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ABSTRACT
Mobile 360° video streaming has grown significantly in popular-
ity but the quality of experience (QoE) suffers from insufficient
wireless network bandwidth. The state-of-the-art solutions are
limited by the temporal correlation assumption. Recent studies are
aware of the potential of saliency to further QoE improvement, but
several fundamental challenges about saliency judgment, saliency
acquirement, and quality adaptation are still not fully addressed.
To solve these challenges, we present SalientVR, a saliency-driven
mobile 360° video streaming system integrated with gaze informa-
tion. We design (i) a precise gaze-driven saliency judging criterion
for mobile VR viewers, (ii) two pragmatic gaze-driven, tile-level
saliency acquiring methods based on cross-user similarity and a
specific content-aware deep neural network respectively, and (iii)
a lightweight saliency-aware quality adaptation algorithm with
a motion-assisted online correction, which is robust to wireless
bandwidth vagaries and saliency bias. Moreover, we contribute a
gaze-annotated dataset and a gaze-driven quality assessment met-
ric for 360° videos. By extensive prototype evaluations (based on
dataset tests and user studies), compared to alternatives, SalientVR
significantly enhances the video quality and reduces the rebuffer-
ing ratio over 4G/LTE network emulations and in the wild, which
achieves a 43.68% QoE improvement.
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1 INTRODUCTION
The virtual reality (VR) market was valued at USD 15.81 billion in
2020 and is expected to grow at an annual growth rate of 18.0%
from 2021 to 2028 [1]. As one of the most potential VR applications,
mobile 360° video streaming, i.e., viewing 360° video streams on
untethered mobile VR headsets, has experienced a considerable in-
crease in popularity [2–5]. However, insufficient wireless network
bandwidth limits the quality of experience (QoE). First, the deliv-
ery of high-definition 360° videos would not be fully supported by
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the current wireless network capacity. A 4K-resolution 360° video
demands at least 25 Mbps bandwidth [6], while the LTE speeds
are only 5-12 Mbps in many regions [7]. Second, mobile 360° video
streaming would suffer from unexpected rebuffering due to highly
variable wireless network bandwidth [8]. Either low-definition VR
display or rebuffering would severely degrade the QoE for mobile
VR viewers, such as disorientation and nausea [9]. Thus, enhancing
the QoE of mobile 360° video streaming under limited, dynamic
wireless network bandwidth has become critical and urgent.

The majority of previous research adopts head movement trajec-
tory (HMT)-driven optimization methods [10–15]. A basic assump-
tion underlying their approaches is that the HMT of a viewer has
a strong temporal correlation, which means that the future HMT
can be accurately predicted by the historical HMT alone during the
playback. However, this temporal correlation would not always be
strong enough to achieve accurate HMT predictions, which would
severely degrade the QoE in the HMT-driven solutions [10]. More-
over, since the prediction horizon of HMT has to exceed buffer
occupancy, the HMT-driven approaches are obliged to set a small
buffer size (i.e., maximum buffer length) to reduce prediction hori-
zons due to less correlation with the longer interval. The scarce
buffer would lead to a high risk of rebuffering, especially under
highly dynamic wireless network environments.

To address the above limitations, we present SalientVR, a saliency-
driven mobile 360° video streaming system integrated with gaze
information. Saliency [16, 17] is a term in computer vision litera-
ture, representing the property of grabbing attention for an object
or a region. Saliency provides content-aware prior information for
accurate long-term attention estimations without depending on
the HMT [16], and therefore, it offers potential for further QoE
improvement. Recently, saliency has been investigated for saving
bandwidth in 360° video compression and transmission [18, 19],
but several fundamental challenges are still not fully addressed in
saliency-driven mobile 360° video streaming.

First, the precise judgment of saliency groundtruth for mobile
VR viewers is a fundamental issue but has not been studied by pre-
vious researches. The saliency groundtruth determines the saliency
degrees of different spatial regions in a 360° video frame from a
human-centric perspective. Most of the previous works assume
that the head-determined viewport region is equally high-salient.
However, it is imprecise because only a small percentage region
of viewport is viewed with high visual acuity [20, 21]. Adopting
the imprecise saliency judgment would miss the opportunity of
more aggressive quality allocation strategies to further improve
the perceived quality. Therefore, we ran a user study to build a
more precise saliency judgment criterion for mobile VR viewers
leveraging gaze information that is regarded as the more precise
human attention proxy [22, 23].

Second, 360° video streaming over saliency requires the tile-
level saliency map but still suffers from the inaccurate, impractical

https://doi.org/10.1145/3495243.3517018
https://doi.org/10.1145/3495243.3517018
https://doi.org/10.1145/3495243.3517018


ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia S. Wang, S. Yang, H. Li, X. Zhang, C. Zhou, C. Xu, F. Qian, N. Wang, and Z. Xu

saliency map acquirement. A tile-level saliency map is anM × N
(same as tile segmentation) numerical matrix whose entries are
saliency scores of different tiles in a video chunk, representing the
saliency degrees (i.e., the degrees of viewers’ interest) of differ-
ent tile regions. The saliency maps of a video are prepared offline
for potential users that have not watched this video before as
their attention distribution predictions. Unfortunately, existing
efforts [24–26] fail to achieve satisfactory accuracies of saliency
analysis. Moreover, viewing data (e.g., gaze points) of users are cru-
cial for accurate saliency acquirement in practice. However, enough
gaze/head data could hardly be collected in some cases. Therefore,
to promote both accuracy and practicality, we pragmatically design
two new saliency acquiring methods, based on cross-user similarity
and deep neural network (DNN)-based content analysis (i.e., a new
specific DNN, TSMNet), respectively.

Third, existing quality adaptation strategies fail to tap the full
potential of saliency for QoE improvement of mobile 360° video
streaming. It is promising but challenging to utilize saliency to
achieve an excellent tradeoff between quality and rebuffering un-
der variable wireless network conditions. Huge search space of
tile-level quality allocations is also troublesome, which would cause
the unacceptable calculation delay for crude solving schemes (e.g.,
exhaustive search). Moreover, the saliency maps are determined
by collective preferences without considering individual viewers.
Inevitable saliency bias would influence the QoE of outlier viewers.
Therefore, we design a lightweight saliency-aware quality adap-
tation algorithm with a motion-assisted online correction, which
is robust to bandwidth vagaries and saliency bias by combining
offline saliency information and online viewing data.

Gaze data is indispensable annotations for precise 360° video
quality assessment (VQA) [23]. However, to our knowledge, the
videos in public gaze datasets [23, 27, 28] are too short (< 1 minute)
to evaluate the effects of long-term network variations and behav-
ioral changes, and the gaze-driven VQA for mobile VR viewers is
still unexplored. Therefore, for more solid algorithm evaluations,
we built the first gaze-annotated long 360° video dataset1 and the
first gaze-driven 360° VQA metric for mobile VR viewers. Note
that SalientVR does not require gaze tracking on-the-fly and users
without gaze tracking devices can also benefit from SalientVR, as
long as enough gaze data is collected offline.

To our knowledge, SalientVR is the first mobile 360° video
streaming systemwith the integration from gaze to saliency through-
out the system. We implemented a prototype of SalientVR and
conducted extensive evaluations (both dataset-based evaluation
and survey-based user study) over LTE network emulations and
in the wild. The dataset-based evaluation, consisting of more than
150 hours of playback, shows that SalientVR achieves an up to
7.39 dB improvement in gaze-driven Peak-Signal-to-Noise-Ratio
(PSNR) and reduces the rebuffering ratio by up to 3.07×, compared
to alternatives. The survey-based user study with 30 participants
across 10 videos also demonstrates that SalientVR receives a 43.68%
higher mean opinion score (MOS), which is a user rating measure
used in the domain of QoE [11, 29].

