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Abstract—Virtual Reality (VR), together with the network in-
frastructure, can provide an interactive and immersive experience
for multiple users simultaneously and thus enables collabora-
tive VR applications (e.g., VR-based classroom). However, the
satisfactory user experience requires not only high-resolution
panoramic image rendering but also extremely low latency and
seamless user experience. Besides, the competition for limited
network resources (e.g., multiple users share the total limited
bandwidth) poses a significant challenge to collaborative user
experience, in particular under the wireless network with time-
varying capacities. While existing works have tackled some of
these challenges, a principled design considering all those factors
is still missing. In this paper, we formulate a combinatorial
optimization problem to maximize the Quality of Experience
(QoE), defined as the linear combination of the quality, the
average VR content delivery delay, and variance of the quality
over a finite time horizon. In particular, we incorporate the
influence of imperfect motion prediction when considering the
quality of the perceived contents. However, the optimal solution
to this problem can not be implemented in real-time since it
relies on future decisions. Then, we decompose the optimization
problem into a series of combinatorial optimization in each time
slot and develop a low-complexity algorithm that can achieve
at least 1/2 of the optimal value. Despite this, the trace-based
simulation results reveal that our algorithm performs very close
to the optimal offline solution. Furthermore, we implement our
proposed algorithm in a practical system with commercial mobile
devices and demonstrate its superior performance over state-
of-the-art algorithms. We open-source our implementations on
https://github.com/SNeC-Lab-PSU/ICDCS-CollaborativeVR.

I. INTRODUCTION

Virtual reality can provide an immersive and interactive
experience for users and has become more and more popular
with the rapid growth of 3D displaying and computer vision
technologies. It together with the existing network infrastruc-
ture has spurred many fascinating collaborative VR appli-
cations such as VR-based education/training [1], VR-based
collaborative art design [2], VR-based multi-user gaming [3],
and social networks [4]. Indeed, in VR-based education, when
a geography teacher introduces the galaxy to the students, with
the help of VR technology, students can freely explore the
universe and easily get the location and detailed information
of each star. Moreover, they can interact with each other and
discuss some particular interesting astronomy topics. Such
a novel teaching environment will greatly improve learning
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efficiency by stimulating students’ interest and providing an
immersive learning experience.

In order to provide the best immersive user experience,
the VR system should provide 1) high-resolution panoramic
image rendering with a high frame rate: user wants to ensure
a resolution with at least 2560 × 1440 pixels and have
about 60 frames-per-second (FPS); 2) extremely low delay
guarantees: the head motion-to-photon latency should be as
low as possible, typically below 20ms for smooth movement
and interaction; 3) seamless user experience: consistent VR
image quality is required to avoid virtual reality sickness.

Existing mobile devices only support low-quality VR appli-
cations due to their constrained CPU/GPU capabilities. One of
the most popular approaches to deal with such low capabilities
on mobile devices is to offload compute-intensive rendering
load to a powerful server, which streams the rendered frames
to the mobile device through the wireless network (e.g., [5],
[6]). Compared with existing commercial VR devices (e.g.,
Valve Index, Oculus Rift) that connect the devices to the server
with wired cables, wireless streaming is more flexible and
safe, resulting in a better user experience. However, supporting
high-resolution VR applications in this manner would require
hundreds of Mbps or even Gbps of bandwidth for each user,
which cannot be supported by current commercial wireless
network, let alone the collaborative VR with multiple users.

Fortunately, it is possible to deliver the partial panoramic
content without affecting the user’s visual perception if we can
predict the user’s 6-Degree-of-Freedom (DoF) motion (3 DoF
for virtual location and the other 3 DoF for head orientation).
As such, several existing works [7]–[12] have incorporated
motion prediction into algorithm design. In particular, they
split the whole panoramic images into many smaller blocks,
named tiles, and combined motion prediction to stream part of
those tiles to the users without affecting their visual perception.
However, to the best of our knowledge, none of the existing
work proposed a principled design of efficient rate allocation
algorithms for collaborative VR applications with the goal
of optimizing the quality of experience and deployed such
algorithms into a practical system with commodity mobile
devices. Although heuristic methods work well in those works,
we believe it is far from trivial to develop a principled design
that achieves better performance and guides us on adapting to
different application scenarios.

We explicitly consider the collaborative VR application for



multiple users, where various factors need to be considered
regarding the users’ Quality of Experience (QoE). Specifically,
we define QoE as the linear combination of the quality of the
perceived contents, the average VR content delivery delay, and
variance of the perceptual quality for all users within a finite
time horizon. Moreover, we consider the influence of imperfect
motion prediction and incorporate it into our QoE formulation.

The challenges of the QoE optimization problem lie in
that the QoE relies on future decisions, making the optimal
solution non-implementable in real-time. One of the main
contributions of this paper is to decompose the problem into a
series of optimization problems and solve them independently.
Besides, the discrete property of the quality levels further
complicates the optimization problem since it becomes a
Knapsack problem, which is well-known for its difficulty.
In this paper, we take a principled and integrated approach
to allocate quality levels for multiple users by incorporating
motion prediction and tile partitioning to save the network
bandwidth and to adapt to dynamic network conditions. The
main contributions of this paper are summarized as follows:

• In Section II, we formulate a combinatorial optimization
problem over a finite time horizon with the objective
being the accumulative QoE that includes the average
quality level considering the imperfect motion prediction,
the average VR content delivery delay, and the variance
of the quality level, subject to the available network
throughput constraints.

