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Abstract—Adaptive bitrate streaming (ABR) has become the de facto technique for video streaming over the Internet. Despite a flurry
of techniques, achieving high quality ABR streaming over cellular networks remains a tremendous challenge. ABR streaming can be
naturally modeled as a control problem. There has been some initial work on using PID, a widely used feedback control technique, for
ABR streaming. Existing studies, however, either use PID control directly without fully considering the special requirements of ABR
streaming, leading to suboptimal results, or conclude that PID is not a suitable approach. In this paper, we take a fresh look at
PID-based control for ABR streaming. We design a framework called PIA (PID-control based ABR streaming) that strategically
leverages PID control concepts and incorporates several novel strategies to account for the various requirements of ABR streaming.
We evaluate PIA using simulation based on real LTE network traces, as well as using real DASH implementation. The results
demonstrate that PIA outperforms state-of-the-art schemes in providing high average bitrate with significantly lower bitrate changes
(reduction up to 40%) and stalls (reduction up to 85%), while incurring very small runtime overhead. We further design PIA-E (PIA
Enhanced), which improves the performance of PIA in the important initial playback phase.

Index Terms—Adaptive video streaming, control theory, PID control, DASH
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1 INTRODUCTION

V IDEO streaming has come to dominate mobile data
consumption today. As per Cisco’s 2016 Visual Net-

work Index report [4], mobile video traffic now accounts
for more than half of all mobile data traffic. Ensuring good
viewing experience for this important application class is
critical to content providers, content distribution networks,
and mobile operators. Despite much effort, achieving good
quality video streaming over cellular networks remains a
tremendous challenge [5].

Most video contents are currently streamed using Adap-
tive Bit-Rate (ABR) streaming over HTTP, the de facto tech-
nology adopted by industry. In ABR streaming, a video is
encoded into multiple resolutions/quality levels (or tracks).
The encoding at each resolution/quality level is divided
into equal-duration chunks, each containing data for a short
interval’s worth of playback (e.g., several seconds). A chunk
at a higher resolutions/quality level requires more bits to
encode, and is therefore larger in size. During playback, to
fetch the content for a particular playpoint in the video, the
video player dynamically determines what bitrate/quality
chunk to download based on time-varying network condi-
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tions. The resulting play-back involves showing different
portions of the video using chunks selected from different
tracks.

Various user engagement studies [17], [22], [24], [27]
indicate that satisfactory ABR streaming needs to achieve
three conflicting goals simultaneously: (1) maximize the
playback bitrate; (2) minimize the likelihood of stalls or
rebuffering; and (3) minimize the variability of the selected
video bitrates for a smooth viewing experience. Reaching
any of the three goals alone is relatively easy – for instance,
the player can simply stream at the highest bitrate to maxi-
mize the video quality; or it can stream at the lowest bitrate
to minimize the stalls. The challenge lies in achieving all
three goals simultaneously, especially over highly varying
network conditions, typical of the last-mile scenarios in
cellular networks.

Rate adaptation for ABR streaming can be naturally
modeled as a control problem: the video player monitors
the past network bandwidth and the amount of content in
the playback buffer to decide the bitrate level for the current
chunk; the decision will then affect the buffer level, which
can be treated as feedback to adjust the decision for the next
chunk. PID (named after its three correcting terms, namely
“proportional”, “integral”, and “derivative” terms) is one of
the most widely used feedback control techniques in prac-
tice [12]. It is conceptually easy to understand and compu-
tationally simple. There has been initial work on using PID
control theory for ABR streaming. Specifically, the studies
in [15], [16] directly apply the standard PID controller to
ABR streaming with no modifications, which was shown
to lead to significantly suboptimal performance [33]. The
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studies [36], [39] conclude that PID control is not suitable
for ABR streaming.

In this paper, we adopt a contrarian perspective and
take a fresh look at the potential of PID control for ABR
video streaming. We start by pointing out that a recent
heuristic technique, BBA [20], can be shown to be, in effect,
using a simplified form of PID control. We then conduct
an in-depth study that explores using PID control for ABR
streaming. Specifically, we design PIA (PID-control based
ABR streaming), a novel control-theoretic video streaming
scheme that strategically incorporates PID control concepts
and domain knowledge of ABR streaming. Our main con-
tributions include the following.

• We take a fresh look at PID-based control for ABR
streaming, and strategically leverage PID control
concepts as the base framework for PIA. Specifically,
the core controller in PIA differs from those in [15],
[16] in that we define a control policy that makes
the closed-loop control system linear, and easy to
control and analyze. The core controller maintains
the playback buffer to a target level, so as to reduce
rebuffering.

• We add domain-specific enhancements to further
improve the robustness and adaptiveness of ABR
streaming. Specifically, PIA addresses two key addi-
tional requirements of ABR streaming, i.e., maximiz-
ing playback bitrate and reducing frequent bitrate
changes. It also incorporates strategies to accelerate
initial ramp-up and protect the system from satura-
tion. We further develop PIA-E (PIA Enhanced) that
improves the performance of PIA in the important
initial playback phase, by dynamically adjusting the
parameters used in the control loop.

• We explore parameter tuning. Specifically, the pro-
portional gain Kp and the integral gain Ki are
the two fundamental and most critical parameters
that guide the PIA controller’s behavior. We de-
velop a methodology that systematically examines
a wide spectrum of network conditions and param-
eter settings to derive their (Kp, Ki) configurations
that yield satisfactory quality of experience (QoE).
Our results demonstrate that a common set of (Kp,
Ki) values exist that have good performance across
a wide range of network settings, indicating our
schemes can be easily deployed in practice.

We conduct comprehensive evaluations of PIA using a
large number of real cellular network traces with diverse
network variability characteristics. The traces were collected
from two commercial LTE networks at diverse geographic
locations, with a range of mobility conditions. Our key
findings include the following.

• PIA achieves comparable bitrates as two state-of-the-
art schemes, BBA [20] and MPC [39], while substan-
tially reducing bitrate changes (49% and 40% lower,
respectively) and rebuffering time (68% and 85%
lower, respectively). Overall, PIA achieves the best
balance among the three QoE metrics. Compared to
PIA, the enhanced version, PIA-E, achieves higher
bitrate for the beginning part of the video; for the

Ct Network bandwidth at time t
Ĉt Estimated network bandwidth at time t
xt Buffer level at time t (in seconds)
xr Target buffer level (in seconds)
Rt Selected video bitrate for time t
∆ Video chunk duration (in seconds)
δ Startup latency (in seconds)
ut PID controller output
Kp,Ki,Kd PID controller parameters
ζ Damping ratio
ωn Natural frequency
β Setpoint weighting parameter

TABLE 1: Key notation.

entire video, PIA-E has similar rebuffering, average
bitrate and bitrate changes as PIA.

• PIA and PIA-E have low computation overhead (e.g.,
comparable to BBA and only 0.5% of MPC based on
our simulations). Our emulation results also show
that their execution time is less than 2 seconds for a
15-minute video.

The rest of this paper is organized as follows. Section 2
summarizes the background and motivations. Section 3
presents PIA, the PID based controller for ABR streaming.
Section 4 evaluates the performance of PIA under a wide
range of settings. Section 5 presents PIA-E, designed to
improve the startup performance of PIA. Section 6 presents
the implementation and evaluation of PIA and PIA-E using
a real video player. Section 7 briefly describes the related
work. Finally, Section 8 concludes the paper and presents
future directions.

2 MOTIVATION AND BACKGROUND

ABR streaming has been used in many commercial sys-
tems [8], [2], [1]. For a satisfactory user-perceived QoE, ABR
streaming needs to optimize several conflicting goals, in-
cluding maximizing the average playback rate, minimizing
stalls (or rebuffering), and reducing sudden and frequent
quality variations [17], [22], [24], [27]. We next formulate
ABR streaming as a control problem and describe the moti-
vation for our study. Table 1 summarizes the main notation
used in this paper.

