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With conventional web page load metrics (e.g., Page Load Time) being blamed for deviating from actual user
experiences, in recent years a more sensible and complex metric called Speed Index (SI) has been widely
adopted to measure the user’s quality of experience (QoE). In brief, SI indicates how quickly a page is filled up
with above-the-fold visible elements (or crucial elements for short). To date, however, SI has been used as a
metric for performance evaluation, rather than as an explicit heuristic to improve page loading. To demystify
this, we examine the entire loading process of various pages and ascribe such incapability to three-fold
fundamental uncertainties in terms of network, browser execution, and viewport size. In this paper, we design
SipLoader, an SI-oriented page load scheduler through a novel cumulative reactive scheduling framework. It
does not attempt to deal with uncertainties in advance or in one shot, but schedules page loading by “repairing”
the anticipated (nearly) SI-optimal scheduling when uncertainties actually occur. This is achieved with a suite
of efficient designs that fully exploit the cumulative nature of SI calculation. Evaluations show that SipLoader
improves the median SI by 41%, and provides 1.43×–1.99× more benefits than state-of-the-art solutions.
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• Theory of computation→ Scheduling algorithms.
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1 INTRODUCTION
The ever-growing volume of web access has been stimulating the research and development
of innovative techniques to enhance web page load performance [44, 48, 59]. To quantify the
effect of existing techniques, simple and straightforward metrics like Page Load Time (PLT) [20],
Time-to-First-Paint [25], Time-to-Largest-Paint [8], and Time-to-First-Byte [24] are the most used.
Meanwhile, however, they have been blamed for deviating from actual user experience given the
increasing complexity of today’s web pages [40, 50, 60]. In response, several metrics that are more
complex and sensible have been proposed in recent years, such as Speed Index [23], Above-the-Fold
Time [33], Time-to-Interactivity [50], Byte Index [33], and Object Index [33]. Among them, we note
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Fig. 1. Architectural overview of SipLoader, an SI-oriented web page loader that leverages the cumulative
reactive scheduling framework.

that Speed Index (SI) has been widely adopted in both academia [45, 49, 57] and industry [23, 28, 38]
to meticulously measure the user’s quality of experience (QoE).

Different from traditional metrics that concentrate on a specific “milestone” event, SI tracks the
entire page load process to quantify how quickly a page is filled up with above-the-fold visible
elements (or crucial elements for short), thus closely reflecting the user’s actual QoE. To be more
specific, during a page’s loading, one periodically samples a sequence of visual completeness, i.e.,
the pixel distance between the current frame and the final frame of the fully-loaded page’s above-
the-fold area; then, SI is calculated (typically in an offline manner) as the integral of these visual
completeness samples. Usually, a smaller SI indicates a better QoE [23].

To date, SI has been used to retrospectively measure the goodness of web page loading schemes,
e.g., Oblique [41], Fawkes [45], and Vroom [57], rather than as an explicit heuristic to actively
direct page loading. This seems to be quite understandable considering the complicated, typically
offline calculation process of SI [35, 47, 62]. Nevertheless, if there does exist a feasible approach
to “fusing” SI during web page loading, we might be able to know the best SI one can achieve, or
at least effectively improve SI by re-architecting today’s web server and client design. In other
words, our goal is to achieve or closely approach SI-optimal page load scheduling (or simply SI-
optimal scheduling), which schedules the fetching and evaluation of web page objects (e.g., images,
stylesheets, and scripts) during page loading by explicitly and proactively taking SI into account.

If the scheduling variables are known beforehand or predictable, we find that SI-optimal sched-
uling can be determined ahead. In practice, however, these variables are subject to significant
uncertainties that hinder the pathway to our goal. Uncertainties first stem from network and
browser execution. Using one device to load the same static page, we notice remarkable SI difference
under different network environments. In fact, even when this operation is repeated under very
similar, controlled network environments, there is still considerable SI difference because the
amount of computation resources allocated for loading the page can vary over time. Moreover,
crucial elements are uncertain for the same page given the heterogeneous user-side viewport sizes. In
particular, although the client knows the viewport size, it is unable to perform SI-optimal scheduling
since it does not know which elements are crucial until the page is fully loaded. This is because
many websites employ liquid layouts [1] to automatically adjust the sizes and locations of elements.