• In Section III, realizing the challenge in obtaining the
optimal solution and its physically non-implementability,
we decompose it into a series of the combinatorial
optimization problem in each time slot. Here, the combi-
natorial optimization problem is a knapsack problem with
the concave objective function and convex constraints.
We develop an efficient and low-complexity quality level
allocation algorithm that yields at least 1/2 of the optimal
value.

• In Section IV, we perform a trace-based simulation to
demonstrate the superior performance of our proposed
algorithm over state-of-the-art algorithms. We observe
that our proposed algorithm performs very close to the
offline optimal solution and outperforms the state-of-the-
art algorithms.

• In Section V and Section VI, we develop a real-world col-
laborative VR system to evaluate our proposed algorithm
under two different experiment setups. The evaluation
results show that our algorithm is quite robust to the
dynamic network environment and outperforms existing
algorithms. In particular, our algorithm gets an 81.9%
improvement over the Firefly algorithm [8], and 12.1%
improvement over the PAVQ algorithm [13] on the aver-
age QoE under the first experiment setup. Furthermore,
our algorithm gets a 214.3% improvement over the PAVQ
algorithm under the second experiment setup. We make
the source code public for the benefit of the community.

II. SYSTEM MODEL

We consider a collaborative VR system with N users that
interact with each other via a wireless edge server, where
the edge server performs rendering and transmits the rendered
images to each user. We assume that the system operates in a
time-slotted manner. The time slot duration is set to ensure that
the rendered VR content can be delivered within one time slot
and the average display rate is 60 frames-per-second (FPS) to
meet the desired quality of experience (QoE). In addition to
the frame rate, the content quality and its consistency as well
as the content delivery delay significantly affect users’ QoE.

We assume that each VR content can be encoded into L
different quality levels. Let Q , {1, 2, . . . , L} denote the set
of quality levels, where a larger quality value corresponds
to a better visual perception experience for users. Note that
in practical scenarios, a larger quality level corresponds to
a higher resolution or a smaller constant rate factor (CRF).
In each time slot t, the edge server determines the quality
level of the VR content for each user. We use qn(t) ∈ Q
to denote the quality level selected by the edge server for
user n in time slot t. Each VR content has a panoramic view,
but a user just needs to see about 20% of the panoramic
view, which is known as field of view (FoV). Thus, if we
could accurately predict the user’s motion, we only require
as low as 20% of the network bandwidth compared to the
whole panoramic scene delivery. However, it is impossible
to have perfect motion prediction. Nevertheless, it is possible
to utilize various prediction algorithms to predict each user’s
motion with a high accuracy. As such, any existing motion
prediction model can be applied to this paper to predict each
user’s 6-degree-of-freedom (DoF) motion (3 DoFs for virtual
location and the other 3 for head orientation). To further handle
the prediction error caused by the imperfect prediction, we
deliver a portion that covers the FoV with some fixed margin.1

To capture the impact of the imperfect prediction, we use
1n(t) = 1 to denote whether the delivered portion covers
the actual FoV (considering both virtual location and head
orientation) in time slot t, and 1n(t) = 0 otherwise. Hence,
qn(t)1n(t) denotes the quality level of VR content that is
successfully seen by user n in time slot t.

Besides the average perceptual quality of the VR contents,
the QoE also accounts for the VR content consistency. A recent
study (see [14]) reveals that compared with the displayed con-
tents with relatively higher average quality but frequent stalls,
a consistent display of contents with relatively lower average
quality results in a higher QoE. As such, to characterize the
VR content consistency, we use the variance σ2

n(T ) of the
quality level of VR content that is successfully viewed by
user n within a finite time horizon T , i.e.,

σ2
n(T ) ,

1

T

T∑
t=1

E

(qn(t)1n(t)− 1

T

T∑
τ=1

qn(τ)1n(τ)

)2
 .

1The extended margin on FoV only helps in the prediction of 3 DoFs for
head orientation. Although there are some other approaches to handle the
prediction errors on virtual location, we have left them as future work.



The smaller the variance σ2
n(T ), the better the seamless

experience of user n. σ2
n(T ) can be shown to be convex with

respect to (qn(1), qn(2), · · · , qn(T )) (cf. [13, Lemma 1]).

The delay of VR content delivery from the edge server to
each user also significantly affects the QoE performance. Such
VR content delivery delay usually depends on the size of the
VR content and the available network throughput, where the
VR content with a higher quality level has a larger size. We
use dn(r) to denote the average delivery delay from the edge
server to user n when the VR content size is r. Let fRc (q) be
the function that maps the quality level q to the size of the
VR content c.

(a) Tile size vs. quality level (b) RTT vs. send rate

Fig. 1: Convexity of functions fRc (·) and d(·)

In Fig. 1a, we randomly select two different VR content and
draw the tile size with different quality levels, where different
quality levels refer to the tiles encoded with different Constant
Rate Factor (CRF) values. A higher quality level results in a
better visual perception of the content. We can observe from
Fig. 1a that fRc (q) is convex with respect to quality level q for
each VR content. In Fig. 1b, we limit the throughput within
15 Mbps and continuously send data at a specific rate. At the
same time, we start lots of ping processes in parallel to get
the RTTs. We collect 100, 000 samples of RTTs to draw the
result. We draw RTTs because it reflects the queueing delay,
which is the main component of the delay under the local
wireless network. Although the curve will shift with the variety
of throughput limitations, the convexity always holds. As the
sending rate is a linear function of the content size (since the
time slot duration is fixed in our model), we can conclude that
the average round trip time (i.e., dn(·)) is convex with respect
to the content size r. As such, we assume that both functions
fRc (q) and dn(r) are convex and increasing, and hence the
average delivery delay dn(fRc(t)(qn(t))) is a convex function
with respect to the quality level qn(t) when the VR content is
c(t) in time slot t.

