnd(this, filesize/2);

9 return createNewStream(this,

newByteRangeToDLONThis);

10 return NULL;

streams (due to pipelining). We first estimate the completion
time of the chunks that are being downloaded (Line 1 and
2)3. Then, we create a new stream over the current path, ie.,
this, if all following conditions hold (Line 3 and 4): (1) the
current path is faster, i.e., expected to complete its chunk
sooner than the other path does, (2) the difference of the
expected completion time between the two paths is larger
than a threshold § (empirically set to 50ms), and (3) the time
taken to complete the current chunk is not longer than the
estimated HTTP response delay, so that the client can start
receiving the next chunk as soon as the current chunk com-
pletes. This is the pipelining optimization described in §3.4.1.
If all three conditions hold, we use a slightly modified ver-
sion of Equation 1 to estimate the size of the next chunk to

be downloaded on the fast path by letting RTT; + BD_I/:/',« = BD—d}j
where i is the fast path (Line 5). We do not need RTT; here
because an on-going transfer is already occurring on the
slow path. Meanwhile we adjust the byte range end of the
chunk that is being downloaded on the slow path to avoid
overlaps between the two paths (Line 6). §3.4.2 details how
this is achieved. Recall from §3.3 that there is another case
where we need to adjust the byte range end due to a lack

of the file size information: when the fast path (i.e., this) is

3The getBW function is realized as follows. The client continuously measures
each path’s throughput by generating a throughput sample when at least
20KB of new data is downloaded. The path’s bandwidth is then estimated by
computing a weighted moving average of the most recent samples collected
over a window of 500KB.

the primary path and the current stream is the first stream
created on this path, we adjust its byte range end to the
midpoint of the file to prevent an overshoot (Line 7 and 8).

3.6 Additional Options of MP-H2

We discuss two additional options that MP-H2 provides for
further improving the performance. First, MP-H2 allows a
web client to provide the size of a file before requesting it.
Having the size information beforehand offers two benefits.
First, it allows the scheduler to send the byte-range requests
over all paths at the same time, thus saving one RTT over sec-
ondary paths. Second, the scheduler does not need to invoke
the extra logic of dealing with missing file size (§3.3), leading
to improved performance as well. Note that in practice, file
size information is oftentimes available in several contexts
such as DASH video streaming [33, 52, 53] and web-based
applications [16, 18].

The second option that MP-H2 provides is to cache the
network condition estimation (bandwidth and latency)
across multiple HTTP transactions. This is similar to TCP
caching various parameters across connections (unless
tcp_no_metrics_save [9] is set in sysctl). Having accu-
rate network condition estimation before an HTTP transac-
tion allows MP-H2 to use Equation 1 to find an appropriate
chunk size for each path, instead of blindly performing a
half-half split at the beginning. This may help reduce the
number of iterations i.e., the number of byte-range requests
issued. We evaluate the effectiveness of both options in §5.

4 IMPLEMENTATION

We implement MP-H2 on commodity Android devices, tar-
geting a common usage scenario of concurrently using
cellular and WiFi. To access and transfer data on both paths
simultaneously, we use an API [3] that was introduced
in Android 5.0 (87% of Android devices run Android 5.0
or higher [1] as in 8/2018). Using this API, applications
can request access to a Network object containing a set
of Capabilities [12]. These capabilities include different
types of transports (e.g., cellular, Ethernet, Bluetooth) and/or
properties (e.g., unmetered or non-restricted network). If a
network with specified capabilities is available, it will be
provided to the application through a callback.

We implement MP-H2 on top of OkHttp, a popular HTTP
client for Android and Java applications [13]. We modify
its source code to expose some internal APIs to the MP-H2
scheduler. They include reading a stream’s ID and sending
HTTP/2 PING, WINDOW_UPDATE, and SETTINGS frames.

Our implementation consists of about 2,000 lines of code in
Java. Except enabling HTTP/2 and byte range requests, our
implementation does not change any configuration on the
server. No server-side source code modification is required.
MP-H2 provides client-side applications with interfaces that



are similar to those provided by other popular HTTP client
libraries. We have verified that MP-H2 works well with two
mainstream web servers: Apache and Nginx.

5 EVALUATION

We extensively evaluate MP-H2 under various settings in-
cluding different network conditions, server configurations,
and workloads over commercial WiFi and LTE networks.
We also quantitatively compare MP-H2 with MPTCP and
existing HTTP-based multipath solutions.

5.1 Integration with Commercial Services
Before examining the performance, we first demonstrate that
MP-H2 can indeed work with commercial services without
server-side changes. We consider two applications: down-
loading a file from Dropbox and watching videos from com-
mercial video content providers. Note that in both cases we
have no access to the server and therefore cannot compare
MP-H2 with MPTCP. The comparisons will be done in the
remaining subsections using our controlled server.