These uncertainties make it impossible to obtain SI-optimal scheduling in advance or in one shot
without further adjustments. Hence, our key idea is to seek a feasible solution that is progressive and
near-optimal. Through a comprehensive survey of literature, we seek out a promising framework
from operational research, called predictive-reactive scheduling (or reactive scheduling for short) [37],
which is dedicated to tackling a variety of scheduling uncertainties in a progressive manner, so as
to minimize their negative impact and thus achieve near-optimal performance. Specifically, at the
beginning of a page load, it generates a predictive SI-optimal (or says “baseline”) scheduling; here
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predictive means that the scheduling is anticipated to be optimal if there were no upcoming uncer-
tainties. After that, it reactively “repairs” the baseline scheduling when uncertainties (stemming
from network, browser execution, etc.) actually occur to recover its (near-)optimality.

The key challenge of applying the above reactive scheduling framework to our goal is the lack of
efficiency. Initially, we utilize the widely-adopted SI-calculation JavaScript library Speedline [3]
and topological sort algorithm to implement a conventional approach to SI-optimal scheduling.
Unfortunately, 94% page loading processes are then slowed down and sometimes even incur
unresponsiveness of the web browser; in general, more complex pages that contain a larger number
of crucial elements (and the related web page objects) experience severer decelerations.
Motivated by the dilemma, we theoretically analyze SI-optimal scheduling problem and find

the conventional approach to bear O(n!) time complexity during the scheduling process, where
n denotes the number of objects in a web page. In essence, the conventional approach treats the
dependencies among web page objects as constraints, and thus utilizes topological sort to search
for the SI-optimal scheduling in the entire constrained space. On the other hand, our key insight
is that such dependencies are in fact beneficial to SI calculation given the cumulative nature of
integral computation. Therefore, we devise the dependency-merged greedy inference algorithm, which
strategically merges objects with their precedent dependencies to enable the usually suboptimal
greedy local-search strategy to achieve near-optimal with a much lower time complexity of O(n2).

In addition to efficient SI-optimal scheduling when network and browser-execution uncertainties
occur, we need to deal with the uncertainty of crucial elements caused by heterogeneous viewport
sizes. Here we take a server-client collaborative approach for efficient identification of crucial
elements. For a web page, the server first calculates the convex hull of each element’s coverage
regions under different viewport configurations offline, and then leverages computational geometry
to cumulatively encode all the convex hulls into a predictive element region forest. When the client
requests for the web page, it can quickly pinpoint the overlapping region of its viewport and all
elements and thereby identify the crucial elements. While our implementation involves server-side
collaboration to generate auxiliary data structures, the incurred overhead only includesO(n · loд(n))
computation complexity and typically <400 MB memory. Besides, the collaboration module is
generic to all servers and dynamically loadable with simple configurations. We have developed it
and released both its source code and executable binary.
The novel framework that integrates our above efficient design is referred to as cumulative

reactive scheduling, based on which we implement SipLoader, an SI-oriented page loader whose
architecture is depicted in Figure 1. SipLoader first determines the baseline scheduling at the
beginning of page loading by coordinating the server and client, and then carries out event-driven
reactive co-scheduling at the client side to orchestrate network fetches, script executions, and
element rendering, so as to achieve near-optimal scheduling in real time.
We conduct comprehensive evaluations for SipLoader on 300 sites with diverse client devices

and network environments. Results show that for an average page, SipLoader can generate nearly
SI-optimal scheduling in 12 ms, which is trivial (0.3%) compared to the page load time, with just
12 KB additional network traffic. Compared with state-of-the-art solutions like Vroom [57] and
Fawkes [45], SipLoader provides 1.43×–1.99× more benefits with a median SI improvement of 41%.
Finally, despite our focus on SI in this work, we feel that the concept of fusing an evaluation