In summary, our key contributions are as follows:
• We design and implement SalientVR, a holistic saliency-driven
mobile 360° video streaming system tightly integrated with gaze
information.

1Available at https://github.com/salientVR/gazedata

• We present a precise gaze-driven saliency judging criterion for
mobile VR viewers, and two pragmatic gaze-driven, tile-level
saliency acquiring methods based on cross-user similarity and
deep content analysis.

• We design a lightweight saliency-aware quality adaptation algo-
rithm with a motion-assisted online correction, which is robust
to bandwidth vagaries and saliency bias.

• Through extensive prototype experiments and real-world user
studies, we demonstrate that SalientVR achieves significant QoE
improvements over current approaches.

• We constructed a public gaze-annotated 360° video dataset and a
gaze-driven 360° VQA metric, which would benefit the research
community in precise quality assessment and attention behavior
analysis.

2 BACKGROUND AND MOTIVATION
2.1 Mobile 360° Video Streaming
Untethered mobile VR headsets enable viewers to enjoy mobile
360° video streaming without wired hindrance, but suffer from
insufficient wireless network bandwidth. Inspired by the fact that
human view is restricted, past works mainly adopt the HMT-driven
approaches [10, 12–15, 30]. They split each video chunk spatially
into multiple tiles (e.g., 4 × 6 grids), and encode each tile with dif-
ferent quality levels, such as quantization parameters (QP). During
the playback, they constantly predict the future HMT in the next
1-3 seconds according to the recently historical HMT using linear
regression (LR)-based [10] or DNN-based [30] methods. Based on
the predicted HMT, they assess the importance of each tile of the
next chunk and assign the corresponding quality.

However, these HMT-driven solutions overly rely on the tem-
poral correlation of HMT, leading to two shortcomings. First, the
future HMT is scarcely correlated with the historical HMT in some
cases even with a short prediction horizon (a.k.a, prediction win-
dow or pw). Figure 1 shows a case of LR-based HMT predictions
with different pw based on historical head directions. The sudden
brandishing swiftly draws the viewer’s attention and therefore
causes the invalid HMT predictions, which would severely degrade
the QoE in HMT-driven approaches. For mobile VR viewers, the
untethered freedom further reduces this temporal correlation.

Second, the HMT-driven approaches are highly sensitive to the
size of pw due to rapid correlation decrease as the time interval in-
creases. Even three seconds of pw degrades the HMT prediction ac-
curacy into 35.2% [10]. Due to the prefetching feature of on-demand
video streaming, pw has to exceed the buffer occupancy during the
playback. Therefore, these approaches set a very small buffer size
to shorten pw in practice, but suffer from frequent rebuffering es-
pecially over variable wireless network conditions. From Figure 2,
when the bandwidth encounters an unexpected decline, the rapid
consumption of buffer occupancy causes rebuffering for Flare (a
typical HMT-driven approach) [10] that reluctantly adopts a small
buffer size for more accurate HMT predictions.

2.2 Saliency and Gaze Information
The design of SalientVR is inspired by the fact that attention be-
haviors of humans are remarkably correlated with the saliency
of pixels [16, 17, 31]. The gaze-driven saliency introduces a rea-
sonable method of accurate long-term attention estimations with
the potential of further QoE improvement for mobile 360° video
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Figure 1: LR-based HMT predictions
(depicted by orange circles) with dif-
ferent pw .

Figure 2: Network throughput
and the corresponding buffer
occupancy of SalientVR and Flare.

Figure 3: Viewport, gaze region, chunk, and
tiles (4×6 segmentation).

streaming. Therefore, we present SalientVR that addresses three
key challenges.

Challenge 1: How to precisely judge saliency’s groundtruth
for mobile VR viewers? Naturally, the viewing data of users could
be deemed a groundtruth proxy of saliency. Along the HMT-driven
line, the entire viewport (∼110° in width and ∼90° in height) is con-
sidered as the high-salient region. However, it is imprecise because
only a small percentage region (i.e., gaze region) of the viewport
is viewed with high visual acuity [20, 21], described in Figure 3.
Imprecise saliency judgment would miss the opportunity of more
aggressive quality allocation strategies to further improve viewer
QoE. For instance, we can enhance the perceived quality by raising
the video quality level in the gaze region, while simultaneously
lowering the quality level in the region of viewport except the gaze
region. For more precise saliency judgment, the exact scope of gaze
region and saliency degrees from gaze region to viewport should
be fundamentally determined for mobile VR viewers.

Challenge 2: How to pragmatically acquire accurate tile-
level saliency maps? Though saliency object detection (SOD) is
not new in computer vision community [24–26, 32, 33], existing
efforts fail to achieve accurate acquirement of tile-level saliency
maps required by 360° video streaming with specific demands. Inac-
curate saliency acquirement would severely impair the advantages
of saliency-based solutions. Gaze information provides a more pre-
cise and fine-grained saliency proxy than head directions. However,
it is non-trivial to take advantage of gaze information to achieve
accurate tile-level saliency analysis. Moreover, enough gaze/head
data of users could hardly be collected in some cases especially for
fresh videos that just came out or privacy-sensitive videos. More
pragmatical saliency acquiring methods should be proposed to
improve both accuracy and practicality.

Challenge 3: How to robustly adapt the quality of mobile
360° video streaming using saliency? Saliency-based quality
adaptation has potential for QoE improvement; however, it is chal-
lenging to achieve an excellent tradeoff between quality and re-
buffering, especially under the dynamic network bandwidth. Be-
sides, compared to chunk-level adaptation, the search space of tile-
level adaptation is far larger (e.g., 524 combos in one chunk for 4×6
tiling and five quality levels). It would incur unbearable calculation
delay for exhaustive search due to limited computing resources on
mobile devices. Moreover, the saliency maps are prepared offline
and are determined by collective preferences without consider-
ing individual users. Inevitable saliency bias may result in poor

Figure 4: Overview of SalientVR.

experiences for few individual users with distinctive attention pref-
erences, i.e., outlier viewers. For instance, a viewer that prefers to
gaze at collectively-determined non-salient regions would perceive
weak QoE due to the quality adaptation using saliency alone (the
less salient the lower allocated quality). Therefore, a saliency-aware
quality adaptation algorithm with proper calculation acceleration
and bias correction is crucial for robustness to bandwidth vagaries
and saliency bias.

Gaze-annotated dataset and gaze-driven VQA.Most of pre-
vious works [10, 34] adopt the viewport-driven VQA that computes
the quality (e.g., PSNR) of viewport uniformly. However, the visual
acuity of humans is unevenly distributed inside the viewport. The
imprecise viewport-driven VQA would lead to imprecise quanti-
fied validation of video streaming algorithms. Gaze information
supplements extra attention annotations for precise VQA [23]. The
latest efforts [23, 27, 28] release several gaze datasets, however,
whose videos are too short (< 1 minute) to evaluate the effects of
long-term network variations and behavioral changes. Gaze-driven
VQA has been studied for conventional videos [35], whereas it is
still unexplored for mobile VR viewers.

