
An In-depth Understanding of Multipath TCP on Mobile
Devices: Measurement and System Design

Ashkan Nikravesh∗

University of Michigan
Ann Arbor, MI

ashnik@umich.edu

Yihua Guo∗

University of Michigan
Ann Arbor, MI

yhguo@umich.edu
Feng Qian

Indiana University
Bloomington, IN

fengqian@indiana.edu

Z. Morley Mao
University of Michigan

Ann Arbor, MI
zmao@umich.edu

Subhabrata Sen
AT&T Labs – Research

Bedminster, NJ
sen@research.att.com

ABSTRACT
Today’s mobile devices are usually equipped with multiple wireless
network interfaces that provide new opportunities for improving
application performance. In this paper, we conduct an in-depth
study of multipath for mobile settings, focusing on MPTCP,
with the goal of developing key insights for evolving the mobile
multipath design. First, we conduct to our knowledge the most in-
depth and the longest user trial of mobile multipath that focuses not
only on MPTCP performance, but also on cross-layer interactions.
Second, we identify a new research problem of multipath-aware
CDN server selection. We demonstrate its real-world importance
and provide recommendations. Third, our measurement findings
lead us to design and implement a flexible software architecture
for mobile multipath called MPFlex, which strategically employs
multiplexing to improve multipath performance (by up to 63% for
short-lived flows). MPFlex decouples the high-level scheduling
algorithm and the low-level OS protocol implementation, and
enables developers to flexibly plug-in new multipath features.
MPFlex also provides an ideal vantage point for flexibly realizing
user-specified multipath policies and is friendly to middleboxes.

CCS Concepts
•Networks→ Transport protocols; Network measurement;

1. INTRODUCTION
The support for multiple network interfaces is a norm on today’s

smart devices: smartphones and tablets often have both WiFi and
cellular connectivity; wearable devices are capable of pairing with
their phones using either Bluetooth or Direct WiFi; even Internet-
of-Things (IoT) devices such as home alarms and smoke detectors
can potentially leverage multipath for traffic offloading [40].

Multipath provides new opportunities for improving mobile

∗Co-primary authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MobiCom’16, October 03-07, 2016, New York City, NY, USA
c© 2016 ACM. ISBN 978-1-4503-4226-1/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2973750.2973769

application performance. The most widely used multipath
solution is Multipath TCP (MPTCP) [18], which allows
unmodified applications to transfer data over multipath. In the
research community, numerous studies have been conducted on
multipath [13, 17, 26, 25, 14, 28, 19, 39, 20]. Industry has also
been enthusiastically adopting multipath. Some built-in apps in
iOS, e.g., Siri, support multipath [2]. A Korean R&D Center plans
to commercialize “GiGA LTE”, which achieves Gbps throughput
on commodity smartphones over multipath [3].

Despite these efforts, there still remain numerous challenges
for effectively and efficiently using mobile multipath. To name
a few, first, originally designed for data center networking [34],
MPTCP may incur unexpected cross-layer interactions when used
on mobile devices [19, 17]. Second, as shown later, MPTCP
often incurs additional energy overhead, but may not always boost
(sometimes even worsen) application performance. Therefore,
applications should use multipath only when its benefit outweighs
its incurred overhead. Such decision logic is largely missing or
done naïvely in practice. Third, protocols such as MPTCP are
complex with numerous configurations, and it is unclear how to
tune them in an optimal way. Fourth, from a system architectural
perspective, MPTCP’s “everything in kernel” scheme may not be
suitable for mobile multipath to support a rich set of application-
specific policies.

In this paper, we conduct an in-depth measurement-driven study
of multipath over mobile devices, with the goal of providing key
knowledge and vital clues for evolving the mobile multipath design.
More specifically, we explore the following unanswered questions.

• How much performance benefits can MPTCP offer in real-
world settings? Differing from prior studies [13, 17, 26, 19]
performing in-lab controlled experiments, we launch an IRB-
approved user trial1 by collecting network traces from real users’
smartphones with MPTCP enabled. Meanwhile, we complement
the passive measurements with crowd-sourced active probing on
participants’ phones to capture application quality of experience
(QoE) over multipath under diverse network conditions. To our
knowledge, this is the most in-depth user study of mobile multipath
that focuses not only on multipath itself, but also on cross-
layer interactions. Leveraging the unique data we collected, we
analyzed MPTCP behaviors “in the wild”, including multipath

1This study was conducted entirely with data collected from active
and passive measurements at the University of Michigan and was
approved by the University of Michigan IRB (Institutional Review
Board) approval number HUM00111075.

http://dx.doi.org/10.1145/2973750.2973769

availability, path utilization, handshake latency, TCP throughput,
web page load time, video streaming bitrate. We also examined
multipath for voice-over-IP (VoIP) and instance messenger (IM)
whose multipath-friendliness have not been explored before. From
the user study, we found that multipath is widely available and it
incurs rather complex interactions with applications due to their
diverse traffic patterns and QoE metrics. MPTCP’s suboptimal
performance often stems from three factors: short flow duration,
excessive delay of subflows’ handshakes, and the scheduling
algorithms.

• What is the energy footprint of MPTCP on real users?
MPTCP incurs additional energy overhead [39, 26]. We analyzed
this overhead by applying previously validated single-path and
multipath radio energy models on real users’ network traffic.
We found that properly using multipath incurs reasonable and
manageable overhead. However, blindly applying MPTCP to
all traffic, as is usually done today, increases users’ average
radio energy by 1.08X. Our study shows that many optimizations
can be performed to reduce multipath’s energy footprint, such
as improving the scheduling algorithm for small transfers and
disabling multipath for applications such as VoIP and IM.

• How to improve the interplay between multipath and server
selection? We consider a classic problem of CDN server selection.
We found that under multipath, the state-of-the-art DNS-based
server selection often leads to suboptimal server selection. This
is attributed to the fact that CDNs’ DNS infrastructure is unaware
of other subflows available to the client. Compared to single-
path, under multipath, choosing different CDN servers incurs more
complex tradeoffs, and can lead to different network performance
depending on MPTCP’s scheduling algorithm, traffic patterns, and
path characteristics. We are the first to identify the problem of
CDN server selection under multipath. We demonstrate its real-
world importance by probing Alexa top-500 websites and provide
recommendations for multipath-aware server selection.

• How to improve the system architecture for mobile multipath?
The measurement results indicate that MPTCP suffers from a few
limitations: poor interaction with short/small flows, a lack of
infrastructural support for multipath policy, and MPTCP extension
often being blocked by middleboxes. We propose a flexible
software architecture of mobile multipath called MPFlex that
overcomes all the above limitations. MPFlex has several prominent
features. First, it performs transparent multiplexing for application
traffic over multipath. Our multiplexing scheme reduces the
number of handshakes from many (one per path) to zero, leading
to significant improvement of bandwidth utilization for small
flows. Second, MPFlex decouples the high-level scheduling
algorithm and the low-level OS protocol implementation. This
is realized by maintaining most of MPFlex’s logic in the user
space, which obtains lower-layer information (e.g., latency and
congestion window) from kernel through a unified API. Such a
framework dramatically simplifies the development, deployment,
and maintenance of multipath features. Third, MPFlex has
visibility of all traffic on an end host, and thus provides an
ideal vantage point for applying user-specified multipath policies.
Fourth, MPFlex is middlebox-friendly as it does not use any
Layer 3 or 4 protocol extensions which may be blocked by ISPs.
Compared to MPTCP, MPFlex reduces single file transfer time by
up to 49%, improves bundled short flows’ transfer time by up to
63%, and boosts real web page load speed by up to 20%, while
incurring negligible overhead. We also demonstrate MPFlex’s
capability of flexibly plugging-in new features such as buffer-aware
scheduling, smart packet reinjection, and per-application policies,

which can be implemented in less than 70 lines of user-level code.
Overall, we make key contributions to mobile multipath research

in two aspects: crowd-sourced measurement (§2 and §3) and
improved software architecture (§4 and §5). We discuss related
work in §6 before concluding the paper in §7.

2. MEASUREMENT METHODOLOGY
We describe our IRB-approved user trial to reveal characteristics

of mobile multipath traffic “in the wild”.

2.1 Multipath Configuration For User Trial
We consider a common usage scenario where WiFi and cellular

are used at the same time on a smartphone. To realize this,
we used MPTCP, the most popular multipath solution with off-
the-shelf Linux kernel implementation [27]. We port MPTCP
v0.86 to Android 4.4.4 with CyanogenMod 11 ROM on Samsung
Galaxy S3 (SGS3) smartphones. MPTCP enables all applications
to transparently utilize multipath. However, one challenge is most
today’s servers do not yet support MPTCP. We thus set up a
multipath proxy running MPTCP v0.90 on a server with 64-core
2.6GHz CPU, 128GB memory, and 64-bit Ubuntu 14.04 installed.
To redirect traffic to the MPTCP proxy, we transparently tunnel all
user traffic using Socks5 proxying (using shadowsocks [6]). The
Socks5 protocol [24] only adds a very small header to each packet
so its impact on the traffic pattern is negligible. We also verified
Socks5 incurs very small runtime overhead.