criterion during web page loading is suited to other advanced or complicated metrics in the
future. In particular, we have provided a suite of JavaScript interfaces to facilitate others’ using the
cumulative reactive scheduling framework. All the code and data in this work are publicly available
at https://SipLoader.github.io/.
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2 BACKGROUND
To measure the performances of existing page load optimization techniques, a series of performance
metrics are proposed, among which the most-used ones are typically simple and straightforward,
such as Page Load Time (PLT) [20], Time to First Paint (TTFP) [25], Time to Largest Contentful Paint
(LCP) [8], and Time to First Byte (TTFB) [24]. At the same time, however, these metrics have been
receiving a growing concern that they cannot accurately reflect the actual user experience [34, 40],
owing to their special focus on some specific “milestone” events. For example, PLT is defined as the
trigger time of the JavaScript onload event, TTFP measures when the first pixel of the web page is
painted onto the screen, and TTFB indicates the time when the client receives the first byte of the
HTTP response. As a result, they all fail to comprehensively evaluate the entire page load process,
especially for web pages with complicated contents.
Take two different page loading processes of the landing page of BBC [11] as an example in

Figure 2. They share the same PLT (i.e., both finish at 3,000 ms as shown in Figure 2c) while bringing
totally different web browsing experiences to users. In particular, during the first loading process
(Process A), large crucial elements are prioritized. Therefore, as shown in Figure 2b, the visible area
of the page is quickly populated by large crucial elements. In contrast, during the second loading
process (Process B), small crucial elements are loaded first. Consequently, the page is not as visually
ready as that in Process A at 1200 ms (Figure 2b), thus resulting in worse QoE as users oftentimes
expect web page contents to become visible quickly and progressively [2, 4, 5].
To highlight user experiences during page loading, several more complex and sensible metrics

like Speed Index (SI) [23], Above-the-Fold Time (AFT) [32], Time-to-Interactivity (TTI) [50], Byte
Index [33], and Object Index [33] are proposed in recent years. Among them, SI is the most popular
one that has been widely adopted in both academia [45, 49, 57] and industry [23, 28, 38] to measure
users’ QoE in a fine-grained manner.

Specifically, SI judiciously quantifies how quickly a page is filled up with above-the-fold visible
elements (i.e., crucial elements) by tracking the entire page load process. It is formally defined as:

SI =

∫ AFT

0
(1 −VC (t))dt, (1)

where VC (t) denotes the visual completeness (i.e., the pixel distance between the current rendered
frame and the final frame of the fully-loaded page’s above-the-fold area) at time t . In practice, one
periodically (typically 100 ms) samples a sequence of visual completeness during a page load. Once
the page is visually complete (i.e., all the crucial elements have been loaded), SI is calculated as
the integral of these visual completeness samples according to Equation 1. In the example of BBC,
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Device CPU RAM Network Viewport OS

PC-1 Intel i7-10700F (2.90 GHz) 64 GB Residential broadband 2560 × 1440 Windows 10
PC-2 Intel i7-10700F (2.90 GHz) 64 GB Residential broadband 1920 × 1080 Windows 10
PC-3 Intel E5-2420 (1.90 GHz) 32 GB Residential broadband 1920 × 1080 Windows 10

Xiaomi XM11 Snapdragon 888 (2.84 GHz) 12 GB LTE/5G 3200 × 1440 Android 11
Huawei HV30 Kirin 990 (2.86 GHz) 6 GB LTE/5G 2400 × 1080 Android 10

Table 1. Client devices used for page loading tests.

Process A owns a lower SI value (1.18 s) than that of Process B (1.88 s) according to Figure 2d,
which indicates that a smaller SI represents a better QoE.

Due to its meticulous characterization of the user’s QoE during page loading, SI has been
widely adopted by prior web accelerators, such as Oblique [41], Prophecy [49], WebGaze [40],
Alohamora [39], WatchTower [52], Fawkes [45], and Vroom [57], to measure their effectiveness.
Besides, SI has been utilized as a representative metric in popular web performance measurement
tools like Lighthouse [17] and WebPageTest [28]. However, to date, SI has only been treated as a
passive metric rather than an explicit heuristic to direct page loading. This is not strange since the
calculation process of SI is rather complicated (as it involves integral calculation) and is typically
conducted offline (as it requires the final frame of a page load as the input) [40]. Nevertheless, if
there does exist a feasible approach to proactively employ SI to guide the page loading process,
we would be able to make in-situ adjustments to the fetching and evaluation of web page objects
during page loading so as to obtain or closely approach SI-optimal page load scheduling.

