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Robust Saliency-Driven Quality Adaptation for
Mobile 360-Degree Video Streaming
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and Zongben Xu

Abstract—Mobile 360-degree video streaming has grown significantly in popularity but the quality of experience (QoE) suffers from
insufficient and variable wireless network bandwidth. Recently, saliency-driven 360-degree streaming overcomes the buffer size
limitation of head movement trajectory (HMT)-driven solutions and thus strikes a better balance between video quality and rebuffering.
However, inaccurate network estimations and intrinsic saliency bias still challenge saliency-based streaming approaches, limiting
further QoE improvement. To address these challenges, we design a robust saliency-driven quality adaptation algorithm for 360-degree
video streaming, RoSal360. Specifically, we present a practical, tile-size-aware deep neural network (DNN) model with a decoupled
self-attention architecture to accurately and efficiently predict the transmission time of video tiles. Moreover, we design a reinforcement
learning (RL)-driven online correction algorithm to robustly compensate the improper quality allocations due to saliency bias. Through
extensive prototype evaluations over real wireless network environments including commodity WiFi, 4G/LTE, and 5G links in the wild,
RoSal360 significantly enhances the video quality and reduces the rebuffering ratio, thereby improving the viewer QoE, compared to
the state-of-the-art algorithms.

Index Terms—360-degree video streaming, Quality adaptation, Saliency, Network estimation
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1 INTRODUCTION

THE virtual reality (VR) market was valued at USD 15.81
billion in 2020 and is expected to grow at an annual

growth rate of 18.0% from 2021 to 2028 [1]. As one of the
most potential VR applications, mobile 360-degree video
streaming, i.e., viewing 360-degree video streams on unteth-
ered mobile VR headsets, has experienced a considerable
increase in popularity [2], [3], [4], [5]. However, insufficient
and fluctuant wireless network bandwidth limits the quality
of experience (QoE). First, the delivery of high-definition
360-degree videos can not be fully supported by the current
wireless network capacity. A 4K-resolution 360-degree video
demands at least 25 Mbps bandwidth [6], while the LTE
speeds are only 5-12 Mbps in many regions [7]. Second,
mobile 360-degree video streaming would suffer from unex-
pected rebuffering due to highly variable wireless network
bandwidth [8]. Either low-definition VR display or rebuffer-
ing would severely degrade the QoE for mobile VR viewers,
such as disorientation and nausea [9]. Thus, enhancing the
QoE of mobile 360-degree video streaming under limited,
dynamic wireless network bandwidth is critical and urgent.

The majority of previous research adopts head movement
trajectory (HMT)-driven optimization methods [10], [11], [12],
[13], [14], [15]. A basic assumption underlying their ap-
proaches is that the HMT of a viewer has a strong tempo-
ral correlation, which means that the future HMT can be
accurately predicted by the historical HMT alone during
the playback. However, this temporal correlation would
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not always be strong enough to achieve accurate HMT
predictions, which would severely degrade the QoE in the
HMT-driven solutions [10]. Moreover, since the prediction
horizon of HMT has to exceed the buffer occupancy on
the client player, the HMT-driven approaches are obliged
to set a small buffer size (i.e., maximum buffer length) to
reduce prediction horizons due to less correlation with the
longer interval. The scarce buffer would lead to a high risk
of rebuffering, especially under highly dynamic wireless
network environments.

Recently, the introduction of saliency information [16],
[17], [18] provides a new favorable 360-degree video
streaming framework to address the limitations caused by
temporal-correlation-dependent HMT predictions. Saliency-
based methods acquire the saliency maps from historical
viewing data (e.g., gaze data) or video content offline, and
tend to allocate high quality levels to high-salient regions
during playback. Saliency provides content-aware prior in-
formation for long-term viewer attention estimations, free
from online HMT data, and thus achieve a better trade-off
between video quality and rebuffering. However, saliency-
driven quality adaptation still suffers from inaccurate net-
work estimations and saliency bias, limiting further QoE
improvement for mobile 360-degree video streaming.

Most existing 360-degree video quality adaptation
schemes [10], [11], [17] adopt plausible but under-designed
bandwidth estimation methods (e.g., the harmonic mean
of past five samples). These methods fail to achieve the
satisfactory estimation accuracy in the wild especially in
wireless network environments, which degrades the QoE
of mobile 360-degree video streaming. Recently, emerging
deep neural network (DNN)-driven transmission time pre-
diction (TTP) algorithms [19] consider the effects of chunk
sizes on throughputs that the user actually experiences,
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Fig. 1: Viewport, gaze region, chunk, and tiles. Gaze region
is a small percentage region of viewport with high visual
acuity (more details in [17]). A video chunk is segmented
into Nrow × Ncol tiles (4 × 6 in this example). A tile has
the same duration and frame number as the corresponding
chunk, but occupies only a small part of spatial region.

and make revolutionary progress in term of TTP accuracy
and corresponding QoE. However, these algorithms are
designed for conventional non-tiled video streaming and
are hardly practical for 360-degree video streaming due to
tile-based delivery.

Moreover, the saliency maps are determined by collec-
tive preferences using the offline collected historical viewing
data, without considering the individual preference of new
viewers. Inevitable saliency bias would influence the QoE
of outlier viewers. For instance, a viewer that prefers to
gaze at collectively-determined non-salient regions would
perceive weak QoE due to the quality adaptation using
saliency alone (the less salient the lower allocated quality).
The prior work [17] tries to compensate the adverse effects
induced by saliency bias using a heuristic online correction
mechanism, that is, redownloading improper in-buffer video
tiles. However, in the prior work, whether a tile is proper is
judged based on the HMT-driven viewport prediction, the
methods of which per se are not always credible enough to
support an accurate proper-or-not judgment. In addition,
existing correction schemes suffer from the risk of overdue
tile redownloading especially considering the still imper-
fect TTP outcomes, which would waste network resources
and even cause inferior QoE performances compared to a
streaming system without the correction mechanism.

To address above challenges and enhance the QoE, we
present a robust saliency-driven 360-degree video quality
adaptation algorithm, RoSal360. We present a practical, tile-
size-aware TTP algorithm for tile-based video transmission.
Specifically, we design a self-attention-based DNN model
to effectively and efficiently predict the transmission time
of each tile by decoupling the network tendency estimation
and the effects of tile sizes. Moreover, we present a rein-
forcement learning (RL)-driven online correction algorithm
combining the online estimated credibility of both viewport
predictions and network predictions, to reduce the disad-
vantages caused by saliency bias.

We constructed a gaze-annotated 360-degree video
dataset using untethered VR headsets with the built-in eye-
tracking device, based on 30 volunteers and 23 various
long 360-degree videos. We implemented a prototype of

RoSal360 and conducted large-scale evaluations over real-
world wireless network environments including commodity
WiFi, 4G/LTE, and 5G links in the wild. The evaluation on
real viewing datasets, consisting of more than two hundred
hours of playback, shows that RoSal360 achieves an up to
4.57 dB improvement in gaze-driven Peak-Signal-to-Noise-
Ratio (PSNR) and reduces the rebuffering ratio by up to
4.11×, thereby significantly enhancing the QoE of viewers,
compared to the state-of-the-art approaches. All user studies
in our work were IRB approved without raising any ethical
issues.

In summary, our key contributions are as follows:

• We present RoSal360, a robust, integrated saliency-
driven quality adaptation algorithm designed for
mobile 360-degree video streaming.

• We design a practical, efficient, and tile-size-aware
transmission time prediction algorithm based on an
attention-based DNN model with a novel decoupled
architecture.

• We design a RL-driven online correction algorithm
combining the prediction credibility of both viewer
behaviors and network conditions, to reduce the
adverse effects of saliency bias.

• By extensive prototype experiments using gaze-
annotated 360-degree video datasets on various real
wireless networks, we demonstrate that RoSal360
achieves significant improvements on video quality,
rebuffering, and viewer QoE over current schemes.

Additional novelties. The previous work, SalientVR [17]
(i.e., the conference version of this manuscript), mainly
focuses three key challenges in the design of saliency-
driven 360-degree video streaming system, i.e., saliency
groundtruth judgment, saliency map acquirement, and
the saliency-aware quality adaptation. In contrast, this
manuscript (i.e., RoSal360) further addresses the new chal-
lenges of saliency-based solutions, i.e., tile-level transmis-
sion time prediction and online correction, for the robust-
ness to network variation and sailency bias, which are
not considered or handled with minimal efforts only by
SalientVR.

The remainder of this paper is organized as follows.
Section 2 summarizes the background and motivations.
Section 3 formulates the tile-level 360-degree video quality
adaptation problem with an explicit consideration about the
tile’s transmission time. Section 4 presents the overview of
the RoSal360 system. Section 5 proposes the core design
of RoSal360, the robust saliency-driven quality adaptation
algorothm. Section 6 introduces the prototype implementa-
tion. Section 7 evaluates the performances of RoSal360 over
real wireless networks. Section 8 states the limitation and
discussion. Section 9 describes the related work. Finally, we
conclude in Section 10.