3 OVERVIEW OF SALIENTVR
Figure 4 illustrates an overview of SalientVR that includes the
offline saliency map preparation phase and the online saliency-
aware video streaming phase.
Saliency map preparation.When a 360° video is uploaded, the
media server transcodes and dashifies the video into multiple-
bitrate chunks, and then splits each chunk intoM × N equal-sized
tiles, on top of the DASH standard. Next, the saliency map (i.e., the
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Figure 5: Different sharpness distributions
to determine the precise scope of the gaze
region.

Figure 6: The number of groups for each
scope where the participant perceived the
quality degradation.

Figure 7: The gaze-driven
saliency judging criterion for
mobile VR viewers.

M ×N numerical matrix) of each chunk is generated offline on the
server by the saliency judger (§4.1) and the saliency map producer
(§4.2) collaboratively, based on video content and collected viewing
data. Finally, the saliency maps are packaged in JSON format for
ease of transmission and deployment.
Saliency-aware video streaming. At the beginning of video
streaming, the corresponding saliency maps are downloaded to
the client player firstly. During the playback, referring to saliency
maps, the saliency-aware quality adapter (§4.3) computes the QoE
reward combining the throughput estimation and the buffer oc-
cupancy to decide the quality allocation (i.e., download plan) of
streaming. Simultaneously, the online corrector (§4.3) utilizes the
online viewing data to correct the unfrequent but improper quality
allocations caused by saliency bias. According to the download
plan, the videos with corresponding quality levels are downloaded,
decoded, projected, and displayed by the client player.

4 SALIENTVR DESIGN
4.1 Gaze-Driven Saliency Judgment
To precisely judge the groundtruth of tile-level saliency maps, we
firstly ran a user study to determine the scope of gaze region with
30 participants and 10 360° videos. Based on the gaze region, we
utilize the viewing data of mobile VR viewers to build a precise
gaze-driven saliency judging criterion, which will be applied for
saliency map acquirement (§4.2) and video quality assessment (§5).
Videos and participants. The 360° videos involve various genres
(dance, diving, scenery, etc.) and diverse scene complexity from the
gaze-annotated 360° video dataset, Gaze18 [23]. The participants,
aging from 20 to 51, are students, staff, and faculty members from
two universities and a company. 47% of them are female, 57% of
them wear glasses, and 63% of them are first-time viewers for 360°
videos. Note that there are three different user studies (§4.1, §5, and
§7) and a user data collection (§5) in this work. The users’ demo-
graphics are similar as illustrated here although the participants
are diverse for research validity. All user studies in our work were
IRB approved without raising any ethical issues.
Auser study to determine the scope of gaze region.Wemasked
videos in different sharpness distributions as depicted in Figure 5.
The participants wore the untethered mobile VR headsets [2] and
watched the same video from broad sharpness to narrow sharpness
in order. The broader sharpness means the wider scope (measured
in radius angles) of the circular region with high definition. The
participants were asked to gaze at the tagged fixed point during the
viewing to keep the same gaze trajectory for the same video. For
each scope, we counted the number of groups (30 participants ×
10 videos = 300 groups in total) where the participant perceived

(a) Saliency scores across different viewers (V) for the same frame.

(b) Saliency scores across different frames (F) for the same viewer.

Figure 8: Saliency variations across viewers and frames.

the quality degradation at this scope, shown in Figure 6. A person
that perceived the quality degradation at a certain scope would
perceive the degradation at smaller scopes for the same video. From
this study, we treat the 25°-radius gaze-centric circular region as the
gaze region. Under this setting, 95.7% of groups did not perceive
the quality degradation.
Gaze-driven judgment for saliency map groundtruth. Based
on the gaze region that is the precise spatial scale with high visual
acuity, the saliency of a frame given the viewing data of a viewer
is judged as follows (shown in Figure 7):
• High-salient region: the gaze region.
• Low-salient region: the viewport except the gaze region.
• Non-salient region: the frame except the viewport.
Specifically, given a pair of viewing data including a gaze point and
a head direction for a viewer and a frame, we set the saliency score
for each pixel (spatial dimension), this viewer (user dimension),
and this frame (temporal dimension), as one in the high-salient
region, ϵ in the low-salient region, and zero in the non-salient
region, where ϵ ∈ (0, 1). Then, we average the pixel-level saliency
scores in each tile for a viewer and a frame to get the tile-level
saliency map, which is regarded as the groundtruth of the tile-level
saliency map for this viewer and this frame.
Saliency variations across viewers and frames. Figure 8 shows
the saliency score of each tile in the tile-level saliency map (4 × 6
segmentation) across different mobile VR viewers and different 360°
video frames respectively. We observe that the saliency distribution
of tiles widely varies across different frames for the same viewer but
is similar across different viewers for the same frame. It suggests
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Figure 9: TSMNet structure (Dashed box: legends).

the cross-user attention similarity and the effects of video content
on viewer attention.

4.2 Saliency Map Acquirement
Based on the gaze-driven saliency judgment, we pragmatically
design two saliency acquiring methods (i.e., the similarity-driven
and content-driven methods) to accurately generate the 360° video-
specific, tile-level saliency map for each chunk.
Similarity-driven method. Based on cross-user similarity, we
utilize the collected viewing data of users to yield saliency maps.
First, we get the tile-level saliency map for each viewer and each
frame using the gaze-driven saliency judgment (§4.1). Then, we
average the tile-level saliency scores across different viewers to
acquire the tile-level saliency map for each frame. Finally, the tile-
level saliency maps of frames in the same chunk are merged to
generate the normalized tile-level saliency map for each chunk.

Two issues need to be specifically addressed due to the equirect-
angular projection [36, 37]. First, the horizontal cyclicity should be
carefully handled. For instance, if the gaze point is in the leftmost
edge in a planar frame, the rightmost part of the gaze region should
be noticed. Second, pixel scales of the viewport and the gaze region
should adapt to the latitude coordinate (the higher latitude, the
larger pixel scale) due to the projection distortion [38, 39].
Content-driven method. Based on the effects of video content
on viewer’s attention, we design a 360° video-specific content-
aware DNN, named TSMNet (Tile-level Saliency Map NETwork),
to generate saliency maps.

The structure of TSMNet, as depicted in Figure 9, mainly in-
cludes the modules of PyramidCSA [32] and VGG Net [40]. The
TSMNet takes multiple consecutive raw frames together as input and
outputs the tile-level saliency maps. It firstly captures the object-
level saliency information (i.e., binary images) by the PyramidCSA
module. PyramidCSA, a state-of-the-art saliency object detection
architecture, groups a set of constrained self-attention operations
in a pyramid structure and can effectively perform the object-level
saliency judgment with a low computation overhead. The widely-
applied VGGNet-16 architecture follows to transform the object-
level saliency information to the tile-level saliency information.
Then, two convolution layers with small filters (i.e., 3 × 3 and 1 × 1
respectively) and a fully connected layer are added for learning
panorama features of 360° videos and merging the features into
the final output.