2.1 ABR streaming as a control problem
Deciding which level to choose in ABR streaming can be
modeled as a control problem. Specifically, let xt be the
buffer level (in seconds) of the video player at time t, Ct the
real-time network bandwidth at time t, and Rt the bitrate of
the video chunk that is being downloaded at time t. Further,
let ∆ denote the video chunk duration (i.e., the duration of
a chunk’s playback time), δ denote the startup delay, i.e.,
how long it will take for the player to start playing. Then
the player’s buffer dynamics can be written as

ẋt =

{
Ct

Rt
, if t ≤ δ

Ct

Rt
− 1(xt −∆), otherwise

(1)

where 1(xt − ∆) = 1 if xt ≥ ∆; otherwise, 1(xt − ∆) =
0 since in ABR streaming, a chunk has to be downloaded
completely before any part of it can be played back.
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Fig. 1: ABR streaming based on open-loop control (a) and
closed-loop control (b).

In Eq. (1), ẋt is the rate of change of the buffer at time
t. Here, Ct/Rt models the relative buffer filling rate. If
Ct > Rt, i.e., the actual network bandwidth is larger than
the bitrate of the video chunk being downloaded, the buffer
level will increase. Otherwise, the buffer level will be at the
same level (if Ct = Rt) or decrease (if Ct < Rt).

One simple control strategy is to select the video bitrate
for each chunk based on the prediction of real-time link
bandwidth, Ĉt. Specifically, it simply chooses the highest
bitrate that is less than Ĉt. This is an open-loop control strat-
egy (illustrated in Fig. 1(a)), since the output (e.g., the buffer
level) is not fed back to the system to assist the decision
making. It is not robust against network link bandwidth
estimation errors. As an example, it may choose a high
video bitrate if the estimated bandwidth, Ĉt, is high, even if
the current playback buffer level is very low. If it turns out
that Ĉt is an overestimate of the actual network bandwidth,
the buffer can be even further drained and become empty,
causing stalls. Closed-loop or feedback control, as illustrated
Fig. 1(b), is more effective in dealing with network link
bandwidth estimation errors. We therefore focus on closed-
loop/feedback control in this paper.

2.2 PID control
As mentioned earlier, PID control is by far the most common
way of using feedback in engineering systems. A PID con-
troller works by continuously monitoring an “error value”,
defined as the difference between the setpoint and measured
process variable [12]. Specifically, let ut represent the control
signal, and et the error feedback at time t. Then

ut = Kpet +Ki

∫ t

0

eτdτ +Kd
det
dt
, (2)

where the three parameters Kp, Ki and Kd are all non-
negative, and denote the coefficients for the proportional, in-
tegral and derivative terms, respectively. As defined above,
a PID controller takes account of the present, past and future
values of the errors through the three terms, respectively.
Some applications may require using only one or two terms

to provide the appropriate system control. This is achieved
by setting the other parameters to zero. A PID controller
is called a PI, PD, P or I controller in the absence of the
respective control actions [12].

In the video streaming scenario, the real-time buffer level
is the measured process variable, and the reference/target
buffer level is the setpoint. We next show that a recent state-
of-the-art buffer based scheme, BBA [20], can be mapped to
a P-controller (though the paper does not claim any control-
theoretic underpinnings). In BBA, the video player main-
tains a buffer level, and empirically sets two thresholds,
θhigh > θlow. If the buffer level is below θlow, the video player
always picks the lowest bitrate, Rmin; if the buffer level
is above θhigh, the video player picks the highest bitrate,
Rmax; otherwise, the video player picks the video bitrate
proportionally to buffer level. The selected bitrate, Rt, can
therefore be represented as

Rt =


Rmin, xt < θlow,
Rmax−Rmin
θhigh−θlow

(xt − θlow) +Rmin, θlow ≤ xt ≤ θhigh

Rmax, xt > θhigh

Comparing the above with Eq. (2), we see that it is equiv-
alent to a P-controller when xt ∈ [θlow, θhigh] with Kp =
Rmax−Rmin
θhigh−θlow

, Ki = 0 and Kd = 0.
BBA has been tested successfully in a large-scale deploy-

ment [20], indicating that a PID-type control framework
has the potential for ABR streaming. On the other hand,
P-controller only considers the present error (i.e., the pro-
portional term), and ignores the other two terms. It is well
known that the absence of an integral term in a system
may prevent the system from reaching its target value [12].
This is especially true for video streaming, where inaccurate
network bandwidth estimation may cause the error to accu-
mulate over time. Therefore, including the integral term can
potentially further improve the performance of BBA. PID’s
ability to address accumulative errors is advantageous com-
pared to model predictive control (MPC) based approach
in [39], which does not consider accumulative errors (unless
new state variables are added) and also requires accurate
network bandwidth prediction. In addition, MPC is much
more computation-intensive than PID (see Section 4.4).

We investigate PID-based control for ABR streaming in
this paper, motivated by the widespread adoption of PID
control in various domains beyond video streaming (e.g.,
industrial control, process control) and BBA. Using PID
for ABR streaming, however, has several challenges. First,
the goal of PID control is to maintain a target buffer level
that is only indirectly related to QoE. Indeed, while main-
taining the buffer at a target level can help in preventing
rebuffering, it does not help with the other two metrics
on playback quality and bitrate variation. Second, PID is
often used in continuous time and state space, while video
streaming is a discrete-time system, where the decisions
are made at chunk boundaries and the video bitrate levels
are discrete. Finally, while PID is conceptually simple, the
parameters (Kp,Ki andKd) need to be tuned carefully. Here
important questions are how to choose these parameters,
and to determine whether there exists a parameter set that
is applicable to a wide range of network and video settings.
Some of the above challenges have been pointed out in [36],
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Fig. 2: PIA main components.

[39], which take the position that PID is not suitable for ABR
streaming. As we shall show, none of the above challenges is
a fundamental hurdle for using PID-based control for ABR
streaming.

3 ADAPTING PID CONTROL FOR ABR STREAM-
ING

We propose PIA, a PID based rate adaption algorithm for
ABR streaming. As shown in Fig. 2, it contains a PI-based
core control block as well as three mechanisms to address
specific requirements for ABR streaming. We first describe
the core component, and then the three performance en-
hancing mechanisms.

3.1 PIA core component

The core component of PIA adjusts the standard PID control
policy in Eq. (2) so that the resultant closed-loop system is
linear, and hence easier to control and analyze. We next de-
fine the controller output, analyze the system behavior, and
provide insights into how to choose the various parameters.

Recall the dynamic video streaming model in Eq. (1),
where xt is the video player buffer level at t, Ct is the
network bandwidth at time t, and Rt is the video bitrate
chosen for time t. We define the controller output, ut, as

ut =
Ct
Rt
, (3)

and set the control policy as

ut = Kp(xr − xt) +Ki

∫ t

0

(xr − xτ )dτ + 1(xt −∆) (4)

where Kp and Ki denote, respectively, the parameters for
proportional and integral control, xr denotes target buffer
level, and ∆ is the chunk duration. The choice of xr depends
on system constraints, a point we will come back to in
Section 4.

The above control policy differs from the standard PID
control policy in Eq. (2) in the last term 1(xt − ∆), which
is a novel aspect of our design. As we shall see, it provides
linearity, making the closed-loop control system easier to
control and analyze. In our control policy, the parameter
for derivative control Kd = 0 (hence strictly speaking,
our controller is a PI controller). This is because derivative
action is sensitive to measurement noise [12] and measuring
network bandwidth in our context is prone to noise.

Intuitively, ut defined in Eq. (3) is a unitless quantity
representing the relative buffer filling rate. With ut selected,

based on Eq. (3), the player can select the corresponding
bitrate as

Rt =
Ĉt
ut
, (5)

where Ĉt is the estimated link bandwidth at time t. Since
video bitrate levels are discrete, we can choose the bitrate
to be the highest that is below Ĉt/ut. This choice of Rt can
increase, decrease or maintain the buffer level.