2 BACKGROUND AND MOTIVATION

In this section, we first introduce the background of mobile
360-degree video streaming and the limitations of existing
optimization methods. Then, we expound the advantages
and remaining defects of saliency-driven quality adaptation
for 360-degree videos.
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Fig. 2: A tile-level saliency map is a numerical matrix with
the same dimension as the tile segmentation. The matrix
entries are saliency scores of different tiles in a video chunk,
representing the saliency degrees of different tile regions.

2.1 Mobile 360-Degree Video Streaming

Untethered mobile VR headsets enable viewers to enjoy mo-
bile 360-degree video streaming without wired hindrance,
but suffer from insufficient wireless network bandwidth.
Inspired by the fact that human view is restricted, past
works mainly adopt the HMT-driven approaches [10], [12],
[13], [14]. They split each video chunk spatially into multiple
tiles (e.g., 4 × 6 grids), as illustrated in Fig. 1, and encode
each tile with different quality levels, such as quantization
parameters (QP). During the playback, they constantly pre-
dict the future HMT in the next 1-3 seconds according to the
recently historical HMT using linear regression (LR)-based
or DNN-based methods [10], [11]. Based on the predicted
HMT, they assess the importance of each tile of the next
chunk and assign the higher qualities to the more important
tiles.

However, these HMT-driven solutions overly rely on the
temporal correlation of HMT, leading to two shortcomings.
First, the future HMT is scarcely correlated with the histori-
cal HMT in some cases even with a short prediction horizon
(a.k.a, prediction window or pw) [17]. For mobile VR view-
ers, the untethered freedom further reduces this temporal
correlation. Second, the HMT-driven approaches are highly
sensitive to the size of pw due to rapid correlation decrease
as the time interval increases. Even three seconds of pw
degrades the HMT prediction accuracy into 35.2% [10]. Due
to the prefetching feature of on-demand video streaming,
pw has to exceed the buffer occupancy during the playback.
Therefore, these approaches set a very small buffer size to
shorten pw in practice, but suffer from frequent rebuffering
especially over variable wireless network conditions.

2.2 Saliency-Driven Quality Adaptation

Saliency [18], [20] is a term in computer vision literature,
representing the property of grabbing attention for an object
or a region. Recently, inspired by the fact that viewing
behaviors of humans are remarkably correlated with the
saliency of pixels [18], [20], [21], several works explore
the saliency-driven 360-degree video streaming solutions
for viewer QoE improvement [16], [17]. These approaches
utilize the collected viewing data (e.g., gaze data) to ac-
quire the saliency map (illustrated in Fig 2) of each chunk
based on cross-user viewing behavior similarity or DNN-
driven video content analysis. Then, they give priority to
high-salient video tiles and keep a longish buffer size. The

saliency maps acquired offline provide human-centric prior
information for accurate long-term attention estimations
without depending on the online HMT data. Therefore,
the saliency-based framework gets rid of the limitations
of temporal correlation and achieves a better trade-off be-
tween video quality and rebuffering. Despite great progress
of saliency-based solutions, there are several drawbacks
in existing saliency-driven quality adaptation approaches,
hampering the further QoE enhancement.

First, mobile 360-degree video streaming still suffers
from the inaccurate TTP (i.e., transmission time prediction),
which plays a fundamentally important role in quality
adaptation. An underestimated network condition would
incur a low bandwidth utilization and on the other hand, an
overestimated bandwidth would increase the risk of buffer
exhaustion. Most of previous efforts adopt the intuitive
but under-designed bandwidth estimation algorithms (e.g.,
the harmonic mean of past five samples), which are not
accurate and robust enough to support a decent quality
allocation. For conventional DASH-based video streaming,
several works [19] present the chunk-size-aware, one-stage,
and DNN-assisted TTP algorithms, which show promising
potential for the accurate TTP. In contrast to two-stage TTP
frameworks, i.e., predicting the bandwidth and then using
the ratio of sizes to estimated bandwidth as TTP results,
one-stage TTP algorithms consider the effects of chunk sizes
on actual throughputs, and predict the transmission time
straightforward. However, these TTP methods are ineffi-
cient even impractical for tile-based video streaming, where
all tiles are independently transmitted. Due to the intro-
duction of tile sizes as model input, each tile has to be
separately inferred to output the TTP result. For example,
5 × 24 = 120 rounds of forward propagation in neural
networks are required for five optional quality levels and
4 × 6 tile segmentation every chunk, which is inefficient
in practice. Therefore, we decouple the network tendency
prediction and the effects of tile sizes on throughputs, and
put forward to an efficient, practical TTP algorithm based
on a novel attention-based DNN architecture.

Second, the saliency maps are prepared offline and are
determined by collective preferences without considering
individual users. Inevitable saliency bias may result in
poor experiences for few individual users with distinctive
attention preferences, i.e., outlier viewers. For instance, a
viewer that prefers to gaze at collectively-determined non-
salient regions would perceive weak QoE due to the quality
adaptation using saliency alone (the less salient the lower al-
located quality). Therefore, an online correction mechanism
is crucial in saliency-driven quality adaptation for robust-
ness to saliency bias. Prior work [17] proposes a heuristic
correction scheme to redownload the improper buffer-in
video tiles. However, whether an already downloaded tile
possesses the proper quality level is judged by HMT-driven
viewport predictions, which per se are not always reliable.
Moreover, the redownloaded tiles will be useless for play-
back and wasteful of network resources if they fail to arrive
before the time they ought to be displayed, which would
even cause inferior QoE performances over the streaming
system without correction mechanisms. The inaccurate TTP
further increases the risk of the overdue tile redownloading.
Therefore, to further reduce the negative influence induced
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Fig. 3: Overview of the RoSal360 system.

by saliency bias, we propose a RL-driven online correction
algorithm combining the credibility of viewing behavior
predictions, buffer occupancy, and estimated network vari-
ations.

3 PROBLEM STATEMENT

Tile-level 360-degree video quality adaptation, i.e., deciding
which quality level to be allocated to each tile, can be
formulated as a QoE maximization problem:

max
li(j)

1

N
QoEN

1 , li(j) ∈ Ω, (1)

where QoEN
i is the QoE of video chunk 1 through N , li(j)

is the quality level (e.g., QP value) of tile j of chunk i, and Ω
is the optional set of quality levels. The QoE is constituted
by four components, i.e., average quality, temporal quality
variation, spatial quality variation, and rebuffering time,
defined as follows:

QoEN
1 =

N∑
i=1

q(li,vi)− µ1 ×
N−1∑
i=1

|q(li+1,vi+1)− q(li,vi)|

− µ2 ×
N∑
i=1

StdDev(li,vi)− µ3 ×Rebuf T ime

(2)
Here, q(li,vi) is the quality (e.g., PSNR) of chunk i, vi is the
viewing behavior including head directions and gaze points
in chunk i, and µs are non-negative weighting parameters.
Different from conventional video, the assessment indexes
related to quality should be built upon the viewing behav-
iors of users for 360-degree video streaming. For example,
the region except the viewport is unseen for users, thus
the quality in which makes no difference on viewer QoE.
The specific and detailed video quality assessment (VQA)
method for mobile 360-degree video streaming can refer to
the prior work [17]. Moreover, the spatial quality variation,
i.e., the tile-across quality variation in one chunk, is a unique
evaluation metric for tile-based video delivery. Actually, the
unevenly spatial quality distribution would also result in
chunk-in temporal quality variation due to the changes of
viewer behaviors during one chunk, which is not considered
here for simplicity.

Let Bt ∈ [0, Bmax] be the buffer occupancy (in seconds)
at time t, i.e., the length of the video left in the buffer,
and di(t)(j) be the transmission time of tile j of the to-be-
downloaded chunk i at time t. Further, let δt be the time
cost of solving a tile-level quality allocation problem for the
to-be-downloaded chunk at time t. Then the player’s buffer
dynamics can be formulated as:

Btk+1
=
(
Btk − δtk −

∑
j

di(tk)(j)
)
+
+ L, (3)

where L is the duration of a chunk, and the notation
(x)+ = max{x, 0} ensures that the buffer occupancy is non-
negative. Compared to chunk-level adaptation, the combi-
natorial space of the tile-level quality allocation problem
is far larger, e.g., 524 combos in one chunk for 4 × 6
tiling and five quality levels. Hence, δt is non-negligible for
crude solving solutions (e.g., exhaustive search) in tile-level
adaptation especially considering the limited computing
resources on mobile devices. Note that due to the limitation
of the buffer size Bmax, when the buffer is full, the fetcher
in the player waits for the buffer occupancy to be consumed
until a new chunk can be appended. The waiting time ∆tk

can be expressd as follows:

∆tk =

((
Btk − δtk −

∑
j

di(tk)(j)
)
+
+ L−Bmax

)
+

, (4)