For Dropbox download, we develop a simple Android app
that calls MP-H2. Our app can download any Dropbox file
given its URL over the Internet. For video streaming, we
slightly modify ExoPlayer [5], a popular open-source DASH
video player used by more than 10k mobile apps [6] by adding
the MP-H2 support. We have successfully tested our MP-H2-
enabled ExoPlayer with Dailymotion [4], a popular video
streaming service. Note for some other video streaming ser-
vices such as YouTube, their DASH manifest files are pro-
tected, so they cannot even work with the vanilla ExoPlayer.

Finally we note that the client-side app change is small.
For our Dropbox client and ExoPlayer, we only modified 5
and 15 lines of code, respectively, in order to add MP-H2.

5.2 Experimental Setup and Methodology

We now investigate the performance of MP-H2.

We study three variants of MP-H2: (1) MP-H2+FS, with
the file size given by the application, (2) MP-H2+FS+BW/L,
with the file size known and the history bandwidth and la-
tency information available, (3) MP-H2, with no knowledge
on the file size or network condition, making it fully trans-
parent to the application. We compare them with MPTCP,
mHTTP [37], and MSPlayer [22], with the latter two being
the state-of-the-art HT'TP-based multipath schedulers.
Testbed. We set up our multipath testbed using two Nexus
5 phones with access to commercial WiFi and LTE networks,
and a commodity server with 4-core 3.6GHz CPU, 16GB
memory, and 64-bit Ubuntu 16.04 with Linux kernel 4.9.60.
We install the latest version of Android-compatible MPTCP
(version 0.89.5) on one Nexus 5 phone running Android 4.4.4%.

4We did not use a newer device or Android version because the latest
Android-compatible MPTCP version only works with Nexus 5 and Android
4.4.4 at the time when this study was conducted [10].

The server runs the latest MPTCP (v0.94) available at the time
of experiments. For both the phone and server, MPTCP uses
the MinRTT multipath scheduler, WiFi as the primary path,
and decoupled congestion control to ensure fair compar-
isons with MP-H2. To evaluate MP-H2 and compare it with
existing HTTP-based multipath solutions, we implement MP-
H2, mHTTP, and MSPlayer on top of OkHttp library on the
second Nexus 5 phone running Android 5.0, the minimum
required version for multipath transfers on Android (§4). We
installed Apache 2.4.29 with HTTP/2 module on the same
server. We have verified that the two phones have almost
the same single-path TCP performance over both WiFi and
cellular networks under the same network condition.

We evaluate MP-H2 under three settings: (1) stable net-
work conditions, (2) highly fluctuating network conditions by
replaying bandwidth profiles collected from various public
locations, and (3) a real-world setting without any bandwidth
throttling. Note that all three settings use commercial WiFi
(Comcast) and LTE (AT&T) as the underlying “base” net-
works, on which additional bandwidth throttling is imposed
for (1) and (2). We next detail each setting. For (1), we use con-
stant bandwidth and latency (e.g., 5Mbps WiFi and 10Mbps
LTE, imposed by Linux tc running on the server side), whose
values match recent large-scale measurements of LTE and
WiFi [35, 51]. For (2), to capture the bandwidth dynamics
of real networks, we collect bandwidth traces (both public
WiFi and commercial cellular) at five locations including
coffee shops, residential apartment, and campus library. The
captured bandwidth is highly variable. The average WiFi (cel-
lular) bandwidth across these locations ranges from 4.3Mbps
(1.4Mbps) to 7.2Mbps (8.3Mbps), with the standard deviation
being up to 57% and 60% of the mean bandwidth for WiFi and
cellular, respectively. The average RTT between the phone
and the server is around 28ms and 65ms over WiFi and LTE,
respectively. We then replay these bandwidth traces over
commercial WiFi and LTE networks to realistically emulate
the fluctuating bandwidth. The replay is done using Linux
tc, and is performed at a location with very good network
conditions (60Mbps WiFi bandwidth provided by Comcast
and 40Mbps LTE bandwidth provided by AT&T), to make
the replay experiments reproducible while capturing the
latency dynamics from commercial wireless networks. For
(3), we conduct experiments in a residential building with
around 18Mbps WiFi bandwidth (Comcast) and 32Mbps LTE
bandwidth (AT&T), without applying additional throttling.

5.3 Single File Download

Stable Bandwidth Conditions. We begin with evaluating
the performance of MP-H2 under stable bandwidth condi-
tions. The workload is downloading files of different sizes
(e.g., video chunks and large web objects). For each experi-
ment, we repeat the download 30 times and report the 25th,
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Figure 8: Performance of different schedulers under three bandwidth settings.

50th, and 75th percentiles of the download time. We con-
sider different bandwidth combinations of the two paths. For
mHTTP, it uses a default chunk size of 1024KB. Since the file
size can be smaller than that, we also try three smaller chunk
sizes (128KB, 256KB, and 512KB) for mHTTP and report the
one with the best performance. For all experiments, we use
persistent TCP or MPTCP connections.