We next analyze the system to provide insights into
its behavior as well as providing guidelines in choosing
the controller parameters. Combining equations (1) and (4)
yields

ẋt = ut−1(xt−∆) = Kp(xr−xt)+Ki

t∫
0

(xr−xτ )dτ, (6)

when the video starts playback (i.e., when t ≥ δ). We see
that it is a linear system. Taking Laplace transform on both
sides of Eq. (6) yields

sx(s) = Kp(xr(s)− x(s)) +
Ki

s
(xr(s)− x(s)) , (7)

where s is a complex Laplace transform variable. Let T (s)
be the system transfer function, which describes the rela-
tionship of the input and output of a linear time-invariant
system. From Eq. (7), we have

T (s) =
x(s)

xr(s)
=

Kps+Ki

s2 +Kps+Ki
, (8)

which is a second-order system. In the above transfer func-
tion, since T (0) = 1, the system can track step changes in the
target buffer level, xr, with zero error in the steady state [34],
indicating that our system can maintain the preset target
buffer level. From Eq. (8), we have

2ζωn = Kp, ω2
n = Ki , (9)

where ζ and ωn are the damping ratio and the natural fre-
quency, respectively, two important properties of the system.
Solving the above two equations, we have

ζ =
Kp

2
√
Ki

, ωn =
√
Ki . (10)

Damping ratio represents the system’s ability for reducing
its oscillations. In our context, it measures how the buffer
will oscillate around the target buffer level – small damping
will cause the buffer to change rapidly, while large damping
will cause the buffer to change slowly in a sluggish manner.
Natural frequency represents the frequency at which a sys-
tem tends to oscillate in the absence of any driving or damp-
ing force. Empirically it has been found that ζ in the range
[0.6, 0.8] yields a very good system performance [28]. As a
result, Kp and Ki should be chosen so that ζ ∈ [0.6, 0.8]. We
will discuss how to tune Kp and Ki in Section 4.2.

3.2 PIA performance enhancing techniques
Based on the core component of PIA, we now add three
domain-specific enhancements to PIA to further improve its
robustness and adaptiveness for ABR streaming.

Accelerating initial ramp-up. At the beginning of the video
playback, the buffer level xt can be much smaller than the
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target buffer level xr . In this case, observe from Eq. (4) that
ut will be large. A large ut will result in low video bitrate,
Rt, and therefore a low quality at the beginning, which can
adveresley impact initial user experience. To address this
issue, we include a setpoint weighting parameter [12], β ∈
(0, 1], into the control policy as

ut = Kp(βxr − xt) +Ki

∫ t

0

(xr − xτ )dτ + 1(xt −∆). (11)

Note that β is only included in the proportional term;
it does not affect the steady-state behavior of the control
system [12]. When β = 1, the above control policy reduces
to (4). When β < 1, it can lead to smaller ut, and hence
faster initial ramp-up in video bitrate. However, very small
β can lead to aggressive choice of video bitrate, and hence
increase the chance of buffer emptying, causing rebuffering
at the beginning of the playback. We explore how to set β in
Section 4.2. The system transfer function corresponding to
the above control policy is

T (s) =
x(s)

xr(s)
=

βKps+Ki

s2 +Kps+Ki
=

βKps+Ki

s2 + 2ζωns+ ω2
n

. (12)

Note that both damping ratio, ζ , and natural frequency, ωn
remain the same as those in Eq. (10).

Minimizing bitrate fluctuations. The simple choice of Rt in
Eq. (5) mainly tracks the network bandwidth. It, however,
may lead to frequent and/or abrupt bitrate (and hence
quality) changes, adversely impacting viewing quality. To
address the above issue, we develop a regularized least
squares (LS) formulation that considers both video bitrate
and the changes in video bitrate to achieve a balance be-
tween both of these metrics. Specifically, it minimizes the
following objective function

J(`t) =
t+N−1∑
k=t

(
ukR(`t)− Ĉk

)2
+ η (R(`t)−R(`t−1))

2
, (13)

where `t and `t−1 represent the tracks selected for chunks
t (the current chunk) and t − 1 (i.e., the previous chunk),
respectively1, uk is the controller output for the k-th chunk,
Ĉk is the estimated link bandwidth for the k-th chunk, η is
the weight factor for bitrate changes, and R(`) represents
the bitrate corresponding to track `.

Let L denote the set of all possible track levels. For every
`t ∈ L, the formulation in Eq. (13) considers a moving
horizon ofN chunks in the future (represented as the sum of
N terms, one for each of theN future chunks). The first term
in the sum aims to minimize the difference between ukR(`t)
and the estimated network bandwidth Ĉk so as to maximize
R(`t) (and hence quality) under the bandwidth constraint
and the selected uk. The second term aims to minimize the
variability in bitrate for two adjacent chunks (i.e., the current
and previous chunks) for a smooth viewing experience. The
weight factor η can be set to reflect the relative importance
of these two terms. We use η = 1 (i.e., equal importance)
in the rest of the paper since maximizing the video quality
and reducing quality variation are both important for user

1. Here we slightly abuse notation by using t to represent the index
of the chunk chosen at time t, and using t− 1 to represent the index of
the previous chunk.

QoE. To reduce the number of video bitrate changes, in Eq.
(13), we assume that the same track is chosen for the next
N chunks (this assumption is used only for determining
the track/bitrate for chunk t; the actual track/bitrate for the
future chunks will be decided at later times, independent
of the assumption made for the decision of chunk t). For
Constant Bitrate (CBR) videos (which is the focus of this
paper), the chunks in the same track have the same bitrate.
Therefore, in Eq. (13), the bitrate of the next N chunks are
all equal to R(`t). For Variable Bitrate (VBR) videos, the
formulation can be modified in a straightforward manner2.
Last, in Eq. (13), the control output, uk, is updated according
to the control policy in Eq. (11), based on the estimated
buffer size, xk, over the moving horizon. The estimated
buffer size, xk, is updated through Eq. (1) using R(`t) as
the video bitrate and the estimated network bandwidth Ĉk.

The optimal solution of Eq. (13) is

`∗t = arg min
`t∈L

J(`t), (14)

where L denotes the set of all possible track levels. We
can find `∗t easily by plugging in all possible values of `t,
`t ∈ L, into Eq. (13), and select the value that provides the
minimum objective function value in Eq. (13).

The complexity of the above formulation is as follows.
For every `t ∈ L, obtaining J(`t) requires computation
of N steps. Therefore, the total computational overhead
is O(|L|N), significantly lower than the complexity of
O(|L|N ) in [39].

Dealing with bitrate saturation. Following the control pol-
icy, ut may become negative (e.g., when the current buffer
level exceeds the target buffer level). In this case, solving
Eq. (13) will lead Rt to be the minimum bitrate. During
this time period, if we continue using the integral term,
Iout = Ki

∫ t
0

(xr − xτ )dτ , ut may remain negative for an
extended period of time, causing Rt to stay at the minimum
bitrate level for an extended period of time (so called system
saturation [12]), and causing the buffer level to continue to
grow.

Such system saturation is undesirable since it will cause
the client to select low bitrate (and hence low quality)
chunks that adversely impact user QoE, even though
the network bandwidth is able to support higher quality
streaming. To deal with the above scenario, we incorporate
an anti-windup technique (to deal with integral windup,
i.e., integral term accumulates a significant error) for neg-
ative ut, or more specifically, when ut ≤ ε, 0 < ε � 1.
Many anti-windup techniques have been proposed in the
literature [12]. We adopt a simple technique, which sets ut to
ε, chooses Rt as the maximum bitrate, and does not change
Iout when ut ≤ ε. This corresponds to turning off the integral
control when ut is below ε. We set ε to a small positive value,
10−10, in the rest of the paper.