We use QoEn(T ) to denote the quality of experience (QoE)
of user n within a finite time horizon T . Considering the
tradeoff between all above components, we define the QoE as
a linear combination of the quality of the perceived contents,
the average VR content delivery delay, and variance of the

perceptual quality, i.e.,

QoEn(T ) ,
T∑
t=1

(
E [qn(t)1n(t)]− αE[dn(fRc(t)(qn(t)))]− βσ2

n(T )
)
,

where both α and β are some positive constants that depend
on the users’ sensitivity on the content quality level, delivery
delay, and the quality consistency. Particularly, a larger value
of α is chosen for those applications which are more sensitive
to the delay, like multi-user VR gaming. Similarly, we prefer
a larger value of β when our model is applied to those ap-
plications requiring consistent content streaming like museum
touring. Note that QoEn(T ) is a concave function, since it
is the weighted sum of a linear function and two concave
functions.

Recall that the quality level qn(t) is the decision variable in
our problem, where a higher quality level of the VR content
requires a larger transmission rate. However, both the required
transmission rates for each user and the server are limited by
their respective available throughput. Let Bn(t) and B(t) be
the available network throughput for user n and the server in
time slot t, respectively. Note that we unify the units of content
size fRc (q) and the network throughput by fixing each time slot
duration. Although both Bn(t) and B(t) have high temporal
variability under the wireless network, they can be estimated
at the beginning of time slot t. In this paper, we aim to
maximize the total system QoE by allocating the quality level
to each user while meeting the network throughput constraints.
This can be achieved by solving the following optimization
problem:

max QoE(T ) ,
N∑
n=1

QoEn(T ) (1)

s.t.
N∑
n=1

fRc(t)(qn(t)) ≤ B(t),∀t (2)

fRc(t)(qn(t)) ≤ Bn(t),∀t, n. (3)

However, the optimal solution to problem (1)-(3) is not phys-
ically implementable since it relies on future decisions on
the quality levels. Moreover, since the decision variable (i.e.,
quality level) is discrete, the considered optimization problem
has a combinatorial structure and thus is typically NP-hard.
In the next section, we decompose this optimization problem
into a sequence of combinatorial optimization problems and
then develop an efficient quality allocation algorithm, which
will be demonstrated to perform close to the optimal offline
algorithm via trace-based simulations (cf. Section IV).

III. ALGORITHM DESIGN AND ANALYSIS

In this section, we first decompose the original optimization
problem (1)-(3) over a finite time horizon T into a sequence
of combinatorial optimization problems, and then develop an
efficient and low-complexity algorithm to solve the combina-
torial optimization problem in each time slot.



The optimal solution to the problem (1)-(3) requires the full
knowledge of available throughput for each user and the server
and can be obtained via the dynamic programming approach.
However, the obtained solution relies on future information
and is not implementable in real-time. After carefully looking
into the objective function (1), we find that the variance of the
quality level of VR content successfully viewed by each user
couples the quality level decisions over time. By leveraging
variance iteration formula [15], we have

Tσ2
n(T ) =

T∑
t=1

(t− 1) (qn(t)1n(t)− qn(t− 1))
2

t
, (4)

where qn(t) = 1
t

∑t
τ=1 qn(τ)1n(τ). The detailed derivation

can be found in the Appendix A. Based on (4), we can
decompose the original optimization problem into a series of
combinatorial optimization in each time slot. In particular, in
each time slot t, we need to solve the following problem:

max
(qn(t))Nn=1

N∑
n=1

E[qn(t)1n(t)]− α
N∑
n=1

E[dn(fRc(t)(qn(t)))] (5)

− β
N∑
n=1

E

[
(t− 1) (qn(t)1n(t)− q̄n(t− 1))

2

t

]

s.t.
N∑
n=1

fRc(t)(qn(t)) ≤ B(t), (6)

fRc(t)(qn(t)) ≤ Bn(t),∀n. (7)

Such a decomposition is motivated by the fact that the average
gap between the cumulative QoE by solving (5) over a finite
time horizon T and the QoE by directly solving (1) converges
to zero as T → ∞ when the quality level is continuous
rather than discrete. In particular, let Q̂oE(T ) be the total QoE
by sequentially solving (5) over a finite time horizon T and
QoE∗(T ) be the QoE by solving (1). If the quality level is
continuous, then

lim
T→∞

1

T

(
Q̂oE(T )− QoE∗(T )

)
= 0. (8)

This is true since QoE(T ) is concave. The rest of the proof
follows the same line of that in [13, Theorem 1].