3 MOTIVATION
To explore whether there exists a practical approach to proactively exploiting SI as guidance to
page load scheduling, as well as how this approach can be realized, we start with a comprehensive
measurement study on the Alexa top 1,000 sites [9]. By comparing the pages’ loading processes on
different devices under diverse network environments (§3.1), we reveal that uncertainties stemming
from network condition, browser execution, and user-side viewport size during page loading
significantly hinder the pathway to our goal of achieving SI-optimal scheduling (§3.2).

3.1 Measurement Methodology
We carefully examine the entire loading process of the landing pages of the Alexa top 1,000 sites
as of Jul. 16th, 2021. Every page is loaded online respectively on three PCs and two smartphones
with different network environments, hardware configurations, and viewport sizes as listed in
Table 1. In order to test page loading under diverse network conditions, for each PC, we throttle the
bandwidth to {1, 10, 100, 1,000} Mbps (25 ms latency), and the latency to {10, 25, 50} ms (100 Mbps
bandwidth) using Chrome DevTools [13]; for each smartphone, we load pages under real LTE and
5G networks, respectively.

We denote one test group as loading all the 1,000 pages 25 times, i.e., 3 PCs × (4 bandwidths + 3
latencies) + 2 smartphones × 2 networks. In total, we have performed 30 groups of tests in one
day, that is, 3 different time-of-day (0:00, 8:00, and 16:00) × 10 repetitions. All the page loading
tests are performed on Chrome 91.0 with a cold cache setting. During each page load process, we
also use Chrome DevTools to record fine-grained traces regarding CPU/memory usage, network
transmission, web browser executions, and so forth for further analysis. Note that we also load
pages on other browsers like Firefox, Safari, and Edge, but do not observe notable differences.
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3.2 Findings
In general, we observe three primary uncertainties deriving from network condition, browser
execution, and client viewport size that significantly affect the SI of web page loading. As a result,
they inevitably hinder us from achieving SI-optimal page load scheduling in one shot.

Network uncertainties. Network conditions affect the transmission of web objects during page
loading, thus directly inducing disturbance on the SI of page loading. Figure 3 illustrates the
cumulative distribution of SI values of the Alexa top 1,000 pages’ loading processes on PC-3 under
1 Mbps, 10 Mbps, 100 Mbps, and 1,000 Mbps broadband networks. Similarly, Figure 4 shows the
cumulative distribution of SI on Xiaomi XM11 under cellular networks including LTE and 5G
networks. Each SI sample in Figure 3 and Figure 4 is calculated by averaging all the SI values of a
certain web page’s loading processes under the same network in different test groups.
From the above figures we observe that a higher bandwidth and a lower latency usually result

in better SI values of page loading. In particular, page loads under the 100 Mbps network yield
much lower SI values (4.51 s on average) than those under 1 Mbps (6.76 s on average) and 10 Mbps
(5.19 s on average) networks. Page loads under the network with a 10-ms latency also have smaller
SI values than those under the network with a 25-ms/50-ms latency (not shown). Meanwhile, the
low-latency and high-bandwidth features of the 5G network also lead to better SI of page loading
processes (3.49 s on average) compared with that under the LTE network (4.93 s on average). This
is because the loading process is often bottlenecked by network transmission [55, 64], and thus
accelerating the network can directly speed up the page loading, resulting in better SI.
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On the other hand, as the network continues to improve, the SI values of page loading tend to
converge to certain values. As depicted in Figure 3, when the bandwidth increases from 1 Mbps
to 10 Mbps, the average SI values of page loading decrease significantly (from 6.76 s to 5.19 s);
when the bandwidth further increases to 100 Mbps (4.51 s) and 1,000 Mbps (4.11 s), the decrease
in SI continues to shrink. This is due to the fact that when the client-side network condition is
good enough, the key bottleneck of page loading shifts from network transmission to client-side
computation. Thus, further improving the network brings marginal benefits to SI.