2. For VBR videos, even the chunks in the same track have variable
bitrate. In that case, we can modify (13) as follows. In the first term
of (13), we replace R(`t) with Rk(`t) to reflect that the bitrate is
time varying; in the second term, we replace R(`t) and R(`t−1) with
the average bitrate of the corresponding tracks, denoted as R̄(`t) and
R̄(`t−1), respectively, so that the penalty for quality variation is zero as
long as the two adjacent chunks are in the same track.
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3.3 PIA parameter tuning
Three important parameters in PIA are Kp, Ki and β, where
Kp and Ki determine the system behavior and β is used
for faster initial ramp-up. For a given network setting (e.g.,
cellular networks), since β does not affect the steady-state
behavior [12], we can first assume a fixed β (e.g., β = 1) and
tune Kp and Ki to achieve a desirable steady-state behavior
(i.e., jointly maximize the three metrics in QoE). Once Kp

and Ki are fixed, we then tune β for the initial stage of the
video playback. The values of Kp and Ki need to be tuned
so that the resultant system behavior is compatible with the
network setting. Taking cellular networks as an example,
since the bandwidth is highly dynamic, it is reasonable to
tune the system so that the buffer level does not fluctuate
drastically. Otherwise, the buffer can suddenly become very
low, making the system vulnerable to stalls. We describe
this approach using a set of network traces from commercial
cellular networks in Section 4.2.

3.4 Putting it all together
We now summarize the workflow of PIA depicted in Fig. 2.
PIA takes the target buffer level xr, the current buffer level
xt, and the estimated network bandwidth as input, and
computes the selected track level `∗t , which is then fed into
the Video Player Dynamics block to update the buffer level.
PIA considers both present and past estimation errors, as
well as incorporates all the three QoE metrics in the control
loop. PIA also includes an anti-windup mechanism to deal
with bitrate saturation, and a setpoint weighting technique
to provide faster initial ramp-up.

4 PERFORMANCE EVALUATION

In this section, we evaluate the performance of PIA using
simulation; evaluation through real implementation on a
video player is deferred to Section 6. Simulation allows us
to evaluate a large set of parameters in a scalable manner,
while real implementation provides insights under various
system constraints. In both cases, the network conditions
are driven by a set of traces captured from commercial LTE
networks that allow reproducible runs, as well as apple-to-
apple comparison of different schemes. We first describe the
evaluation setup, choice of parameters for PIA, and then
compare PIA against several state-of-the-art schemes.

4.1 Evaluation setup
Network bandwidth traces. We focus on LTE networks that
dominate today’s cellular access technology. For evaluation
under realistic LTE network environments, we collected 50
network bandwidth traces from two large commercial LTE
networks in the US. These traces were collected under a
wide range of settings, including different times of day,
different locations (in three U.S. states, CT, NJ and NY),
and different movement speed (stationary, walking, local
driving, and highway driving).

Each trace contains 30 minutes of one-second measure-
ment of network bandwidth. The bandwidth was mea-
sured on a mobile device, as the throughput of a large
file downloading from a well provisioned server to the
device. Fig. 3(a) is a boxplot that shows the minimum, first
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Fig. 3: Characteristics of the network bandwidth traces that
are used in performance evaluation.

quartile, median, third quartile, and maximum bandwidth
of each trace, where the traces are sorted by the median
bandwidth. We see that the network bandwidth is indeed
highly dynamic. For some traces, the maximum bandwidth
is tens of Mbps, while the minimum bandwidth is less than
10 Kbps.

These network traces, by capturing the bandwidth vari-
ability over time, accurately reflect the impact of lower level
network characteristics (e.g., signal strength, loss, and RTT)
on the network bandwidth perceived by an application.
Using the network traces is sufficient when evaluating ABR
schemes; there is no need to explicitly incorporate lower
level network characteristics since ABR adaptation operates
at the application level, using application-level estimation
of the network bandwidth.

Video parameters. We use three video bitrate sets, all be-
ing Constant Bitrate (CBR) videos: R1 = [0.35, 0.6, 1, 2, 3]
Mbps, R2 = [0.35, 0.6, 1, 2, 3, 5] Mbps and R3 =
[0.2, 0.4, 0.6, 1.2, 3.5, 5, 6.5, 8.5] Mbps. The first set is based
on the reference for YouTube video bitrate levels (corre-
sponding to 240p, 360p, 480p, 720p and 1080p respec-
tively) [9]. The second set adds a higher bitrate level of 5
Mbps to the first set. The third set is based on Apple’s HTTP
Live Streaming standard [3]. For each bitrate set, we further
consider three variants with chunk duration of 2, 4, and 8 s.

ABR Schemes. We compare PIA against four other schemes;
in Section 6, we further compare the performance of PIA
and BOLA [33], another state-of-the-art ABR scheme, using
DASH implementation.

• RB: The bitrate is picked as the maximum possible bi-
trate that is below the predicted network bandwidth.
This is a simple open-loop controller (see Section 2),
serving as a baseline.

• BBA [20]: It is a state-of-the-art buffer based scheme.
We use BBA-0, which is the BBA variant for CBR
streaming, the focus of this paper. We set the lower
and upper buffer thresholds as θlow = 10 s and
θhigh = 60 s, respectively, and empirically verified
that the above thresholds work well on our dataset.

• MPC and RobustMPC [39]: Both are state-of-the-art
ABR schemes based on model predictive control.
RobustMPC is more conservative in estimating net-
work bandwidth, and has been shown to outperform
MPC [25] in more dynamic network settings (e.g.,
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cellular networks). Both schemes use a look-ahead
horizon of 5 chunks (as suggested by the paper).

• PIA: Unless otherwise stated, the target buffer level
xr = 60 s that is compatible with the setting of BBA.
In Section 4.3, we vary the target buffer level and
explore its impact on performance. The look-ahead
horizon is set to 5 chunks, i.e., N = 5 in Eq. (13).

For all the schemes, unless otherwise stated, the startup
playback latency (i.e., the latency from when requesting
the first chunk of the video to starting the playback of the
video), δ, is set to 5, 10 or 15 s. For BBA and MPC, their
parameters are either selected based on the original papers,
or configured by us based on the properties of the videos
(e.g., chunk duration and encoding rates) as justified above.
Network bandwidth prediction. For the schemes that re-
quire network bandwidth estimation, it is set as the har-
monic mean of the network bandwidth of the past 20 s.
Harmonic mean has been shown to be robust to mea-
surement outliers [21]. Fig. 3(b) shows the boxplots of the
bandwidth prediction errors (the difference of the predicted
and actual bandwidths divided by the actual bandwidth)
of the network bandwidth traces used in our evaluations.
Each box in the plot corresponds to the distribution of all
prediction instances within a particular trace. The prediction
is at the beginning of every second. As shown, the median
prediction error is 20% to 40%, highlighting the challenges
of accurate bandwidth prediction in LTE networks. As we
shall show later in Section 4.3, our PIA scheme is very
robust to such levels of inaccuracy in network bandwidth
estimation.

4.2 PIA: Choice of parameters
Following the methodology outlined in Section 3.3, we first
tune Kp and Ki, and then tune β for PIA. One question
we aim to answer is whether there exists a set of Kp and
Ki values that works well in a wide range of settings. This
is an important issue related to the practicality of PIA –
because if the choice of Kp and Ki were too sensitive to
the settings, then tuning and/or adapting them for different
settings would require more effort.

4.2.1 Tuning Kp and Ki

We use a single combined performance metric when tuning
Kp and Ki. This is because, while as described earlier, the
QoE is affected by three metrics (average video bitrate, the
amount of bitrate changes and rebuffering) jointly, compar-
ing the QoE under different choices of Kp and Ki is much
simpler when using a single combined metric. Currently
there is no consensus in the field around the form of such a
metric. One approach is using a weighted sum of the three
metrics as in [39]. Specifically, for a video of M chunks,

QoE =
M∑
t=1

Rt − µ
M−1∑
t=1

|Rt+1 −Rt| − λ
M∑
t=1

St. (15)

whereRt is the bitrate of the t-th chunk and St is the amount
of stalls for the t-th chunk, and µ and λ are weights that
represent, respectively, the importance of the middle and
last terms (i.e., bitrate changes and rebuffering) relative to
the first term (i.e., average bitrate) in the sum. There is no
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Fig. 4: Region of Kp and Ki and the corresponding “heat”
values in one setting (video bitrate set R3, chunk duration
2 s, video length 20 min, startup latency 10 s, µ = 1, λ = 8.5
(which is the same as the maximum bitrate (in Mbps) inR3).

well agreed-upon settings for µ and λ; we therefore vary µ
and λ over multiple values to assess sensitivity.