4 OVERVIEW OF ROSAL360

Figure 3 illustrates a overview of RoSal360 system that
includes the offline saliency map preparation phase and the
online saliency-aware video streaming phase.
Saliency map preparation. When a 360-degree video is up-
loaded, the media server transcodes and dashifies the video
into multiple-bitrate chunks, and then splits each chunk into
Nrow×Ncol equal-sized tiles, on top of the DASH standard.
Next, the saliency map (i.e., the Nrow×Ncol numerical matrix)
of each chunk is generated offline on the server based on
video content and collected viewing data (refers to [17] for
more details about the saliency map acquirement). Finally,
the saliency maps are packaged in JSON format for ease of
transmission and deployment.
Saliency-aware video streaming. At the beginning of video
streaming, the corresponding saliency maps are down-
loaded to the client firstly. During the playback, the tile-size-
aware transmission time predictor (§5.1) estimates the trans-
mission time of video tiles with diverse quality levels in the
next chunk. Then, referring to saliency maps, the saliency-
weighted reward calculator (§5.2) computes the QoE rewards
of all quality combos combining the TTP results and the
buffer occupancy to decide the quality allocation (i.e., down-
load plan) of video streaming. Simultaneously, the RL-
driven online corrector (§5.3) utilizes the online viewing data
to correct the unfrequent but improper quality allocations
caused by saliency bias. According to the download plan,
the videos tiles with the corresponding quality levels are
fetched, decoded, merged, projected, and displayed by the
client player.
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Fig. 4: A causal diagram regarding the tiles’ transmission
times. The arrows represent the directional causal relation-
ships between two connected variables.

Fig. 5: The basic DNN model architecture of our TTP al-
gorithm. It decouples the prediction of unbiased network
tendency and the effects of tile sizes on observed through-
puts.

5 SALIENCY-DRIVEN QUALITY ADAPTATION

We propose RoSal360, a robust saliency-driven quality
adaptation framework for mobile 360-degree video stream-
ing. We first design a tile-size-aware, attention-based DNN
architecture to predict the transmission time of video tiles.
Based on the saliency map and TTP results, we model and
solve the saliency-weighted reward maximization problem
with a transmission time constraint. Further, we design a
RL-based online correction algorithm to correct improper
quality allocations caused by saliency bias.

5.1 Attention-Based Tile-Size-Aware TTP

Based on the self-attention mechanism in the machine learn-
ing domain [22], we design a practical tile-size-aware TTP
neural network model that decouples the network condition
prediction and the effects of tile sizes on transmission times.
Figure 4 shows a causal diagram concerning the related
network variables to aid in visualizing how these variables
are causally interrelated. The future network conditions and
the size of the next to-be-fetched tile jointly determines
the transmission time of this tile. Further, the network
conditions are influenced by the traffic behaviors of all
senders (including ours) that share this identical network
link. Given the network resources, all senders compete for
bandwidth. If other senders occupy more bandwidth, the
actual rate experienced by our sender will be lower and
the network condition seems to get worse. Certainly, the
behaviors of different senders are interactional especially for
elastic flows with fairness-enhanced rate control. It means
that our sending rate would affect the others’ behaviors and
further affect the network condition. However, the influence
of our sender on network conditions tends to be insignifi-
cant compared to lots of other senders although other users’
behaviors are unknowable to us. Therefore, we overlook
the effects of tile sizes on dominating network tendency
(denoted by the dashed arrow in Fig. 4), and present a

Fig. 6: Final output of our TTP model: an estimated proba-
bility distribution of transmission times.

novel and practical DNN design by decoupling the effects
of network conditions and tile sizes on transmission times.
Basic model architecture. Figure 5 depicts the DNN model
architecture of our TTP algorithm. We take the T recently
historical (tile throughput, tile size) pairs as model in-
put. The tile throughputs observed by users are actually
influenced by the sizes of downloaded tiles, that is, these
throughput values are size-biased. Thus, we firstly uses a
fully-connected (FC) neural network layer to counteract the
throughput biases due to the different tile sizes of data
pairs, and output the unbiased throughputs. The unbiased
throughputs can be regarded as the throughputs observed
by hypothetically transmitting the same-size tiles. Then,
we use a FC layer followed by the attention-based neu-
ral network module (detailed later) to predict the future
network tendency variation and output the estimation of
the unbiased throughput at time t. Finally, we combine the
predicted unbiased throughput and the size of the next to-
be-fetched tile to predict the size-biased transmission time
of the next tile.
Specific algorithms. The first FC layer in our model un-
dertakes the bias correction, where the weights of all FC
models are shared although the input pairs are separated to
be processed by the corresponding independent FC model.
Actually, every FC model in the first layer generates a vector
representing the unbiased throughput instead of a single
value. Similar as [19], our TTP model finally outputs a
probability distribution Ŷ on possible transmission times
rather than a single predicted value, illuminated in Fig. 6
Here, Ŷt = [ŷ0t , ŷ

1
t , . . . , ŷ

Nout
t ] is the distribution estimation

of transmission times at time t, given the tile size. ŷit is the
probability value of the transmission time belonging to the
corresponding ith interval, which satisfies

∑Nout

i=0 ŷit = 1.
In practice, we take the median value of an interval as the
transmission time this interval stands for, and compute the
expectation value of the output distribution as the estimated
transmission time:

d̂t =

Nout∑
i=0

ŷit ×
ai + ai+1

2
, (5)

where d̂t is the estimation of transmission times, and a0 = 0.
The attention module in our model is similar as the en-

coder stack of Transformer [22], which includes the Natten

blocks of multi-head self-attention layers and position-wise
FC layers, as shown in Fig. 7. The Transformer is a well-
known attention-based DNN architecture in the artificial in-
telligence (AI) domain due to its revolutionary progresses in
various application areas. Given the time series of position-
encoded input X = [x1, x2, . . . , xT ], the queries, keys, and

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3235103

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Of Minnesota Duluth. Downloaded on May 29,2023 at 17:47:23 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING 6

Fig. 7: The attention module of our TTP model.

values are packed together into matrices Q, K, and V,
respectively, computed as follows:

Q = WQXT , K = WKXT , V = WVXT , (6)

where WQ,WK,WV are learnable weight matrices and
XT means the transpose of X (not the time T defined be-
fore). Afterwards, the output of the multi-head self-attention
layer is computed as follows: (refers to [22] for more details)

Attention(Q,K,V) = softmax

(
QKT√
dkey

)
V, (7)

where dkey is the dimension of keys (also the dimension of
queries). Then, the position-wise FC layer takes the concate-
nation of outputs from all heads as input and outputs the
estimation of the future unbiased throughput.
Model training. We extract two hundred million pairs of
real-world network data from Puffer [19] to pre-train our
TTP model. Puffer is a free, publicly accessible video stream-
ing service platform that streams commercial television
channels through multiple types of network. During the
streaming, Puffer constantly records the transmission times
of chunks and the corresponding chunk sizes. Based on the
pre-trained model weights, we fine-tune our TTP model on
a new tile-wise transmission time dataset (over a million
pairs of data) that we collected in real network environ-
ments. We implemented and deployed the tile-level 360-
degree video streaming platforms on five different cloud
servers (will be introduced in §6). Multiple clients constantly
downloaded the video tiles day and night with a Random
ABR algorithm, i.e., the quality level of each tile is randomly
selected form the five ascending levels. Different from Puffer
in which the collected data are ABR-related due to its
evaluation purpose, we adopt a randomly-allocated quality
adaptation scheme during the data collection for a larger
exploration space and more dissimilar size trajectories of
downloaded tiles.

The groundtruth of downloading time is represented as
a one-hot vector in which the item corresponding to the
time interval the actual downloading time belongs to is
one and the others are zero. The loss function in training
is constituted by two parts, expressed as follows:

Losstrain = LossCE + LossFirstLayer (8)

The first part is the cross-entropy (CE) loss between the es-
timated transmission time distribution (i.e., the final output

Fig. 8: The second part of the loss function we set in the TTP
model training (i.e., LossFirstLayer). The output of the first
FC layer is a training-specific ouput for self-supervised bias
transformation learning.

of our TTP model) and the discretized actual downloading
time (i.e., the groundtruth represented by a one-hot vector).
The second part is the loss set for the supervision of bias
transformation. After a forward propagation of our TTP
model, naturally, we can obtain a model-dependent triad
formed by the unbiased throughput, the tile size, and the
size-biased throughput at time t, where the biased through-
put is the size divided by the corresponding transmission
time prediction (generated by the last FC layer) rather than
the groundtruth value. We expect the first FC layer in our
model to learn to handle the size bias and yield the unbiased
throughput, i.e., making biased-to-unbiased transformation,
which can be interpreted as the inverse transformation of
the last FC layer. Ideally, the transformation (by the first
layer) of the transformation (by the last layer) of UT (t)
should be UT (t)s itself, where UT (t) denotes the unbiased
throughput at time t, i.e., the output of the attention module.
Therefore, the aforementioned triad provides a group of
self-supervised training data for improving the bias trans-
formation of both the first and last FC layer. To this end,
as shown in Fig. 8, the second part of the loss function
is the difference of UT (t), and the training-specific output
from the first FC layer by inputting the predicted biased
throughput and the size at time t.
Practical designs. The decoupled design enables the TTP
model to efficiently infer the transmission times for a num-
ber of tiles at some point in time, with the forward propaga-
tion of the neural network only once except the last FC layer.
Only the last FC layer repeats network inferences, ingesting
the identical unbiased throughput prediction value and the
diverse tile sizes to output these tiles’ TTP outcomes. It
significantly reduces the time cost of quality adaptation per
chunk. To further lower the overhead of quality adaptation,
we also perform the clustering analysis for the size values
of all tiles with different quality levels in each chunk offline,
and only infer the transmission time of cluster centers dur-
ing streaming. Let d̂i

