
Supporting Untethered Multi-user VR over Enterprise Wi-Fi

Xing Liu1 Christina Vlachou2 Feng Qian1 Kyu-Han Kim2

1University of Minnesota – Twin Cities, USA 2Hewlett Packard Labs, Palo Alto, USA

ABSTRACT

In this positioning paper, we propose Chord, a holistic multi-user

VR system for untethered mobile devices over 802.11ac/ax Wi-Fi.

Taking a cross-layer approach, Chord brings numerous innovations

to the application-layer design and VR-aware wireless network

optimizations. We present our design and its preliminary evaluation

on commodity smartphones and 802.11ac Wi-Fi, to demonstrate

the feasibility of Chord.

CCS CONCEPTS

• Networks → Wireless local area networks; • Computing

methodologies → Virtual reality.

KEYWORDS

Virtual Reality; Multi-user VR; Enterprise Wi-Fi.

ACM Reference Format:

Xing Liu, Christina Vlacho, Feng Qian, and Kyu-Han Kim. 2019. Supporting

Untethered Multi-user VR over Enterprise Wi-Fi. In 29th ACM SIGMM

Workshop on Network and Operating Systems Support for Digital Audio and

Video (NOSSDAV ’19), June 21, 2019, Amherst, MA, USA. ACM, New York,

NY, USA, 6 pages. https://doi.org/10.1145/3304112.3325605

1 INTRODUCTION

VR is becoming important in enterprise environments with many

applications in education, training, collaborative meetings, and

product design. Enterprises are embracing VR to reduce costs (pro-

duction, travel, maintenance, training) and to enhance work pro-

ductivity. This trend is well supported by a plethora of VR hardware,

such as VIVE BE [4] and Oculus Go for business [6], as well as by

VR software platforms for collaborative projects [5] or meetings [3].

It is well known that tethered head-mounted VR gears are not

safe and do not support user mobility. The multi-user VR scenario

makes these disadvantages even worse. Therefore, in this paper, we

propose a system, calledChord, that supports untetheredmulti-user

VR on commodity mobile devices, such as smartphones and tablets,

without requiring expensive, specialized VR hardware.Chord needs

only one-time installation of a thin client-side app onmobile devices.

Then, at runtime, a remote (or edge) server distributes VR content

to the client devices based on users’ viewports and interaction over

enterprise Wi-Fi networks.

Despite recent efforts on VR research, providing high-quality,

immersive multi-user experience still poses numerous challenges.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6298-6/19/06. . . $15.00
https://doi.org/10.1145/3304112.3325605

While some of them, such as limited battery life and computation

power on mobile devices, have been considered for single-user

VR [9, 12, 15], little research has been conducted on multi-user VR,

which brings a new set of scalability and diversity challenges. How

to support tens of untethered users interacting simultaneously over

the state-of-the-art wireless infrastructure [7, 15]? How to make

the server scale when executing complex scheduling and rendering

operations? How to accommodate user devices with heterogeneous

hardware configurations? The last one is an important and practical

requirement, given that “BYOD” (bring-your-own-device) policies

are becoming increasingly popular in enterprises [2].

By taking a cross-layer, interdisciplinary approach,Chord brings

numerous innovations to both the application-layer design and VR-

aware wireless network optimizations.

TheApplication-layerDesign (§3.1).Chord takes several unique

approaches to ensure better scalability while maintaining high con-

tent quality and friendliness to diverse VR client devices. (i) By

default, the server performs offline pre-rendering of all possible

scenes. This helps dramatically reduce the client-side overhead and

make the server free of expensive rendering operations at runtime.

(ii) Chord differentiates interactive objects from non-interactive

objects on which users have different levels of expectations on

Quality-of-Experience (QoE). For objects in each category, Chord

provides both the (default) rendered format and the unrendered

format. Such a dual-representation design is a key to accommodat-

ing the heterogeneity of client devices. (iii) To ensure the limited

network resources can accommodate as many clients as possible,

Chord allows the content quality to be dynamically adjusted. This

is achieved through a centralized Adaptive Content Quality Control

(AQC) module that jointly considers the clients’ wireless channel

capacity, their rendering capability, users’ preference, and the QoE

model. AQC also interacts with the lower wireless layer to obtain

accurate bandwidth estimation and to offer hints on QoE-aware re-

source allocation to the lower layer. (iv) Chord intelligently streams

the VR content based on predicting the user’s 6-DoF viewport move-

ment, leading to even more efficient network usage.