We recruited 15 students studying at the University of Michigan
and gave each a SGS3 smartphone with unlimited cellular data plan
of a commercial U.S. cellular carrier. The participants were asked
to use the phone normally with WiFi and cellular enabled. We
expect multipath is available at least on campus, at participants’
home, and in places with free public WiFi.

The proxy is connected to the University of Michigan campus
network. This makes the latency of the WiFi path small when
participants use the phones on campus. In our data, only 14% of the
traffic belong to this case. We separate out such traffic in some of
our analysis. We also systematically study the impact of the proxy
location in §5.5.

2.2 User Trial Data Collection
We built a custom data collector running on users’ devices. It

transparently performs three tasks: passive measurements, active
measurements, and data upload. The collector incurs small
overhead without noticeable degradation of users’ experience,
based on our lab testing.

Passive Measurements. The data collector passively collects
network packet traces (only TCP/IP headers) via a modified
tcpdump on users’ phones (we did not capture traces at the proxy
because for some analysis such as energy, we must use client-
side traces). Also, the collector re-configures MPTCP settings of
its device every 24 hours by randomly selecting one of the three
configurations: (1) MPTCP is disabled, (2) MPTCP is enabled with
WiFi selected as the primary path, and (3) MPTCP is enabled with
cellular as the primary path. Doing so allows us to statistically
compare MPTCP and SPTCP (single-path TCP), as well as to study
the impact of the primary path selection.

Active Measurements. To complement passive measurements,
the collector periodically (every hour) runs the following active
measurements back-to-back in background: (1) stream a 2-min
YouTube video; (2) download a file over single- and multipath;
(3) load five popular webpages using different configurations of
SPTCP and MPTCP. We detail the measurement methodologies
in §3.2. The collector records key performance metrics such as

Table 1: Summary of the findings and proposed improvement

Measurement Findings Proposed Improvement
Inefficiencies for small flows (§3.1): (1) low path utilization for the secondary
path, (2) low MPTCP throughput, (3) excessive energy consumption.

Multiplexing and 0-RTT multipath connection establishment
(§4.2). Flexible scheduling algorithm design (§4.3).

Performance and resource impact of MPTCP on different applications differs.
(§3.1, §3.2, and §3.3) A framework supporting multipath policy (§4.2).
SPTCP may outperform MPTCP when network conditions of two paths
differ, caused by receiver-side out-of-order (§3.2). Dynamic and configurable packet reinjection (§4.3).
Sub-optimal CDN server selection for MPTCP connections (§3.4). Multipath-aware CDN selection (§3.4).

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Data(Primary Path) / Total Data

WiFi primary
WiFi primary (excl. Uni. WiFi)

Cell primary

Figure 1: Distributions of the fractions
of payload transmitted over the primary
subflow, across all MPTCP flows.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100 1000 10000 100000 1e+06

C
D

F

Flow Size (B)

Uplink
Downlink

Figure 2: Distributions of DL/UL bytes in a
SPTCP/MPTCP flow.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10 100 1000 10000 100000

C
D

F

Delay (ms)

WiFi
WiFi (excl. Uni. WiFi)

Cell

Figure 3: Distributions of the handshake
delays of MPTCP secondary subflow.

Table 2: Statistics of the user study dataset.

Passive Measurements Active Measurements

Apps All TCP
Connections∗

MPTCP
Conns.

Page
loads

Video
plays

File
DLs

122 1516794 441422 24668 3071 4371
∗ We use “connection” or “flow” interchangeably when
referring to a SPTCP/MPTCP connection, and use “subflow”
for MPTCP subflow.

video QoE (i.e., video quality and rebuffering events) and page
load time, which are difficult to obtain from passive measurements.
Note the active measurements are only conducted when the screen
is off, the battery life permits, and the phone is idle, so it does not
impact user experience.

Data Upload. The collected data for both passive and active
measurements is uploaded to our measurement server over every
day at late night when the phone is charging. We collected the data
for more than 4 months (33 weeks) from October 25, 2015 from
the 15 participants, with general statistics shown in Table 2.

Controlled In-lab Experiments. Besides the user trial, we
also conduct in-lab experiments, which serve two purposes:
validating our findings/systems, and covering experiments that are
too difficult to conduct in the user trial. Unless otherwise specified,
we used a Nexus 5 phone with Android 4.4.4 and MPTCP v0.89.5
for our in-lab experiments conducted in §3.3 and §3.4.

3. MEASUREMENT RESULTS
We now present our measurement results summarized in Table 1

for both user study and controlled measurement.

3.1 Passive Measurements of User Study
Multipath availability. The first question to answer is, how

often is multipath available? During the data collection period,
for 82% and 40% of the time, users have WiFi and cellular

connectivity, respectively. Given cellular (WiFi) path is available,
for 73% (42%) of the time, users can leverage both paths. Overall,
the results indicate that multipath is common on mobile devices.

Path Utilization. When multipath is available, how effectively
are the two paths utilized? Figure 1 plots the distributions of
the fraction of payload (both uplink and downlink) transmitted
over the primary subflow, across all MPTCP connections. When
WiFi is used as the primary path, more than 89% of the flows
are fully delivered over WiFi. This is attributed to two reasons.
First, the vast majority of the flows have small sizes. As shown
in Figure 2, the 75% percentiles of uplink and downlink bytes
within a TCP flow (single- or multipath) are only 1.3KB and
6.7KB, respectively. Second, MPTCP by default performs subflow
handshakes sequentially i.e., handshake of the secondary subflow
occurs after the completion of the handshake of the primary
subflow. As a result, for short WiFi-primary flows, often the user
data can be fully delivered over WiFi before the LTE subflow is
established.

Figure 3 plots distributions of the handshake delay of the
secondary subflows. The median handshake delays of cellular and
WiFi secondary subflows are 133ms and 63ms, respectively. As a
result, when LTE becomes the primary path, because the WiFi path
is established quicker (compared to the LTE path establishment
when WiFi is the primary path), there are more opportunities for
WiFi to be utilized, as shown in Figure 1. Excluding flows whose
primary paths connect to the university WiFi (they account for
only 11% of the total flows) slightly shifts the low-end of the
distribution.

On the other hand, as the flow size increases, the fraction of
primary-path bytes decreases. This is because large flows’ longer
duration allows both paths to be established and transfer non-trivial
amount of data. For all MPTCP flows, 69% of the bytes are
transferred over WiFi and 31% are over cellular. A large fraction
of these bytes are contributed by a small fraction of large flows due
to the heavy-tail distribution of flow sizes [30].

Also note MPTCP can be configured to perform both handshakes
simultaneously. This can improve the overall throughput due to
shorter handshake time, but it incurs energy overhead, and may
bring limited improvement when one path has long latency. We
propose a scheme in §4 that boosts the multipath performance by
reducing the number of handshakes from many to zero.

MPTCP Performance. How much performance benefits does
MPTCP provide? Here we focus on a simple metric – the transport-
layer throughput, and study application QoE later in §3.2 and §3.3.
Figure 4 studies five flow size groups within each four schemes
are compared: SPTCP over cellular, SPTCP over WiFi, cellular-
primary MPTCP, and WiFi-primary MPTCP. We normalize the
measured throughput at a per-group basis with the maximum
throughput in each group (normalized to 1) annotated. Also note
for Figure 4, we ignore all flows with inter-packet-arrival time
greater than 1s to ensure the flow is not likely to be throttled by
application.

We make two observations from Figure 4. First, for small flows
(less than 100KB), SPTCP over WiFi provides good throughput
that usually outperforms MPTCP. This is because latency plays a
more important role in determining small flows’ performance than
bandwidth does, and in our dataset WiFi usually has a smaller
RTT than cellular so transferring the entire flow over WiFi may
provide better performance. A question one may ask is, given
MPTCP’s scheduler selection the path with the smallest RTT, why
does MPTCP not perform at least as well as SPTCP? The reason is,
the above path selection only happens when both paths have spaces
in congestion window (cwnd). If, for example, WiFi’s cwnd is full
but LTE has empty cwnd space, the data will still be transferred
over LTE even if its latency is higher. This explains why MPTCP
may incur worse performance than SPTCP does. We will improve
this in §4.

The second observation from Figure 4 relates to large file
download where throughput is more important than latency. In this
case MPTCP always achieves higher throughput than SPTCP does.
Here we see the selection of the primary path still matters even
for large files. WiFi-primary MPTCP outperforms cellular-primary
because, as mentioned before, the long subflow handshake time of
LTE prolongs the overall download time. Also note that for both
MPTCP and SPTCP, flows with larger sizes achieve statistically
higher throughput, as the links are more likely to be saturated for
larger flows.

The performance of both SPTCP and MPTCP is also affected
by the latency of the corresponding path(s). In our dataset, WiFi
usually has a smaller RTT than cellular (even when we exclude the
university WiFi traffic that naturally has low WiFi RTT between the
client and the proxy). This aligns with recent measurement studies
of WiFi and cellular performance [17, 36]. We will systematically
study the performance impact of proxy location (and thus the
latecny) in §5.5.