(
j
)
, d̂
(
cci(j)

)
be the estimated trans-

mission times of tile j of chunk i and the size center of the
cluster that tile j belongs to, respectively. Then, we compute
the TTP result of tile j as follows:

d̂i
(
j
)
= d̂
(
cci(j)

)
× Sizei

(
j
)
/ Size

(
cci(j)

)
, (9)

which is due to the nearly equal effects of size bias on
throughputs with the similar sizes. Moreover, in practice, we
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regard the dispersion of the TTP distribution as a measure
of the uncertainty degree for future network states. If the
dispersion is high, we multiply the final TTP result by a
corresponding discounting coefficient (means more conser-
vative TTP) for robustness to network variations.

5.2 Saliency-Weighted Reward Maximization

Based on saliency maps and TTP results, we convert
the quality adaptation problem to a constrained, saliency-
weighted reward maximization problem. Then we design
a fast solution scheme using the simulated annealing opti-
mization method to compute the optimal quality allocation
decisions.
Modeling the reward maximization problem. The saliency
map implies the probability of gazing at each tile for a new
user. Thus, the tiles with larger saliency scores tend to be
delivered in higher quality. We also set a minimum buffer
threshold, γ, to reduce the risk of rebuffering. Specifically,
we convert the quality adaptation problem for the to-be-
downloaded chunk i as a constrained, saliency-weighted
reward maximization problem as follows:

max
li(j)

rewardi =
∑
j

Sali(j)× F
(
li(j)

)
− λ1

∑
j

Sali(j)× Sali−1(j)×
∣∣F (li(j))− F

(
li−1(j)

)∣∣
− λ2

∑
j

∑
r∈nei(j)

∣∣F (li(j))− F
(
li(r)

)∣∣× Sali(j)

|nei(j)|
,

s.t. Bt(i) −
∑
j

di(j) > γ,

(10)
where Sali(j) is the saliency score of tile j in the saliency
map of chunk i, nei(j) is the indexes of the neighboring tiles
of tile j, and λs are non-negative weighting parameters.

Here, the first item of the reward we set is the saliency-
weighted average video quality of chunk i. F (·) is a function
mapping the quality level (e.g., the QP value or zero to five)
to an another indicator that is positively related to the actual
video quality, e.g., an inversely correlated function of QP
values. We used F (QP ) = 60−0.8×QP in RoSal360, which
refers to [10], [23], [24]. We used F (·) rather than using
the actual video quality q(·) straightforward due to the
computing complexity of q(·). The second and third items
of the reward represent the chunk i ’s saliency-weighted av-
erage quality differences between two consecutive chunks,
and between neighboring tiles in an identical chunk, re-
spectively. To facilitate computation, we only compute the
quality difference of same-position tiles of two successive
chunks, although the quality difference of diverse-position
tiles of two successive chunks may influence the QoE due
to the cross-tile gaze movement in the junction of two
chunks. In practice, computing the diverse-position differ-
ences gains little but increases the computation complexity
by tens of times. Overall, this setting rewards the increase in
saliency-weighted video quality, and penalizes the increase
in saliency-weighted quality variance both temporally and
spatially.

Saliency-driven quality adaptation design dramatically
reduces the reliance on HMT predictions by viewport-free

Algorithm 1 Saliency-driven quality allocation with simu-
lated annealing for chunk i

Input: Sal, Bt(i), di, li−1, quaLevelOptions, F , λ1, λ2, γ
Output: li
1: Initialize li = the combo with the lowest quality levels,

n = 0, maxRew = −10000, stride = 1, strideAdd = 2,
strideLim = 2, countAdd = 1, countLim = 1, batch = 100;

2: while n < len(quaLevelOptions) do
3: ql = quaLevelOptions[n];
4: if Bt(i) −

∑
j di(j) ≤ γ then

5: if countLim % batch == 0 then
6: strideLim = strideLim × 2;
7: end if
8: countLim = countLim + 1;
9: stride = strideLim;

10: else
11: rew = computeReward(Sal, ql, li−1, F , λ1, λ2);
12: if rew > maxRew then
13: maxRew = rew; # update the maximal reward
14: li = ql; # update the optimal allocation
15: stride = 1;
16: else
17: if countAdd % batch == 0 then
18: strideAdd = strideAdd × 2;
19: end if
20: countAdd = countAdd + 1;
21: stride = strideAdd;
22: end if
23: end if
24: n = n + stride;
25: end while
26: return li;

Time cost Optimal reward

Exhaustive search 3.48s 0.045
Our speed-up 0.04s 0.044

TABLE 1: Our techniques achieve an 87× computation
speed-up to find the near-optimal solution of quality adap-
tation, compared to the exhaustive search.

reward computation. Therefore, RoSal360 enables the client
player to keep a longish buffer to absorb network variations
without worrying about the diminution in HMT’s temporal
correlation. Inspired by [8], we set a minimum threshold of
the buffer occupancy, γ, which means that the buffer occu-
pancy should always exceed γ during video downloading.
Specifically, a transmission time constraint is added in Eq.10.
If there is no quality combo satisfying the transmission
time constraint, RoSal360 will adopt the most conservative
quality allocation scheme, i.e., fetching all tiles in the lowest
(highest if using QP) quality levels, to expand buffer as best
it can.
Fast problem solving using simulated annealing. Huge
search space of tile-level adaptation would incur the consid-
erable calculation delay for exhaustive search, which would
severely impair adaptation performances. Thus, we adopt
two techniques to reduce the search space and speed up
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Fig. 9: RL-driven online correction mechanism for robust-
ness to saliency bias.

computation. First, a monotonicity constraint is added that
the quality level of each tile never increases (reduces if using
QP) as the saliency score drops off. Second, the simulated
annealing optimization algorithm [25], [26] is delicately
applied to speed up searching for the optimal or suboptimal
quality level combo. The simulated annealing method is
a probabilistic technique for effectively approximating the
global optimum of a given function, which is typically used
in discrete but very large configuration spaces, and in the
presence of a number of local optima.

The specific algorithm is given in Algorithm 1. Here,
quaLevelOptions is Nrow ·Ncol-dimension (same as the num-
ber of tiles in a chunk) vector space (implemented with
multi-dimensional array), enumerating all the optional qual-
ity level combos satisfying the monotonicity constraint. The
gist of our algorithm is the adaptive stride adjustment for
combo searching. After using our searching acceleration
techniques, RoSal360 only needs to compute hundreds of
paces to find the near-optimal solution (i.e., the quality
allocation with the almost maximal reward). Table 1 lists
the average time consumption and optimal reward of the
exhaustive search scheme and our speed-up methods.

5.3 RL-Driven Online Correction
To improve the QoE of outlier viewers with distinctive
preferences, we design a RL-driven online correcting al-
gorithm combining offline saliency information and online
viewing data to correct the unfrequent but improper quality
allocations caused by saliency bias.
Basic idea. Parallel from saliency-weighted quality alloca-
tion (expounded in §5.2) for the next to-be-downloaded
chunk, RoSal360 performs the HMT-driven quality alloca-
tion algorithm (refer to [10]) for buffer-in chunks (i.e., the
chunks that are already downloaded but are not consumed
by the viewer yet). If the expected quality level for some
buffer-in tile according to the HMT-driven quality allocation
decision is far higher than the actual quality level of this tile,
this tile would be judged to be with an improper quality
allocation. Then the RL agent is responsible for the decision
if this buffer-in, improper tile will be finally corrected,
i.e., being redownloaded and replaced in high quality, as
depicted in Fig. 9. Only the improper tiles will trigger the
correction-or-not inference by the RL agent and the proper
tiles (account for the larger proportion of tiles, in fact) will
not.

An improper quality allocation judged by HMT-driven
quality adaptation algorithms will not be necessarily cor-

rected in RoSal360. On one hand, the HMT-driven quality
adaptation is not always credible enough despite relatively
small prediction horizons (i.e., the size of pw) for buffer-in
tiles. On the other hand, redownloading would influence
the normal buffer dynamics and consequently increase the
risk of rebuffering. Moreover, the redownloaded tiles will be
effectless if they fail to arrive before the time they should be
displayed. Therefore, outrunning the forecasted transmis-
sion time for redownloaded tiles would lead to a overdue-
redownloading loss, i.e., bandwidth overhead without any
quality gain.