The trace-driven simulation allows us to consider a very
wide range of settings by varying a number of parameters:
the video bitrate set, video length, chunk size, startup la-
tency, and µ and λ in (15). Specifically, the video bitrate set
is either R1, R2, or R3 (see Section 4.1), video length is
5, 10 or 20 minutes, chunk duration is 2, 4 or 8 s, startup
latency is 5, 10 or 15 s, and µ is 1 or 2, and λ is the
maximum bitrate level of a video (e.g., 3 Mbps in R1) or
twice as much. The choice of of µ and λ is based on the
settings in [39]. In each setting (i.e., after fixing the above
parameters), we consider each of the 50 network bandwidth
traces individually. For the k-th network trace, we vary the
values of Kp and Ki in a wide range to find a pair of Kp

and Ki that maximizes the QoE (note that as described in
Section 3, we only consider valid combinations ofKp andKi

values, i.e., those so that the damping ratio is in [0.6, 0.8]).
Once the maximum QoE, denoted as Q∗k, is determined, the
QoE under each valid (Kp, Ki) pair is compared to Q∗k to
see whether it is within 90% of Q∗k. Specifically, we define a
binary function fk(Kp,Ki) for the k-th network bandwidth
trace, where fk(Kp,Ki) = 1 if the resulting QoE under Kp

and Ki is within 90% of Q∗k; otherwise, fk(Kp,Ki) = 0. We
then consider all the network bandwidth traces, and create
a heat map with the “heat” for each valid pair of Kp and Ki

values as
∑
k fk(Kp,Ki). Clearly, a larger “heat” value for

a Kp and Ki pair means that it leads to good performance
for more network bandwidth traces.

Fig. 4(a) shows an example heat map for one setting
(details of the setting described in the caption of the figure).
The black region represents invalid Kp and Ki pairs (i.e.,
those causing the damping ratio out of the desired range
[0.6, 0.8]). For the valid Kp and Ki pairs, the “heat” value
varies, with the highest values in the bottom left region,
marked by the rectangle (brighter color represents higher
“heat” values). Fig. 4(b) is the histogram of the “heat”
values in the rectangle area (excluding those corresponding
to invalid Kp and Ki pairs). It shows that majority of the
values are close to 50 (i.e., the maximum “heat”), indicating
that the valid Kp and Ki pairs marked by the rectangle
provide good performance across almost all network traces.

We repeat the above procedure for all the settings, and
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Fig. 5: Choosing β in PIA. In (b), the setting is the same as
that used for Fig. 4.

find the following region of Kp and Ki values leads to good
performance for all the settings

Kp ∈
[
1× 10−3, 14× 10−3

]
Ki ∈

[
1× 10−5, 6× 10−5

]
s.t. ζ (Kp,Ki) ∈ [0.6, 0.8] .

(16)

Specifically, under the above range of values, the average
“heat” for the different settings varies from 31 to 50, and the
standard deviation varies from 0.25 to 3.45. The results in
the rest of the paper use Kp = 8.8 × 10−3, approximately
the middle of the range of Kp in (16), and Ki = 3.6× 10−5

so that the damping ratio is 1/
√

2, a widely recommended
value for damping ratio [28], [26].

The finding that a set of Kp and Ki values works well
under a wide range of settings is encouraging. Consider-
ing that the network traces were collected under a wide
range of settings and that they exhibit significantly different
characteristics (see Fig. 3), our results show that Kp and Ki

can be tuned to accommodate the large variations among
individual traces. The above results indicate that we can find
a range of Kp and Ki values to make the system capable
of dealing with the rapid bandwidth variations (one of the
predominant characteristics of cellular networks), despite
the differences across individual network conditions.

4.2.2 Tuning β
Once Kp and Ki are determined, we tune β for the initial
stage of the video playback. Specifically, we set β to 0.01, 0.2,
0.4, 0.6, 0.8, and 1.0. Fig. 5(a) shows the step response of the
control policy (only the results for β = 0.01, 0.2 and 1 are
shown for better clarity). When β = 1, the buffer becomes
full much more quickly than when β = 0.2 and 0.01. This is
because, as explained in Section 3.2, lower bitrate tends to
be selected when β = 1, causing the buffer to fill up more
quickly.

To examine the three QoE metrics jointly, Fig. 5(b) plots
the QoE when playing up to the i-th chunk of a video of 600
chunks when β = 0.01, 0.2 or 1. The results are averaged
over all the network traces; the 95% confidence intervals are
plotted in the figure as well. We see that β indeed affects
the QoE for the initial playback, and β = 1 leads to lower
QoE compared to β = 0.01 and 0.2. Further investigation
reveals that β = 0.01 leads to more rebuffering than β = 0.2.
The above results are for the setting used for Fig. 4. Results

in other settings show similar trends. Since rebuffering has
very detrimental effects on viewing quality, we use β = 0.2
in the rest of the paper.

Last, the results of PIA core (i.e., without the three
enhancing techniques) are also shown in Fig. 5(b). We see
that PIA core indeed leads to lower QoE compared to the
full-fledged PIA, demonstrating the benefits of our three
enhancing techniques.

4.3 Performance comparison

In the following, we first present the performance of PIA in
the default setting, i.e., chunk duration of 2 s, video bitrate
set R2, video length of 20 minutes, and startup latency
of 10 s. After that, we evaluate the impact of the various
parameters on the performance of PIA.

Fig. 6 plots the CDF of the three QoE metrics over all
network bandwidth traces in the default setting. The per-
formance of four schemes, RB, BBA, MPC, RobustMPC and
PIA, are plotted. We see that, while the amount of bitrate
change and rebuffering is low under RB, its average bitrate
is significantly lower than those of the other schemes. PIA
achieves comparable average bitrate as BBA and MPC, with
significantly less bitrate changes and rebuffering. Specifi-
cally, the average bitrate of PIA is 98% and 96% of that of
BBA and MPC, respectively, while the average amount of bi-
trate change is 49% and 40% lower, and the average amount
of rebuffering is 68% and 85% lower than BBA and MPC,
respectively. RobustMPC has significantly lower rebuffering
than MPC, but its rebuffering is still higher than that under
PIA. In addition, RobustMPC leads to significantly lower
average bitrate than MPC, PIA and BBA.

Overall, PIA achieves the best balance among the three
conflicting QoE metrics. As described earlier, the inferior
performance of RB is because it uses an open-loop con-
trol without any feedback. The superior performance of
PIA compared to BBA is because BBA implicitly uses one
form of P-control (Section 2) that only takes the present
error into account, while PIA considers both the present
and past errors. PIA’s approach of applying PID in an
explicit and adaptive manner further facilitates the design
and improves the performance. The performance of MPC
is sensitive to network bandwidth estimation errors [39]: it
solves a discrete optimization problem at each step; when
network bandwidth estimation is inaccurate, the input to
the optimization problem is correspondingly inaccurate,
leading to suboptimal performance. RobustMPC leads to
lower rebuffering than MPC due to its more conservative
network bandwidth estimation. It, however, also leads to
significantly lower bitrate choices.