Radio Energy is the energy consumed by the radio interface.
It accounts for a significant fraction of the overall mobile device
energy consumption in particular for cellular (1/3 to 1/2 for 3G [32]
and at least 50% for LTE [26]). Multipath impacts the radio energy
consumption in two ways. First, in many cases, it obviously incurs
additional energy footprint by using multiple interfaces. Second,
if properly leveraged, it may reduce the energy consumption by
shortening the file transfer time. In reality, how energy (in)efficient
is MPTCP compared to SPTCP? To answer this, we feed the
collected trace using the LTE/WiFi radio energy models developed
by Nika et al. [26] for SGS3, and compute the radio energy
consumption. Recall that in the user study, for each user, the data
collector re-configures its multipath setting every 24 hours. We

found that for MPTCP configurations, their average radio power
is 2.08 times of that for the SPTCP configuration. Based on this,
we can roughly estimate the impact of multipath on the overall
device battery drain. Assuming for single-path, the radio power
(either WiFi or cellular) accounts for 25% of the overall device
energy consumption [12], enabling system-wide MPTCP shortens
the battery life by 21%. We admit though this is a coarse-grained
estimation, and it is an upper bound that does not consider the
reduced radio energy due to MPTCP’s shorter transfer time. We
believe this overhead is not unreasonably high, and expect it to be
further reduced by using energy-aware policies described later.

Mobile Apps over MPTCP. We pick the five most-heavily used
apps by the 15 users over MPTCP to study the resource impact of
the cellular subflow. For each app, we plot the fraction of cellular
bytes and cellular radio energy as shown in Figure 5. For four
out of the five apps, less than 10% of the bytes are delivered over
cellular (due to the small flow sizes as explained earlier), while
the cellular energy accounts for more than 50% of the total radio
energy consumption. For most small flows using WiFi-primary
MPTCP, additional energy penalty comes from the fact that even
if LTE carries no user payload, the LTE interface still needs to
be activated for handshake. This occurs in 91% of the flows with
sizes less than 100KB. For these flows, 63% of the radio energy is
consumed by cellular that does not deliver any user payload. The
energy efficiency increases with larger flows, e.g., for YouTube.

Overall, our findings suggest that although multipath is energy-
wise expensive, by strategically leveraging it in an energy-aware
manner, the energy overhead can be reasonable and manageable.
Some recent work such as eMPTCP [39] has made a first
step toward this goal. We believe that besides improving
the scheduler [39], another important premise for energy-aware
multipath is to have per-application policy, as different apps incur
different cost-benefit tradeoffs when using multipath. We study this
in more depth in §3.2 and §3.3, and propose a system to allow easy
deployment of user policies (§4).

3.2 Active Measurements of User Study
We now shift our focus to the crowd-sourced active measurement

results. Complementing the passive measurement, active
measurements provide insights of how multipath impacts the
application performance.

File download. We collected 4,371 measurements of
downloading a 10MB file using single- and multipath. MPTCP
improves the file download performance by 34% in average. Note
that the MPTCP throughput is smaller than the sum of both paths’
throughput. We found this is because MPTCP’s short flow duration
makes the congestion window not fully expanded, compared to
SPTCP flows.

We next study the MPTCP performance under diverse wireless
link qualities. Figure 6 plots the ratio between throughput of
MPTCP and SPTCP (WiFi-primary), whose measurements were
conducted back-to-back, under three ranges of LTE signal strength.
Ideally, MPTCP should be at least as good as SPTCP. Surprisingly,
when LTE signal strength is poor, for 20% of downloads, SPTCP
provides higher throughput than MPTCP. We found this is due to
the limited receive window size. Compared to SPTCP, MPTCP
requires a larger (connection-level) receive window buffer to
absorb out-of-order arrival from multiple paths in particular when
the paths have diverse qualities. The default upper limit of the
receive window is set too small on Android. We confirmed
this through controlled experiments (good WiFi quality, -116dbm
LTE signal strength), and observed a strong correlation (Pearson
coefficient of 0.79) between MPTCP instantaneous throughput

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

0-
1KB

1KB-
10KB

10KB-
100KB

100KB-
1MB

1MB-
10MB

T
hr

ou
hg

pu
t (

N
or

m
al

iz
ed

)

Flow Size (Bursty Transfers)

27
Kbps

144Kbps 486Kbps 4Mbps 12Mbps

Cell Only WiFi Only MPTCP Cell MPTCP WiFi

Figure 4: Average TCP throughput for different flow size groups.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

Youtube
Chrome

Google Play

Hangouts
Google+

N
or

m
al

iz
ed

Cell Energy / Total App Energy
Cell Data / Total App Data

Figure 5: The fraction of data delivered by cellular versus the
fraction of energy consumed by cellular for popular apps.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10

C
D

F

Thr(MPTCPWiFi Primary) / Thr(SPTCPWiFi)

[-95,-80)dbm
[-105,-95)dbm

[-115,-105)dbm

Figure 6: Throughput ratio of MPTCP
(WiFi primary) to SPTCP over WiFi for
4,371 back-to-back throughput measure-
ments for different LTE signal strength
levels.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

-500 0 500 1000 1500 2000

C
D

F

Avg. Bitrate (MPTCP-SPTCP) (Kbps)

WiFi primary
Cell primary

Figure 7: Crowd-sourced video stream-
ing measurements (1,500 measure-
ments in total).

��

��

��

��

�������
����
���

�������
����
����

�����
����
�����

��

��

��

��

�
�
��
�
�
�
�

�
�
�
�

�
�
��
�
�
�
�
��
��

�

��������������
�����������

����������������
�������������

Figure 8: QoE and power con-
sumption of VoIP under different
SPTCP/MPTCP settings.

and available receive window space, indicating that decrease in
available receiver window causes the sender to slow down the rate
on both paths. When we increase the upper limit of the receive
window from the default value (1MB) by 1% (10KB), we observe
12% reduction in download time.

Web browsing. We obtained 24K measurements of web page
loadings, across five popular sites. We found MPTCP provides
small improvement of page load time compared to the best SPTCP
result (improvement ranging from 1% to 7%). Inline with prior in-
lab measurement on laptops [19], it is attributed to HTTP’s traffic
pattern of multiple short-lived connections that leave small chances
for the secondary subflow to be used. This problem can potentially
be mitigated by HTTP/2 that uses multiplexing. But using an
HTTP/2 proxy incurs other limitations as to be discussed in §4
where we describe our transport-layer multiplexing proposal over
multipath.

Video Streaming. We conducted about 3,000 crowd-sourced
measurements of capacity-based adaptive (CBA) video streaming,
by playing a 2:15 YouTube video with four available bitrates: 240p,
360p, 480p, and 720p. The CBA [35] selects the bitrate based
on the current capacity (i.e., download time of recently fetched
chunks). Figure 7 measures the difference of the average bitrate
between MPTCP and SPTCP. For about 55% of all measurements,
MPTCP provides no improvement of the video quality, because
either the whole video is already being played at the highest
bitrate, or more often (64%), the additional throughput provided
by MPTCP is not enough for switching to a higher bitrate.
Nevertheless, we do observe less frequent rebuffering events when
MPTCP is used, compared to SPTCP: the average number of

rebuffering is 0.24, 0.29, 0.21, and 0.18 for SPTCP over WiFi,
SPTCP over cellular, WiFi-primary MPTCP, and cellular-primary
MPTCP, respectively. This implies MPTCP can provide more
robustness for video streaming.

3.3 Other Applications over MPTCP:
Voice-over-IP and Instant Messengers

We now study two other important applications (voice-over-
IP and instant messengers) in controlled experiments due to the
difficulty of capturing their QoE in the user study.

Voice-over-IP (VoIP) is a representative real-time application
requiring low latency and small jitter (variation of latency). We
study two popular VoIP apps: Skype and Google Hangouts using
the University of Michigan campus WiFi and a commercial LTE
carrier. The WiFi has smaller RTT than LTE2 (20ms vs. 60ms)
between two clients in our lab: an Ethernet-connected desktop and
a Google Nexus 5 smartphone. For both applications, we play
a 2-min pre-recorded audio from the desktop client for 10 times
and record the received audio at the phone side to compute the
QoE using PESQ MOS [4], which compares the original and the
received VoIP audio. PESQ MOS is a number between 1.0 and 4.5,
with 4.5 representing the best quality. We block UDP to force the
app to use TCP, and will consider UDP shortly.