Based on model weights pre-trained on large-scale non-360°
video datasets [41], we fine-tune2 the TSMNet model on the dataset
we build (will be described in §5) and the Gaze18 dataset [23].
Both are 360° video datasets with gaze labels collected by the gaze
tracker in real immersive VR settings. We use 186 videos with
2Fine-tuning [42] is a popular DNN training technique for further performance im-
provement on specific tasks.

almost 340,000 frames as the training data and other 45 videos
with almost 85,000 frames as the test data. The viewing data is not
inputted into TSMNet but is used to generate the groundtruth labels
(i.e., tile-level saliency maps) via the gaze-driven saliency judgment
(§4.1).We use a mean absolute error (MAE) loss function in training,
expressed by LMAE (P,G) =

1
M×N

∑M×N
i=1 |pi − дi |, where P and

G are the predicted and groundtruth saliency maps respectively,
and (pi ,дi ) ∈ (P,G). We apply an Adam optimizer [43] with the
batch size 15 and the decaying learning rate from an initial value
10−6. Data parallelism and multi-GPU support are used to speed
up DNN training.
Comparison with alternative content-driven DNNs. We try
other alternative DNN structures for acquiring saliencymaps, as de-
scribed in Table 1. These DNN structures are all content-driven so-
lutions without requiring any viewing data as input, where SALI360
is a gaze-driven but object-level method, and FPN is a tile-level but
head-driven method. Table 1 shows that TSMNet achieves a lower
MAE compared to DNN-based alternatives. While we adopt the
TSMNet and specific settings, the SalientVR design is not bound
to any specific DNNs but benefits from their evolution. We will
further compare the similarity-driven and content-driven methods,
and evaluate the effects of fine-tuning and gaze information, with
respect to end-to-end QoE improvement, in §7.4.

Algorithm Description MAE

Naive a heuristic simple DNN method 0.26
SALI360 [18] a gaze-driven DNN method 0.22
FPN [44] a tile-level DNN method 0.20

TSMNet-WF TSMNet w/o fine-tuning 0.19
TSMNet our content-driven method 0.15
Similarity our similarity-driven method 0.12

Table 1: Descriptions andmean absolute errors (MAE) of dif-
ferent saliency acquiring methods. All methods except Sim-
ilarity are content-driven DNN structures.

Pragmatical adoption. The similarity-driven method (Similarity)
gains better performances than the content-driven method (i.e.,
TSMNet) and requires far fewer computing resources obviously.
However, enough viewing data are necessary for the Similarity but
could hardly be collected in some cases. By contrast, the TSMNet
detects saliency information from video content alone, leading to
less dependence on user data. Thus, for pragmatism, two methods
are adopted in SalientVR for different circumstances.

4.3 Saliency-Aware Quality Adaptation
Based on saliency maps, we design a DASH-compatible, tile-level
quality adaptation algorithm and achieve a significant computation
acceleration. We also design a motion-assisted online correcting
mechanism by combining offline saliency information and online
viewing data to correct saliency bias.
Saliency-driven quality adaptation as an optimization prob-
lem. The saliency map implies the probability of gazing at each
tile for a new user. Thus, the tiles with larger saliency scores tend
to be delivered in higher quality. We also set a minimum buffer
threshold, γ , to reduce the risk of rebuffering. Specifically, we for-
mulate the quality adaptation for the kth chunk as the following
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maximization problem:
max
lk (j)

rewardk = Qk − α DCk − β DTk

s .t .
∑
j
sizek (j) ≤ (bu f f er_occupa − γ ) × bandwidth.

(1)

Qk is the saliency-weighted average quality level of Chunk k and
defined as the following:

Qk =
∑
j
Saliencyk (j) × lk (j),

where Saliencyk (j) is the jth saliency score of the saliency map
(acquired in §4.2) of Chunk k , and lk (j) is the video quality level
(e.g., the function of qp) of Tile j of Chunk k .

DCk and DTk represent the Chunk k’s saliency-weighted av-
erage quality differences between two consecutive chunks, and
between neighboring tiles in an identical chunk, respectively, as
defined in the following:

DCk =
∑
j
Saliencyk (j) × Saliencyk−1(j) × |lk (j) − lk−1(j)|

DTk =
∑
j

∑
r ∈nei(j)

|lk (j) − lk (r )| × Saliencyk (j)/|nei(j)|.

To facilitate computation, we only consider quality differences of
same-position tiles of two successive chunks in DCk . Admittedly,
quality differences of diverse-position tiles may influence the QoE
due to the cross-tile gaze movement in the junction of two succes-
sive chunks. In practice, computing the diverse-position differences
in DCk gains little but increases the computation complexity by
tens of times.

Our saliency-driven quality adaptation design dramatically re-
duces the reliance on HMT predictions by viewport-free reward
computation. Therefore, SalientVR enables the client player to keep
a longish buffer to absorb network variations without worrying
about the diminution in HMT’s temporal correlation. Inspired by
[8], we set a minimum buffer threshold, γ , which means that the
buffer occupancy should always exceed γ during video download-
ing. Specifically, a chunk size constraint is added in Eq.1, where
sizek (j) is the file size of Tile j of Chunk k . If there is no quality
combo satisfying the size constraint, SalientVR will adopt the most
conservative quality adaptation scheme, i.e., fetching chunks in
the lowest quality levels, to expand buffer as best it can.
Computation speed-up for quality adaptation. Huge search
space of tile-level adaptation would incur the considerable calcu-
lation delay for exhaustive search, which would severely impair
adaptation performances. Thus, we adopt two techniques to reduce
the search space and speed up computation. First, a constraint
is added that the quality level of each tile never increases as the
saliency score drops off. Second, the simulated annealing algorithm
[45, 46], a probabilistic technique for approximating the global op-
timum of a given function, is delicately applied. After using the
above two techniques, SalientVR only needs to compute hundreds
of paces to find the near-optimal solution (i.e., the quality allocation
with the almost maximal reward). Table 2 lists the average time
consumption and optimal reward of the exhaustive search scheme
and our speed-up methods.
Motion-assisted online correction. To improve the QoE of out-
lier viewers with distinctive preferences, we design a motion-
assisted online correcting mechanism combining offline saliency

Time cost Optimal reward

Exhaustive search 3.48s 0.045
Our speed-up 0.04s 0.044

Table 2: Our techniques achieve an 87× computation speed-
up to find the near-optimal solution of quality adaptation,
compared to the exhaustive search.

information and online viewing data to correct the unfrequent but
improper quality allocations caused by saliency bias. During the
playback, SalientVR constantly tracks the online head movement
data of viewers. If the overlapping rate of the actual viewport and
the top-four tiles (ranked in order of saliency scores; for 4 × 6 tile
segmentation) is less than 25% for a 3-second duration, the quality
adapter will enter the correction mode until the overlapping rate
exceeds 50% for the same duration.

Under the correction mode, SalientVR performs the online view-
port prediction using the motion-based method [10] while running
the saliency-driven adaptation. The saliency-driven adaptation de-
cides the quality allocations in the distant future based on offline
saliency information and therefore enables the client player to
keep a longish buffer occupancy. Simultaneously, the online correc-
tor performs the short-term viewport prediction based on online
viewing data to compensate the video tiles with improper quality
levels in the buffer. Specifically, if the buffer occupancy exceeds
3γ , the low-quality buffer-in tiles inside the predicted viewport
would be redownloaded and replaced with high-quality tiles. The
redownloaded tiles are useless if they fail to arrive before the time
they are displayed. Hence, SalientVR carries out tile correction
only if the subtraction of estimated redownloading time from the
buffer occupancy exceeds γ . Honestly, redownloading wastes a few
network resources but still achieves respectable benefits (will be
shown in §7.4). Hopefully, the scalable video coding (SVC) [47]
could enable incremental downloading to reduce the overhead of
correction, although it is not the point in this work.