TheWireless Network Optimization (§3.2).Chord builds on

the state-of-the-art 802.11ac and the next-generation 802.11ax stan-

dards. Harnessing a cross-layer design, the optimizations we pro-

pose are the following. (i) Chord employs the Wi-Fi lower-layer

information to facilitate accurate throughput estimation that bene-

fits AQC’s decision making. (ii)We quantitatively study the option

of performing multicast Wi-Fi transmission and decide that it is not

a good fit for multiuser VR. (iii) Chord users exhibit constant and

various levels of mobility, from moving the head and the device, to

walking in a room. We thus perform judicious optimizations for

MU-MIMO grouping, scheduling, and rate control to make them

VR-aware. (iv) We also introduce cross-layer mechanisms to re-

duce the uplink delay associated with reporting users’ viewport and

interactions. The above components are typically executed at the

Wi-Fi AP and will be seamlessly integrated into the Chord system.

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA X. Liu et al.

To our best knowledge, this positioning paper presents a first

research proposal of developing a holistic multi-user VR system for

untethered COTSmobile devices, by incorporating intra-disciplinary

ideas from cross-layer system design, wireless networks, visual-

ization and graphics, theoretical modeling and optimization, and

machine learning.

The remainder of this paper is organized as follows. After pre-

senting the background and related work in §2, we describe the

design of Chord in §3. We then present the preliminary results in §4

to further motivate and demonstrate the feasibility of Chord, before

concluding the paper in §5.

2 BACKGROUND AND RELATEDWORK

Untethered VR over Wireless Links. Several previous studies

have used mmWave links for VR [7, 18]. Typically, mmWave can

support transmitting uncompressed VR frames for a single user,

which eliminates decompression latencies at the clients. However,

mmWave today has several limitations: (i) amobile client’s CPU and

battery may not be able to support such fast packet processing [12];

(ii) being directional, mmWave suffers from blockage (in particular

in a multi-user setting) and can lead to frame losses or bursty errors

when beam tracking algorithms are not efficient [7]; and (iii) most

commodity phones today do not yet support mmWave.

An alternative approach to mmWave is to deliver VR content via

omni-directional radio such as LTE [15] and traditional Wi-Fi [12],

or to save the entire scene locally [9]. In these cases, the large sizes

of uncompressed VR scenes make directly storing or streaming VR

content over onmi-directional radio infeasible. Therefore, a practi-

cal VR system has to leverage compression, which can reduce these

sizes by 90% on average at the cost of a few millisecond decoding

latency per frame [12]. Our system also judiciously uses compres-

sion, yet in addition employs various optimizations to address the

unique challenges brought by multi-user VR.

802.11ac/ax: Wi-Fi is dominant in enterprise. The state-of-the-

art 802.11ac standard supportsmulti-gigabit speed (up to 6.9 Gbps [1]

in theory), making it a promising wireless technology to deliver VR

content for multiple concurrent users. In practice, typical mobile

phones support up to 866 Mbps, a rate sufficient for compressed

VR frames, as shown by recent studies [12]. In order to determine

the appropriate PHY rate per station, an access point (AP) employs

the rate control algorithm to compute the packet error-rate (PER)

based on frame losses and sub-frame error-rate (SFER). PER can

increase, due to either bad channel conditions or packet collisions

with other stations. 802.11ac also supports multiuser (MU)-MIMO,

which allows concurrent downlink data streams from an AP to a

group of clients. Thanks to its concurrency, MU-MIMO yields sig-

nificant gains compared to single-user (SU) transmissions. However,

if there exists high inter-user interference, the gains will decrease,

and clients will suffer from high SFER. MU-MIMO algorithms rely

on PER to estimate inter-user interference and to form groups of

users with uncorrelated channels [14].

802.11ax is the latest Wi-Fi standard that promises 11 Gbps theo-

retical rates and further enhances multi-user performance by using

AP-centric OFDMA (Orthogonal Frequency Division Multiple Ac-

cess) [10], where the Wi-Fi bandwidth can be effectively shared

among users with simultaneous uplink and downlink transmissions.