Figure 8 compares the download time across three MP-H2
variants, mHTTP, and MPTCP for different file sizes. We
consider three bandwidth combinations of WiFi and LTE:
(5Mbps, 5Mbps), (5Mbps, 10Mbps), and (10Mbps, 5Mbps). All
three MP-H2 variants outperform mHTTP, achieving 3% to
26% faster download time across all different file size and
bandwidth combinations. For 4MB file, for example, MP-H2
yields a faster download time between 353ms and 807ms.
Such an improvement is attributed to MP-H2 strategically
performing byte range split and pipelining the HTTP re-
quests, instead of employing fixed chunk sizes and sequential
requests as done by mHTTP. Meanwhile, all MP-H2 variants
provide comparable performance to MPTCP, only 0.1% to
11% longer than MPTCP’s download time for 1MB+ files.
If we consider the best MP-H2 variant (MP-H2+FS+BW/L),
its download time is only 0.1% to 3% higher for 1MB+ files,
compared to MPTCP. For 512KB file, the difference between
MP-H2 and MPTCP is slightly larger (2% to 25%). This com-
parison shows that there is an intrinsic tradeoff between
performance and intrusiveness: MPTCP’s server-side sched-
uling at the transport layer can perform precise byte-level
control at the sub-RTT time granularity, while MP-H2’s
client-side scheduling at the HTTP layer has to be much
more coarse-grained, leading to worse performance despite
MP-H2’s various optimizations. Overall, the results show
that MP-H2 outperforms mHTTP, and strikes a good balance
by providing an easy-to-deploy alternative to MPTCP with
only slight sacrifice of performance.

Among the three MP-H2 variants, MP-H2+FS+BW/L
achieves the best performance for all file sizes as explained
in §3.6. MP-H2+FS slightly falls behind MP-H2+FS+BW/L
by up to 6%, as the network conditions are stable here.
Varying Bandwidth Conditions. We next evaluate how
MP-H2 performs under fluctuating network conditions by
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replaying bandwidth traces (both WiFi and LTE) we collected
at the five public locations as described in §5.2.

Figure 9 shows the download time of different file sizes.
Compared to mHTTP, MP-H2 and MP-H2+FS reduce the
median download time by 5% (67ms) to 23% (216ms) and 9%
(107ms) to 26% (240ms), respectively. Similar to the stable
bandwidth conditions, MP-H2 and MP-H2+FS yield small
download time increase compared to MPTCP when the band-
width is fluctuating, within 14%~18% (3%~5%) for the 512KB
(4MB) file, respectively. We also observe that the download
time difference between MP-H2 and MPTCP is larger when
file size is smaller. This is explained by two reasons. First,
delaying the request over the cellular (secondary) path in-
curs a higher performance impact as the file size gets smaller.
Second, because of their client-side and application-layer
nature, all MP-H2 variants adjust the scheduling decisions
less frequently than MPTCP does, and thus react slower to
the fluctuating network conditions.

Real-world Networks without Throttling. We fur-
ther evaluate MP-H2 under unthrottled bandwidth. Recall
from §5.2 that this experiment was conducted in a residential
building with the WiFi and LTE bandwidth being around
18Mbps and 32Mbps, respectively. We pick the workload of
downloading large files of 5, 10, and 20MB using the five
schemes shown in Figure 10. For each combination of the
file size and download scheme, we repeat the download 30
times. Figure 10 shows that MP-H2 outperforms mHTTP by
42% to 47% in terms of the median download time. A 42%
improvement translates to 0.8 and 2.9 seconds of shorter
download time for a 5MB and 20MB file, respectively. The
median download time of MP-H2 (MP-H2+FS) is only 4% to
15% (0.2% to 7%) higher than MPTCP. The results indicate
MP-H2’s good performance when the bandwidth is high.
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Figure 11: Compare the video qual-
ity of different schedulers under three
capped bandwidth profiles.

5.4 Video Streaming

We now study how MP-H2 helps improve the QoE of
video streaming by comparing MP-H2 to MPTCP and
MSPlayer [22], which is an HTTP-based multipath scheduler
designed specifically for video streaming. It adjusts the
chunk size of the fast path based on the throughput ratio
between WiFi and cellular. The chunk size for the slow
path is doubled or halved based on the comparison between
the current bandwidth and its estimated value. We modify
ExoPlayer [5] by adding the MP-H2 support (§5.1) as well
as the MSPlayer scheduling algorithm. We also instrument
ExoPlayer to retrieve playback statistics such as video bitrate
and rebuffering (stall) events. For each experiment, we use
ExoPlayer to play a 10-min ABR video hosted on our server.
The video is segmented into 6-second chunks each having 9
video bitrates, ranging from 253kbps to 10Mbps, as described
in the manifest file of the video. To evaluate the performance
of MP-H2+FS and MP-H2+FS+BW/L, we include the size of
each video chunk into the DASH manifest file.