Figure 8 (Y1 Axis) plots the VoIP QoE using SPTCP (over LTE
and WiFi) and WiFi-primary MPTCP with different schedulers
(RTT for minimum-RTT and RR for round robin). We found

2A recent measurement study [17] reports that WiFi latency
outperforms LTE 80% of times and the median latency difference
between WiFi and LTE is 30-40ms.

that compared to SPTCP, MPTCP with the min-RTT scheduler
actually worsens the VoIP QoE. This is due to the increased
latency variation, from 24ms for LTE and 12ms for WiFi to
97ms for MPTCP, and additional receiver-side buffering delay of
out-of-order packets, from 8ms for SPTCP to 82ms for MPTCP.
Both factors contribute to the significant increase of application-
observed jitter that lowers the PESQ score. We also increased the
LTE latency to 100ms and observed qualitatively similar results.
Overall, our findings suggest that real-time applications requiring
low jitter may not benefit from MPTCP, in particular when the
two paths have diverse latency. To validate this under UDP, we
write a custom program that sends a 100-byte UDP datagram
every 10ms over single path or multipath with round robin, and
measure the jitter and packet out-of-order at the receiver side. We
observed when multipath is used, the variation of UDP one-way
delay increases by up to 50% compared to SPTCP, and about 50%
of the UDP datagrams are delivered out-of-order. Note although
UDP itself does not buffer out-of-order datagrams, the application
may either buffer or drop them, both resulting in degraded QoE.

Meanwhile, we employ the model used in §3.1 to compute
the radio energy consumption for each scheme in Figure 8. As
shown (Y2 Axis), compared to SPTCP over WiFi, MPTCP incurs
additional radio power of 125% to 177% for VoIP, making it even
more undesirable to use MPTCP.

Instance Messenger (IM). We study three popular IM apps:
Facebook, Google Hangout, and Whatsapp. We test them by
sending a message every 30 seconds from one phone to another
over SPTCP (WiFi only) and WiFi-primary MPTCP with the min-
RTT scheduler. We measure the message delivery delay, the
key QoE metric, at sender. We also compute the radio energy
consumption. We found MPTCP increases the message delivery
delay by 5% to 36% compared to SPTCP. This is due to the
transmission of small data on the higher-latency LTE subflow
(explained in §3.1). MPTCP incurs additional radio energy
consumption of 18% to 72% for the message delivery. Overall, we
found using MPTCP for IM incurs both performance and energy
penalty, and thus should be avoided.

Middlebox Friendliness. We also investigate whether the TCP
option used by MPTCP can pass middleboxes that are prevalent in
cellular networks [44, 21]. We found that middleboxes of at least
two commercial cellular carriers in the U.S. strip TCP options from
TCP headers. This motivates multipath solutions that do not require
any TCP/IP extensions.

3.4 Interplay between Multipath and CDN
In this section, we consider a classic problem of server selection

in the context of multipath. Due to the wide use of Content Delivery
Network (CDN), the same content (e.g., a web page or a video
chunk) is often replicated across servers at multiple geographically
distributed locations. A user request will be directed to a CDN
location, which is usually close to the client, that provides the
best user experience. Most CDNs achieve this by leveraging local
DNS (LDNS) server with CDN server selection algorithms based
on information such as geo-location databases [8].

Measurement for CDN over Multipath. DNS-based server
selection can still work in multipath. But here we have a new issue
that has not been explored by the literature to our knowledge. Since
the DNS request is sent by only one path’s (usually the default
path’s) LDNS server, the CDN is not aware of the existence of
other paths. Therefore, although the selected server provides good
performance for one path, it may be sub-optimal for other paths
and therefore for MPTCP. We conducted an emulated experiment
to illustrate this. In Figure 9, let Server 1 and 2 be the optimal

a

b

c

d

Cellular Gateway

Wi-Fi Gateway

CDN Server 1
Selected
based on

cellular path

CDN Server 2
Selected
based on

Wi-Fi path

Path a b c d
6.0 6.0 3.0 3.0

80 80 + x 60 + x 60

BW (Mbps)

RTT (ms)

Figure 9: Example: CDN sever selection over multipath.

0

0.2

0.4

0.6

0.8

1.0

16KB 64KB 256KB 5MB 10MB 50MB

D
ow

nl
oa

d
T

im
e

(N
or

m
al

iz
ed

)

61
m

s

10
2m

s

67
8m

s

6.
4s 12

.1
s

58
.1

s

36
7m

s

44
8m

s

83
4m

s

5.
8s 11

.2
s

51
.9

s

26
6m

s

34
6m

s 81
0m

s

7.
3s

12
.0

s

53
.0

s

Server 1: WiFi: 10ms, LTE: 80ms
Server 1: WiFi: 90ms, LTE: 80ms

Server 2: WiFi: 60ms, LTE: 110ms

Figure 10: File download time from different CDN servers,
averaged over 10 runs. Shaded blue is a “what-if” scenario.

CDN servers selected based on the cellular and the WiFi path,
respectively. If we use Server 1 (Server 2), then MPTCP will
send traffic over path a and c (b and d) for cellular and WiFi,
respectively. Figure 9 also lists the characteristics of the four paths.
We assume that a and b (also c and d) have the same bandwidth
since they share the same “last-mile” that is usually the bandwidth
bottleneck. But when WiFi (cellular) accesses the server selected
by cellular (WiFi), a latency penalty x=30ms caused by additional
queuing and propagation delay will be added (on path b and c).

We use MPTCP with the min-RTT scheduler to download files
with various sizes from both servers. MPTCP uses path a and c
for Server 1, and b and d for Server 2. We discuss two scenarios:
downloading small files and large files.

Download small files. As shown on the left side of Figure 10,
when the files are small, CDN Server 2 gives shorter download
time than Server 1 does. This is because small files’ download
time is largely determined by latency. Path d offers the smallest
latency (60ms) that helps reduce the file download time. To validate
this, we reduce path c’s RTT from 90ms to 10ms. Then Server 1
immediately outperforms Server 2 as indicated by the shaded blue
bar.

Download large files. For large file download, usually both
paths are saturated so the aggregated bandwidth is more important
than the latency. In our case, although both servers have the
same aggregated bandwidth (a + c = b + d), Server 1 still
slightly outperforms Server 2, as illustrated on the right side of
Figure 10. This is explained as follows. The aggregated bandwidth
is dominated by LTE. The small LTE RTT offered by path a
(compared to path b) shortens the TCP congestion control loop.
This helps LTE recover from (real or more often, spurious [22])

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

RTT Difference (ms)

| a - b |
| c - d |

Figure 11: Distributions of path latency differences for 190 out of
the Alexa top-500 websites. Refer to Figure 9 for the four paths.

losses more quickly, eventually leading to better LTE bandwidth
utilization.

The right side of Figure 10 also illustrates an interesting
phenomenon when we reduce path c’s RTT from 90ms to 10ms
for large file download. Doing so actually increases the overall
download time non-trivially. In other words, improving a subflow
in MPTCP may worsen the overall performance! We found this
is attributed to the very design of MPTCP’s RTT-aware scheduler.
The very small RTT on a low-bandwidth path (in our case, WiFi)
causes MPTCP to distribute more data onto that path. This can
happen, for example, at the very beginning of a file transfer when
both paths have empty spaces in their cwnd. As a result, less data is
transferred over the high-bandwidth (LTE) path, leading to longer
file transfer time.

The above emulation implies that choosing different CDN
servers can lead to different network performance, depending on
(1) MPTCP’s scheduling algorithm, (2) traffic patterns, and most
importantly, (3) characteristics of diverse paths. Within them, (1)
and (2) are explained in the above emulation. We conduct another
measurement to demonstrate the prevalence of (3), in order to show
this is a real-world problem. For each of the Alexa top-500 U.S.
websites, our phone sends DNS requests for its landing page over
LTE and WiFi, and obtains the corresponding IP addresses of the
web servers as IPLTE and IPWiFi, respectively. We found for 190
(38%) out of the 500 websites, their IPLTE and IPWiFi are different.
They essentially correspond to CDN Server 1 and 2 in Figure 9,
respectively. We then measure the RTT difference of path a and b,
as well as the RTT difference of path c and d for each of these 190
sites.

The results are plotted in Figure 11. As can be seen, the RTT
difference is more than 45ms for 20% of the websites, and the
difference can be as high as 136ms and 224ms for cellular and
WiFi, respectively. Recall that Figure 9 assumes the RTT difference
is x=30ms. Note the RTT difference measured in Figure 11 is much
larger than the RTT variation on the same path. Also note for some
of the 190 websites, the servers associated with IPLTE and IPWiFi

may be co-located for load-balancing purpose, and it is not easy
to identify such websites. Therefore, Figure 11 is a conservative
estimation of the path diversity.

Recommendations. We propose improvements to make CDN
server selection multipath-aware. First, we can add protocol
support allowing the CDN infrastructure to learn that a client
has multiple network paths, by, for example, adding a backward-
compatible extension to DNS protocol. The second and more
important question is how to select the optimal server based on
characteristics of all paths. Our previous discussion already sheds
light on some high-level ideas. For small transfers, the goal is to
minimize the delay. Therefore, among servers that are latency-

Client Host

The
Internet

MPFLEX Proxy

Multiplexed
Connections (MC)

App Policies

M
PFLEX

M
P
FL
EX

Figure 12: The MPFlex architecture.

wise closest to each of the client’s IP addresses, the CDN can
greedily pick the one with the minimum latency as long as that
path has reasonable quality. For large data transfers, the goal is
to maximize the overall bandwidth. If selecting different servers
result in similar overall bandwidth, a possible strategy is to select
server based on weighted sum for all paths’ bandwidth (a path’s
weight is negatively correlated with its latency). Doing so shortens
TCP’s control loop and leads to higher throughput. We leave
detailed design and implementation of a multipath-aware server
selection scheme as our future work.