Contrary to 802.11ac, 802.11ax does not use CSMA/CA to share

the channel but centralizes both uplink and downlink OFDMA

decisions at the AP. OFDMA can significantly reduce delays and

minimize collisions, hence making 802.11ax even more promising

for multi-user VR.

3 THE DESIGN OF CHORD

Chord scales multi-user VR in enterprise environments. As shown

in Figure 1, our design has a cross-layer nature by optimizing both

the application layer (§3.1) and the wireless layer (§3.2), and letting

them be aware of and properly interact with each other, in order to

ensure good scalability while maintaining high content quality.

3.1 Application-Layer Design

Server-Side Pre-Rendering. A key design decision we need to

make for Chord is how to represent and store VR content at the

server side. We consider three possible approaches. (i) The server
stores the content as 3D models, which will be transferred to and

rendered by the client. However, prior studies [12] and our prelimi-

nary results (§4) indicate that today’s commodity mobile devices

are not powerful enough to perform fully local rendering for high-

quality VR. (ii) The server performs rendering in real-time and

sends the rendered results as compressed video frames to clients.

Doing so alleviates the client-side overhead but makes the server

not scalable at all. This is in particular because of the high video

encoding overhead. We conduct an experiment on a workstation

with an Nvidia GTX 1080 GPU. The workstation can only achieve

encoding performance of 92 FPS, 199 FPS, and 342 FPS for 4K, 2K,

and 1080p resolution, respectively, which clearly cannot support

many clients. (iii) The server performs one-time offline rendering

for all possible viewports, and caches the rendered and encoded

frames in its storage. At the runtime, the server simply acts like

a file server by transmitting the pre-generated video frames ac-

cording to clients’ reported viewport position and orientation. This

approach dramatically reduces the server’s runtime workload at

the cost of high disk space usage, which is typically not a big issue

given the cheap storage today.

Given its advantages, Chord adopts the third option as the de-

fault “base solution” upon which numerous optimizations will be

introduced. Specifically, in the offline rendering phase, Chord enu-

merates all possible positions in the scene. For each position, Chord

renders its 360° view into a panoramic video frame. In this way,

the whole (discrete) 6-DoF space is fully exercised. The frames are

then encoded into a video stream whose individual GOPs (group of

pictures) can be fetched by the client. Note that a similar approach

was taken by FlashBack [9], which caches everything on the local

device as opposed to on the server as in Chord.

Dual Content Representations. Chord treats interactive (IA)

and non-interactive (NIA) objects differently. IA objects are those

users can interact with, and are typically situated in the foreground

of a scene. Their examples include the target product in a promotion

or virtual customers whom users can interact with. In contrast,

NIA objects are non-interactive and are typically situated in the

background. In most VR scenes, the static background, such as an

office room, can be treated as a single “logical” NIA object. IA objects

are more important than NIA objects, and should be rendered with

a higher quality and lower latency if possible.

Supporting Untethered Multi-user VR over Enterprise Wi-Fi NOSSDAV ’19, June 21, 2019, Amherst, MA, USA

Figure 1: The Chord Architecture. The downlink data paths from AP to clients are not shown.

In Chord, the server prepares two representations of each IA ob-

ject: the rendered and unrendered format, which incur an important

tradeoff. The rendered format is a video stream, with each frame

rendering the object from a particular view, generated using the

above “exhaustive enumeration” approach1. It is typically easy to

be processed by the client, which, however, needs to continuously

fetch the frames as the viewport changes or an interaction occurs,

incurring additional network delay. The client can alternatively

cache all frames of an IA object, but that requires a substantial

amount of bandwidth and local storage. On the other hand, the

unrendered format contains raw 3D meshes and textures. Unless

the model is simple, it requires more processing capability from the

client. However, it offers a key benefit of its compact representation

that consumes much less bandwidth and takes much less space to

cache compared to the rendered format. Unrendered models pro-

vide other benefits such as allowing the client to perform custom

rendering (e.g., highlighting the surface of a model).

Providing dual representations of IA objects offers great flexibil-

ities to client devices with heterogeneous hardware configurations.