To provide further insights, Fig. 7 plots the bitrate se-
lection and the buffer level over time for BBA, MPC and
PIA when using one network trace. For reference, it also
plots the network bandwidth of the trace. We clearly see that
BBA has significantly more bitrate changes; MPC tends to be
more aggressive in choosing higher bitrates, which can lead
to excessive rebuffering. The bitrate selection under PIA
matches well with the network bandwidth without frequent
bitrate changes. In terms of the buffer level/occupancy (i.e.,
the duration of the video content that has been brought in
and has not yet been played back) shown in the bottom plot
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Fig. 6: Performance comparison in the default setting (chunk duration 2 s, video bitrate set R2, video length 20 minutes,
startup latency 10 s).

in Fig. 7, the buffer level of MPC is lower than that of BBA
and PIA due to its aggressive choice of bitrate; the buffer
level of PIA reaches the target level of 60 s at around 300
s, and then stays around the target level; the buffer level of
BBA is in between that of MPC and PIA.
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Fig. 7: Comparison of different schemes for one trace under
the default setting (chunk duration 2 s, video bitrate set
R2, video length 20 minutes, startup latency 10 s). The
plot on buffer level shows the results until the end of the
downloading.

Impact of target buffer level. We vary the target buffer
level, xr, from 30 to 200 seconds, and evaluate its impact
on the various performance metrics. We observe that larger
target buffer levels lead to lower bitrate choices (to reach the
larger target buffer levels during buffer ramp-up periods,
e.g., at the beginning of the playback or after stall events).
A large target buffer level also has the drawback that it
may lead to more waste of resources when a user abandons
watching a video in the middle of the playback. Using
a small target buffer level, however, can lead to higher
rebuffering. Fig. 8 plots the average bitrate and the amount
of rebuffering for different xr values. We observe noticeably
lower bitrate when xr = 150 seconds, and noticeably higher
rebuffering when xr = 30 seconds. Setting xr to 50 to 120
seconds leads to similarly good performance in all three
performance metrics (the average bitrate change between
two consecutive chunks across the xr values is similar, and
is not shown in the figure).
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Fig. 8: Impact of the target buffer level on performance
(video bitrate set R2, chunk duration 2 s, video length 20
minutes, startup latency 10 s).

Impact of video length. The above results are for video
length of 20 mins. We vary the ending time of the video to
investigate PIA’s performance for shorter videos. When the
ending time is larger than 5 mins (i.e., video length longer
than 5 mins), we observe similar results as before; for much
shorter videos, PIA has lower average bitrate compared to
MPC (the average bitrate of PIA is 81% of MPC when the
video length is 2 minutes, and 90% of MPC when the video
length is 5 minutes), but still outperforms BBA and MPC on
the other two metrics. We investigate how to improve the
bitrate of PIA in the startup phase in Section 5.

Impact of video bitrate sets. Recall that the video bitrate
set R2 has one higher bitrate level of 5 Mbps compared to
R1. We further investigate two more video bitrate setsR4 =
[0.2, 0.35, 0.6, 1, 2, 3] Mbps, which has one lower bitrate of
0.2 Mbps compared toR1; andR5 = [0.2, 0.35, 0.6, 1, 2, 3, 5]
Mbps, which has one lower and one higher video bitrate
levels (of 0.2 and 5 Mbps) compared toR1. We observe con-
sistent trend for all the schemes under the above three video
bitrate sets. Comparing the results underR1 andR2, we see
that adding one higher bitrate level leads to higher average
video bitrate, more bitrate changes, and more rebuffering;
comparing the results underR1 andR4, we see that adding
one lower bitrate level maintains the average video bitrate
while reducing bitrate changes and rebuffering; comparing
R1 and R5, we see that adding both one lower and higher
bitrate levels increases the average video bitrate and bitrate
changes, while reducing the rebuffering. In general, adding
more bitrate levels helps improve at least one of the three
metrics. Across the settings, PIA has the lowest bitrate
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switches, the lowest rebuffering, and similar average bitrate
compared to BBA and MPC.

Impact of video chunk duration. We vary the video chunk
duration by setting it to 2, 4, or 8 s. We found that, for all
chunk durations, PIA consistently outperforms MPC and
BBA in balancing the tradeoffs incurred by the three metrics.
For example, for chunk duration of 8 s, PIA’s average
playback bitrate differs from BBA and MPC only by 0.1%
and 3.2%, respectively, while PIA reduces the rebuffering
duration by 67% and 68% compared to those of BBA and
MPC, respectively.

Buffer occupancy and impact of maximum buffer size. In
the evaluations so far, we assume that all data downloaded
ahead of the current playback point is stored in the client
buffer until it is played back. Fig. 9 plots the distribution
of the buffer occupancy (i.e., all the chunks brought in that
have not yet been played back) under PIA in the default
setting across all the network traces, where we record the
buffer occupancy after downloading each chunk. We ob-
serve that 52% of the time, the buffer occupancy is below
the target buffer size (60 s), 85% of the time it is below 100
s, and 95% of the time it is below 200 s. The above results
indicate that, while there is no explicit constraint on buffer
size, the amount of video stored at the client under PIA is
not large (200 s of video corresponds to at most 125 MB even
if we consider buffering the maximum bitrate track in R2).

In practice, a player may impose a maximum buffer
size, Bmax, so that the amount of video downloaded before
its playback time does not exceed this limit. We explore a
simple strategy for this case. Specifically, the client stops
downloading video when the buffer is full, and resumes
downloading when there is space in the buffer. We set
Bmax = 90, 120, 150, 180 or 210 s, motivated by the practice
of commercial players, which set the maximum buffer limit
to tens to hundreds of seconds [6], [7], [20], [38]. In the
following, in the interest of space, we only report the results
when Bmax = 90 or 210 s.

When imposing the maximum buffer limit, not surpris-
ingly, the average bitrate of all the schemes is reduced. On
the other hand, the reduction under PIA when Bmax = 90
s is only slightly more than that Bmax = 200 s (consistent
with the observation in Fig. 9 that 82% and 96% of the time,
the buffer size is less than 90 s and 210 s, respectively). PIA
still achieves the best balance among the three conflicting
performance metrics. Fig. 10 plots the distribution of the
tracks selected by PIA under the default setting across all the
network traces (the video bitrate set R2 has six tracks with
increasing bitrate). For comparison, the bitrate choices when
there is no maximum buffer limit are also plotted in the
figure. We observe that, when imposing a maximum buffer
limit, the probability of choosing the highest track is reduced
(particularly when Bmax = 90 s), while the probability of
choosing the lower tracks is increased. This is because, with
the maximum buffer limit, the amount of video in the buffer
is limited (and hence tends to be less than the amount when
there is no buffer limit); the player thus has less cushion for
preventing buffer underruns, and is less likely to choose the
highest track (which takes longer to download compared to
lower tracks, causing more buffer drainage). Fig. 11 shows
an example. We see from 150 to 260 seconds, the buffer level

is significantly lower under Bmax = 90 s than that when
Bmax = 210 s. As a result, the player chooses lower tracks
for the former, while choosing the highest track for the latter.

In the above, we use a simple strategy that stops down-
loading when the buffer is full, which does not fully lever-
age the network bandwidth. This simple strategy can be
improved in two directions. The first direction is segment
replacement, i.e., the player can leverage the bandwidth to
preempt some earlier downloaded chunks that are of lower
bitrate (i.e., replace them with chunks with higher bitrate
and hence quality). While segment replacement has been
used in commercial systems, the performance of existing
commercial implementation is not satisfactory [38]. The key
decision of segment replacement is to select which chunks
to preempt and which bitrate levels to replace them with,
which we will investigate in future studies. The second di-
rection is designing bitrate selection strategies to download
higher bitrate chunks proactively, instead of filling in the
buffer with lower bitrate chunks. Further exploration along
this direction is also left as future work.
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Fig. 9: The distribution of buffer occupancy of PIA (under
the default setting, i.e., chunk duration 2 s, video bitrate set
R2, video length 20 minutes, startup latency 10 s).
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Fig. 10: Impact of the maximum buffer size on the bitrate
adaptation of PIA (under the default setting, i.e., chunk
duration 2 s, video bitrate set R2, video length 20 minutes,
startup latency 10 s).