4. MPFLEX: A FLEXIBLE ARCHITEC-
TURE FOR MOBILE MULTIPATH

Our measurements in §3 reveal several limitations of MPTCP:
its interplay with short-lived flows can be further improved;
it is important but currently difficult to incorporate application
policies into MPTCP; the MPTCP extension is often blocked
by middleboxes; MPTCP apparently does not work with other
protocols such as UDP; MPTCP also incurs unexpected interaction
with CDN.

We realize that many of these challenges stem from the
origin of MPTCP, which was originally developed for improving
the performance and robustness for datacenter networks [34].
Datacenters are “closed” ecosystems where latency is small,
long-lived flows are common for intra-datacenter traffic, and
administrators have full control over all applications and network
elements. The mobile ecosystem, however, is drastically different,
making naïvely porting MPTCP to mobile devices suboptimal.

4.1 The MPFLEX Architecture
Motivated by the above, we attempt to address an important

research question: what is a better system architecture for mobile
multipath? To this end, we designed, implemented, and evaluated a
flexible software architecture of mobile multipath called MPFlex.
As illustrated in Figure 12, MPFlex is a proxy-based solution. It
is transparent to both client applications and servers, with several
prominent features.

• MPFlex employs multiplexing to consolidate multiple (poten-
tially short-lived) connections into two long-lived connections: one
over WiFi and the other over cellular. The Multiplexed Connections
(MC), shown in Figure 12, are persistent and are by default shared
by all applications. They cover the “last-mile” links that are usually
the bottleneck. This design overcomes MPTCP’s key limitation
when dealing with short-lived flows due to following reasons.

First, in MPFlex, since MCs are pre-established, an application
connection (shown in dashed lines) only needs one handshake
over usually the fastest path to inform the proxy to create the
corresponding connection with the remote server, instead of

Table 3: Comparison of three multipath proxy solutions.

Multipath Multiplexing Good Short Flow Protocol User or Transparent Middlebox- Application
Solution Performance Applicability Kernel To SSL/TLS friendly Policies

MPTCP Proxy No No TCP only Mostly kernel Yes No No
HTTP/2 Proxy + MPTCP Yes No HTTP only Kernel + user No No No
MPFlex Yes Yes Any protocol Mostly user Yes Yes Yes

handshakes for every subflow in MPTCP. This allows all subflows
to be usable sooner, thus improving the bandwidth utilization. This
handshake can be eliminated by applying the idea of TCP fast
open [33], resulting in zero-RTT handshake over multipath between
the device and the proxy.

The second benefit of multiplexing is, as an MC is persistent
and long-lived, it can preserve the congestion window. This avoids
the bandwidth probing (e.g., TCP slow start). Note this advantage
also exists in single-path, but it is more prominent in multipath
by improving all subflows. When a long-lived MC has no data to
transmit or receive, the radio interface switches to the IDLE state
to save energy, while maintaining the TCP state.

Multiplexing has been employed by other application protocols
such as SPDY [42], HTTP/2 [10], and QUIC [5]. MPFlex instead
performs multiplexing at the transport layer while being transparent
to upper-layer protocols. In particular, unlike a SPDY or HTTP/2
proxy that needs to be man-in-the-middle for SSL/TLS sessions
(thus breaking the end-to-end security), MPFlex can transparently
work with SSL/TLS.

• MPFlex decouples the high-level scheduling algorithm and
the low-level OS protocol implementation. This is realized by
implementing most of MPFlex’s logic in the user space (unlike
MPTCP’s “all-in-kernel” approach), which obtains lower-layer
information such as latency and congestion window size from
kernel through a unified API. This dramatically simplifies the
development and deployment of multipath features (§4.3).

• MPFlex is a flexible framework. Unlike MPTCP, MPFlex
is provided as an OS service and can transparently provide
multipath support for non-TCP protocols. An MC can be
realized by a wide range of transport protocols such as TCP,
reliable UDP, and SCTP [38], enabling continuous transport-layer
innovation. Both features are realized through a pair of MPFlex
modules deployed on both the client and the proxy. They not
only perform (de)multiplexing, but also transparently intercept
application packets (at the client), and serve as end points of MCs.

• MPFlex has visibility of all client traffic, making it an
ideal vantage point for applying user-specified multipath policy
based on application usage, performance, cellular data usage, and
energy. Realizing such a policy framework by MPTCP itself is
difficult unless a centralized traffic manager similar to MPFlex is
introduced.

• MPFlex is middlebox-friendly. Since the multiplexing protocol
runs above the transport layer, it does not require any network-layer
or transport-layer extensions such as the MPTCP extension [18]
that might not be recognized by today’s firewalls and middleboxes.
Table 3 compares three multipath proxy solutions: MPTCP proxy,
MPFlex, and HTTP/2 proxy with MPTCP.

4.2 MPFLEX Design and Implementation
We implement MPFlex as follows. Multiplexing is performed

in a way similar to that in SPDY and HTTP/2, but across TCP
connections instead of HTTP transactions (an approach similar
to [31]). On the client side, uplink TCP data from applications
is segmented and encapsulated into messages, which are then

OS Protocol Stack

Protocol Info Reader (kernel module)

Schedulers
Multipath
Manager

MP Policy
Engine

MUX and
DEMUX

User Interface

SchedulersSchedulers

Standard Socket API

K
er
ne
l

U
se
r

Figure 13: Components within an MPFlex endpoint.

distributed onto MCs. Each message has a small header containing
its application connection ID, length, and message sequence
number. Upon the reception of a message, the proxy performs
demultiplexing by extracting the data and forwarding it to the
remote server based on the connection ID. Downlink traffic is
handled similarly but in the reverse direction. TCP SYN, FIN,
and RST are also encapsulated into control messages to realize
application connection management.

Based on the above basic multiplexing infrastructure, we
developed MPFlex by adding three critical new components shown
in Figure 13: multipath manager, schedulers, and policy engine.
We currently implemented two types of MC: TCP and UDP
(for multipath UDP). We only describe TCP here due to space
constraints.

MPFlex is implemented in C++ with about 5K LoC on Nexus 5
with Android 4.4.4 as the client host and a commodity server as a
MPFlex proxy. On the client side, we implemented a lightweight
Linux kernel module using netfilter hooks to intercept
uplink TCP packets and redirect them to the MPFlex userspace
program, which manages MCs, application connections, and makes
scheduling decision for uplink traffic. The MPFlex proxy performs
similar operations for downlink traffic. Our implementation allows
MPFlex to transparently provide multiplexing over multipath, so
all applications can immediately benefit from MPFlex without
modification.

Multipath Manager provides basic multipath support. At
client host, MPFlex configures local routing tables, and sets
up two regular TCP connections to the MPFlex proxy over the
WiFi and cellular interface, respectively, as MCs. An MC is
long-lived, unless its network interface is down. In that case
multipath multiplexing falls back to single-path. The MC is
reestablished when its interface becomes alive. Extending MPFlex
for supporting more than two interfaces is also straightforward.

When an application connection issues a TCP SYN handshake,
the client-side MPFlex module intercepts it, and sends a control
message, containing the server IP and port, to the proxy-side
MPFlex module over one MC selected by the scheduler (described
below). The proxy then establishes the connection to the remote
server. This differs from MPTCP’s connection establishment where
every path needs to perform its own handshake. A similar situation
happens when closing the connection. The handshake message
is treated as transport-layer payload, not bound to a particular

Table 4: Implementation overhead of different MPFlex plug-ins.

Plug-in for MPFlex User-level LoC in C++
min-RTT Scheduler of MPTCP 70
Round-robin Scheduler of MPTCP 15
Buffer-aware Scheduler (§4.3, §5.4) 30
Smart reinjection (§4.3, §5.4) 60
Realization of a simple policy (§5.3) 20

path. Therefore, if WiFi is congested while LTE is active but less
loaded, the handshake is performed over LTE. Also as mentioned
before, MPFlex allows the handshake to be piggybacked with the
uplink user data (of up to a threshold of n bytes) to achieve 0-RTT
handshake over multipath.

Schedulers determine how to distribute data across multiple
paths (MC in MPFlex). A key architectural design decision
is to realize the scheduling logic at user level as much as
possible. Toward this goal, we implement a small Linux kernel
module that exposes a few in-kernel metrics such as RTT, TCP
congestion window size, and TCP bytes-in-flight to the user space.
The kernel module has very simple logic. It does not modify
any state in the kernel, and remains unchanged once deployed
in a specific kernel. We then build the actual schedulers in
user space by utilizing the above kernel information API. Our
design dramatically simplifies the scheduler implementation by
decoupling the high-level scheduling algorithm and the low-level
OS protocol implementation. In contrast, in MPTCP, they are
tightly coupled, and upgrading MPTCP requires upgrading the
entire kernel (tens of MB download). We have replicated two
MPTCP schedulers: minimum RTT and round robin in MPFlex.
Other schedulers (including those for non-TCP protocols) can be
developed and plugged into MPFlex. To demonstrate the flexibility
of MPFlex, we also designed two new schedulers to be described
in details in §4.3.