For example, low-end and high-end devices may choose to use

the rendered and the unrendered format, respectively. The two

formats can also be used in a hybrid manner. For example, when

there is spare bandwidth, a client can opportunistically prefetch

unrendered models and cache them, leading to reduced bandwidth

usage in the long term. Note that the server can also prepare dual

versions for NIA objects, but a typical mobile client may not be able

to render both IA and NIA objects due to its limited 3D rendering

capability. We will develop an algorithm that adaptively selects the

appropriate format based on several factors including the device’s

rendering capability, the available bandwidth, and the cache size.

The algorithm will be integrated into the AQC module described

below.

Adaptive Content Quality Control (AQC) is another mech-

anism in Chord to facilitate better scalability from the network’s

perspective. Its basic concept is borrowed from the rate adaptation

mechanism of video streaming, where the client player dynamically

changes the video quality based on its estimation of the network

bandwidth. However, AQC in Chord differs from traditional rate

adaptation in several key aspects. (i) AQC is performed on the

1For an IA object, the enumeration needs to exercise at least 7 dimensions: 3D relative
position, 3D object rotation, and the animation sequences of one or more dimensions.
Each frame will be rendered with depth information so that multiple objects can be
properly combined on the client side.

server side, which has a visibility of all clients and therefore can

run a centralized scheduling algorithm to maximize the global QoE.

(ii) In a typical enterprise deployment scenario, the server and

the AP are within the same administrative boundary. This creates

rich cross-layer optimization opportunities [16]. On one hand, the

server can leverage the lower-layer information at the AP such as

accurate channel capacity estimation to better assist the app-layer

AQC. On the other hand, based on the app-layer requirements,

the server can pro-actively hint the lower-layer scheduling and

resource allocation decisions, as to be detailed in §3.2. (iii) Recall
that Chord offers two types of representations: rendered frames

and unrendered models. Chord therefore needs to create separate

quality versions and run separate AQC algorithms for them. We

plan to thoroughly investigate both. In particular, for unrendered

3D models, very few studies have been done on its AQC or on the

underlying QoE metrics that dictate AQC’s decisions. (iv) AQC will

also leverage the 6-DoF motion prediction (to be detailed shortly)

to aid its scheduling decisions.

Overall, we plan to integrate the above four design points into a

holistic AQC framework which, in a cross-layer manner, adaptively

selects for each client: (i) the format for each object, (ii) the quality
level for each IA object, and (iii) the quality level for each NIA

object. The framework will take several factors into consideration:

the clients’ wireless channel capacities, their rendering capabilities

(which clients will inform the server), users’ preferences (e.g., the

weight of IA vs. NIA objects), and the QoE model. We will derive

an optimization-based formulation for online scheduling. Here a

potential challenge is to make the actual solving process efficient

and scalable w.r.t. the number of clients and the number of objects.

We plan to tackle it by, for example, developing robust heuristics

and grouping similar users/objects.

6-DoF Motion Prediction. In Chord, VR content is continu-

ously streamed to each client according to its viewport. To hide

the end-to-end “motion-to-photon” delay, the content needs to be

properly prefetched. A simple approach taken by prior work [12]

is to blindly prefetch the panoramic views at the locations that are

adjacent to a user’s current position. Chord instead brings in more

intelligence by performing 6-DoF motion prediction. For example,

if the user is moving towards a particular direction, then the ren-

dered frames or unrendered models in that direction will be more

aggressively prefetched, whereas the content in other directions

may be fetched at a lower quality or even be skipped to save the

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA X. Liu et al.

bandwidth. Prior studies indicate that for 360° panoramic streaming,

viewers’ head movement (in 3-DoF) exhibits good short-term pre-

dictability using lightweight machine learning algorithms [11, 13].

We thus plan to investigate the 6-DoF case. Here a key hypothesis

to be validated through user studies is that the viewport’s angular

movement (yaw, pitch, roll) and the translational movement (the 3D

position) can first be predicted separately, and then their results can

be combined to obtain the final 6-DoF prediction. In this way the

overall complexity of the prediction will be significantly reduced.

In addition, since the server has the knowledge of all users’

viewport movement trajectories, the server can perform (online

or offline) crowdsourcing analysis to compute the “hotspots” that

users are commonly interested in, in order to further assist viewport

prediction.We expect that the content of enterprise VR applications,

such as educational materials and product demonstration, usually

has hotspots that are easily identifiable through crowdsourcing

and/or content analysis. We will also validate this through IRB-

approved user studies.