Stable bandwidth conditions. Figure 11 compares the av-
erage video bitrate of the five schemes under three bandwidth
combinations of WiFi and LTE: (3Mbps, 7Mbps), (5, 5), and (7,
3). In all three bandwidth combinations, the overall available
bandwidth (WiFi+LTE) is sufficient to stream the highest
video bitrate. As shown in Figure 11, MP-H2+FS+BW/L al-
ways performs better than MSPlayer by providing up to
44% higher video bitrate. This is attributed to the fact that
MSPlayer does not pipeline its requests and thus suffers
from bandwidth under-utilization due to the idle time be-
tween consecutive data chunks. Compared to MPTCP, MP-
H2+FS+BW/L achieves almost the same video quality, with
the video bitrate being only 0.3% to 0.9% lower. For this set
of experiments, the rebuffering ratios (i.e., stall duration over
the entire video length) are consistently low: 0.1%, 0.3%, and
0.08% for MP-H2, MPTCP, and MSPlayer, respectively.
Changing bandwidth conditions. Figure 12 plots the re-
sults under five real bandwidth profiles. Overall the results
are also encouraging: compared to MSPlayer, MP-H2+FS
achieves up to 25% higher video bitrate, and its bitrate is

Figure 12: Compare the video
quality of different schedulers un-
der real bandwidth profiles.

Figure 13: Impact of multi-homing
on downloading a 0.5MB/1MB file un-
der different bandwidth settings.

only 2% to 8% lower compared to MPTCP. We also observe
that the plain MP-H2 scheme slightly falls behind MP-H2+FS
by 6% in terms of the video bitrate. This is due to a lack of file
size information and delayed request on the secondary path.
Similar to the stable bandwidth conditions, the rebuffering
ratios of all schedulers here are also very small (below 0.8%).

5.5 Multi-homing

One eminent feature of MP-H2 that MPTCP does not support
is multi-homing. To demonstrate the benefit of multi-homing
in the context of multipath, we consider two scenarios. In
the first scenario (MP-H2+SS, “SS” stands for “single server”),
MP-H2 downloads the content from a single server (server
A), which is identified by resolving the domain name over
the primary path (WiFi). In the second scenario (MP-H2+MH,
“MH” stands for “multi-homing”), we consider the scheme
where the domains are resolved over each path separately
and as a result, MP-H2 may fetch the content from multiple
servers, server A for WiFi and server B for cellular, that
provide the best performance for each path.

In our experiment, we set up the two servers (A and B)
where the baseline RTT of WiFi and LTE between the client
and the corresponding server is 28ms and 65ms, respectively
(based on our collected traces, see §5.2). We add 20ms extra
delay to the LTE downlink from server A to the client, to
account for the delay penalty of LTE accessing server A. To
see why this setting is realistic, note that the 20ms delay is
selected based on our crowd-sourced measurement in §2.2.2,
and can be translated to ~30% increase in the latency over the
cellular path that is a common case in the real world as shown
in Figure 4(b). Figure 13 shows the results of downloading
512KB and 1MB files over different bandwidth settings under
MP-H2+SS and MP-H2+MH. Compared to using a single
server, MP-H2 with multi-homing reduces the average file
download time by 4% to 19%. This shows that MP-H2 can
boost the performance by leveraging CDN multi-homing.

5.6 Pipelining HTTP Requests

MP-H2 utilizes pipelining, which sends a new request one
app-layer RTT before the on-going chunk transfer finishes,
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Figure 14: Compare perfor-
mance of MP-H2 with and
without HTTP pipelining.

in order to avoid the idle time between the download of con-
secutive chunks (§3.4.1). To show the benefit of pipelining,
we compare the performance of MP-H2 with and without
pipelining. To do so, we download a 2MB file using each
approach under five bandwidth profiles we collected (§5.2).
For each test, we repeat the file download 30 times. As shown
in Figure 14, the pipelining approach improves the median
download time by 25% compared to the non-pipelining ap-
proach, where the scheduler sends the request of the next
chunk after the previous chunk download is completed.

5.7 Tail Byte Elimination

We compare the tail byte elimination mechanism based on
HTTP/2 flow control with that using the RST_STREAM frame
that cancels an HTTP/2 stream (§3.4.2). Our experiment is
as follows. We start downloading a 2MB file over a single
path (WiFi or LTE with stable network condition), and stop
the download when the first half of the file is transferred by
updating the byte range end. Ideally only 1MB data should
be observed over the downlink but tail bytes will further
inflate that. Figure 15 shows the comparison of the number
of tail bytes incurred by the two schemes above. When using
the HTTP/2 stream cancellation mechanism, the tail bytes
over WiFi and cellular range from 237KB to 551KB. Using
HTTP/2 flow control reduces the tail bytes to 12KB to 44KB.
The tail bytes are not completely eliminated by HTTP/2 flow
control due to non-perfect estimation of the application RTT
and bandwidth.