Let δn , E[1n(t)]. Then, the objective function (5) is
equivalent to the following function:

max
(qn(t))Nn=1

N∑
n=1

hn(qn(t)) (9)

where hn(qn(t)) , δnqn(t) − αE[dn(fRc(t)(qn(t)))] −

β

(
δn

(t−1)(qn(t)−qn(t−1))2)
t + (1 − δn)

(t−1)q2n(t−1)
t

)
. Noting

that δn is the successful prediction probability of user n, i.e.,
the probability that the delivered portion covers the actual FoV
given a 6-DOF motion prediction algorithm. This successful
prediction probability can be estimated via the average pre-
diction probability δn(t), which converges to δn as t→∞.

However, our objective function (9) is discrete with respect
to the quality level and thus become a nonlinear Knapsack

problem with concave objective function and convex con-
straints (see [16]), which is a well-known NP-hard problem.
Hence, it is difficult to obtain the optimal solution when the
number of users N is large. Like the classic solution to the
traditional Knapsack problem, one natural way is to determine
the quality level based on its obtained QoE value (called the
value-greedy approach). Another way is based on the ratio
of the obtained QoE value and the required rate (called the
density-greedy approach). However, both these approaches can
result in poor performance in certain cases that usually appear
in a practical problem. For example, consider the case with
h1(1) = 1, fRc (1) = 0.5, h2(2) = 4, fRc (2) = 2.5, where the
available throughput for the server is 2.5. Then, the density-
greedy approach allocates the rate to user 1 due to its larger
density and cannot further allocate the rate due to the limited
throughput. In such a case, the QoE equals 1 while the optimal
QoE is 4 (by allocating quality level 2 to user 2). Hence,
the density-greedy approach suffers from a great performance
loss. Similarly, for the case with h1(1) = h2(1) = h3(1) =
h4(1) = 2, fR(1) = 0.5, h2(2) = 3, fR(2) = 2, where the
available throughput for the server is 2. In such a case, the
value-greedy approach selects the quality level 2 for user 2
and cannot allocate more quality levels due to the throughput
limitation. In such a case, the QoE is equal to 3 while the
optimal QoE is 8 (by selecting quality level 1 for the first four
users). Hence, the value-greedy approach also suffers from
severe performance loss.

Interestingly, in the first case, the value-greedy approach
allocates quality-level 2 to user 2 and leads to a QoE of 4,
which is optimal. Similarly, in the second case, the density-
greedy approach allocates the quality level 1 for the first four
users and results in the QoE of 8, which is also optimal. This
naturally suggests combining the density-greedy and value-
greedy approaches (called the density/value-greedy approach)
and selecting the best quality level allocation from these two
approaches.

Our quality level allocation algorithm (cf. Algorithm 1)
is based on the density/value-greedy approach. We begin
with the density-greedy approach to get a temporary result.
Particularly, we start from the lowest quality level and select
the user with the largest ratio of the QoE improvement to the
increment on required rate (defined as ηn). We then increase
the quality level by one for the selected user. Such a process
will be repeated until one of the following three conditions
happens: 1) the rate meets the constraints for the user or the
server; 2) the quality level reaches the highest value; 3) the
density is lower than zero. Note the 1) and 2) are verified
via quality verification(q, I) in Algorithm 1. After getting
the allocation policy by the density-greedy approach, we use
the value-greedy approach to get the other allocation strategy.
It follows the same procedure except that we need to find
the user with the largest QoE improvement (defined as vn).
Finally, we compare those two approaches and select the better
quality level allocation policy with a higher objective function
value. Different from the traditional knapsack problem, we
utilize the increment of the quality level instead of individual



Algorithm 1: Density/Value-Greedy Algorithm
Given the cloud server throughput B(t), and the

throughput for user n Bn(t);
Initialize: Qd = {1, 1, . . . , 1} and I = {1, 2, . . . , N};
while I 6= {} do

For each n ∈ I, evaluate ηn = hn(qn+1)−hn(qn)

fR
t (qn+1)−fR

t (qn)
;

n∗ = arg max ηn;
if ηn∗ < 0 then
I = {};

else
qn∗ = qn∗ + 1;
quality verification(qn∗ ,I);

end
end
Vd =

∑N
i hn(qn), qn ∈ Qd;

Initialize: Qv = {1, 1, . . . , 1}, I = {1, 2, . . . , N};
while I 6= {} do

For each n ∈ I, evaluate
vn = hn(qn + 1)− hn(qn);
n∗ = arg max vn;
if vn∗ < 0 then
I = {};

else
qn∗ = qn∗ + 1;
quality verification(qn∗ ,I);

end
end
Vv =

∑N
i hn(qn), qn ∈ Qv;

if Vd > Vv then
return Qd

else
return Qv

end
Def quality_verification(qn, I):

if qn == L then
I = I\{n};

end
if fRt (qn) > Bn(t) or

∑
n∈N f

R
t (qn) > B(t) then

I = I\{n};
qn = qn − 1;

end

elements. The density/value-greedy approach can be shown to
achieve a value that is at least 1/2 of the maximum value of
the classic Knapsack problem [17]. We will show that such
a result still holds in the nonlinear Knapsack problem with
concave objective function and convex constraints.

Theorem 1. Algorithm 1 reaches at least 1/2 of the optimal
value for our optimization problem (5)-(7).