3.2 Network-Level Optimizations

Orchestrated by the modules described in §3.1, Chord’s network-

level optimizations seek to save bandwidth, increase throughput,

and reduce delay. We make a reasonable assumption that the Chord

server can directly manipulate configurations of the Wi-Fi AP that

is dedicated to the Chord system.

Accurate Throughput Estimation. Chord leverages the wire-

less lower-layer information to facilitate accurate throughput es-

timation, which benefits AQC’s decision making. Specifically, the

Wi-Fi AP gathers statistics in the rate control module in firmware.

The statistics consist of the average PHY rate ϕi , the average sub-
frame error rate (SFER) σi , and the average size of SU/MU-MIMO

groups дi per client i . Then we can compute the link’s maximum

achievable throughput as ϕi (1−σi)(1−TXoverheads).
2 In addition,

we need to account for the fact that (in theory) all N stations share

equitably the medium, and also that the network has some gains

when MU-MIMO groups are formed. Hence, we estimate the final

throughput of client i as Pi = дiϕi (1 − σi)(1 − TXoverheads)/N ,

by leveraging the information exposed by the rate control and the

joint grouping-schedulingmodules of the AP. Our current AP-based

technique has 1–5% relative estimation error for 802.11ac based on

our lab tests (evaluation details omitted).

We further propose to enhance the above approach with tradi-

tional app/transport-layer throughput measurement, to make the

throughput estimation even more accurate. The rationale is that

the source of errors of the two approaches differs: for AP-based

measurement, the airtime might not be always shared equitably

among the stations due to interference or scheduling unfairness;

the app/transport-layer measurement, denoted as T
app
i for client i ,

might be bounded by the amount of traffic sent to the client, which

can be lower than the actual capacity. Hence, these two techniques

can be combined for increased accuracy: if T
app
i and Pi deviate

from each other, then we examine the packet loss rate (denoted

as li): If li ≈ 0%, then we are below the capacity and the AP’s

2TXoverheads is mainly due to IP/UDP headers and the Wi-Fi MAC layer and it is
measured to be 30–40%.

Figure 2: 802.11ac downlink unicast vs. multicast.

estimation applies. Otherwise, we reach or are close to the capacity

so the throughput is estimated as T
app
i .

No Multicast Adoption. In a multi-user setting, a natural idea

one may think of is to perform multicast. Indeed, it was recently

proposed for multi-user 360° video streaming [8]. We argue, how-

ever, that multicast is not suitable for Chord from the network’s

perspective.

• Why is multicast not suitable for commodity high-rate Wi-Fi? Wi-

Fi networks have adaptive rate control. Depending on the user’s

channel quality and location (distance from AP, objects in between,

mobility, etc.), every user has its own optimal/maximum rate at

which she can decode data. Hence, multicast/broadcast transmis-

sions have to ensure all involved users can reliably decode packets,

as these transmissions do not have link-layer acknowledgements

by default. In commodity APs, multicast transmissions are handled

at the most robust rate (e.g., 6Mbps) like other crucial manage-

ment messages such as beacons. Figure 2 demonstrates this feature

through an experiment of performing multicast to 7 clients in a

room from an off-the-shelf 802.11ac AP. As shown, the per-client

multicast throughput is much lower than the per-client throughput

of performing concurrent unicast to the same set of clients. To

achieve higher rates, one has to introduce rate control and acknowl-

edgements for multicast transmissions over different client groups.

This brings more complexity and is not a scalable solution.

OptimizingMU-MIMOGrouping and Scheduling. 802.11ac/ax

joint MU-MIMO user grouping and scheduling is crucial for multi-

user applications. The grouping protocol may introduce high delays

and low throughput if it selects the wrong users to group in an

MU-MIMO transmission, as users with correlated channels cause

high packet losses (SFER) due to interference (§2). For scheduling,

ideally the protocol has to be short-term fair to ensure low access

delay for all users; the protocol should also determine the optimal

frame duration based on the traffic dynamics.