5 DATASET AND QUALITY ASSESSMENT
For more solid evaluations, we constructed a gaze-annotated long
360° video dataset and a gaze-driven 360° video quality assessment
(VQA) metric for mobile VR viewers.
Gaze data collection.We downloaded 23 long 360° videos (2-11
minutes, 11 genres, 4K resolution, 30-60 fps, and ∼2 hours in total)
from YouTube according to the popularity ranking. The genres
include aerial, animal, cartoon, dance, diving, game, mixed, rac-
ing, roller coaster, scenery, and outer space. Then, 30 participants
viewed these videos using the HTC VIVE PRO EYE VR headset
with built-in Tobii’s gaze tracking [48]. The gaze data of each par-
ticipant were recorded by the Tobii Pro Lab software [49]. VIVE
Wireless Adapter [50] enabled viewers to explore freely without wired
hindrance. To alleviate fatigue, a short break was required every 10-
minute watching. Before collection, every participant was required
to watch a warm-up video to allay nervousness and a calibration
video to calibrate gaze coordinates successively. Any participant
that felt dizzy or other discomfort discontinued watching and the
corresponding data were discarded. The participants experienced
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Figure 10: Cumulative distribution of the MOS prediction
error. It demonstrates that the gaze-driven VQA metrics
achieve more accurate MOS predictions.

the uniformly high video quality (without rebuffering) to elimi-
nate the effect of spatially-uneven quality distribution on viewing
behaviors (will be discussed in §8).
Gaze-driven 360° VQA metric. The gaze region occupies more
visual acuity than the hollow viewport (the viewport except the
gaze region). Therefore, based on the determination of gaze region
(§4.1), we build a gaze-driven 360° VQA metric:

FrameQua =
q(GazeReдion) + ϵ · q(HollowViewport)

1 + ϵ (2)

VideoQua =
∑

i
FrameQua(i)/FrameNum, (3)

where q(X ) is the image quality (e.g., PSNR [51]) in Region X of
a frame, FrameQua(i) is the weighted average quality of Frame i ,
and ϵ ∈ (0, 1) is the weight coefficient.

The VQA metric is built for more precise evaluations and is
different from the reward metrics (e.g., Qk ) designed for quality
adaptation (§4.3). Moreover, the gaze-driven VQA mainly focuses
on the more precise perceptible scope with high visual acuity over
gaze data and is combinative with conventional VQA criteria such
as PSNR and 360PSPNR [11]. For instance, the gaze-driven PSNR
denotes the VideoQua where the q(X ) is specified by the PSNR
value in Region X .
Validation of usefulness. We conducted a user study on 10 360°
videos and 15 participants to verify the usefulness of gaze-driven
VQA. The videos were encoded with uneven quality distributions,
viewed on VR headsets, and rated by viewers. We combined the
viewport-driven and gaze-driven VQA with PSNR and 360PSPNR
to compute the objective quality. We then checked correlations
between the combined VQA metrics and MOS (i.e., mean opinion
score). Similarly as [11], we built four linear MOS predictors based
on the different VQA metrics. Figure 10 shows the distributions of
prediction errors (i.e., |MOSpredict −MOSr eal |/MOSr eal ). Com-
pared to the viewport-driven VQA, the gaze-driven VQA metrics
achieve more accurate MOS predictions, which validates that the
gaze-driven VQA metrics correlate with MOS more closely.

6 IMPLEMENTATION
We implemented a prototype of SalientVR, client running on a Mini
PC, based on 8300 additional lines of JavaScript and Python code.
The Mini PC, Dell OptiPlex 3080MFF, is equipped with a mobile-
class Intel UHD Graphics 610 GPU, an Intel Pentium G6405T 1.8
GHz dual-core processor, 4 GB of RAM, and a 128 GB SSD. It is
equivalent to a common commodity smartphone in computing
resources. For instance, the Samsung Galaxy S20 phone [52] is

equipped with a Qualcomm Adreno 650 GPU, a Qualcomm Snap-
dragon 865 1.8-2.84 GHz multi-core processor, 8 GB of RAM, and
a 128 GB SSD, which is similar to our Mini PC settings. Thus, we
elaborately chose the Mini PC to emulate the computing resources
of a mobile VR device. A similar prototype implementation scheme
was adopted by the previous work [53].

We used FFmpeg [54] and Kvazaar [55] to encode videos in High
Efficiency Video Coding (HEVC) formats due to native support
for tiled coding [56, 57], and used MP4Box [58] to package and
dashify HEVC bitstreams. The video server was a web server over
HTTP built in Ubuntu 18.04. We constructed an HTML5-based,
DASH-compatible VR Player to stream and display HEVC-tiled
360° videos on the Microsoft Edge browser on top of the HEVC
Tiles Merger [59]. The Player fetches and merges split tiles with
different qualities according to a controllable quality matrix. To
facilitate online correction, we set a JavaScript Array before the
buffer queue in the Player. The downloaded video files are placed
in the Array firstly and are deferred to enter the buffer queue. The
videos in the Array maintain the independence of tiles without
merging or decoding, which means that any tile replacement in
the Array does not impact other tiles. The DNN structures in this
work were constructed using the Pytorch repository.

For user studies on untethered mobile VR headsets, we used
A-Frame [60], a web framework for building VR experiences, to
render and project 360° video streams from the PC Player into the
mobile VR headset (i.e., Oculus Quest 2 [2]). Simultaneously, we
acquired the online viewing data by VRFrameData.pose in A-Frame
and sent the viewing data to the online corrector. Due to support
issues, we used HTML5 Canvas to capture the content in video tag
in the PC Edge browser (supports HEVC but not A-Frame), and
transmitted the content to the onboard browser in Oculus Quest
2 (supports A-Frame but not HEVC). The two browsers were on
the same WiFi network (802.11ac at 5 GHz) with an imperceptible
transmission delay.

We adopted the PC-based implementation approach for our
client player, largely due to abundant support of the well-developed,
compatible software stack and open-source tools on the Windows
platform, e.g., browser support for Media Source Extensions (MSE)
API and hardware HEVC decoding. Our implemented prototype
properly emulates the computing resources of mobile VR devices,
and fully achieves the free, untethered, immersive, and interactive
viewing experience of 360° video streaming with a commodity
mobile VR headset. Therefore, we believe that the experiments
through our implementation are valid enough to demonstrate the
advantages of SalientVR. That being said, lack of an implementation
totally built on commodity mobile devices adds a complication to
the practical deployment and application in industry.

7 EVALUATION
7.1 Experimental Setup
Videos.We used totally four-hour gaze-annotated 360° videos in
our evaluations, including 80 short videos (20-60 seconds) in the
Gaze18 dataset [23] and 23 long videos (2-11 minutes) in our dataset
(§5). These videos were viewed with commodity VR headsets by 45
participants in total. The videos exhibit a large diversity in terms
of genres, including aerial, documentation, scenery, etc. There are
both videos shotted from fixed cameras and videos captured with
a moving camera, which probably introduces different variances
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ALGO Description

Flare using HMT-driven
viewport predictions

Pano using HMT-driven
360° quality models

SALI360 a method using
gaze and saliency

MPC a method designed
for non-tiled videos

LB-Flare a variant of Flare
with a long buffer

Table 3: A summary of algo-
rithms for comparison.

(a) Gaze18 dataset [23]. (b) Gaze-annotated dataset we build (§5).

Figure 11: Overall results in video quality and rebuffering ratio by gaze-annotated
dataset-based evaluations (both Gaze18 dataset and our dataset) over the LTE network
emulation. (Error bars show 95% confidence intervals.)