Proof. Define the optimal solution of the discrete optimization
problem is OPT , the solution of the density greedy algorithm
is Vd and the solution of the value greedy algorithm is Vv .
Define the density for user n when we want to improve its

quality from j to j + 1 as ηn,j =
hn(qj+1)−hn(qj)

fR
t (qj+1)−fR

t (qj)
, its value

increment as vn,j = hn(qj + 1)− hn(qj). Notice that we are
discussing the increment of the objective function instead of
the objective function itself. Since our objective function is a
concave function and the rate function is a convex function,
we have ηn,j ≥ ηn,j+1. Therefore, we are able to choose the
quality improvement with the largest density when applying
the density greedy algorithm. We define the index of the first
quality improvement that is rejected due to the total rate limit
is im, jm, i.e., we achieve the total bandwidth limit when we
want to increase user im’s quality level from jm to jm + 1.
Define Vp as the optimal solution when we can allocate partial
of the quality improvement to the user. We can reach Vp if we
follow the density greedy algorithm and allocate partial of the
last quality improvement im, jm to meet the rate limit, since
we have consumed all available rate with the largest possible
value increment. Clearly, OPT can only be smaller than Vp,
since any solution of our problem is a feasible solution when
a fraction of quality allocation is allowed. Therefore, we have

Vd + vim,jm ≥ Vd + αvim,jm = Vp ≥ OPT, (10)

where 0 ≤ α ≤ 1. Based on the concavity of the objective
function, we have vn,j ≥ vn,j+1. Since we choose the user
index with the largest value increment in the value greedy
algorithm, we have

vim,jm ≤ Vv/m. (11)

Combine (10) and (11), we have

Vd + Vv/m ≥ OPT. (12)

Because m ≥ 1, the larger one between Vd and Vv is certainly
larger than or equal to half of the optimal solution. Note that
the individual bandwidth constraint (7) for each user only
limits the range of j, which does not influence our result.

IV. TRACE-BASED SIMULATION

In this section, we develop a trace-based simulation platform
to validate the efficiency of our algorithm compared with two
state-of-the-art rate allocation algorithms for multiple users:
• Adaptive Quality Control algorithm in Firefly (see [8]),

which uses Least Recently Used (LRU) algorithm to
allocate the rate for multiple users. Due to its heuristic
property and similar setup in the original paper, it can be
directly deployed to our problem without modifications.

• Practical Adaptive Variance Aware Quality Allocation
algorithm (PAVQ) [13]. Notice that we cannot directly
apply this algorithm since it does not consider the delay
in the original paper. For a fair comparison, we modify
the way to calculate µPi on its algorithm description in
[13, Section V] to adapt to our problem setting.

We assume that the server has the perfect knowledge of the
delay and throughput to avoid the performance degradation
induced by the imperfect estimation. We will implement our
algorithm in a real system and demonstrate that it is robust to
the imperfect delay and throughput estimation in Section VI.



(a) QoE (b) Quality (c) Delay (d) Variance

Fig. 2: Trace-based simulation with 5 users

(a) QoE (b) Quality (c) Delay (d) Variance

Fig. 3: Trace-based simulation with 30 users

We use the motion trace dataset from [8], which is collected
from two large VR scenes among 25 users. In each time slot,
the server determines the quality level for each user from
a quality set of six different levels. Once the quality level
is selected, we will calculate the required rate based on the
size of corresponding tiles generated in Section VI. The linear
regression model is used to predict the 6-DoF motion in the
next time slot due to its simplicity and efficiency. We set
α = 0.02 and β = 0.5 in the QoE definition (cf. Section
II) to assign a higher priority to the variance compared with
the delay.

We generate the network trace from two different network
trace datasets: the broadband dataset provided by the FCC
[18], and the 4G/LTE mobile dataset from the Ghent Uni-
versity [19]. We randomly generate half of the requested
traces from the “Web browsing” category of the FCC dataset
(see [20], [21]) in the March 2021 collection, which includes
millions of network throughput traces. The other half of the
requested traces are generated from Ghent’s dataset. Notice
that this dataset is relatively small (40 logs, five hours in total)
such that we reuse some of the logs. We set the length of each
trace to 300 seconds and the network throughput between 20
Mbps to 100 Mbps to avoid trivial video quality selection.
The total bandwidth of the server is set to 36 Mbps times the
number of users, which respects the average rate requirement
of the tiles by a medium quality level.

Note that the network trace does not contain the content
delivery delay information. We generate the delivery delay

according to

dn(fRc(t)(qn(t))) =
fRc(t)(qn(t))

Bn(t)− fRc(t)(qn(t))
(13)

where we recall that Bn(t) is the maximum allowable rate for
user n in time slot t. This models the delay as that in M/M/1
queueing system (Poisson arrival process, exponential service
time), which is usually used to model the queueing delay in
wireless transmission (see [22]). Since we assume that the
server has the perfect knowledge of the network environment,
it knows the delay corresponding to each quality level before
it allocates the quality level for each user.

We perform simulation in two different setups with 5 users
and 30 users. We have two different settings because when the
number of users is small, we can use the brute force method to
generate the optimal offline solution of problem (5)-(7) and see
how close our approach is to the optimal solution. However,
the collaborative VR-based system typically has many users,
and thus we also consider the case with 30 users. For each
simulation setup, we choose 100 different traces for each user
from the dataset such that each user will have a different
network throughput in each time slot. Notice that the network
throughput in the dataset usually lasts for several seconds for
each point, which is far more lager than the interval between
each time slot (15ms under 66 FPS). Therefore, we just let
multiple continuous slots share the same bandwidth until their
cumulative time reaches the trace’s duration.