In Chord, we propose to group users by minimizing interference

and to avoid delays by crafting VR-aware frame aggregation. Specif-

ically, we propose two optimizations. First, we can blacklist groups

with SFER yielding prohibitive delays whose threshold is dictated

by the Chord server based on the VR QoE requirements. Second,

the Chord server can also inform the AP about the size distribu-

tion of the “atomic” data blocks to be transmitted, such as GOPs

of rendered frames. The AP can then use this information to make

strategic frame aggregation decisions, such as limiting the trans-

mission duration, to maintain the proper scheduling granularity

without delaying other users.

Supporting Untethered Multi-user VR over Enterprise Wi-Fi NOSSDAV ’19, June 21, 2019, Amherst, MA, USA

Uplink Delay Reduction. In Chord, a client needs to contin-

uously transmit uplink (UL) meta-data that contains the user’s

position, orientation, and controller inputs. Due to the heavy down-

link (DL) traffic that causes CSMA/CA deferrals or collisions, users

might experience tens of ms delay for meta-data transmissions over

802.11ac. 802.11axWi-Fi can also incur delays, as users need to send

buffer status reports (BSR) to earn OFDMA UL slots from the AP.

To this end, we propose three AP-based solutions to reduce the UL

delay while maintaining good DL performance without modifying

the client-side Wi-Fi stack.

• 802.11ac AP silent slots. Typically users’ meta-data is only a few

tens or hundred bytes, hence its transmission should complete in a

very short interval. When the queue length of DL traffic is short, the

AP can add short delay or silent slots to facilitate UL transmission.

This reduces the UL delay caused by CSMA/CA deferrals or its

incurred collisions. The Chord server can provide hints on how to

set the frequency and duration of such silent slots.

• IEEE 802.11ax VR-aware ULOFDMA scheduling. In the next-generation

OFDMA, transmissions are completely controlled by the AP, which,

when collaborating withChord, can schedule periodically all clients

with small uplink meta-data on a single frame transmission. In this

case, clients are completely in sync and transmitting meta-data

simultaneously without any collisions (contrary to 802.11ac). The

Chord server will inform the AP about the UL resource allocation

decisions, which depend on the bandwidth, the number of clients,

the meta-data size, and the users’ viewport movement dynamics.

The AP can then proactively assign UL slots without requiring BSR.

• Uplink transmissions over a side channel.Another possible solution

would be to schedule uplink meta-data over another medium such

as Bluetooth. In theory, Bluetooth can support the data rate demand

of VR meta-data and multiple concurrent connections to a master

(the Chord server).

4 PRELIMINARY EVALUATION

We present three pieces of preliminary results. (i) The server-side
pre-rendering approach is highly beneficial and can be well sup-

ported by state-of-the-art Wi-Fi. (ii) COTS mobile devices indeed

exhibit high heterogeneity and thus need differential treatment

as proposed in §3.1. (iii) Vanilla 802.11ac interacts poorly with

Chord in particular when many concurrent users are present. This

motivates our network-layer optimizations proposed in §3.2.

Server-Side Pre-Rendering vs. Local Rendering. We com-

pare the performance of rendering a VR scene locally on a smart-

phone with that of using the server-side pre-rendering approach,

to motivate the latter. Specifically, we pick a subset of the Viking

Village scene offered by the Unity Asset Store. It consists of 1,482

models that are non-interactive (NIA). We use a Samsung Galaxy

Note 8 (SGN8) as the client device. For local rendering, we directly

utilize the Unity API for Android to render the models at the 1440p

resolution. For our pre-rendering approach, we discretize the entire

scene (100×100 m2) into a grid of 5×5 cm2 blocks. We employ a

commodity server to render a panoramic frame offline at each grid

location. We then encode the frames into an H.264 video stream

where each GOP (group-of-picture) consists of 9 frames within each

3×3 grid, under three quality levels defined by the Constant Rate

Factor (CRF): CRF=23 (high quality), 29 (medium quality), and 35

Number of Objects
0 5 10 15

FP
S

0

20

40

60

80 N5
N5X
SGN8

Figure 3: Rendering performance of 3 smartphones.

(low quality). We set the encoded resolution to be also 1440p. The

total size of the entire pre-rendered scene is 288GB when CRF=23.