5.8 Adapting to Abrupt Network Changes

To demonstrate how MP-H2’s scheduling algorithm responds
to abrupt network changes, we conduct the following exper-
iment. Initially, both paths have 5Mbps bandwidth. Around
t = 1050ms, we decrease the cellular bandwidth to 1Mbps.
As shown in Figure 16, around t = 1386ms, the scheduler cre-
ates another stream (S2) over WiFi, based on its estimation
of both paths’ bandwidth (using a weighted moving average).
Initially the scheduler over-estimates the cellular bandwidth
(to be 2.65Mbps). This results in requesting a smaller chunk
over the fast path (WiFi). Later, as more bandwidth samples

Bandwidth (Mbps)

Figure 15: Compare the tail byte elimination
mechanism based on HTTP/2 flow control with
that using the RST_STREAM frame.

Elapsed Time (ms)

Figure 16: A case study of how MP-H2 re-
acts when the bandwidth of one path drops
to 1Mbps when downloading a 2MB file.

are collected, the scheduler obtains a more accurate band-
width estimation and creates another stream (S3) to achieve
simultaneous completion on both paths. Due to MP-H2’s con-
tinuous bandwidth monitoring and various optimizations
(§3), despite the sudden bandwidth drop, MP-H2 is largely ca-
pable of realizing both requirements (R1: simultaneous path
completion and R2: full bandwidth utilization). We repeat
the experiment using MPTCP under the same setting, and
observe that the download time difference between MPTCP
and MP-H2 is only 4% (averaged over 10 runs).

6 RELATED WORK

Besides the built-in MPTCP schedulers such as minRTT and
round-robin [45], as well as mHTTP [37] and MSPlayer [22]
that we quantitatively compare MP-H2 with, there are other
multipath schedulers in the literature. DEMS [29] is an
MPTCP scheduler that achieves simultaneous subflow com-
pletion by performing “two-way” data transfers in opposite
directions within a file. ECF [41] is designed for heteroge-
neous paths and considers both congestion window and
RTT to decide which subflow to use. eMPTCP [40] takes
energy models of WiFi and cellular into consideration when
making scheduling decisions. MPRTP [49] is designed as an
extension to RTP and targets real-time content delivery over
multipath. All schemes above require server modifications.
Instead, MP-H2 is a client-side scheduler, making it readily
deployable through simple HTTP library upgrades.

Similar to mHTTP [37], there exist other HTTP-based
multipath schedulers aiming at improving the video stream-
ing performance. Kaspar et al. [36] proposed to pipeline
byte range requests over HTTP/1.1 to accelerate fetching
large video files. It also calculates an optimal chunk size to
minimize the idle time between consecutive requests. How-
ever, HTTP/1.1 pipelining has various limitations and is not
widely used in practice [7, 8]. Koo et al. [38] and Go et al. [28]
proposed multipath schedulers for downloading segments of
a DASH video. Both schemes formulate multipath schedul-
ing as an optimization problem to maximize the video qual-
ity under the energy consumption and cellular data usage
constraints. Compared to MP-H2, both of them only make



coarse-grained scheduling decisions in that neither sched-
uler splits a video segment into smaller chunks sizes. Also
neither scheduler explicitly considers the requirement of
fully utilizing the available bandwidth i.e., R2 defined in §3.1.
In addition, none of the above work focuses on HTTP/2.

Recently, there have been some application-specific exten-
sions to the MPTCP protocol. For instance, MP-DASH [33]
considers the cost of each path in DASH video streaming,.
Its cost-aware scheduling logic can be possibly incorporated
into MP-H2. In addition, researchers very recently propose
multipath QUIC [23]. Operating at the application layer, MP-
H2 can instead bring multipath support to any transport
protocols or even their mixture (§2.4).

A topic relevant to multipath is interface selection. For
example, Socket Intents [48] enable apps to provide their
interface preferences through the socket APL. Other work
along this line includes [25, 34, 44]. MP-H2 can also provide
a similar interface at the HTTP layer to allow apps to switch
between single and multipath based on various contexts.

7 DISCUSSIONS

IP-based Content Customization. MP-H2 relies on issu-
ing multiple HTTP byte-range requests over different inter-
faces to accelerate the data transfer. However, although not
common, the server may customize the content based on the
client’s IP address; distributed CDN servers may also return
different contents based on the same URL for purposes such
as geographic-based content customization. In these cases,
assembling byte-range responses in general may lead to cor-
rupt data. Note this happens to responses obtained over not
only multipath but also single path, because the IP address of
a client may change over time due to mobility or DHCP. Our
recommendation is that the server should make byte-range
responses non-cacheable, or simply disable the byte-range
feature for objects that are customized based on the client’s
IP address or other network states.

When there is no customization of byte-range responses,
MP-H2 can be safely applied. MP-H2 is compatible with
various security-enhancing mechanisms such as TLS Client
Authentication [17] and Channel-bound Cookies [2].