Policy Engine provides a higher-level abstraction of determining
when and how to use multipath according to user-defined policies.
In our current implementation, a policy is an ordered list of
rules specifying what kind of traffic should use which multipath
scheme, such as “multipath with minRTT scheduler is only used by
browsers and YouTube, and single-path is used in all other cases”.
User-defined policies are applied at a per-process basis. For a given
traffic flow, MPFlex finds its corresponding process name using the
methodology described in previous work [32]. For uplink traffic,
the client-side MPFlex module can execute the policy by itself.
For downlink traffic, instead of letting the proxy perform traffic
classification, the client directly instructs the proxy on how to apply
multipath by attaching a one-byte label to an uplink message. The
proxy then applies the policy to the downlink traffic according to
the label.

The policy engine can be extended to consider cellular billing
(e.g., disable multipath when the monthly data plan has less
than 100MB left), energy (e.g., disable multipath when the
battery is low), and performance (e.g., for YouTube, use cellular
as the secondary path only when WiFi cannot provide 1Mbps
throughput). We plan to realize such metrics in our future work.

4.3 MPFLEX Use Cases
Besides the performance benefit, a major advantage of MPFlex

is flexibility. Developers can easily design multipath schedulers
or realize custom policies at user-level by using a common API
to get the kernel information. Such flexibility is demonstrated in
Table 4, which summarizes the implementation efforts we made for
different plug-and-play components to be discussed and evaluated

in §5. Here we describe two examples in detail.
Buffer-aware scheduling. Recall in §3.1 that for small flows,

MPTCP may perform worse than SPTCP in the following scenario.
Suppose WiFi has a much smaller RTT than LTE. When WiFi’s
cwnd is fully utilized but LTE has available cwnd space, MPTCP’s
default scheduler always uses LTE regardless of its large latency.
The optimal scheduling decision, however, is to buffer data at WiFi
subflow’s socket buffer unless it is full.

Inspired by this, we modify the min-RTT scheduler to let it
consider both the network latency and the local buffering latency.
Let srtt be the (smoothed) RTT estimated by TCP. Recall the min-
RTT scheduler picks a subflow that (1) has available cwnd space
and (2) has the minimum srtt. Our modified scheduler, called
TxDelay, instead picks a subflow that has the minimum srtt + Q
regardless of its cwnd status. Q quantifies how long it takes to
drain the sender buffer. It can be estimated by Q = B

cwnd∗mss/srtt

where B is the TCP sender buffer occupancy and mss is the TCP
maximum segment size. It is worth highlighting that thanks to
MPFlex’s user-level realization, it takes only 30 lines of user level
code to implement the TxDelay scheduler.

Smart Reinjection. Reinjection is a MPTCP feature allowing
the same data to be sent over multiple subflows [21]. It
helps reduce receiver side buffering due to out-of-order packets,
leading to improved throughput when one or a subset of paths
encounter performance degradation such as high loss rate or long
latency caused by weak signal strength. MPTCP employs a
static and fixed policy for reinjection: reinject packets when a
subflow is terminated or its receiver buffer is full. We found for
mobile multipath, MPTCP’s default reinjection policy is often too
conservative. For example, if a packet loss occurs on WiFi, the
reinjection does not happen until the packet times out.

We propose to make the reinjection policy dynamic and
configurable. For example, the sender can perform proactive
reinjection based on different packet loss signals, such as
duplicate ACKs and/or the receiver window occupancy (recvWin)
embedded in the ACK packet. To realize this in MPFlex, the
Protocol Info Reader (Figure 13) provides information such as
recvWin and event callback such as TCP timeout and duplicate
ACK, which are utilized by the user-level proxy to make smart
reinjection decisions. A large recvWin indicates a large number
of out-of-order packets are buffered at the receiver side, because
packets with smaller sequence numbers (likely being transferred
over the path with performance degradation) are not received.
Therefore, reinjection of unacknowledged packets when recvWin
is large helps eliminate the sequence number gap and thus improve
the performance. We have implemented the following proof-of-
concept reinjection policy. A message3 transmitted on one path is
reinjected to the other path in either of the two conditions: (1) its
underlying packet experiences a TCP timeout, or (2) an ACK from
the receiver indicates that the receiver buffer occupancy exceeds
η% of the total buffer size. Note in case (2) each unique ACK
triggers reinjection of at most one unacknowledged message, and
η is a threshold determining the reinjection aggressiveness. We
empirically set it to 75%.

5. EVALUATION OF MPFLEX
We conduct extensive evaluation of MPFlex. For performance,

we compare MPFlex with MPTCP v0.89.5 (the latest version
of MPTCP available for Android) with default settings and the
same tunneling setup described in §2.1. All experiments were

3Recall in §4.2 that a message is the atomic transfer unit in
MPFlex. We configure its maximum size to be the TCP MSS.

��

�����

����

�����

��

��� ���� ����� ��� ���� ����

�
�
��
�
���
�
�

�
�
�
�
��
�
�

�
���

�

�������������

����������
���������

����������
������

Figure 14: Single file download over MPTCP and MPFlex (best
SPTCP results shown only for small downloads).

conducted using real WiFi and LTE networks on a Nexus 5 phone
with Android 4.4.4. We use tc to apply bandwidth throttle
and to add extra delay on both paths4 based on recent large-
scale measurements of metropolitan LTE [23] and WiFi [36]
users. The same configurations were used by another recent
MPTCP study [19]. For apple-to-apple comparison, MPFlex and
MPTCP employ the same min-RTT scheduling algorithm, the same
congestion control (decoupled Cubic i.e., each path runs TCP
Cubic independently), and the same proxy server unless otherwise
noted. We next describe the evaluation results.

5.1 File Download
Download a single file. Figure 14 compares single file download

time under three schemes: cellular-primary MPTCP, WiFi-primary
MPTCP, and MPFlex, for different file sizes. Compared to the best
MPTCP scheme, MPFlex reduces the download time by 11% to
49%, due to its simplified handshake procedure that makes better
utilization of both paths.

Handling multiple short flows. We wrote a custom benchmark
tool that generates small flows sequentially or concurrently.
Figure 15 plots the overall download time for MPTCP and MPFlex
under eight traffic patterns. Compared to downloading a single file,
when handling multiple short flows, the advantage of MPFlex is
more phenomenal with download time reduction ranging from 13%
to 63%. As mentioned in §4.1, this is attributed to two features
brought by MPFlex’s strategic multiplexing: simplified handshake
(same as the single file download case) and being capable of
maintaining the congestion window5 for multiple connections
arriving in a bundle. We also note that the savings reduces a bit
when the concurrency becomes higher due to improved bandwidth
utilization of concurrent flows.

5.2 Web Browsing
How much performance gain can MPFlex offer under realistic

applications and traffic patterns? To answer this question, we pick
seven diverse websites and load their landing pages automatically
with QoE Doctor [11] on Chrome browser on Nexus 5. To
overcome frequent content change and server-side load fluctuation
for some sites, we use Google Page Replay [1] to take a snapshot of
each site, and host it on our replay server. To further make our setup
realistic, we measure the RTT from proxy (MPTCP or MPFlex) to
the real servers, and set the same RTT for the link between the
4WiFi: uplink 2020kbps, downlink 7040kbps, RTT 50ms;
LTE: uplink 2286kbps, downlink 9185kbps, RTT 70ms.
5Similar to a regular TCP connection, multiplexed connections in
MPFlex still conservatively perform slow start after idle period.

proxy and our server when replaying each website.
The results are shown in Figure 16. Compared to Figure 15, the

page load time (PLT) reduction is less, mostly due to the additional
browser-side overhead (rendering page, parsing JavaScript etc.)
and inter-object dependencies that often shift the bottleneck from
network to local computation [41]. Nevertheless, the improvements
are still impressive: compared to MPTCP proxy, MPFlex reduces
the PLT by 7% to 20%. We also expect MPFlex will exhibit more
advantages on newer mobile devices or tablets where computation
is less likely to become the bottleneck.

5.3 Applying Multipath Policies
As described in §4.2, we have implemented a framework that

allows applying different multipath policies at a per-process basis.
We demonstrate its effectiveness of saving energy by conducting a
case study as follows. We consider four apps: YouTube (playing
a 150-second 1080p video), Skype (2-min VoIP call), Google Play
(downloading a 50MB app), and Facebook Messenger (sending a
message every 30 seconds). We enforce the following policy: use
multipath for YouTube and Google Play, and single-path (WiFi) for
Skype and Messenger. We compare the radio energy consumption
of system-wide MPTCP (applied to all four apps) and MPFlex
with the above application-aware multipath policy. As shown
in Figure 18, MPFlex reduces the radio energy consumption for
Skype and Facebook Messenger by 34% and 78%, respectively,
while incurring no QoE degradation as explained in §3.3.