The saliency-driven and HMT-driven quality adaptation
modules are running parallelly. However, the downloading
processes of the two modules are performed serially rather
than parallelly for unambiguous network feedbacks. That
is, if the system redownloads some tile for correction, the
regular downloading of the next chunk would be delayed
until the correction is finished.

The mission of RL agent is to decide whether an im-
proper tile (judged by the HMT-driven quality allocation
before RL agent inference) should be finally corrected given
the allocation accuracies, current Player states, and network
estimations. If a tile is decided to be corrected by the RL
agent, RoSal360 will revisit the HMT-driven quality decision
and replace this tile using the quality level of the HMT-
driven decision (with the same tile position).
Inputs of the RL agent. As shown in Fig. 10, the state
inputs of the corrector agent (i.e., a DNN model) include
the accuracy of saliency-based behavior estimations, the
accuracy of HMT-driven viewport predictions, the buffer
occupancy, the time left before playing for the tile, the tile’s
TTP result, and the TTP confidence. During the playback,
RoSal360 constantly tracks the head directions of viewers
on-the-fly, and computes the overlapping rate of the actual
viewport and the top-four tiles (ranked in order of saliency
scores; for 4× 6 tiling), which is regarded as the accuracy of
saliency-based behavior estimations. The accuracy of HMT-
driven viewport predictions is sensitive to the size of pw.
Hence, for a tile with an improper quality allocation judged
by HMT-driven quality adaptation, RoSal360 samples five
recently historical accuracies of viewport predictions with
the same pw as this tile, and regards the mean value as
the final accuracy estimation of the HMT-driven viewport
prediction for this tile. Moreover, the online correction is
always executed after transmission time prediction (§5.1) for
more robust correction decisions. After computing the TTP
result (expressed in Eq. (5)), we revisit the raw probability
distribution generated by our TTP model, and regard the
corresponding probability value of the transmission time
interval that the TTP result belongs to as the TTP confidence.
The TTP confidence measures the credibility of TTP results.
Specific algorithms and training. We use the policy-based
RL architecture, in which the RL agent makes decisions
based on a policy network π(st, at). π maps the state
vector st and the action at to the probability that at is
taken at state st. The specific model we use is a multi-
layer perception (MLP) network (the most popular DNN
architecture), with two hidden layers of 64 and 32 neurons,
respectively, and ReLU activation functions. After the final
softmax function, the model outputs a two-dimension vec-
tor, representing the probabilities of whether a buffer-in tile

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3235103

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Of Minnesota Duluth. Downloaded on May 29,2023 at 17:47:23 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON MOBILE COMPUTING 9

Fig. 10: RL architecture of the tile corrector.

will be redownloaded. We use the policy gradient method
[27] to train the above DNN model due to its simplicity and
easy implementation.

Let θ denote the policy parameters and J(πθ) denote the
expected return of the policy. The gradient of J(πθ) can be
expressed:

∇θJ(πθ) = E
τ∼πθ

[∑
t

∇θ log πθ (st, at) (QoE(τ)− b)

]
,

(11)
where τ is a trajectory of correction decisions over πθ , QoE
is the training reward similar as the metric defined in §3,
and b is a baseline parameter. Then the policy parameters
can be updated via stochastic gradient ascent on the policy
performance:

θk+1 = θk + α∇θJ (πθk
) , (12)

where α is the learning rate that decays from an initial value
as the training epoch increases.

The quality allocation model we use can be regarded
as a configuration parameter of the RL environment. For
example, the buffer occupancy, as a part of RL agent input,
is influenced by the underlying quality allocation model.
Therefore, we keep the parameters of both saliency-driven
and HMT-driven quality adaptation models fixed during
the training of the RL agent for a specific training. In other
words, the RL agent in RoSal360 learns to make correction
decisions based on the dynamic states of user behaviors and
network environments, given the specific quality control
model.

6 IMPLEMENTATION

We implemented a prototype of RoSal360, client running on
a Mini PC, based on 11,300 additional lines of JavaScript
and Python code, on top of the HEVC Tiles Merger [28]. The
Mini PC, Dell OptiPlex 3080MFF, is equipped with a mobile-
class Intel UHD Graphics 610 GPU, an Intel Pentium G6405T
1.8 GHz dual-core processor, 4 GB of RAM, and a 128 GB
SSD. It is equivalent to a common commodity smartphone
in computing resources. For instance, the Samsung Galaxy
S20 phone [29] is equipped with a Qualcomm Adreno 650
GPU, a Qualcomm Snapdragon 865 1.8-2.84 GHz multi-core
processor, 8 GB of RAM, and a 128 GB SSD, which is similar
to our Mini PC settings. Thus, we elaborately chose the
Mini PC to emulate the computing resources of a mobile
VR device.

We used FFmpeg [30] and Kvazaar [31] to encode videos
in High Efficiency Video Coding (HEVC) formats due to

Fig. 11: A snapshot of RoSal360 implementation.

native support for tiled coding [32], [33], and used MP4Box
[34] to package and dashify HEVC bitstreams. The video
server was a web server over HTTP built in Ubuntu 20.04.
We constructed an HTML5-based, DASH-compatible VR
Player to stream and display HEVC-tiled 360-degree videos
on the Microsoft Edge browser on top of the HEVC Tiles
Merger [28]. The Player fetches and merges split tiles with
different qualities according to a controllable quality matrix.
To facilitate online correction, we set a JavaScript Array
before the buffer queue in the Player. The downloaded video
files are placed in the Array firstly and are deferred to
enter the buffer queue. The videos in the Array maintain
the independence of tiles without merging or decoding,
which means that any tile replacement in the Array does
not impact other tiles. For user studies on untethered mobile
VR headsets, we used A-Frame [35], a web framework for
building VR experiences, to render and project 360-degree
video streams from the PC Player into the mobile VR
headset (i.e., Oculus Quest 2 [2]) through the native casting
software. Simultaneously, we acquired the online viewing
data by VRFrameData.pose in A-Frame and sent the viewing
data to the online corrector. The DNN structures in this work
were constructed using the Pytorch repository.

Figure 11 shows a snapshot of our prototype implemen-
tation. We adopted the PC-based implementation approach
for our client player, largely due to abundant support of the
well-developed, compatible software stack and open-source
tools on the Windows platform, e.g., browser support for
Media Source Extensions (MSE) API and hardware HEVC
decoding. A similar prototype implementation scheme was
adopted by the previous work [36]. That being said, lack
of an implementation totally built on commodity mobile
devices adds a complication to the practical deployment and
application in industry. We further discuss this limitation in
Section 8.

7 EVALUATION

In this section, we evaluate the performance of RoSal360
with real prototype implementation over commodity WiFi,
4G/LTE, and 5G wireless networks in the wild. Large-
scale evaluations through both gaze-annotated 360-degree
video datasets and a survey-based user study demonstrate
that RoSal360 achieves the higher video quality, the lower
rebuffering ratio, the lower quality variation, and the higher
QoE score, compared to the state-of-the-art approaches. We
also illuminate the reasons of several key algorithm designs
in RoSal360 by a component-wise experimental analysis.
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Bandwidth Round-trip time (RTT)

Campus WiFi 1-4 Mbps 15-50 ms
Commodity 4G/LTE 0.5-3 Mbps 45-75 ms

Commodity 5G 0.5-6 Mbps 40-60 ms

TABLE 2: End-to-end bandwidth and RTT of different wire-
less networks the system actually undergoes from our mea-
surements, in our evaluations.

7.1 Gaze Data Collection

Gaze data have been becoming indispensable annotations
for precise 360-degree video quality assessment (VQA) [17],
[37]. Hence, we built a gaze-annotated long 360-degree
video dataset 1 due to the scarcity of gaze datasets with
long-duration videos. We downloaded 23 long 360-degree
videos (2-11 minutes, 11 genres, 4K resolution, 30-60 fps,
and ∼2 hours in total) from YouTube according to the pop-
ularity ranking. The genres include aerial, animal, cartoon,
dance, diving, game, mixed, racing, roller coaster, scenery,
and outer space. Then, 30 participants viewed these videos
using the HTC VIVE PRO EYE VR headset with built-in
Tobii’s gaze tracking [38]. The participants, aging from 20
to 51, are students, staff, and faculty members from two
universities and a company. 47% of them are female, 57% of
them wear glasses, and 63% of them are first-time viewers
for 360-degree videos. The gaze data of each participant
were recorded by the Tobii Pro Lab software [39]. VIVE
Wireless Adapter [40] enabled viewers to explore freely with-
out wired hindrance. Any participant that felt dizzy or other
discomfort discontinued watching and the corresponding
data were discarded. The participants experienced the uni-
formly high video quality to eliminate the effect of spatially-
uneven quality distribution on viewing behaviors.