At the run time when a user is navigating in the scene, the client

fetches its nearby frames from the server, and then decodes, caches,

and renders the frames when needed. On the client side, we use

the low-level Android MediaCodec API for decoding, and develop a

cache with a capacity of 100 decoded frames implemented using the

OpenGL Frame Buffer Object with simple FIFO cache replacement.

We now compare the rendering performance of the above two

approaches. For local rendering, we observe a poor performance of

only 5FPS. In contrast, for the pre-rendering approach, assuming

the bandwidth is not the bottleneck, we can achieve an FPS of

135 on SGN8 at 1440p – a 26× improvement. We also measure the

bandwidth consumption for the pre-rendering approach. We first

consider an ideal case where all fetched GOPs are consumed by

the viewer (i.e., having perfect viewport movement prediction).

The per-user throughput is measured to be 40Mbps, 15Mbps, and

7Mbps for CRF=23, 29, and 35, respectively. We then consider a

pessimistic case where only 30% of fetched GOPs are consumed

(very poor viewport prediction). The throughput is measured to be

132Mbps, 50Mbps, and 22Mbps, respectively, for the three quality

levels. Overall, we believe the bandwidth requirement is reasonable

given the high capacity of 802.11ac/ax. The results also highlight

the importance of AQC and viewport prediction in Chord.

The Heterogeneity of Commodity Mobile Devices is a key

aspect thatChord considers. To demonstrate that, we consider three

COTS smartphones: Google Nexus 5 (released in 2013), Google

Nexus 5X (2015), and SGN8 (2017). They correspond to a low-end,

medium-end, and high-end device, respectively, as the time when

this paper was written. We use them to render several complex

“Barbarian Warrior” objects obtained from the Unity Asset Store

(http://bit.ly/2Ozlshk). The object belongs to the interactive (IA) cate-

gory, with its interaction sequence pre-defined here for simplifying

our experiments. It consists of 14,075 vertices and 18,062 triangles.

We utilize the Unity API for Android to render the objects locally

on the client. Figure 3 shows the rendering performance in FPS

by varying the number of objects on the three devices. The results

show highly diverse rendering performance that motivates our

dual representation design – where clients can flexibly choose the

content format, and AQC – where clients can fetch lower-quality

objects for faster rendering.

802.11ac MU-MIMO Performance. We experimentally inves-

tigate the multi-user performance of 802.11ac in an emulated VR

NOSSDAV ’19, June 21, 2019, Amherst, MA, USA X. Liu et al.

(a) Throughput (b) PHY rates (c) SFER (d) Scheduling delay

Figure 4: 802.11ac multi-user SU/MU-MIMO downlink performance with 9 clients.

Figure 5: 802.11ac multi-user SU/MU-MIMO downlink per-

formance with 3 clients.

context. We modify the firmware of an enterprise-grade AP to col-

lect statistics and to use either MU- or SU-MIMO. We first demon-

strate that MU-MIMO can yield significant gains if properly con-

figured for a small number of users. In our setup, we distribute

three clients in a large lab emulating a VR room. The clients have

un-correlated channels, as verified by the channel state information.

They are first grouped with MU-MIMO and then using SU-MIMO

to concurrently download data from a local server. Figure 5 uncov-

ers that MU-MIMO can yield 44% throughput gains compared to

SU-MIMO (290 vs. 201Mbps total throughput).

We then try to scale up the above setup by increasing the num-

ber of clients from 3 to 9 and repeating the same concurrent data

download experiment. In this case, we observe the opposite results:

SU-MIMO outperforms MU-MIMO in terms of throughput, PHY

rates, and SFER as shown in Figures 4a– 4c. The reason is that com-

modity 802.11ac APs run naive MU-MIMO grouping algorithms

that do not consider the inter-user interference, as also corroborated

by a recent study [14]. As a result, inter-user interference yields a

high SFER, a large number of retransmissions, and reduced PHY

rates. But a positive result is that MU-MIMO can reduce the sched-

uling delay as shown in Figure 4d: with SU-MIMO, each user has

to wait on average 75 ms for a transmission, whereas such a delay

is reduced by 50% with MU-MIMO. To overcome the performance

issues of MU-MIMO when many clients co-exist, the AP should

(i) make the MU-MIMO grouping algorithm aware of the channel

state and/or channel correlation, and (ii) dynamically switch to

SU-MIMO based on the VR QoE requirements, as described in §3.2.