Fairness. We discuss potential fairness issues brought
by MP-H2 at three levels. First, at the HTTP/2 stream level,
MP-H2 does introduce a higher level of parallelism due to
pipelining (§3.4.1). The additionally created streams may
thus utilize extra network resources. However, we expect its
impact on stream-level fairness is very limited due to several
reasons. (1) Pipelining occurs only for a short duration as
illustrated in Figure 7(c); (2) tail elimination further mitigates
the impact as shown in Figure 7(d); and (3) the impact is fur-
ther bounded by limiting the number of per-object streams
over each path to 2 (Line 4 in Algorithm 1). Second, at the TCP
connection level, since MP-H2 does not establish additional

TCP (sub)flows compared to applying the vanilla MPTCP,
there should not be additional inter-connection fairness is-
sues. Third, at the mobile device level, compared to single
path over WiFi, MP-H2 offloads traffic to cellular networks
whose resources may be scarce when an excessive number
of devices are sharing the same base station or RAN. This
is a generic problem of any mobile multipath scheme, and
cross-device fairness can typically be ensured by the network
(e.g., through proportionally fair scheduling at e-NodeB).

HTTP/1.1Fallback. Although HTTP/2 is getting increas-
ingly popular, many of today’s web servers still only support
HTTP/1.1. In order to be compatible with HTTP/1.1 servers,
MP-H2 can still use the high-level scheduling approach de-
scribed in §3.3, but all HTTP/2-specific features have to be
disabled. Specifically, (1) the client cannot use pipelining
when issuing a new request (§3.4.1), and (2) the client can
only adjust the HTTP byte range end by terminating the
existing connection and issuing a new request (§3.4.2). The
above simplifications inevitably lead to performance degra-
dation compared to full-fledged MP-H2 for HTTP/2.

Multipath Upload. Another limitation of MP-H2 is its
lack of support for data upload over multipath. In theory, one
can develop a client-side scheduling algorithm that splits an
HTTP PUT transaction over multiple paths using byte range
requests. There are two practical limitations though. First,
not many servers accept byte-range HTTP PUT requests; sec-
ond, a data upload typically does not support multi-homing.

MP-H2 for QUIC. Porting MP-H2 to QUIC, whose most
features are very similar to those of HTTP/2, is relatively
easy. In particular, QUIC also provides stream multiplexing,
PING frames, and connection-level flow control [14] that are
the key building blocks of MP-H2.

8 CONCLUDING REMARKS

We address an important problem of lowering the deployment
bar of mobile multipath and making it friendly to today’s in-
frastructures such as NAT, CDN, and anycast. To this end,
we develop MP-H2, a client-side, user-space multipath solu-
tion for HTTP, the de-facto application-layer protocol today.
The key design philosophy of MP-H2 consists of (1) fully
decoupling all paths at the transport layer, (2) judiciously
balancing all paths” workload from the client side, and (3)
strategically leveraging new HTTP/2 features to maximize
the bandwidth utilization. Extensive evaluations show that
MP-H2 brings similar performance to MPTCP and consider-
ably outperforms other HTTP-based multipath schedulers.

ACKNOWLEDGEMENTS

We thank our shepherd, Peter Steenkiste, and the anonymous
reviewers for their valuable comments. This research was
supported in part by the National Science Foundation under
grants CCF-1628991, CNS-1629763, and CNS-1566331.



REFERENCES

—_
(=)
=

—_ —
(eI |
[t

(15

=

(16]
(17]

(18]
(19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

[27

—

(28]

Android platform versions.
dashboards/index.html.
Channel-bound  cookies.
channel-bound-cookies.

https://developer.android.com/about/
http://www.browserauth.net/

ConnectivityManager | Android Developers. https://developer.android.
com/reference/android/net/ConnectivityManager#requestnetwork.
Dailymotion - Explore and watch videos online.  https://www.
dailymotion.com/.

ExoPlayer. https://google.github.io/ExoPlayer.
Exoplayer 2 - why, what and when? https://medium.com/
google-exoplayer/exoplayer-2-x-why-what-and-when-74fd9cb139.
High Performance Browser Networking, O’Reilly. https://hpbn.co/.
HTTP/2 Frequently Asked Questions. https://http2.github.io/faq/.
Kernel Documentation: networking/ip-sysctl.txt. https://www.kernel.
org/doc/Documentation/networking/ip-sysctl.txt.

Multipath tep - linux kernel implementation. https://multipath-tcp.
org/pmwiki.php/Users/Android.

Netflix open connect. https://openconnect.netflix.com/en/.
NetworkCapabilities | Android Developers. https://developer.android.
com/reference/android/net/NetworkCapabilities.

Okhttp. http://square.github.io/okhttp/.

Quic, a multiplexed stream transport over udp. https://www.chromium.
org/quic.