(a) Aerial (b) Animal (c) Cartoon (d) Dance

(e) Diving (f) Game (g) Racing (h) Roller coaster

Figure 12: Separate results in video quality and rebuffering ratio across eight typical video genres by dataset-based evaluations
over the LTE network emulation.

in head/gaze trajectories of viewers. Further, some videos possess
relatively more complex content scenes (e.g., numerous foreground
objects in a frame) while the scenes in some videos are simple,
which would influence the difficulty of saliency analysis.

Each video was encoded into 2.13-second chunks with 4×6 tiling
and five quality levels (QP=22,27,32,37,42). The videos were ran-
domly divided into two parts to be adopted two saliency acquiring
methods (§4.2), respectively. For each video with the similarity-
driven saliency acquiring method, we randomly selected the view-
ing data of 75% users for offline saliency acquirement (also used for
TSMNet training) and used the other viewing data for streaming
system evaluations. As for the content-driven saliency acquire-
ment, we only randomly selected 25% viewing data for evaluations
due to the assumption of viewing data unavailability (§4.2).
Network conditions.We picked 10 real-world throughput traces
from the Belgium 4G/LTE dataset [61], replayed by the Mahimahi
network emulation tool [62]. The traceswere captured using 4G/LTE-
connected smartphones over multiple transportation types includ-
ing foot, bus, train, etc. We also used five remote cloud servers on

different cities as video servers through a residential commodity
WiFi link to evaluate systems in the wild.
Algorithms for comparison.We compared SalientVR with Flare
[10], Pano [11], SALI360 [18], MPC [63] and long-buffered Flare
(LB-Flare), as summarized in Table 3. Flare and Pano are typical
HMT-driven methods. SALI360 notices the potential of gaze-driven
saliency in 360° video streaming. However, it mainly addresses the
issues about cube map encoding and does not really discuss the tile-
level streaming adaptation, which is themajor concern in SalientVR.
MPC is a control-theoretic adaptation approach designed for non-
tiled video streaming. LB-Flare, a variant of Flare, expands the
buffer size from three seconds to five seconds and tends to keep a
longer buffer than Flare.
Metrics and settings.Wemainly used two objective QoE metrics,
gaze-driven PSNR (§5), and the rebuffering ratio (i.e., the ratio
between the total rebuffering duration and total watching time).
MOS was adopted as the subjective QoE metric. Video quality
variations, viewport-driven PSNR, and structural-similarity-index-
measure (SSIM) [64] were also discussed. We empirically set α =
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(a) Viewing with marker guidance (b) Viewing by freely exploreing

Figure 13: Overall improvement in real user rating (i.e., MOS) by the survey-
based user study with two kinds of viewing methods (i.e., marker guidance
and freely exploring) over the LTE network emulation.

Figure 14: SalientVR’s improvement in
video quality and rebuffering ratio in the
wild over residential WiFi.

Figure 15: Separate MOS results of SalientVR compared to
Flare across nine typical video genres.

0.1, β = 0.5,γ = 2.5, and ϵ = 0.3 in SalientVR, which is independent
of network trace selections. For other algorithms, we used the same
parameter settings as their papers. For fairness, all algorithms used
the same throughput estimation method [63].
Survey-based user study. 30 participants viewed 10 videos bymo-
bile VR headsets [2] to evaluate the subjective QoE performances
of different algorithms. After watching a video, the viewer was
required to rate the experience between 1∼5. We adopted two kinds
of viewing methods. In the first group, we picked real gaze trajec-
tories and marked the gaze point on each video frame. The viewers
were asked to gaze at the markers to ensure the same viewing tra-
jectory for the same video across different algorithms and viewers.
This method of user study was widely adopted by previous works
[11] although it does not provide actual experiences as viewers
freely explore. In the second group, participants were able to freely
explore the video content without any marker guidance. The ran-
dom order and the interval between watching were required to
reduce the influences of repeated watching.

7.2 Improvement over LTE Emulations
Dataset-based evaluation.The collected viewing data are serially
ingested by the client player to simulate the viewing process. As
shown in Figure 11, overall, SalientVR achieves a 1.36-7.39 dB video
quality improvement and reduces the rebuffering ratio by 1.64-
3.07×, compared to existing approaches. Also, Figure 12 depicts
the separate evaluation results across eight typical video genres to
demonstrate the generalizability of SalientVR gains across genres.

For Flare and Pano, the LR-based HMT predictions are not ac-
curate enough to support the video delivery with high perceived

quality even keeping a short pw . Moreover, we found that the ac-
curacy of HMT predictions varies with the content complexity,
leading to different qualities across videos for the HMT-driven
approaches. For some genres of videos like cartoon, the number of
foreground objects is relatively low and the objects are relatively
motionless for most clips. The accuracy of HMT predictions for
these non-complex videos is higher than that for videos with com-
plex contents, therefore, with higher qualities for Flare. In terms
of rebuffering, the small buffer size in the HMT-driven solutions
brings more rebuffering under the fluctuant wireless network band-
width. In contrast, SalientVR performs better by virtue of more
accurate attention estimations and a larger buffer size to absorb
network variations. LB-Flare attempts to reduce rebuffering by sim-
ply enlarging the buffer size, but suffers from the distinct quality
degradation due to the ineffective HMT prediction.

SALI360 utilizes saliency to achieve a better tradeoff between
quality and rebuffering compared to HMT-driven methods, but
is still far from tapping the full potential of saliency, resulting in
inferior QoE performances over SalientVR. First, the object-level
saliency detection (SD) in SALI360 is less precise than the tile-
level SD in SalientVR, which removes some of benefits of saliency-
based solutions. Second, SALI360 suffers from poor QoE perfor-
mances in under-exposed video scenes (e.g., the genre of outer
space) due to the luminance-sensitive SD approach used in SALI360.
SalientVR avoids the above SD issues in dim scenes by luminance-
free SD approaches. Third, the image-based SD method adopted in
SALI360 experiences severe SD errors in some 360° video-unique
background-centric scenes. For instance, for the genre of racing,
most volunteers would like to gaze at the background region (e.g.,
racing track) from the perspective of a single image, but the fore-
ground object (e.g., racing driver) tends to be detected as the high-
salient object for image-based SD methods. It is an inevitable limi-
tation of image-based SD methods due to the lack of motion infor-
mation. In contrast, our TSMNet model adopts the video-based SD
approach, i.e., taking multiple consecutive frames as input to cap-
ture the 360° video-specific motion information. Thus, SalientVR
overcomes the limitation of image-based SD methods and achieves
a more accurate attention prediction. Fourth, more importantly, in
comparison to SALI360, we design a more sophisticated and robust
quality adaptation algorithm fully leveraging saliency information,
contributing to superior QoE results.
Survey-baseduser study. Figure 13 compares theMOS of SalientVR
and other algorithms, over the two kinds of viewing methods (§7.1).
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(a) Quality adaptation. (b) Online correction. (c) Saliency acquirement. (d) Gaze information. (e) Tile segmentation.

Figure 16: Microbenchmarks: component-wise analysis for end-to-end improvement in quality and rebuffering.

The results over marker guidance and freely exploring both de-
scribe that SalientVR gains a significantly higher user rating, with
a 43.68% MOS improvement on average, compared to alternatives.
The user feedbacks indicate that the rebuffering is more annoy-
ing than the quality degradation for the majority of participants
when experiencing mobile 360° video streaming. For SalientVR,
the remarkable decrease of rebuffering significantly boosts viewer
QoE, compared to the HMT-driven methods. To further explain the
generalizability of SalientVR, we compare SalientVR and Flare in
MOS across nine typical video genres, as shown in Figure 15, and
we see that the gains of SalientVR vary across videos with different
genres (will be discussed in §8).