7.2 Experimental Setup

We state the experiment settings in our evaluation.
Videos. We used totally four-hour 360-degree videos an-
notated with head directions and gaze points in our eval-
uations, including 80 short videos (20-60 seconds) in the
Gaze18 dataset [41] and 23 long videos (2-11 minutes) in
the dataset we built (§7.1). The collected viewing data are
serially ingested by the client player to simulate the view-
ing process. The videos exhibit a large diversity in terms
of genres, and were viewed on commodity VR headsets
with free, untethered, and immersive viewer experiences.
There are both videos shot from fixed cameras and videos
captured with a moving camera, which probably introduces
different variances in head/gaze trajectories of viewers. Fur-
ther, some videos possess relatively more complex content
scenes (e.g., numerous foreground objects in a frame) while
the scenes in some videos are simple, which would influence
the difficulty of saliency analysis. Each video was encoded
into 2.13-second chunks with 4 × 6 tiling and five quality
levels (QP=22,27,32,37,42).
Network conditions. We used five remote cloud servers in
different cities as video servers through various wireless

1. The raw 360-degree videos, gaze dataset, and the corresponding
saliency maps are publicly available at https://github.com/salientVR/
gazedata.

network links to evaluate RoSal360 in the wild. The real
wireless network environments include a campus WiFi link,
a commodity 4G/LTE link, and a commodity 5G link. To
facilitate large-scale network experiments, we used a cellu-
lar network CPE (Customer Premise Equipment) to convert
4G/LTE and 5G signals into WiFi signals. We ran the video
streaming system during different time periods, e.g., peak
hours and non-peak hours. Table 2 lists the end-to-end
bandwidth and round-trip time (RTT) of wireless networks
the system actually undergoes from our measurements. We
simultaneously ran multiple client players with RoSal360
and baselines (elaborated later), and downloaded videos
from the same video server to keep the network condition
as equivalent as possible for different algorithms. Note
that the popular evaluation scheme of trace-driven network
emulations fails to fully emulate the effects of tile sizes on
actual transmission times in the wild, which thus was not
adopted by us.

Algorithms for comparison. We compared RoSal360 with
SalientVR [17], Flare [10], MPC [42] and long-buffered Flare
(LB-Flare). SalientVR is a saliency-driven 360-degree video
streaming system with a crude TTP scheme and a heuristic
online correction mechanism. We compared our work with
SalientVR to validate the positive effects of the DNN-based
TTP algorithm (§5.1) and the RL-based correction algorithm
(§5.3) in RoSal360. Flare is a typical HMT-driven 360-degree
video delivery method. LB-Flare, a variant of Flare, expands
the buffer size from three seconds to five seconds and
tends to keep a longer buffer than Flare. By comparison to
Flare and LB-Flare, we illustrate that our saliency-driven
quality allocation algorithm (§5.2) achieves a better trade-
off between video quality and rebuffering, over the pure
HMT-driven approaches. MPC is a control-theoretic adapta-
tion approach designed for non-tiled video streaming. In
essence, 360-degree video streaming is a kind of special
video streaming. Despite tile-based delivery, allocating the
same bitrate to all tiles is technically feasible. Although
MPC is designed for general videos without specifically
considering 360-degree videos, MPC has potential to be
applied to 360-degree video adaptation due to its acknowl-
edged advantages in the trade-off between video quality
and rebuffering. Therefore, we aslo compared RoSal360 with
MPC for a solid evaluation.

Metrics and settings. We mainly used the gaze-driven
PSNR [17] and the rebuffering ratio (i.e., the ratio be-
tween the total rebuffering duration and total watching
time) to assess the algorithm performances. The gaze-driven
PSNR is defined as ϵ · PSNR(GazeRegion) + (1 − ϵ) ·
PSNR(V iewport), where the gaze region is the 25◦-radius
gaze-centric circular region, and ϵ ∈ (0, 1) is the weight coef-
ficient. We set ϵ = 0.7 in this work. The survey-based rating
by a user study, video quality variations, and viewport-
driven PSNR were also discussed. In RoSal360, we adopted
the 4× 6 tile segmentation for video delivery, i.e., Nrow = 4
and Ncol = 6; we adopted the model configuration with
Natten = 1, Nhead = 3, Nout = 20, and aNout

= 2s; we
empirically set λ1 = 0.1, λ2 = 0.3, and γ = 2.5 in the
quality adaptation module. For other algorithms, we used
the same parameter settings as their papers.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3235103

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University Of Minnesota Duluth. Downloaded on May 29,2023 at 17:47:23 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/salientVR/gazedata
https://github.com/salientVR/gazedata


IEEE TRANSACTIONS ON MOBILE COMPUTING 11

(a) Campus WiFi link. (b) Commodity 4G/LTE link. (c) Commodity 5G link.

Fig. 12: Overall evaluation results in video quality and rebuffering ratio for different mobile 360-degree video streaming
systems over multiple real wireless network links in the wild. (Error bars show 90% confidence intervals.)

(a) Animal (b) Dance (c) Diving (d) Game

(e) Mixed (f) Racing (g) Roller coaster (h) Scenery

Fig. 13: Separate evaluation results in video quality and rebuffering ratio across eight typical video genres.

7.3 Improvement over Real Wireless Network Links
Figure 12a, Figure 12b, and Figure 12c shows the overall
evaluation results of RoSal360 and other alternative algo-
rithms over real-world WiFi, 4G/LTE, and 5G links in the
wild, respectively. For WiFi results, RoSal360 achieves a
2.59-6.33 dB video quality improvement and reduces the
rebuffering ratio by 1.53-4.12×, compared to existing ap-
proaches. For commodity LTE results, RoSal360 achieves a
2.75-5.12 dB video quality improvement and reduces the
rebuffering ratio by 1.4-3.11×. For commodity 5G results,
compared to alternatives, RoSal360 achieves a 1.76-6.88 dB
video quality improvement and reduces the rebuffering
ratio by 1.41-4.02×.

For Flare, the LR-based HMT predictions are not ac-
curate enough to support the video delivery with high
perceived quality even keeping a short pw. Further, the
small buffer size in the client player for the HMT-driven
solutions brings more rebuffering under the fluctuant wire-
less network bandwidth. In contrast, SalientVR outperforms
the HMT-driven approaches by virtue of more accurate
attention estimations and a larger buffer size to absorb net-

work variations. However, SalientVR is adversely affected
by the non-robust saliency bias correction and inaccurate
network estimations, and consequently fails to tap the full
potential of saliency, resulting in inferior performances over
RoSal360. LB-Flare attempts to reduce rebuffering by simply
enlarging the buffer size, but suffers from the distinct quality
degradation due to the ineffective HMT prediction.

Figure 13 depicts the separate evaluation results of dif-
ferent approaches across eight typical video genres to ex-
plain the generalizability of RoSal360. We see that RoSal360
generally performs better in terms of the trade-off between
video quality and rebuffering than the state-of-the-art algo-
rithms, by the more robust saliency correction and the more
accurate transmission time prediction. That being said, the
gains of RoSal360 vary across videos with different genres.
For the videos with the relatively focused region of interest
(ROI) such as the genre of mixed, RoSal360 gains less in
quality enhancement than the videos with the dispersed ROI
such as the dance, due to more unfrequent saliency bias or
HMT prediction errors.
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(a) Transmi. time prediction. (b) Quality adaptation. (c) Online correction. (d) Tile segmentation.

Fig. 14: Microbenchmarks: component-wise algorithm analysis for end-to-end system improvement in video quality and
rebuffering ratio.

Fig. 15: Survey-based rating
(i.e., MOS) by a user study.

Fig. 16: Temporal video
quality variation.

Fig. 17: Spatial video qual-
ity variation.

Fig. 18: User Viewport-driven
PSNR values.

MAE ↓ RMSE ↓ MAPE ↓ C-E loss ↓

HM [42] 0.315 0.876 35.7% 12.387
SVM [43] 0.436 0.436 49.2% 7.258
Fugu [19] 0.239 0.358 29.6% 0.556

Ours 0.172 0.242 16.8% 0.283

TABLE 3: A deep comparison of transmission time estima-
tion with the state-of-the-art algorithms on multiple error-
based evaluation metrics. ↓ means the smaller value is
better.