We then conduct another experiment where 9 clients concur-

rently upload light data (e.g., the VR meta-data) with and without

concurrent bulk download (e.g., the VR content). When concur-

rent download exists, we observe a significant inflation of the

uplink latency, which increases from ∼4ms to 13.3/19.8/32.9ms

(25th/50th/75th percentiles, respectively). The results demonstrate

the need for reducing the uplink delay as discussed in §3.2. We

plan to conduct similar performance analysis for 802.11ax when it

becomes available on commodity mobile devices in the near future.

5 CONCLUDING REMARKS

Chord enables high-quality multi-user VR on untethered COTS mo-

bile devices over 802.11ac and the next-generation 802.11ax Wi-Fi.

Our design consists of both application and wireless layer innova-

tions, whose synergy helps realize the key goals of achieving the

scalability, providing good content quality, and embracing clients’

heterogeneity. Some of our proposed ideas, in particular those per-

taining to the network-level optimizations, can be applied to other

bandwidth-intensive applications, such as video conferencing and

social AR [17]. We are currently developing the Chord system over

commodity servers, enterprise-grade APs, and COTS smartphones.

REFERENCES
[1] 802.11ac In-Depth, Aruba Networks. http://bit.ly/2GAFKTg.
[2] BYOD Popularity. https://goo.gl/1EA1Wf.
[3] Cisco Spark. www.ciscospark.com/VR/.
[4] HTC VIVE for Business. www.vive.com/us/enterprise/.
[5] InsiteVR. https://www.insitevr.com/.
[6] Oculus Go for Business. www.oculusforbusiness.com.
[7] O. Abari, D. Bharadia, A. Duffield, and D. Katabi. Enabling High-Quality Unteth-

ered Virtual Reality. In Usenix NSDI, 2017.
[8] Y. Bao, T. Zhang, A. Pande, H. Wu, and X. Liu. Motion-prediction-based multicast

for 360-degree video transmissions. In IEEE SECON, 2017.
[9] K. Boos, D. Chu, and E. Cuervo. Flashback: Immersive virtual reality on mobile

devices via rendering memoization. In ACM MobiSys, 2016.
[10] D.-J. Deng, Y.-P. Lin, X. Yang, J. Zhu, Y.-B. Li, J. Luo, and K.-C. Chen. IEEE 802.11

ax: Highly Efficient WLANs for Intelligent Information Infrastructure. IEEE
Communications Magazine, 55(12):52–59, 2017.

[11] J. He, M. A. Qureshi, L. Qiu, J. Li, F. Li, and L. Han. Rubiks: Practical 360-Degree
Streaming for Smartphones. In ACM MobiSys, 2018.

[12] Z. Lai, Y. C. Hu, Y. Cui, L. Sun, and N. Dai. Furion: Engineering High-Quality
Immersive Virtual Reality on Today’s Mobile Devices. In ACM MobiCom, 2017.

[13] F. Qian, B. Han, Q. Xiao, and V. Gopalakrishnan. Flare: Practical Viewport-
Adaptive 360-Degree Video Streaming for Mobile Devices. In ACM MobiCom,
2018.

[14] S. Sur, I. Pefkianakis, X. Zhang, and K.-H. Kim. Practical MU-MIMO user selection
on 802.11 ac commodity networks. In ACM MobiCom, 2016.

[15] Z. Tan, Y. Li, Q. Li, Z. Zhang, Z. Li, and S. Lu. Supporting Mobile VR in LTE
Networks: How Close Are We? ACM POMACS, 2(1):8:1–8:31, Apr. 2018.

[16] M. van Der Schaar et al. Cross-layer wireless multimedia transmission: challenges,
principles, and new paradigms. IEEE wireless Communications, 12(4):50–58, 2005.

[17] W. Zhang, B. Han, P. Hui, V. Gopalakrishnan, E. Zavesky, and F. Qian. CARS:
Collaborative Augmented Reality for Socialization. In ACM HotMobile, 2018.

[18] R. Zhong, M. Wang, Z. Chen, L. Liu, Y. Liu, J. Zhang, L. Zhang, and T. Moscibroda.
On Building a ProgrammableWireless High-Quality Virtual Reality System Using
Commodity Hardware. In ACM APSys, 2017.