7.3 Improvement in the Wild over WiFi
To test SalientVR in the wild, we used five remote cloud servers
(alleged 15-25 Mbps download bandwidth and 20-50 ms RTT) as
video servers over a residential WiFi link during different periods
(e.g., peak hours and non-peak hours). The commodity WiFi AP
supports 802.11ac, 2.4 GHz, and the 2,976 Mbps maximum rate.
We simultaneously ran multiple client players with different al-
gorithms and downloaded videos from the same video server to
keep the network bandwidth as equivalent as possible for different
algorithms. Figure 14 shows that SalientVR achieves a 1.15-5.64
dB quality improvement and reduces the rebuffering ratio by 1.33-
2.14×, compared to other approaches. This validates that SalientVR
manages to make a better tradeoff between the video quality and
the rebuffering over dynamic network conditions in the wild by
the accurate attention estimation and the long buffer mechanism.

7.4 Microbenchmarks
In this study, we altered some key components in SalientVR one-by-
one to specify the reasons of these settings and better understand
their contributions to end-to-end QoE improvements for mobile
360° video streaming.
Effects of our quality adaptation algorithm. Figure 16a com-
pares different combinations of saliency acquirement (SA) and
quality adaptation (QA) methods to evaluate the effects of our
QA algorithm. SALI QA+our SA combined the QA method used in
SALI360 and the SA method designed in SalientVR. We observe
that the QoE performance of SalientVR (i.e., our QA+our SA) is
obviously better than SALI QA+our SA. Similarly, our QA+SALI SA
performs better than SALI360 (i.e., SALI QA+SALI SA). It demon-
strates the superiority of our QA algorithm per se even using other
alternative SA approaches. Moreover, by comparing SalientVR and
our QA+SALI SA, we see that the tile-level SA of SalientVR performs
better than the more coarse-level SA of SALI360 due to the more
precise and specific saliency analysis adopted by us.

Effects of online correction. To evaluate the effects of online cor-
rection (§4.3), we chose 15 real viewing trajectories of viewers that
preferred to gaze at low-salient regions classified by collectively-
determined saliency inference (§4.2). Figure 16b compares four
different configurations of online correction. The Conserv and Ag-
gres refer to the conservative and aggressive correction settings,
i.e., entering the correction mode when the overlapping rate is less
than 25% and 50%, respectively. The 2γ and 3γ refer to performing
tile correction only when the buffer occupancy exceeds 2γ and 3γ ,
respectively. Hence, the 2γ also implies a more aggressive correc-
tion method compared to the 3γ . We see that the online correcting
mechanism effectively enhances the video quality by replacing the
improper quality allocations (i.e., low-quality tiles) for outlier view-
ers. Moreover, the relatively aggressive correction fails to achieve
better performances than the relatively conservative method. For
the aggressive correction, the frequent redownloading limits the
enlargement of buffer occupancy, causing conservative (i.e., low-
quality) quality allocations. Further, the low-quality allocations are
prone to activating the correction that could have been avoided.
Actually, the online correction is hardly triggered for most viewers
because the saliency-driven attention estimation is accurate and
effective enough for most users.
Different saliency acquiring methods. Figure 16c shows the
end-to-end QoE performances of similarity-driven (i.e., the Simi-
larity) and content-driven (i.e., the TSMNet) saliency acquiring
methods (§4.2). The TSMNet (w/o fine-tune) adopted the non-
finetuned TSMNet to acquire saliency maps. The Uniform set
saliency scores of all tiles equal in saliency maps. We see that
the Similarity achieves a larger QoE improvement than the TSM-
Net. Moreover, the adoption of fine-tuning training techniques
enhances the accuracy of the TSMNet model and consequently
improves the video quality.
Effects of gaze information. Figure 16d evaluates the effects of
gaze data on SalientVR in contrast to head direction data. SalientVR
used both gaze information and head information for saliency
judgement and acquirement. The Gaze-only used the gaze data only,
i.e., taking the non-gaze-region as non-salient region, and the Head-
only used the head data only, i.e., taking the entire viewport as high-
salient region (§4.1). The adoption of more precise gaze information
supports the more accurate saliency map acquirement and the
more aggressive quality allocation strategy, resulting in better QoE
performances than Head-only. Even so, head direction information
is also beneficial for QoE improvement, which is indispensable.

For online correcting (§4.3), we used online head directions to
predict viewport rather than performing gaze trajectory predictions
due to the lower accuracy of trajectory-driven gaze predictions.
Figure 17 shows that more frequent abrupt gaze movements make
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Figure 17: Simultaneous trajectory curves of head move-
ments and gaze movements. The head trajectory is more
smooth than the gaze trajectory.

gaze trajectories bumpier than head trajectories. A highly non-
smooth gaze trajectory curve increases the difficulty of trajectory-
driven gaze predictions and consequently degrades the prediction
accuracy. Note that the saliency-driven attention estimation in
SalientVR is not affected by non-smooth gaze trajectories due to
not relying on the temporal correlation of gaze movements.
Different tile segmentation methods. Figure 16e compares dif-
ferent tile segmentation methods (i.e., 2×4, 4×4, 4×6, and 6×6) in
SalientVR. The 4 × 6 tiling method gains the highest video quality
and the lowest rebuffering ratio. A more fine-grained 6 × 6 tiling
method increases the flexibility of quality adaptation but limits
the network utilization. The transmission time of video tiles does
not scale linearly with tile sizes. Smaller tile sizes lead to lower
throughput rates due to the slow-start-restart behavior in the TCP
protocol [66, 67]. More fine-grained tile splitting also increases the
time consumption of quality adaptation due to the larger search
space. Compared to the 4× 6 tiling method, the 6× 6 tiling method
requires a 4×more solving time of the optimization problem (Eq.1).
Overall, the 4 × 6 tiling method makes a better tradeoff among the
flexibility of quality adaptation, network utilization, and the time
consumption of quality adaptation.

7.5 Improvement in Other Quality Metrics
Besides gaze-driven PSNR, there are some other video quality as-
sessment metrics that are worthy of measurement and discussion,
and therefore, we further quantify the video quality on these met-
rics with different algorithms.
Quality variations. Figure 18 compares the temporal and spa-
tial video quality variations (the lower the better) of different al-
gorithms. The temporal quality variation quantifies the quality
change between neighboring frames in the video, computed by∑
i
��FrameQua(i)−FrameQua(i −1)

��/num. The spatial quality vari-
ation quantifies the quality difference across tiles in viewport, com-
puted by

∑
j StdDevj {q(Tilei ) : Tilei ∈ Viewport o f Frame j}/num,

which is a unique metric for 360° videos due to tiling [10]. The
FrameQua and q(·) are defined in §5. SalientVR achieves lower
quality variations (both temporal and spatial) than other tile-based
algorithms. Moreover, SalientVR can further reduce the quality
variations by tuning the penalty coefficients α and β in Eq.1, al-
though some researchers claim that the quality variations would
incur limited QoE degradation [10, 68].

Viewport-driven PSNR.We evaluated different algorithms using
the conventional viewport-driven PSNR (i.e., the PSNR value of
entire viewport), although it is less precise than the gaze-driven
PSNR (§5). From Figure 19, SalientVR likewise achieves positive
gains compared to alternatives.