Streaming services now account for over 70% of peak traffic in North
America, Netflix dominates with 37%. https://tinyurl.com/yafk38w3.
The Web App Manifest. https://developers.google.com/web/
fundamentals/web-app-manifest/.
Tls client authentication.
tls-client-authentication.

Web App Manifest. https://www.w3.org/TR/appmanifest/.

M. Belshe, R. Peon, and E. M. Thomson. Hypertext Transfer Protocol
Version 2 (HTTP/2). RFC 7540, Internet Engineering Task Force, 2015.
T. Bottger, F. Cuadrado, G. Tyson, I. Castro, and S. Uhlig. Open connect
everywhere: A glimpse at the internet ecosystem through the lens of
the netflix cdn. In Proc. of ACM SIGCOMM Computer Communications
Review (CCR), 2018.

Y.-C. Chen, Y.-s. Lim, R. ]J. Gibbens, E. M. Nahum, R. Khalili, and
D. Towsley. A Measurement-based Study of MultiPath TCP Perfor-
mance over Wireless Networks. In Proc. of IMC, 2013.

Y.-C. Chen, D. Towsley, and R. Khalili. MSPlayer: Multi-Source and
multi-Path LeverAged YoutubER. In Proc. of CONEXT, 2014.

Q. De Coninck and O. Bonaventure. Multipath QUIC: Design and
Evaluation. In Proc. of CONEXT, 2017.

S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan. WiFi, LTE,
or Both?: Measuring Multi-Homed Wireless Internet Performance. In
Proc. of IMC, 2014.

S. Deng, A. Sivaraman, and H. Balakrishnan. All your network are

http://www.browserauth.net/

belong to us: A transport framework for mobile network selection. In
Proceedings of the 15th Workshop on Mobile Computing Systems and
Applications, page 19. ACM, 2014.

F. Duchene and O. Bonaventure. Making Multipath TCP friendlier to
Load Balancers and Anycast. In Proc. of IEEE ICNP, 2017.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1. RFC 2616,
Internet Engineering Task Force, 1999.

Y. Go, O. C. Kwon, and H. Song. An Energy-Efficient HTTP Adap-
tive Video Streaming With Networking Cost Constraint Over Het-
erogeneous Wireless Networks. IEEE Transactions on Multimedia,
17(9):1646-1657, 2015.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Y. E. Guo, A. Nikravesh, Z. M. Mao, F. Qian, and S. Sen. Accelerating
Multipath Transport Through Balanced Subflow Completion. In Proc.
of ACM MobiCom, 2017.

B. Han, S. Hao, and F. Qian. Metapush: Cellular-friendly server push
for http/2. In Proceedings of the 5th Workshop on All Things Cellular:
Operations, Applications and Challenges, pages 57-62. ACM, 2015.

B. Han, F. Qian, S. Hao, and L. Ji. An Anatomy of Mobile Web Perfor-
mance over Multipath TCP. In Proc. of CONEXT, 2015.

B. Han, F. Qian, and L. Ji. When should we surf the mobile web using
both wifi and cellular? In Proceedings of the 5th Workshop on All Things
Cellular: Operations, Applications and Challenges, pages 7-12. ACM,
2016.

B. Han, F. Qian, L. Ji, and V. Gopalakrishnan. MP-DASH: Adaptive
Video Streaming Over Preference-Aware Multipath. In Proc. of CONEXT,
2016.

B. D. Higgins, A. Reda, T. Alperovich, J. Flinn, T. J. Giuli, B. Noble,
and D. Watson. Intentional networking: opportunistic exploitation
of mobile network diversity. In Proceedings of the sixteenth annual
international conference on Mobile computing and networking, pages
73-84. ACM, 2010.

J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and
O. Spatscheck. An In-depth Study of LTE: Effect of Network Protocol
and Application Behavior on Performance. In Proc. of SIGCOMM, 2013.
D. Kaspar, K. Evensen, P. Engelstad, and A. F. Hansen. Using HTTP
Pipelining to Improve Progressive Download over Multiple Heteroge-
neous Interfaces. In IEEE International Conference on Communications,
2010.

J. Kim, R. Khalili, A. Feldmann, Y. Chen, and D. Towsley. Multi-source
multi-path HTTP (mhttp): A proposal. CoRR, abs/1310.2748, 2013.

J. Koo, J. Yi, J. Kim, M. A. Hoque, and S. Choi. Seamless Dynamic Adap-
tive Streaming in LTE/Wi-Fi Integrated Network under Smartphone
Resource Constraints. IEEE Transactions on Mobile Computing, 2018.
H. Lee, ]. Flinn, and B. Tonshal. Raven: Improving interactive latency
for the connected car. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking, pages 557-572. ACM,
2018.

Y.-s. Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, R. J. Gibbens, and
E. Cecchet. Design, Implementation, and Evaluation of Energy-aware
Multi-path TCP. In Proc. of CONEXT, 2015.

Y.-s. Lim, E. M. Nahum, D. Towsley, and R. J. Gibbens. ECF: An MPTCP
Path Scheduler to Manage Heterogeneous Paths. In Proc. of CONEXT,
2017.