7.4 Microbenchmarks

In this study, we altered some key components in RoSal360
one-by-one to specify the reasons of these settings and
better understand their contributions to end-to-end QoE
improvements for mobile 360-degree video streaming.
Effects of transmission time estimation. We tried different
TTP (i.e., transmission time prediction) algorithms, includ-
ing HM, SVM, Fugu, and ours (introduced in §5.1), in the
mobile 360-degree video streaming system to verify the
effects of the TTP module. The harmonic mean scheme (HM)
uses the harmonic mean value of past several throughput
samples to predict the future bandwidth, and takes the
ratio of chunk sizes to the estimated bandwidth as the TTP
results, which is widely adopted by previous adaptation
methods [10], [17], [42]. Raca et al. [43] utilizes the support
vector machine (SVM) to predict the network bandwidth,
with the same way as HM to compute TTP results. Fugu
[19] designs a simple fully-connected DNN scheme for con-
ventional non-360-degree videos to predict the transmission
time of chunks directly. As shown in Fig 14a, our attention-
based tile-size-aware TTP algorithm with a decoupled DNN

model design significantly boosts the reduction of playback
rebuffering by the more robust and accurate TTP over
alternatives. Table 3 also lists multiple common error-based
quantitative indexes to evaluate the performances of dif-
ferent TTP methods more deeply. We computed the mean
absolute error (MAE), the root mean square error (RMSE),
the mean absolute percentage error (MAPE), and the cross
entropy loss (C-E loss) for different approaches. We see that
our TTP approach achieves the lowest prediction errors on
different metrics compared to the state-of-the-art schemes.
Effects of our quality adaptation algorithm. Figure 14b
compares the formulation-driven saliency-aware quality
adaptation algorithm (mentioned in §5.2) designed in
RoSal360 with another existing saliency-based quality adap-
tation method used in SALI360 [16]. SALI360 also notices
the potential of saliency in 360-degree video streaming;
however, it mainly addresses the issues about cube map
encoding and only uses a crude quality allocation scheme.
For fairness, we used the identical saliency maps, and only
changed the pure quality adaptation methods, i.e., how to
utilize the given saliency maps to control video fetching.
We observe that the quality allocation strategy in SALI360
fails to fully leverage saliency information to balance the
trade-off between video quality and rebuffering, leading to
the inferior results over RoSal360. By contrast, the quality
adaptation algorithm in RoSal360 performs better by the
sophisticated formulation, the robust buffer management,
and the simulated-annealing solving acceleration, which
demonstrates the superiority of our quality allocation ap-
proach per se on developing the advantage of saliency.
Effects of online correction. To evaluate the effects of online
correction, we chose 15 real viewing trajectories of viewers
that preferred to gaze at low-salient regions classified by
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collectively-determined saliency inference. Figure 14c com-
pares the RL-driven online correction mechanism (§5.3) with
the heuristic correction method proposed by SalientVR [17].
We see that the online correction mechanism effectively en-
hances the video quality by replacing the improper quality
allocations (i.e., low-quality tiles) caused by saliency bias
for outlier viewers. Moreover, RoSal360 achieves the more
robust correction than SalientVR by the joint awareness of
both behavior prediction accuracies and network estimation
confidences.

We also found that the correction mechanism increases
the possibility of early awareness of network congestion,
leading to rebuffering reduction compared to the system
without correction. In RoSal360, the updating of estimated
network conditions is triggered after the downloading of
all tiles in the next chunk or the downloading of all to-be-
corrected tiles. The number of to-be-corrected tiles tends to
be largely lower than the number of tiles in a chunk (i.e.,
4×6=24). Therefore, the correction mechanism increases the
frequency of network condition estimating, which lowers
the adverse impact of unpredictable network degradation.
Different tile segmentation methods. Figure 14d compares
different tile segmentation methods (i.e., 2× 4, 4× 4, 4× 6,
and 6 × 6) in RoSal360. The 4 × 6 tiling method gains the
highest video quality and the lowest rebuffering ratio. A
more fine-grained 6×6 tiling method increases the flexibility
of quality adaptation but limits the network utilization. The
transmission time of video tiles does not scale linearly with
tile sizes. Smaller tile sizes lead to lower throughput rates
due to the slow-start-restart behavior in the TCP protocol
[19], [44]. More fine-grained tile splitting also increases the
time consumption of quality adaptation due to the larger
search space. Compared to the 4 × 6 tiling method, the
6 × 6 tiling method requires a 4× more solving time of
the optimization problem (Eq.10). Overall, the 4 × 6 tiling
method makes a better tradeoff among the flexibility of
quality adaptation, network utilization, and the time con-
sumption of solving quality allocation problems.

7.5 Improvement in Other Evaluation Metrics

Besides the gaze-driven PSNR and the rebuffering ratio
demonstrated above, there are some other QoE assessment
metrics that are worthy of measurement and discussion,
and therefore, we further quantify the QoE performances
on these metrics with different algorithms.
Survey-based rating by a user study. 30 participants viewed
10 videos by mobile VR headsets [2] to evaluate the subjec-
tive QoE performances of different algorithms. The users’
demographics are similar as illustrated in §7.1 while the
participants are diverse for research validity. After watching
a video, the viewer was required to rate the experience
between 1∼5, i.e., the mean opinion score (MOS), which is a
user rating measure used in the domain of QoE [11]. We ran-
domly picked real gaze trajectories from the viewing dataset
we collected (§7.1) and the Gaze18 dataset [41], and marked
the gaze point on each video frame. The viewers were asked
to gaze at the markers to ensure the same viewing trajectory
for the same video across different algorithms and viewers.
This method of user study was adopted by previous works
[11], [17].

Fig. 19: Compression overhead and time cost of different
encoding methods. x264 [46], Kvazaar [31] encoders are
used for H.264 and HEVC encoding, respectively.

As shown in Figure 15, RoSal360 gains a significantly
higher user rating, with a 31.45% MOS improvement on
average, compared to alternatives. The user feedbacks indi-
cate that the rebuffering is more annoying than the quality
degradation for the majority of participants when experienc-
ing mobile 360-degree video streaming. For RoSal360, the
remarkable decrease of rebuffering without quality degra-
dation significantly boosts the viewer QoE, compared to the
state-of-the-art methods.
Quality variations. Figure 16 and Figure 17 compare the
temporal and spatial video quality variations (the lower the
better) of different algorithms, respectively, which are specif-
ically defined in Section 3. The temporal quality variation
quantifies the quality changes between neighboring chunks
during the video playback. The spatial quality variation
quantifies the quality difference across tiles inside the user
viewport, which is a unique metric for spatially quality-
uneven video delivery. RoSal360 achieves lower quality
variations (both temporal and spatial) than other tile-based
algorithms. Moreover, RoSal360 can further reduce the qual-
ity variations by tuning the penalty coefficients λ1 and λ2

in Eq. (10), although some researchers claim that the quality
variations would incur limited QoE degradation [10], [45].
Viewport-driven PSNR. We also evaluated different mobile
360-degree video streaming algorithms using the conven-
tional viewport-driven PSNR (i.e., the PSNR value of the
entire user viewport), although it is less precise than the
gaze-driven PSNR. As demonstrated in Figure 18, RoSal360
likewise achieves positive gains for the viewport-driven
PSNR, compared to other quality adaptation schemes.

7.6 System Overhead

We present a part of system overhead in RoSal360.
Tiled encoding. We used a Ubuntu Server with NVIDIA
TITAN X GPU to encode the 360-degree videos. Figure 19
depicts the average compression overhead and time cost
for encoding a 2.13-second video chunk with different tiling
methods. We measure the compression overhead using the
chunk size in units of the size of baseline (i.e., a 2.13-second,
non-tiled, HEVC-encoded chunk). The time cost is also
expressed in units of the baseline consumption for a clearer
comparison. Compared to the non-tiled HEVC encoding,
the HEVC-encoded 4 × 6 tiling increases the compression
overhead by 5% only, but reduces the encoding time by 10×
by tile-level parallel encoding.
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Initial downloading of saliency maps. We present and
deliver chunk-level video saliency maps in JSON formats.
Although the exact size of the saliency-map profile file for a
video depends on the number of chunks in this video and
the method of tile segmentation, the compressed saliency
map file for initialization only occupies less than 0.5 KB
for a chunk with 4 × 6 tile splitting. Therefore, the traffic
cost and time assumption of downloading saliency maps at
the initial phase are negligible compared to downloading a
video chunk.
Downloading of model weights. The weights sizes of TTP
model and correction model are 73 KB and 2.2 KB, respec-
tively. Thus, the overhead in term of weights file download-
ing is negligible. Moreover, the model weights do not need
to be downloaded just before a video is watched in most
cases. The weights only should be downloaded or updated
when the client application is downloaded or updated, or
the video list on the streaming website is being loaded
parallelly. Therefore, the weights downloading would not
increase the start-off delay for video watching in most cases.
Client-side overhead. We used a weak Dell Mini PC (§6)
as the client. The time consumption per inference of the
TTP neural network model in RoSal360 is about 30 ms with
the deployment on weak CPUs, by virtue of a decoupled
model architecture design (§5.1). The RL model for online
correction (§5.3) is built with two lightweight layers of 64
and 32 neurons, which spends about 5 ms per inference.
The quality adapter averagely costs 110 ms per quality
allocation of one chunk, which is negligible compared to
the transmission time of one chunk. RoSal360 applies the
monotonicity constraint and the simulated-annealing opti-
mization algorithm to remarkably reduce the computation
complexity and time consumption of quality adaptation.
The HTML5-based Player averagely consumes 16% CPU
usage, 210 MB memory, and 19.4 ms duration per decoding
and tile merging of one chunk.