Fig. 2 and Fig. 3 compare the performance of our proposed
algorithm with state-of-the-art algorithms in terms of the
cumulative probability distribution (CDF) of the performance



metrics when there are 5 and 30 users, respectively. We
can observe from Fig. 2 that our proposed algorithm almost
matches the offline optimal solution in the average QoE (see
Fig. 2a), average quality (see Fig. 2b), average delivery delay
(see Fig. 2c), and the variance of quality levels of delivered
content (see Fig. 2d). It outperforms the Firefly and modified
PAVQ algorithm in terms of the average QoE, as shown in
Fig. 2a. This can also be seen from Fig. 2c and Fig. 2d that
our algorithm improves the average delivery delay and the
variance of the quality levels of the delivered content at the
cost of reducing the average quality of received content, as
shown in Fig. 2b. Interestingly, it shows that the modified
PAVQ algorithm is also close to the optimal QoE value, yet
it follows from a totally different quality allocation strategy,
resulting in a large difference in separate components of QoE.
We can observe similar phenomena when there are 30 users,
as shown in Fig. 3.

To further evaluate the performance of our algorithm, we
also develop a practical system and deploy our algorithm
as well as two baseline algorithms on that system. We will
introduce details for the system design and implementation in
the following sections.

V. SYSTEM DESIGN

In this section, we design a collaborative VR system to
deploy our algorithm in real-world and validate its efficiency.
The system architecture is depicted in Fig. 4. We consider the
specific scenario of remote learning when a teacher is teaching
in a VR classroom, and all other users (i.e., the students)
can interact with the teacher. The server is responsible for
receiving the motion traces from users and delivering the VR
content corresponding to the predicted 6-DoF motion and the
selected quality level for each user. Once a user gets the VR
content, it will be decoded and displayed on time. Next, we
will introduce the methodology to design our system in detail.

Fig. 4: System architecture

Offline tile rendering and encoding. To ensure that the
system is scalable to multiple users, we have rendered all
possible tiles of the scene in Unity before the transmission.
Therefore, we do not need to consider the overhead of render-
ing and encoding the VR content into different quality levels.
Meanwhile, the server will hold a buffer in the memory during
the runtime to cache some of the tiles that avoids the swapping

overhead. Since the user’s future location is bounded by her
moving speed in the virtual world, the server only needs to
cache the tiles within a range of the user’s current position
and dynamically adjust the cached content corresponding to
the user’s movement. As such, once the server determines the
requested VR content for a user, it can immediately start the
transmission without any rendering, encoding, or processing
delay. To facilitate the transmission, We project the panoramic
scene into a rectangular texture using equirectangular method
[23] and split each texture into four tiles as shown in Fig.
5. Note that we can also apply other projection methods to
our system. We use FFmpeg [24] to encode the frames with
different CRF values. All the tiles will be indexed by a video
ID corresponding to their position, tile ID, and quality. We
only need to search the video ID during the runtime, which
greatly facilitates communication.

Fig. 5: Tile partitioning

Communication protocol. To better adapt to the real-time
interactivity and meet the strict display deadline of the tiles,
we use Real-Time Transport Protocol (RTP) in our system
instead of traditional TCP to avoid the extra delay caused by
the TCP rate control algorithm. RTP is built upon UDP such
that we can concisely control the sending rate of the tiles and
either retransmit the tiles or not.

Handling repetitive tiles. Avoiding the retransmission of
the repetitive tiles that have already been delivered can signif-
icantly save the network bandwidth. However, we cannot know
which packet has been successfully delivered since RTP is an
unreliable protocol. To resolve this issue, we manually send
acknowledgments (ACK) from the user to the server through
TCP. As such, the server records the tiles that have already
been delivered and will not transmit the same tiles again.
However, due to the memory size limitation, the user cannot
hold all received tiles in its RAM. To avoid computation-
intensive swap operation on the user, we will release old
tiles once the total number of tiles reaches the user-specific
threshold (depending on the device’s memory size). The user
also sends ACKs to let the server know when the tiles are
released. After that, the server will retransmit the tiles if they
are requested again.

Pipelining of transmission and decoding. To enable the
pipelining of the content delivery and the decoding, we reserve
a time slot for the decoding on the user-side. For example, if



the server receives the pose from the teacher at the time slot
t, it will deliver the predicted tiles at time slot t + 1 to all
users. Those tiles will be decoded on the users and displayed
at the time slot t+ 2. Note that we use the hardware decoders
on the client-side such that the transmission and the decoding
work in parallel without conflicts of computation resources.

Delay measurement and prediction. Due to the asyn-
chronous clock on the server and the user, we estimate the
delay by computing the time duration between receiving the
first and the last packet of the current time slot on the user-
side. Note that we ignore the propagation delay since it is
negligible under the wireless network with only one hop. As
mentioned in Section II, the relationship between the delay and
the rate is non-linear. Therefore, we use polynomial regression
to predict the delay instead of linear regression to avoid extra
performance degradation.

Motion prediction and throughput estimation. We use
linear regression to predict the virtual position and head
orientation in each axis independently, which follows the
methodology in [8]. To further tolerate the prediction error,
we add a margin on the FoV to select the delivered tiles and
transmit all tiles that overlap with this margin. We estimate the
available bandwidth for each user using Exponential Moving
Average (EMA) algorithm.