Impact of startup delay. So far we have set the startup delay
to be 10 s, i.e., waiting for 10 s after requesting the first
chunk of the video before starting the playback of the video.
We next vary the startup delay. Specifically, we assume the
chunk duration is 2 or 6 s and the startup delay is 6 or 12 s,
equivalent to 3 or 6 chunks for chunk duration of 2 s, and 1
or 2 chunks for chunk duration of 6 s. Our results show that
the amount of rebuffering depends more on the number of
chunks that is downloaded during the startup delay, and



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2929125, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. X, NO. X, XXX 2018 11

0 200 400 600 800 1000 1200
0

10
B

itr
at

e 
(M

bp
s)

Throughput
Bmax = 90s
Bmax = 210s

0 200 400 600 800 1000 1200
Time (s)

0

100

B
uf

fe
r 

le
ve

l (
s)

Bmax = 90s
Bmax = 210s

Fig. 11: An example that illustrates the impact of the max-
imum buffer size on the bitrate choice of PIA (under the
default setting, i.e., chunk duration 2 s, video bitrate setR2,
video length 20 minutes, startup latency 10 s).

is less sensitive to the length of the startup delay. For the
same amount of startup delay (in seconds), using a smaller
chunk duration leads to less rebuffering than using a larger
chunk duration. In addition, having at least 2 or 3 chunks
in buffer before playback starts leads to significantly less
rebuffering than having a single chunk. The above findings
are consistent with those in [38].

4.4 Computational overhead
As described earlier, the computational overhead of PIA is
much lower than that of MPC: for |L| bitrate levels and
horizon N , the complexity of MPC is O(|L|N ), while the
complexity of PIA is O(|L|N). Table 2 compares the average
execution time of running MPC, BBA and PIA for a 600-
chunk video (2-second chunk with bitrate set R2) on a
commodity laptop with Intel i5 2.6 GHz CPU and 16 GB
RAM. The CPU time for PIA is 0.17 s, comparable to that of
BBA. The CPU time for MPC is more than 200 times higher
than that for PIA.

TABLE 2: Comparison of computational overhead.

MPC BBA PIA
CPU time (s) 36.04 0.08 0.17

5 IMPROVING STARTUP PERFORMANCE

As shown in Section 4, the average bitrate under PIA in
the startup phase (up to 5 minutes into the playback) can
be 20% lower than that of MPC. We next present a variant
of PIA, PIA-E (PIA Enhanced), that improves PIA’s startup
performance. The bitrate selection during the startup phase
needs to balance two aspects: the quality of the video and
the accumulation of the video content. The quality of the
early part of the video (the chunks downloaded during the
startup phase) is important, since low quality may prompt
a user to stop watching the video. On the other hand, the
startup phase also plays an important role in building up
the video content in the buffer to reduce the likelihood of
rebuffering in the future; choosing lower bitrate chunks

helps to accumulate more content in the buffer. A good
strategy for the startup phase thus needs to account for these
two conflicting aspects.

Our goal of designing PIA-E is to increase the bitrate for
the early part of the video, without increasing the amount
of rebuffering during the later part of the playback. We
achieve this goal by dynamically adjusting a selective set of
parameters over time. Specifically, observe from Eq. (13) that
the bitrate for the early part of the video can be increased by
decreasing the controller output, ut, which can be achieved
by adjusting the parameters, Kp, β, xr, and Ki, based on
Eq. (11). Let Kp(t), β(t), xr(t), and Ki(t) denote the values
of these parameters at time t. We next describe one design
of PIA-E that adjusts Kp(t) and xr(t) overtime. At the end
of this section, we discuss other design options.

Adjusting Kp(t) and xr(t). This design keeps β(t) = β
and Ki(t) = Ki, and dynamically adjusts Kp(t) and xr(t)
over time, starting with initial values that are selected for
the startup phase, and ending with the values that have
been tuned for the steady state. Specifically, we set Kp(t)
as a decreasing function of t that decreases from an initial
value αKp, α > 1, to Kp over a time interval, and set xr(t)
as an increasing function of t that increases from a small
value to xr over a time interval. As a result, the first term in
Eq. (11) is a non-negligible negative value at the beginning
of the playback, leading to lower ut and hence larger bitrate
choices. Specifically, let τ denote the time interval. We set

Kp(t) =

{
αKp − (αKp−Kp)t

τ , 0 ≤ t ≤ τ
Kp , t > τ

(17)

Similarly, we set xr(t) as a linear function with the min-
imum value of 2∆ initially (which is twice of the chunk
duration; the target buffer level cannot be zero, and the
value 2∆ is chosen empirically).

xr(t) =

{
max

(
2∆, xrt

τ

)
, 0 ≤ t ≤ τ

xr , t > τ
(18)

In the above design, xr(t) follows a ramp change. For
such a ramp change, the system in Eq. (11) can track xr with
the error proportional to the inverse of the so-called velocity
constant Kv in the steady state [34]. From the transfer
function Eq. (12), we derive Kv as 1/Kv = Kp(1 − β)/Ki.
Evidently, when β = 1, the steady sate error is zero, and is
non-zero when β < 1. Therefore, we choose β = 1 for the
above choice of xr(t).

We explored the choice of α (as 2 or 4) and τ (as 2,
5, or 10 minutes). Fig. 12 plots the performance of PIA-E
versus other schemes, α = 4 and τ = 5 minutes (which
achieves the best tradeoff). The results when playing up
to 2, 5, 10 or 20 minutes of the video are shown in the
figure. We observe that for the first 2 minutes, PIA-E indeed
leads to significantly higher bitrate: the average bitrate is
14% higher than that of PIA, 27% higher than that of BBA
and only 8% lower than that of MPC. On the other hand,
the average bitrate change for PIA-E is higher than that of
PIA, but still 9% less compared to MPC on average. The
amount of rebuffering of PIA-E is similar to that of PIA.
When the ending time is larger (i.e., 5, 10 or 20 minutes),
the performance of PIA-E is very close to PIA, confirming
that the more aggressive bitrate choice of PIA-E for the early
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Fig. 12: Performance of PIA-E versus other schemes (chunk duration 2 s, video bitrate set R2, startup latency 10 s).

part of the video does not adversely affect the performance
for the later part of the video.

Other designs. In the above design, we set Kp(t) and
xr(t) as piece-wise linear functions. We also explored set-
ting them as exponential functions, and observed that the
resultant design can achieve similar performance. In addi-
tion, we have explored dynamically adjusting Kp(t) and
β(t), and observed similar performance3. Last, we explored
dynamically adjusting a single parameter (e.g., xr(t)), and
observed that the resultant performance is inferior to that
when adjusting two parameters simultaneously.

6 EVALUATION USING DASH IMPLEMENTATION

We have implemented PIA and PIA-E using dash.js (ver-
sion 2.2.0) [6], a production quality open source framework
provided by DASH Industry Forum [31]. To evaluate the
performance of PIA and PIA-E under realistic network
settings, we create an emulation environment as follows.
We use a Linux machine running Apache httpd as the video
server and a Windows laptop (with i7-5700HQ 3.50 GHz
CPU and 16 GB memory) as the client. The server and client
are connected by a 100 Mbps Ethernet link. We apply the
Linux tc tool at the server to emulate the downlink band-
width using the LTE bandwidth traces that we collected.
The latency between the server and client is set to 70 ms as
it is the average latency reported by OpenSignal’s latency
report. The client uses Chrome browser to run dash.js.

Implementation of PIA and PIA-E in dash.js. We
implemented two new ABR streaming rules (each about 400
LoC) in dash.js to realize PIA and PIA-E. The parameters
used for PIA and PIA-E are as those used in Sections 4 and 5,
respectively. The bandwidth estimation requires knowing
the past throughput per second (we use the harmonic mean
of the throughput of the past 20 seconds). We therefore
further developed a bandwidth estimation module that uses
progress events in dash.js to obtain the past throughput
per second. Specifically, when receiving one progress event,
we calculate the number of bytes downloaded since the last
event.