The policy framework can be extended to consider other factors
such as billing and battery life. MPFlex can also enforce the policy
at a finer granularity. Consider two use cases. (1) Let Chrome
browser to use multipath only for cnn.com. (2) Disable multipath
for all ad traffic. Both use cases can be realized by controlling
multipath usage at a per-HTTP-session basis without modifying
the apps. First, for an incoming HTTP session, the client-side
MPFlex module obtains its associated domain name. This can be
realized by examining directly the HTTP request or the TLS/SSL
certificate for HTTPS. Second, it consults a local policy database
to determine which multipath scheme to use. Third, the MPFlex
client informs the proxy of the policy for this HTTP session using
a small label attached to the multiplexed message (§4.2). We are
currently implementing this feature.

5.4 Plugging-in Custom Schedulers
We evaluate the two MPFlex plugins described in §4.3.
Buffer-aware Scheduling. We evaluate the performance of our

TxDelay scheduler by comparing it with the min-RTT scheduling
algorithm. As shown in Figure 17, when WiFi RTT is much
smaller than LTE RTT, TxDelay significantly outperforms min-
RTT by reducing the file download time by 21% to 54%. TxDelay
essentially makes multipath performs at least as well as single-path
for small files (assuming RTT estimation is accurate). On the other
hand, when RTT of both paths are similar, TxDelay exhibits similar
performance as min-RTT (figure not shown).

Smart Reinjection. We compare our smart reinjection with the
default MPTCP and MPFlex without reinjection. The workload is
to download a 1MB file hosted at a server near the MPFlex proxy
(4ms RTT between proxy and server, as to be justified in §5.5).
We consider two network conditions: increased LTE latency (WiFi
10Mbps/50ms, LTE 9Mbps/150ms) and increased WiFi latency
(WiFi 12Mbps/300ms, LTE 9Mbps/70ms). We use the public
WiFi network in our office building. We made two observations.
First, during the entire course of our experiment, the default
min-RTT scheduler never triggers reinjection, which is done very
conservatively as described in §4.3. As a result, MPFlex without

��

���

���

���

���

�� �� �� ��

�
�
�
�
��
�
�

�
���

�
��
�
�
�
���
�

�
��
�

��������������������

���������������
���������������

Figure 15: Transfer many short
flows over MPTCP and MPFlex.

��

����

����

����

����

��

����
�������

�����

��������

���
��������

�����

�
�
��
�
���
�
�

�
�
�
�

����� ������

Figure 16: Fetch web pages over MPTCP and
MPFlex.

��

���

���

����

����

�� �� ��

�
�
�
�
��
�
�

�
���

�
�
��
�
�

������������������

�������������
��������������

Figure 17: Performance of minRTT vs.
TxDelay scheduler when the RTT difference
between the two paths is large (20ms vs. 70ms).

��

��

��

��

��

�� ��� ���� ���� ���� ���� ���� ���� ����

�������
�������
����������

�������

�������
���������

������
�������
����������

���������
�������
���������

�
�
�
�
��
��

�

��������

����� ������

 0

 1

 2

 3

Single small
download

(64KB)

Single large
download
(16MB)

Multiple small
downloads

(4*16*64KB)

N
o

rm
a

liz
e

d
 d

o
w

n
lo

a
d

 t
im

e

 5

 6 MPTCP/WiFi (server near proxy A)
MPTCP/LTE (server near proxy A)

MPFlex proxy A (Univ A)
MPFlex proxy B (Univ B)

MPFlex proxy C (EC2 CA)
MPFlex proxy D (EC2 EU)

Figure 18: Case study: MPTCP applies multipath to all traffic, while MPFlex does
that selectively based on user policy.

Figure 19: Performance impact of the MPFlex
proxy location.

reinjection performs similarly compared to MPTCP. Second, smart
reinjection reduces the overall download time by 10%±5% (over
12 runs) at the cost of reinjecting only about 1.5% of the total bytes,
in both network conditions. The aggressiveness of reinjection can
further be tuned by adjusting the buffer occupancy threshold.

5.5 Impact of Proxy Location
Our discussion in §3.4 indicates the location of a CDN server

(in our case here, the MPFlex proxy) may affect the network
performance in particular for multipath. To quantify this, we
deployed the MPFlex proxy at 4 different locations referred to as A,
B, C, and D. Their physical distances from our client smartphone
are 3, 420, 3300, 6700 km, respectively. We also measured the
minimum WiFi RTT between the mobile client and them to be 27,
44, 81, and 131ms, respectively, and the corresponding cellular
RTTs are 49, 66, 100, and 148ms, respectively. We fix the RTT
between the proxy and the server to be 4ms, by assuming the server
is a nearby CDN node. A recently study measured the median
RTT between a mobile carrier gateway and 30 popular content
providers’ servers to be ∼4ms [31]. We also evaluate a non-proxy
configuration by letting the client directly connect to the server near
Proxy A, which has the smallest latency from the client, using the
default MPTCP.

We consider three workloads shown at the bottom of Figure 19.
As shown, for small file download(s) whose performance is
latency-sensitive, the proxy location matters. Nevertheless, despite
being further away, Proxies B and C still achieve better or similar
performance compared to the default MPTCP configuration,
because the benefits of MPFlex outweigh the penalty of additional
latency for B and C. Proxy D exhibits low performance because
it is located at a different continent. The transoceanic link shifts
the bottleneck from the last mile to the Internet. For a single large

download, since bandwidth is more important than latency, Proxy
A, B, and C exhibit very similar performance. Also, because the file
size is large and no multiplexing is needed for a single application
connection, MPFlex provides little benefit beyond what can be
achieved by the vanilla MPTCP.

5.6 System Overhead
Despite being realized mostly at user level, MPFlex itself incurs

negligible runtime overhead. We monitor CPU usage of a Nexus 5
phone with MPFlex enabled. Compared to the default MPTCP, no
noticeable CPU usage increase was observed when downloading
large files at high speed (∼30Mbps). The MPFlex protocol
overhead, defined as the total message header size divided by the
size of all transferred messages, is measured to be less than 1%
across 20 Android apps we tested. Multiple instances of MPFlex
proxy can be deployed in geographically distributed clouds to
achieve scalability.

Since the MCs in MPFlex are long-lived, periodic keep-alive
messages may need to be exchanged between a client and the
proxy. Their periodicity should be no longer than the minimum
NAT/firewall timeout of either path (usually the cellular path).
To quantitatively measure the radio energy overhead incurred by
MPFlex, we conduct an experiment on a Nexus 5 phone by sending
keep-alive messages over the cellular pipes every 10 minutes for
24 hours. We use the hardware energy profiling interface (provided
through the sysfs file system) of Nexus 5 to measure the energy
consumption. We then compare the total energy with the scenario
where MPFlex is not running for the same duration of 24 hours.
The incurred radio energy is 0.18Wh, only about 2.5% of a
typical smartphone’s battery capacity. Since most cellular carriers’
NAT/firewall timeout is longer than 10 minutes [43], the incurred
energy overhead can be further reduced by increasing the keep-

alive periodicity.

6. RELATED WORK
Performance Characterization of Mobile Multipath. Al-

though the potentials of mobile multipath have been known for a
long time [9], it has recently become a hot research topic as fueled
by smartphones and MPTCP. Chen et al. [13] studied performance
of MPTCP over 3G/4G and WiFi. A similar studied was performed
by Deng et al. [17] to compare the performance between single-
path and multipath. Both studies focus on file download using
controlled experiments. Han et al. [19] investigated how MPTCP
helps improve web performance by in-lab experiments. They found
SPDY [7] better interacts with multipath compared to HTTP/1.1,
due to multiplexing. We make a further step by proposing a
flexible transport-layer multiplexing infrastructure for multipath,
which provides considerably more benefits than application-layer
multiplexing does.

De Coninck et al. [15] conducted a measurement study of
MPTCP involving 12 mobile users. They focus on transport
layer characteristics of MPTCP such as RTT, retransmission, and
reinjection. In contrast, our user study focuses not only on MPTCP
itself, but also on the cross-layer interactions. We also combine
passive and active measurements in our study to get a thorough
understanding of applications’ performance and energy utilization
in the wild.

Multipath Energy. Some studies also examined the energy
aspect of multipath. Nika et al. [26] characterized energy and
performance of multipath in outdoor environments. Very recently,
Lim et al. [39] improves MPTCP to make it energy-aware. Peng
et al. [28] also proposes algorithms that tradeoff throughput
performance and energy consumption for MPTCP. We leveraged
the multipath power models derived by some of these work, and use
them to characterize multipath energy consumption in real-world
settings (§3.1).

Applications of Mobile Multipath. Besides improving existing
applications’ performance, MPTCP provides opportunities for
enabling new use cases. Mobile Kibbutz [25] is a system allowing
nearby users share their links with each other via multiple shorter
range wireless links. MSPlayer [14] is a YouTube client that
fetches multiple video sources over multipath to improve video
experience. Croitoru et al. [16] leveraged MPTCP to achieve
seamless mobility in WiFi by letting a client connect to multiple
APs on the same channel. Our work complements these specific
systems by characterizing and improving MPTCP itself. There
are other systems dealing with multiple interfaces in general,
such as energy-efficient interface selection [29] and utilization of
concurrent WiFi APs [37].