Next, we will deploy our system into commercial devices
and evaluate the performance of our algorithm compared with
two baseline algorithms. The details on the software and
hardware configuration as well as evaluation results can be
found in the next section.

VI. IMPLEMENTATION AND REAL-WORLD EVALUATION

Implementation of the server and users. We develop our
server application in Eclipse with Java language, which can be
deployed on either a Windows or Linux computer. We only use
the common Java packages like java.util and java.io without
any extra burden on installing external packages. The user
application is designed by Android Studio with the Android
SDK and Java programming language. To display the tile
received from the server, we use Open GL ES to reproject
the equirectangular map to the panoramic view. To ensure the
interactivity in the collaborative VR system, we do not prefetch
the VR content. Each tile will either be displayed or dropped
in each time slot. Android Media Codec is used to accelerate
the decoding of the delivered tile by using multiple parallel
decoders. Notice that the number of decoders depends on the
device, while we set the number to 5 during the experiment
to avoid the performance degradation caused by the decoding.
Users will replay real users’ motion traces and upload the trace
to the server through TCP periodically. The total line of code
(LoC) of our system is about 10,500.

Content preparation. We use the commercial VR scene
Office [25] purchased in Unity asset store to evaluate our
proposed algorithm. We split the whole panoramic scene
into a grid world with the granularity of 5cm × 5cm to
provide smooth translational movement for users (see [8]).
We have rendered the equirectangular map of the VR scene

in 1440p (Quad HD, 2560 × 1440) resolution and encoded
all tiles in six different quality levels with CRF values
{15, 19, 23, 27, 31, 35}, separately. With a higher CRF value,
the VR scene will be encoded in a lower bitrate, resulting in
a lower visual perception quality. Therefore, we index those
CRF values with corresponding quality levels {6, 5, 4, 3, 2, 1}
when running our algorithm. The content database capacity
is about 171 GB. We use the user trace of the Office scene
inherited from the paper [8], which matches the offline content.

(a) Server (b) Clients: 15 smartphones

Fig. 6: Equipment in our system

Hardware and Environment. The system consists of
fifteen off-the-shelf commercial smartphones (including ten
Google Pixel 6, two Google Pixel 5 and three Google Pixel 4).
One of the Google pixels is selected as the teacher user, while
all other student users interact with it. Note that a single router
cannot support such a large amount of users in our system
such that we bridge two routers together using Ethernet to
enhance the available bandwidth. The server is deployed on
a Lambda workstation with Intel Core i9-10980XE CPU @
3.00GHz × 36, NVIDIA GeForce RTX 3070 Graphics Card
× 4, 128 GB memory, 4 TB disk, and Ubuntu 20.04 LTS. The
prototype of our system is shown in Fig. 6. All smartphones
connect to the TP-LINK Archer AX50 routers wirelessly,
while we use an Ethernet cable to connect the server and a
switch that communicates with the two routers. We split the 15
users into two groups and conduct the experiments under two
different setups. Particularly, we first use only one router with
8 smartphones. Next, we extend the scale of our experiments
by adding the other router with 7 smartphones. During the
runtime, we use Linux TC [26] to limit the network throughput
for each user to emulate the commercial network and consider
network heterogeneity. To avoid trivial quality level allocation,
we have five different throttle guidelines, listed as 40 Mbps, 45
Mbps, 50 Mbps, 55 Mbps, and 60 Mbps, which are randomly
assigned to each user. Note that the actual throughput varies
with time under the wireless network. We also limit the total
available throughput of the server as 400 Mbps for the first
experimental setup with one router and 800 Mbps for the
second experimental setup with two routers to emulate widely-
accepted 802.11 ac routers. We set the hyperparameters as
α = 0.1 and β = 0.5 in the QoE definition. We repeat the
experiments five times to get the average results.

Result Analysis. Fig. 7 compares the performance of our
proposed algorithm with the Firefly and modified PAVQ algo-
rithm under the first experimental setup with 8 users, where



(a) QoE, Quality, and Variance

(b) Delay CDF (c) FPS CDF

Fig. 7: Real-world evaluation results (8 users, single router)

(a) QoE, Quality, and Variance

(b) Delay CDF (c) FPS CDF

Fig. 8: Real-world evaluation results (15 users, 2 routers)

we have drawn the average value of QoE, quality level, and
the variance for all users within the whole time horizon of the
trace for five experiments. We can observe from Fig. 7a that
our proposed algorithm yields the largest average QoE and
significantly reduces the VR content delivery delay (see Fig.
7b) and the variance of quality levels of the delivered content
at the cost of acceptable quality degradation. In particular,
our algorithm gets a 81.9% improvement over the Firefly
algorithm and 12.1% improvement over the modified PAVQ
algorithm on the average QoE of all users within a finite time
horizon. Moreover, our proposed algorithm can also achieve
the best frame rate compared with the Firefly and modified
PAVQ, as shown in Fig. 7c. Specifically, our algorithm reaches
60 FPS on average in this system. The difference in the frame
rate lies in the heterogeneous delay and packet loss of the VR
content. With a larger VR content delivery delay, the content
cannot be decoded and displayed on time, resulting in a missed
frame. Fig. 8 shows the evaluation results under the second
experimental setup with 15 users. In particular, the variance
of the bandwidth capacity is even larger with two routers
working together due to the possible wireless interference. It
shows that both Firefly and modified PAVQ are vulnerable
to the dynamic network environment and suffer from poor
performance due to the inaccurate throughput estimation. In
contrast, our algorithm is robust to such imperfect information
and still has reasonably good performance. Specifically, our
algorithm gets a 214.3% improvement over the modified
PAVQ algorithm, while Firefly even reaches negative QoE.