Videos. We use three CBR videos encoded using
FFmpeg [18]. The first video is a music show, around 15
minutes long, with five tracks of resolution 240p, 360p, 480p,

3. Note that in Eq. (11), since ut is affected by the product of β and
xr , it is sufficient to vary either β(t) or xr(t); there is no need to vary
them simultaneously.

720p and 1080p, respectively (the bitrate of the tracks varies
from 0.36 to 3.09 Mbps); the chunk duration is 2 s. The other
two videos are Big Buck Bunny (BBB) and Tears of Steel
(ToS), both around 10 minutes long, with chunk duration
of 5 s. ToS has five tracks, with the same resolutions and
slightly lower bitrate (0.32 to 2.84 Mbps across the tracks)
compared to the music show. BBB has one additional lower
track (144p resolution) and the bitrate of the six tracks varies
from 0.11 to 2.20 Mbps.

Comparing simulation and implementation results. We
compare the results obtained from our dash.js implemen-
tation with those from the simulations, and confirm that the
results are consistent. Specifically, for the music show, under
PIA, 90% of the relative differences between implementation
and simulation results are within 6.5% for average bitrate;
for bitrate changes and rebuffering duration, 90% of the
absolute differences are within 15 Kbps/chunk and 3 s,
respectively. The results for PIA-E are similar. The perfor-
mance differences between implementation and simulation
results are due to multiple reasons. First, the simulation
assumes a perfect CBR video where all the chunks in the
same track have exactly the same bitrate; the video used
in the implementation, while encoded as CBR, has bitrate
variability across the chunks. Second, the implementation
results are affected by various practical factors (e.g., server
response time, client computational and response time, net-
work RTT and TCP window size), which are not accounted
for in the simulations.

Performance comparison. We compare the performance
of PIA and PIA-E with a state-of-the-art scheme, BOLA [33],
that was implemented in dash.js version 2.2.0. BOLA
selects the bitrate to maximize a utility function considering
both rebuffering and delivered bitrate. The upper threshold
of BOLA is set to 60 s (the default value is 30 s) to be
compatible with the target buffer level of 60 s in PIA. Fig. 13
plots the QoE metrics of PIA, PIA-E and BOLA for the music
show video. We observe that PIA-E achieves higher average
bitrate than PIA and BOLA for the first 2 minutes of the
video. For the entire video, PIA-E leads to comparable per-
formance as PIA: PIA-E leads to slightly more rebuffering,
and similar average bitrate and bitrate changes. BOLA has
higher rebuffering and lower bitrate changes than PIA and
PIA-E. Fig. 14 plots the results for the BBB video. We observe
similar results as those for the music show except that (i) the
average bitrate change per chunk for all the three schemes
is larger, which is due to the larger chunk duration in BBB (5
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Fig. 13: Performance comparison in DASH (music show, chunk duration 2 s, video length 15 minutes, startup latency 10 s).
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Fig. 14: Performance comparison in DASH (BBB, chunk duration 5 s, video length 10 minutes, startup latency 10 s).

versus 2 s), and (ii) the amount of rebuffering is significantly
lower due to the much lower bitrate of the lowest track in
BBB (0.11 versus 0.36 Mbps). For ToS, the average bitrate
change per chunk is similar to that for BBB due to the same
chunk duration of 5 s of these two videos, and the amount
of rebuffering is similar to that of the music show due to the
similar bitrate of the lowest track of these two videos (the
figures are omitted in the interest of space).

Runtime overhead. We record the CPU execution time
of the ABR logic in the JavaScript code when a video is
being played. The execution time of the default ABR logic
in the dash.js player is 1.2 s for the entire 15-min music
show video. The execution time of our PIA logic is 1.9 s,
only slightly larger than that of the default ABR logic. For
PIA-E, the execution time is 2.0 s (compared to PIA, it has
additional calculation of Kp(t) and β(t)). The execution
time PIA-E and for the other two videos is similar. The
above results indicate that PIA incurs very small runtime
overhead, despite its non-trivial decision process shown in
Fig. 2.

7 RELATED WORK

The existing studies closest to ours are the several studies
that use PID for adaptive video streaming. The studies [15],
[16] directly use the standard PID controller, without adapt-
ing it to accommodate the special requirements of ABR
streaming. The study in [33] shows that directly using PID
control leads to worse performance than BOLA, while our
proposed schemes (PIA and PIA-E) carefully adapt PID con-
trol for ABR streaming and outperform BOLA. The studies
in [36], [39] conclude that PID control is not suitable for ABR
streaming, and develop other control based approaches.
Our study takes a fresh look at using PID control for ABR

streaming and shows a somewhat surprising high-level
finding: by applying PID control in an explicit and adaptive
manner, our ABR streaming algorithms substantially outperform
the state-of-the-art video streaming schemes. MPC [39] uses
another branch of control theory, model predicative control,
to solve a QoE optimization problem. It, however, requires
accurate future network bandwidth estimation and incurs
significant computation overhead. As we have shown in
Section 4, our proposed PIA scheme incurs much lower
computational overhead and achieves a significantly better
balance among the three performance metrics than MPC;
PIA also outperforms RobustMPC [39].

BBA [20] selects video bitrates purely based on buffer
occupancy. However, as we have discussed, BBA essentially
uses a P-controller and does not consider the integral part,
which affects its performance. BOLA [33] and an improved
version BOLA-E [32] select the bitrate based on maximizing
a utility function, considering both rebuffering and video
quality. We showed in Section 6 that BOLA leads to signifi-
cantly more rebuffering than our approach. Another type of
approach uses machine learning (e.g., reinforcement learn-
ing) to “learn” an ABR scheme from data. The study in [14]
proposes a tabular Q-Learning based reinforcement learning
approach for ABR streaming. This approach, however, does
not scale to large state/action spaces. A more recent scheme,
Pensieve [25], addresses the scalability issue using reinforce-
ment learning based on neural networks. In [25], Pensieve
is realized as a server-side ABR algorithm – the client feeds
back information to the server and the server makes the
decisions on bitrate choices. For a given ABR algorithm,
Oboe [11] pre-computes the best possible parameters for
different network conditions and dynamically adapts these
parameters at run-time. The study in [29] characterizes the
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VBR encoding characteristics, proposes design principles for
VBR-based ABR streaming and a concrete scheme, CAVA,
that instantiates these design principles.

FESTIVE [21] and PANDA [23] both consider scenarios
with multiple video flows. piStream [37] is designed specif-
ically for LTE networks and uses physical layer information
to improve the bandwidth prediction. CS2P [35] uses a data-
driven approach to improve the bandwidth prediction for
ABR streaming. The study in [13] proposes a network-based
scheduling framework for adaptive video delivery over cel-
lular networks. The work in [40] demonstrates the benefits
of knowing the network bandwidth on the performance
of ABR streaming. None of them focuses specifically on
leveraging control theory for improving the video streaming
QoE.

Last, several studies evaluate the performance of the rate
adaptation schemes in commercial players [10], [19], which
have motivated later schemes. A recent work [38] conducts
a detailed measurement study of a wide range of popular
HTTP Adaptive Streaming services over cellular networks
to understand the design and performance of these services.

8 CONCLUSION AND FUTURE WORK

In this paper, we have explored using feedback control
theory for creating the adaptation logic component critical
to ABR video streaming. By strategically applying a PID
controller in an explicit and adaptive manner, PIA con-
siderably outperforms the state-of-the-art video streaming
schemes in balancing the complex tradeoffs associated with
the key QoE metrics, as demonstrated by extensive eval-
uations. PIA is also lightweight and easy to deploy. We
believe the same high-level principle can be applied to other
multimedia applications with content quality adaptation,
such as live video conferencing. In our future work, we
plan to port our implementation to mobile devices to better
assess PIA’s performance in the wild, and also conduct
deeper exploration of other network and streaming settings
(e.g., live streaming).
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