We also tested the core part of our adaptation algo-
rithms on a commodity Android phone with Qualcomm
Snapdragon 860 SoC and 6GB of RAM. The quality adapter
costs nearly 180 ms per quality allocation of one chunk on
the Android phone, which is acceptable in video streaming
applications. Note that the research issues considered in
this manuscript is orthogonal to the underlying operating
system. Moreover, the majority of the online parts of our al-
gorithms could run on the resource-rich cloud server instead
of the end device, with a low communication overhead.
It means that the overhead of our algorithms running on
mobile devices is not intractable in real-world applications.
Therefore, the device-specific challenges are not our main
concern. We further discuss this issue in Section 8.

8 LIMITATION AND DISCUSSION

In this section, we present the limitations of RoSal360 as well
as a related discussion.
Effect of quality distribution on viewer attention. We ob-
served the effect of spatially uneven video quality distribu-
tion on viewer attention. For example, more viewers gaze at
the high-quality region than the low-quality region though
both regions are deemed high-salient. That is, the quality

allocation scheme would unintentionally lead viewer’s at-
tention to tiles with allocated high quality. In our future
work, we will study this effect which is a common issue
faced by quality-uneven video streaming. Note that this
effect does not impair our algorithm evaluations because
the viewing behavior data used in our experiments were
collected with the uniformly high-quality viewing.
Different gains across videos. We found that RoSal360
gains less for saliency-uniform 360-degree videos compared
to saliency-uneven videos. For saliency-uniform videos, the
saliency scores in different regions are almost same. There-
fore, the saliency map would fail to provide meaningful
prior information for estimating the new viewers’ attention
distribution. Fortunately, in light of our observations and
experiments, most of 360-degree videos are saliency-uneven
to some extent and significantly benefit from RoSal360.
Advanced wireless network. More advanced wireless net-
work (e.g., 5G) would relieve the bandwidth pressure.
However, the insufficient and variable bandwidth in real-
world wireless network environments remains a challenge
for mobile 360-degree video streaming. First, the advanced
communication technology such as 5G still suffers from
the high power consumption, small coverage range, high
susceptibility to blockage, or cybersecurity issue [47]. As far
as we know, 4G/LTE and even cellular networks beneath
4G/LTE have not been replaced completely so far. So, the
limited bandwidth still challenges the high-quality 360-
degree video delivery in some cases. Second, the transmis-
sion throughput the user actually experiences is limited by
the bottleneck bandwidth in the end-to-end link and the
number of the users share this identical link. So, when the
link bottleneck is not the last hop or the user number is
large, the transmission throughput is probably insufficient.
Third, even if the high throughput is technically supported
in the future, the internet service provider (ISP) is likely
to not allow high download bandwidth for everyone due
to the high bandwidth cost. It is obvious that the video
transmission in high quality for every direction of spherical
views is inefficient and wasteful for network resources.
Finally, the inherent volatility trouble of wireless networks
has not been fully solved. Consistent (not only average) high
throughput and low latency are expected but have been not
fulfilled up to now. In sum, the inadequate and unstable
wireless bandwidth still challenges the 360-degree video
streaming in many cases.
Lack of system implementation on mobile devices. We
acknowledge that operating systems (OS) are different be-
tween the Mini PC we used and some of all-in-one VR
headsets such as Oculus Quest 2. However, we believe that
the algorithm evaluations in our work are reasonable and
valid enough. First, a large number of previous works adopt
the similar evaluation method as ours with the Windows-
based implementation, e.g., [17], [36], [48], [49].

Second, the research issues considered in this manuscript
is orthogonal to the underlying OS choice. Our work mainly
focuses on the tile-level transmission time prediction and
online saliency bias correction. The cornerstone of our al-
gorithms in terms of practicality, e.g., the feasibility of tile-
based 360-degree video delivery, decoding, merging, and
rendering, has been fully constructed and verified on com-
munity mobile devices such as Android-based smartphones
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by prior works [10]. Thus, the device-specific challenges
of tile-level 360-degree video streaming are not the main
concern in this manuscript. While the algorithm perfor-
mances may vary across different OS, our algorithm would
be superior to the state-of-the-art approaches on most end
devices due to the algorithm design upon the assumption
that the computing resource is limited. Therefore, our imple-
mentation based on the Mini PC is valid enough to prove the
advantage of our algorithms. Note that our algorithms can
also be applied to Windows-based VR devices such as Value
Index, which are able to stream videos through wireless
networks.

Third, in fact, the majority of the online parts of our al-
gorithms such as the DNN-based network estimation could
run on the resource-rich cloud server instead of the end
device, with only a low overhead concerning the command
communication (less than 1 KB per chunk), e.g., using the
remote procedure call (RPC). It means that the overhead of
our algorithms running on mobile devices is not intractable
in real-world applications. Therefore, the device-specific
challenges for RoSal360 are not urgent.

That being said, we also tested the core part of our
adaptation algorithms on a commodity Android phone with
Qualcomm Snapdragon 860 SoC and 6GB of RAM. The
corresponding overhead (§7.6 is still acceptable for video
streaming applications.

9 RELATED WORK

Most of past works are built upon LR-based [10], [11],
[12], [13], [14] or DNN-based [41], [49], [50] HMT pre-
dictions, limited by the temporal correlation assumption.
Some studies also explore the opportunities of cross-user
similarity [51], [52], [53], scalable video coding [54], [55],
[56], content-aware saliency analysis [17], [57], personalized
field-of-views (FoVs) [58], super resolution [59], and hybrid
schemes [48], [52], [60], [61]. By contrast, RoSal360 combines
the advantages of saliency analysis and HMT predictions,
and introduces the new studies and designs for mobile
360-degree video streaming. The main differences between
RoSal360 and other saliency-based 360-degree video stream-
ing approaches are described below.

SALI360 [16] proposes a cubemap-based 360-degree
video compression method over saliency; it does not re-
ally consider the dynamic, DASH-based quality adaptation
problem over wireless networks. Xu et al. [52] and Li et al.
[60] propose multiple viewport prediction approaches us-
ing the HMT, cross-user similarity, heatmaps, and saliency,
but do not discuss how to use their prediction results for
quality adaptation of 360-degree video streaming. By con-
trast, RoSal360 focuses on the DASH-based, tile-level quality
adaptation problem, and designs an integrated saliency-
driven adaptation algorithm including the tile-size-aware
network estimation, saliency-aware quality allocation, and
HMT-assisted error correction.

Nguyen et al [62] propose a head movement prediction
method for 360-degree videos merging the saliency informa-
tion and head orientation data with an LSTM-based DNN
architecture. However, they do not explore the dynamic
quality allocation problem given the HMT prediction results
for tile-based video streaming. By contrast, the focus of

RoSal360 is the streaming quality adaptation problem, i.e.,
the trade-off between video quality and rebuffering. Thus,
we aim at the accurate network prediction and the practical
tile-level bitrate allocation, which are not considered by
[62]. In addition, the practicality of [62] in 360-degree video
streaming would suffer from the short prediction window
(set to be 0.5 seconds) due to the temporal correlation
limitation, which leads to a shallow playback buffer and
then the high risk of rebuffering. By contrast, RoSal360
fully leverages the resilience of saliency data to prediction
window sizes, with the better practicality and robustness
for streaming in wireless networks. Unlike [62], RoSal360
decouples the using of offline saliency information and
online HMT data by an online correction method, which
overcomes the short buffer limitation while improves the
robustness to saliency bias.

Lee et al. [57] experiment the saliency-driven rate adap-
tation using a motion-constrained tile set technique. Shen
et al. [63] integrate saliency information into the quality
adaptation scheme based on the Lyapunov optimization.
SalientVR [17] formulates the saliency-aware quality adap-
tation problem and solves the problem using the simulated
annealing method. By contrast, RoSal360 utilizes a novel
tile-size-aware TTP algorithm to significantly improves the
accuracy and robustness of network capacity estimations,
which is the cornerstone of quality adapter. SalientVR [17]
and Jiang et al. [64] both correct the improper tiles by HMT-
driven updating judgment. They ignore the inaccuracy of
HMT predictions per se as well as the risk of overdue tile
redownloading. By contrast, RoSal360 considers the reliabil-
ity of both HMT predictions and network estimations, and
achieves the more robust saliency bias compensation with a
RL-based correction judgment.

10 CONCLUSION

We design and implement RoSal360, a robust and sophis-
ticated saliency-driven quality adaptation framework for
mobile 360-degree video streaming, to improve the quality
of experience (QoE) under the limited and variable wireless
network bandwidth. RoSal360 integrates a practical tile-
size-aware transmission time prediction (TTP) neural net-
work model, a saliency-aware quality allocation problem
formulation with a fast solution method, and a reinforce-
ment learning (RL)-driven online correction mechanism.
Through extensive prototype experiments over real wire-
less networks, RoSal360 significantly improves the video
quality, rebuffering reduction, and viewer QoE over exist-
ing approaches. Moreover, we constructed a public gaze-
annotated long 360-degree video dataset, which are not only
used in our evaluations but would also facilitate precise
quality assessment and attention behavior analysis for the
360-degree video streaming research.
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