VII. RELATED WORK

In this section, we summarize three different areas which
are close to our work: video streaming, virtual reality and 360°
video, and the knapsack problem.

Video streaming. Video streaming is one of the hottest
topics in the networking community. Various researchers have
explored novel methods to dynamically allocate the quality
of video content to achieve satisfactory QoE for users. Some
of them proposed a principled design with novel mathemat-
ical formulation (e.g., [13], [21]), while others applied the
reinforcement learning approach to the video streaming setup
(e.g., [20], [27]). With high-speed and low-latency network
development, researchers also make great progress on the real-
time video streaming (e.g., [28]–[30]). Unlike traditional video
streaming, the delay and packet loss significantly affect the
QoE of users for real-time video streaming. Depending on this
specific property, researchers have developed efficient methods
to improve the QoE of users and deployed their approaches to
commercial platforms to test the efficiency. Although advanced
video streaming technologies have been widely used in large-
scale commercial applications, virtual reality and panoramic
video streaming are still open problems due to the unique
challenges and opportunities.

Virtual reality and 360° video. VR and 360° video con-
tent delivery consume significantly more network bandwidth
than traditional videos. Researchers explored various ways
to optimize the system performance to achieve satisfactory



QoE for each user. In [7]–[10], the authors leveraged the
motion prediction and tile partitioning and delivered partial
panoramic content to the users without affecting their visual
perception. In another line of work [31]–[33], the authors
efficiently explored the computation capability on the user-side
to reduce the communication and computation workload from
the server-side. Some interesting works (e.g., [34]) utilized the
fact the user is less sensitive to the quality of the panoramic
content when she is moving or there is a change in lumi-
nance, and develop algorithms that adjust the visual quality
of the panoramic content while maintaining satisfactory QoE.
In more recent work (e.g., [35]–[37]), the authors explored
efficient tile encoding approaches to significantly reduce the
network bandwidth usage. To the best of our knowledge,
none of the existing work considered the principled design
for collaborative VR applications and deployed the algorithms
into a local system with up to 15 users.

Knapsack problem. The knapsack problem is to select a
set of items with different values and weights with the goal of
maximizing the total value while meeting the desired weight,
which has many applications such as cloud computing and
networking. The problem possesses combinatorial nature and
has been shown to be NP-hard. The researchers have explored
various efficient ways to solve the traditional knapsack prob-
lem (c.f., [38]). Beyond the scope of traditional 0/1 knapsack
problem, there are also some works focusing on the concave or
convex optimization function. [16] presented a thorough sur-
vey on algorithms and applications for the nonlinear knapsack
problem. Besides, [39] considered a problem which is highly
related to this paper which aims to maximize a separable
concave objective function, subject to a single convex packing
constraint, and converted it to an equivalent 0/1 knapsack
problem.

VIII. DISCUSSION

Online rendering and encoding. Since the teacher user
always needs to adapt the VR content of the class, the offline
rendering method may not be applicable due to its time-
consuming exhaustive preparation. Ideally, we can use Unity
and Nvidia NVENC to render and encode the tiles in real-time.
However, the overhead of rendering and encoding for multiple
quality levels makes it difficult to meet the synchronization
performance required by the collaborative VR application.
One possible solution is to coordinate multiple GPUs in a
server to enable multiple encoders working in parallel with
the rendering, which is also left for future work.

Handling packet loss. Since we use RTP to avoid the
influence of the TCP rate control algorithm, it is inevitable
to have packet loss during the transmission, which may lead
to the performance degradation to some content. This may
lead to a severe impact on the system performance when the
network condition is poor. However, we do not incorporate it
into our optimization problem formulation. Although our algo-
rithm still outperforms the state-of-the-art algorithms without
explicitly considering the packet loss, we believe it can be
further improved by accounting for such information.

IX. CONCLUSION

In this paper, we considered the quality level allocation
for geo-distributed collaborative VR applications, such as VR-
based remote education/training. We aimed to provide all par-
ticipating users with the best quality of experience (QoE) by
formulating a combinatorial optimization problem over a finite
time horizon. Our QoE metrics include the quality level, the
average content delivery delay, and the variance of the viewing
quality for users. We also considered the influence of imperfect
motion prediction and incorporated it into our formulation.
However, the optimal solution to such an optimization problem
requires the knowledge of future information and thus is
not physically implementable. As such, we decomposed this
problem into a series of the combinatorial optimization prob-
lem in each time slot and developed an efficient and easily-
implementable algorithm that yields at least 1/2 of the optimal
value. We performed trace-based simulation and demonstrated
that our proposed algorithm performs very close to the optimal
offline solution. Moreover, we developed a collaborative VR
system to evaluate our proposed algorithm and open-sourced
the implementations for the benefit of the community. The
real-world experimental evaluations demonstrated the superior
performance of our proposed algorithm over the state-of-the-
art algorithms.

APPENDIX A
VARIANCE DECOMPOSITION
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where step (a) uses the variance iteration formula [15]; (b) is
true by iteratively using the variance iteration formula; (c) is
based on the iterative sample mean calculation.
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