7.6 System Overhead
Tiled encoding.We used a Ubuntu Server with NVIDIA TITAN X
GPU to encode our videos. Figure 20 depicts the average overhead
and time cost for encoding a 2.13-second video chunkwith different
tiling methods. We measure the overhead using the chunk size in
units of the size of baseline (i.e., a 2.13-second, non-tiled, HEVC-
encoded chunk). The time cost is also expressed in units of the
baseline consumption for a clearer comparison. TheHEVC-encoded
4 × 6 tiling increases the overhead by 5% only but reduces the
encoding time by 10× compared to the non-tiled HEVC encoding.
Client-side overhead.We used a weak Dell Mini PC (§6) as the
client. The quality adapter averagely costs 57 ms per quality allo-
cation of one chunk, which is negligible compared to the chunk
transmission time. SalientVR applies the monotonicity constraint
and the simulated annealing algorithm to remarkably reduce com-
putation complexity and time consumption of quality adaptation.
The HTML5-based Player averagely consumes 16% CPU usage, 210
MB memory, and 19.4 ms duration per decoding and tile merging
of one chunk.

8 LIMITATIONS AND DISCUSSIONS
Effect of quality distribution on viewer attention. We ob-
served the effect of spatially uneven video quality distribution
on viewer attention. For example, more viewers gaze at the high-
quality region than the low-quality region though both regions are
deemed high-salient. That is, the quality allocation scheme would
unintentionally lead viewer’s attention to tiles with allocated high
quality. In our future work, we will study this effect which is a
common issue faced by quality-uneven video streaming. Note that
this effect does not impair our algorithm evaluations due to the
uniformly high-quality viewing in our dataset collection (§5).
Different gains across videos. We found that SalientVR gains
less for saliency-uniform 360° videos compared to saliency-uneven
videos. For saliency-uniform videos, the saliency scores in differ-
ent regions are almost same. Therefore, the saliency map would
fail to provide meaningful prior information for estimating a new
viewer’s attention. Fortunately, in light of our observations and ex-
periments, most of 360° videos are saliency-uneven to some extent
and significantly benefit from SalientVR.
Separate evaluationmetrics. The correlations between the qual-
ity variation and the subjective QoE metric (e.g., MOS) are un-
explored, especially considering gaze information. Moreover, we
separately measure the video quality, the rebuffering, and the qual-
ity variation in our evaluations, but do not quantify the relationship
between different metrics and how they jointly deduce the user-
perceived quality.
Advanced wireless network.More advanced wireless network
(e.g., 5G) would relieve the bandwidth pressure. However, the band-
width would be still insufficient for indiscriminately high-quality
video deliveries as 360° videos with higher resolution (e.g., 8K or
16K) are emerging. Moreover, the inherent volatility of wireless
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Figure 18: Temporal and spatial
video quality variations of differ-
ent algorithms.

Figure 19: Viewport-
driven PSNR values of
different algorithms.

Figure 20: Overhead and time cost of different encoding
methods. x264 [65], Kvazaar [55] encoders are used for
H.264 and HEVC encoding, respectively.

networks has not been solved. Thus, the clash between high-quality
viewing demands and inadequate bandwidth is a permanent issue.

9 RELATEDWORK
360° video streaming.Most of past works are built upon LR-based
[10–14] or DNN-based [23, 44, 69, 70] HMT predictions, limited by
the temporal correlation (TC) assumption. Some studies explore
the opportunities of cross-user similarity [70–73], scalable video
coding [74–76], content-aware saliency analysis [19, 44, 70, 72, 77],
and super resolution [34]. By contrast, SalientVR combines the ad-
vantages of cross-user similarity, saliency analysis, and HMT pre-
dictions, and introduces the new studies and designs for 360° video
streaming by elaborately merging gaze information and saliency.

SALI360 [18] proposes a cubemap-based 360° video compression
algorithm over saliency. Unlike SalientVR, it does not consider the
dynamic quality adaptation problem during playback. Moreover,
SALI360 focuses on image-based, encoding-oriented saliency anal-
ysis. By contrast, SalientVR presents the video-based, adaptation-
oriented saliency acquiring approach. Xu et al. [70] and Li et al. [72]
propose multiple viewport prediction (VP) approaches using the
HMT, cross-user similarity, heatmaps, and saliency, but do not dis-
cuss how to use their VP results for quality adaptation of 360° video
streaming. The accuracy of these VP methods is likewise highly
sensitive to the TC of viewing data. By contrast, SalientVR designs
TC-free saliency acquiring methods over gaze data and the corre-
sponding quality adaptation algorithm. Huang et al. [19] design
a multicast resource allocation algorithm combining saliency and
viewport for 360° video streaming in wireless multi-RAT networks.
By contrast, SalientVR cares for the client-side quality selection
for a single user rather than the base station (BS)-side resource
allocation across multiple users. Moreover, SalientVR is designed
for general wireless network circumstances and is independent on
wireless multi-RAT networks.
Saliency object detection. Salient object detection (SOD) aims at
locating the most attention-grabbing objects from images [78–80]
or videos [24–26, 32, 33]. Specially, Xu et al. [23] and Fan et al. [44]
put forward different DNN-based gaze fixation prediction models
for 360° videos. Unfortunately, the previous efforts cannot be used
straightforwardly for tile-level saliency map acquirement that is re-
quired by quality adaptation of 360° video streaming. Therefore, the
gaze-driven, tile-level saliency is considered in SalientVR, which is
new from the perspective of saliency detection.
Adaptive bitrate. Despite numerous efforts on adaptive bitrate
(ABR) [8, 63, 67, 81, 82], the saliency-driven quality adaptation

for mobile 360° video streaming is still underexplored. Lee et al.
[77] experiment the saliency-driven rate adaptation using a motion-
constrained tile set technique. By contrast, we formulate the saliency-
aware adaptation problem and achieve the significant computation
acceleration. We also design a novel online correction algorithm by
combining offline saliency information and online viewing data.
Gaze information. Gaze information has been used in viewport
predictions [23, 44], saliency analysis [16, 18, 22, 25, 83], and video
quality assessment (VQA) [35, 84], as the human attention proxy.
By contrast, we investigate the gaze-driven saliency judgment and
360° VQA for mobile VR viewers, and design a new integrated
360° video streaming system based on gaze information. Recent
works [23, 27, 28] contribute several gaze datasets that are built
using short-duration 360° videos only. By contrast, we construct a
gaze-annotated long 360° video dataset.

10 CONCLUSION
We design and implement SalientVR, a saliency-driven mobile
360° video streaming system integrated with gaze information to
improve the quality of experience (QoE) under the insufficient wire-
less network bandwidth. SalientVR takes full advantage of gaze
information to address three fundamental challenges in saliency-
based mobile 360° video streaming, including precise saliency judg-
ment, pragmatic saliency acquirement, and robust saliency-aware
quality adaptation. Through extensive prototype experiments and
user studies, compared to the state-of-the-art approaches, SalientVR
achieves an up to 7.39 dB improvement in video quality and re-
duces the rebuffering ratio by up to 3.07× over wireless network
conditions, which boosts viewer QoE by 43.68%. Moreover, we
constructed a public gaze-annotated 360° video dataset and a gaze-
driven quality assessment metric for mobile VR viewers, which are
not only used in our evaluations but would also facilitate precise
quality assessment and attention behavior analysis for the 360°
video streaming research.
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