7. CONCLUDING REMARKS
We make contributions to mobile multipath research in two

aspects: crowd-sourced measurement and software architecture.
The user study provides valuable insights of how well multipath
works “in the wild”. Based on the findings, we introduce
new system concepts and research problems such as multiplexed
multipath and multipath-aware server selection. We are working
on a full-fledged multipath policy system by leveraging the
infrastructural support of MPFlex, and plan to deploy it on the user
trial to study how to derive good policies to improve application
QoE over multipath while minimizing the energy overhead.

Acknowledgements
We thank the anonymous reviewers and our shepherd for their
helpful feedback. This research was supported in part by NSF

under CNS-1059372 and CNS-1345226, as well as by Indiana
University Faculty Research Support Program (FRSP) – Seed
Funding.

8. REFERENCES
[1] Google Web Page Replay Tool.

https://github.com/chromium/web-page-replay.
[2] iOS: Multipath TCP Support in iOS 7.

https://support.apple.com/en-us/HT201373.
[3] KT’s GiGA LTE. https:

//www.ietf.org/proceedings/93/slides/slides-93-mptcp-3.pdf.
[4] OPTICOM, PESQ - perceptual evaluation of speech quality.

http://www.opticom.de/technology/pesq.php.
[5] QUIC Protocol. https://www.chromium.org/quic.
[6] Shadowsocks Socks5 Proxy. https://shadowsocks.org.
[7] SPDY Protocol – Draft 3.1. http://www.chromium.org/spdy/

spdy-protocol/spdy-protocol-draft3-1.
[8] S. Agarwal and J. R. Lorch. Matchmaking for Online Games

and Other Latency-Sensitive P2P Systems. In SIGCOMM,
2009.

[9] P. Bahl, A. Adya, J. Padhye, and A. Walman. Reconsidering
wireless systems with multiple radios. ACM SIGCOMM
Computer Communication Review, 2004.

[10] M. Belshe, R. Peon, and M. Thomson. Hypertext Transfer
Protocol Version 2 (HTTP/2). RFC 7540, 2015.

[11] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui,
K. Sontineni, and K. Lau. Qoe doctor: Diagnosing mobile
app qoe with automated ui control and cross-layer analysis.
In Proceedings of the 2014 Conference on Internet
Measurement Conference, pages 151–164. ACM, 2014.

[12] X. Chen, N. Ding, A. Jindal, Y. C. Hu, M. Gupta, and
R. Vannithamby. Smartphone Energy Drain in the Wild:
Analysis and Implications. In SIGMETRICS, 2015.

[13] Y.-C. Chen, Y.-S. Lim, R. J. Gibbens, E. M. Nahum,
R. Khalili, and D. Towsley. A Measurement-based Study of
MultiPath TCP Performance over Wireless Networks. In
IMC, 2013.

[14] Y.-C. Chen, D. Towsley, and R. Khalili. MSPlayer:
Multi-Source and multi-Path LeverAged YoutubER. In
CoNEXT, 2014.

[15] Q. D. Coninck, M. Baerts, B. Hesmans, and O. Bonaventure.
A first analysis of multipath tcp on smartphones. In 17th
International Passive and Active Measurements Conference,
volume 17. Springer, March-April 2016.

[16] A. Croitoru, D. Niculescu, and C. Raiciu. Towards WiFi
Mobility without Fast Handover. In NSDI, 2015.

[17] S. Deng, R. Netravali, A. Sivaraman, and H. Balakrishnan.
WiFi, LTE, or Both? Measuring Multi-homed Wireless
Internet Performance. In IMC, 2014.

[18] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure. TCP
Extensions for Multipath Operation with Multiple
Addresses. RFC 6824, 2013.

[19] B. Han, F. Qian, S. Hao, and L. Ji. An Anatomy of Mobile
Web Performance over Multipath TCP. In CoNEXT, 2015.

[20] B. Hesmans, G. Detal, S. Barre, R. Bauduin, and
O. Bonaventure. SMAPP: Towards Smart Multipath
TCP-enabled APPlication. In CoNEXT, 2015.

[21] B. Hesmans, H. Tran-Viet, R. Sadre, and O. Bonaventure. A
first look at real Multipath TCP traffic. In International
Workshop on Traffic Monitoring and Analysis, 2015.

[22] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,

https://github.com/chromium/web-page-replay
https://support.apple.com/en-us/HT201373
https://www.ietf.org/proceedings/93/slides/slides-93-mptcp-3.pdf
https://www.ietf.org/proceedings/93/slides/slides-93-mptcp-3.pdf
http://www.opticom.de/technology/pesq.php
https://www.chromium.org/quic
https://shadowsocks.org
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1

S. Sen, and O. Spatscheck. An In-depth Study of LTE: Effect
of Network Protocol and Application Behavior on
Performance. In SIGCOMM, 2013.

[23] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and
M. Watson. A Buffer-Based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service. In
SIGCOMM, 2014.

[24] M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas, and
L. Jones. SOCKS Protocol Version 5. RFC 1928, 1996.

[25] C. Nicutar, D. Niculescu, and C. Raiciu. Using Cooperation
for Low Power Low Latency Cellular Connectivity. In
CoNEXT, 2014.

[26] A. Nika, Y. Zhu, N. Ding, A. Jindal, Y. C. Hu, X. Zhou, B. Y.
Zhao, and H. Zheng. Energy and Performance of Smartphone
Radio Bundling in Outdoor Environments. In WWW, 2015.

[27] C. Paasch, S. Barré, et al. Multipath TCP in the Linux
Kernel. http://www.multipath-tcp.org.

[28] Q. Peng, M. Chen, A. Walid, and S. Low. Energy Efficient
Multipath TCP for Mobile Devices. In MobiHoc, 2014.

[29] T. Pering, Y. Agarwal, R. Gupta, and R. Want. CoolSpots:
Reducing the Power Consumption of Wireless Mobile
Devices Using Multiple Radio Interfaces. In MobiSys, 2006.

[30] F. Qian, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, and
W. Willinger. TCP Revisited: A Fresh Look at TCP in the
Wild. In IMC, 2009.

[31] F. Qian, V. Gopalakrishnan, E. Halepovic, S. Sen, and
O. Spatscheck. TM3: Flexible Transport-layer Multi-pipe
Multiplexing Middlebox Without Head-of-line Blocking. In
CoNEXT, 2015.

[32] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Profiling Resource Usage for Mobile
Applications: a Cross-layer Approach. In Mobisys, 2011.

[33] S. Radhakrishnan, Y. Cheng, J. Chu, A. Jain, and

B. Raghavan. TCP Fast Open. In CoNEXT, 2011.
[34] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,

and M. Handley. Improving Datacenter Performance and
Robustness with Multipath TCP. In SIGCOMM, 2011.

[35] I. Sodagar. The mpeg-dash standard for multimedia
streaming over the internet. IEEE MultiMedia, (4):62–67,
2011.

[36] J. Sommers and P. Barford. Cell vs. WiFi: On the
Performance of Metro Area Mobile Connections. In IMC,
2012.

[37] H. Soroush, P. Gilbert, N. Banerjee, B. N. Levine, M. Corner,
and L. Cox. Concurrent Wi-Fi for Mobile Users: Analysis
and Measurements. In CoNEXT, 2011.

[38] R. Stewart. Stream Control Transmission Protocol. RFC
4960, 2007.

[39] Y. sup Lim, Y.-C. Chen, E. M. Nahum, D. Towsley, R. J.
Gibbens, and E. Cecchet. Design, Implementation and
Evaluation of Energy-Aware Multi-Path TCP. In CoNEXT,
2015.

[40] P. Valerio. Using carrier wifi to offload iot networks.
http://goo.gl/aQ15ii.

[41] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. Demystifying Page Load Performance with
WProf. In NSDI, 2013.

[42] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and
D. Wetherall. How Speedy is SPDY? In NSDI, 2014.

[43] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An untold
story of middleboxes in cellular networks. In ACM
SIGCOMM Computer Communication Review, volume 41,
pages 374–385. ACM, 2011.

[44] X. Xu, Y. Jiang, T. Flach, E. Katz-Bassett, D. Choffnes, and
R. Govindan. Investigating Transparent Web Proxies in

Cellular Networks. In PAM, 2015.

http://www.multipath-tcp.org
http://goo.gl/aQ15ii

	Introduction
	Measurement Methodology
	Multipath Configuration For User Trial
	User Trial Data Collection

	Measurement Results
	Passive Measurements of User Study
	Active Measurements of User Study
	Other Applications over MPTCP: Voice-over-IP and Instant Messengers
	Interplay between Multipath and CDN

	MPFLEX: A Flexible Architecture For Mobile Multipath
	The MPFLEX Architecture
	MPFLEX Design and Implementation
	MPFLEX Use Cases

	Evaluation of MPFLEX
	File Download
	Web Browsing
	Applying Multipath Policies
	Plugging-in Custom Schedulers
	Impact of Proxy Location
	System Overhead

	Related Work
	Concluding Remarks
	References