O. Mehani, R. Holz, S. Ferlin, and R. Boreli. An early look at multipath
TCP deployment in the wild. In HotPlanet 2015, 6th International
Workshop on Hot Topics in Planet-Scale Measurement, in Conjunction
with ACM MobiCom 2015, 2015.

X. Mi, F. Qian, and X. Wang. SMig: Stream Migration Extension For
HTTP/2. In CoNEXT, 2016.

A. Nikravesh, Y. Guo, F. Qian, Z. M. Mao, and S. Sen. An In-depth
Understanding of Multipath TCP on Mobile Devices: Measurement
and System Design. In Proc. of ACM MobiCom, 2016.

C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure. Experimental eval-
uation of multipath tcp schedulers. In Proceedings of the 2014 ACM
SIGCOMM workshop on Capacity sharing workshop, pages 27-32. ACM,
2014.

F. Qian, V. Gopalakrishnan, E. Halepovic, S. Sen, and O. Spatscheck.
Tm3: Flexible transport-layer multi-pipe multiplexing middlebox with-
out head-of-line blocking. In CoNEXT, 2015.

C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Han-
dley. Improving Datacenter Performance and Robustness with Multi-
path TCP. In Proc. of ACM SIGCOMM, 2011.


https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
http://www.browserauth.net/channel-bound-cookies
http://www.browserauth.net/channel-bound-cookies
https://developer.android.com/reference/android/net/ConnectivityManager#requestnetwork
https://developer.android.com/reference/android/net/ConnectivityManager#requestnetwork
https://www.dailymotion.com/
https://www.dailymotion.com/
https://google.github.io/ExoPlayer
https://medium.com/google-exoplayer/exoplayer-2-x-why-what-and-when-74fd9cb139
https://medium.com/google-exoplayer/exoplayer-2-x-why-what-and-when-74fd9cb139
https://hpbn.co/
https://http2.github.io/faq/
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
https://multipath-tcp.org/pmwiki.php/Users/Android
https://multipath-tcp.org/pmwiki.php/Users/Android
https://openconnect.netflix.com/en/
https://developer.android.com/reference/android/net/NetworkCapabilities
https://developer.android.com/reference/android/net/NetworkCapabilities
http://square.github.io/okhttp/
https://www.chromium.org/quic
https://www.chromium.org/quic
https://tinyurl.com/yafk38w3
https://developers.google.com/web/fundamentals/web-app-manifest/
https://developers.google.com/web/fundamentals/web-app-manifest/
http://www.browserauth.net/tls-client-authentication
http://www.browserauth.net/tls-client-authentication
https://www.w3.org/TR/appmanifest/

[48] P.S.Schmidt, T. Enghardt, R. Khalili, and A. Feldmann. Socket intents:

Leveraging application awareness for multi-access connectivity. In
CoNEXT. ACM, 2013.

[49] V. Singh, S. Ahsan, and J. Ott. MPRTP: Multipath Considerations for
Real-time Media. In Proc. of MMSys, 2013.

[50] A.Sivakumar, S. Puzhavakath Narayanan, V. Gopalakrishnan, S. Lee,
S.Rao, and S. Sen. Parcel: Proxy assisted browsing in cellular networks
for energy and latency reduction. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and

Technologies, pages 325-336. ACM, 2014.

[51] J. Sommers and P. Barford. Cell vs. WiFi: On the Performance of Metro
Area Mobile Connections. In Proc. of IMC, 2012.

[52] S. Xu, S. Sen, Z. M. Mao, and Y. Jia. Dissecting VOD Services for
Cellular: Performance, Root Causes and Best Practices. In Proc. of IMC,
2017.

[53] X.Yin, A. Jindal, V. Sekar, and B. Sinopoli. A Control-Theoretic Ap-
proach for Dynamic Adaptive Video Streaming over HTTP. In Proc. of
ACM SIGCOMM, 2015.



	Abstract
	1 Introduction
	2 Motivation
	2.1 MPTCP Adoption
	2.2 CDN Server Selection
	2.3 Anycast and Load Balancing
	2.4 Server Transparency and Flexible Transport Protocol Support

	3 Design of MP-H2
	3.1 System Overview
	3.2 Suboptimal Alternative Designs
	3.3 The Basic Design of MP-H2
	3.4 More Design Aspects of MP-H2
	3.5 Put Everything Together
	3.6 Additional Options of MP-H2

	4 Implementation
	5 Evaluation
	5.1 Integration with Commercial Services
	5.2 Experimental Setup and Methodology
	5.3 Single File Download
	5.4 Video Streaming
	5.5 Multi-homing
	5.6 Pipelining HTTP Requests
	5.7 Tail Byte Elimination
	5.8 Adapting to Abrupt Network Changes

	6 Related Work
	7 Discussions
	8 Concluding Remarks
	References