Browser-execution uncertainties. Aside from network uncertainties, even when loading a same
web page on a same device under similar network environments, we observe that the SI values
of page loading may vary considerably over time. Given that page load performance is mainly
determined by network conditions, client-side computation, and the web page itself [46, 47, 61],
we attribute such SI variation to browser-execution uncertainties (i.e., the computation resources
allocated for loading the page are affected by other concurrent tasks processed on the client device),
since the impacts of the other two factors on page load performance are minimized through our
controlled, repeated experiments. Further, to quantify the effect caused by browser-execution
uncertainties, we take preloaded background tabs (i.e., browser tabs with web pages opened in the
background) as concurrent tasks during page loading. Note that although not directly displayed
on the screen, these background tabs also consume computation resources for event handling,
server-client communications, and so forth, which can be monitored with Chrome DevTools.

In particular, we control the network environment of PC-3, and further load web pages on it with
different numbers of background tabs. Figure 5 shows the SI values of loading three representative
web pages including Amazon [10], MSN [18], and Pinterest [21] with {0, 20, 40, 60} background tabs
opened. We clearly observe a linear increase and a growing variance in SI values as the number of
background tabs increases. It indicates that a page’s loading process can be slowed down or even
becomes unpredictable if there exist plenty of concurrent tasks sharing local computation resources
with it. In practice, the concurrent tasks on client devices during page loading are unknown
beforehand, which makes browser-execution uncertainties a non-negligible obstacle that impedes
the pre-computation of a page’s SI-optimal scheduling.

Viewport size uncertainties. In addition to the network and browser execution, we notice that
the size of the user-side viewport (i.e., the region where web page contents can be viewed) could
affect SI greatly. In particular, under controlled network environments and hardware configurations
with no background tabs opened, the SI values of a same web page under different viewports differ
(even if the traditional page load metrics like PLTs are nearly the same). Also, the SI of different
web pages presents different trends with the change of user-side viewport sizes.

To better understand the phenomenon, we further perform finer-grained measurements, by
loading web pages under viewports with a fixed height (1080 px) and widths ranging from 500 px
to 2600 px, as well as viewports with a fixed width (1920 px) and heights ranging from 200 px to
1500 px. Intuitively, page loads under a larger viewport should have higher SI values, since a larger
viewport usually displays more crucial elements to users, thus incurring additional overhead to
the browser. However, Figure 6 shows the SI of YouTube’s landing page under the above different
viewports, and we can see that although SI increases when the viewport becomes wider, it presents
a unique “staged” increase. For example, when the viewport width is between 500 px and 800 px,
the SI values of page loads remain rather stable. When the viewport width increases from 800 px
to 900 px, there is a sharp increase in SI (see point T1 in Figure 6). Also, there exist another three
“staged” SI increases when the viewport width increases from 1000 px to 2600 px (i.e., T2, T3, and T4
in Figure 6). In contrast, when the viewport height grows, SI increases smoothly.
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Considering the actual appearance of YouTube’s landing page, we ascribe such phenomenon to
the liquid layout [1, 26] adopted in the page, which dynamically adjusts page’s layouts according
to the user viewport width [7, 26]. As shown in Figure 7, when viewport widths are set to 500 px,
872 px, and 1128 px respectively, the landing page of YouTube presents totally different layout
schemes (i.e., showing different numbers of image columns) with different numbers of crucial
elements, which is the main reason for the sharp change in SI. Between these width thresholds,
however, the page adjusts to the viewport through scaling, and the crucial elements remain largely
unchanged, resulting in a stable SI. On the other side, when the viewport height increases, the
landing page of YouTube never changes its layout scheme, and more originally below-the-fold
elements become visible. Thus, SI linearly increases with the viewport height. For web pages using
different liquid layout strategies, their viewport width thresholds that trigger the layout transition
are unpredictable, which makes it even harder to perform SI-optimal scheduling on them.
In fact, other factors such as packet loss, browser cache status, and users’ scaling also add up

to the uncertainties. Nevertheless, they can be generally classified into the above three categories
(i.e., network, browser execution, and user-side viewport). These three types of uncertainties make
obtaining SI-optimal scheduling in advance or in one shot impossible. Thus, we will next explore
feasible approaches to practically achieving the goal.

4 DESIGN OF SIPLOADER
Our measurement study in §3 illustrates that uncertainties stemming from network, browser
execution, and viewport size severely hinder us from achieving SI-optimal scheduling on web
page object fetching and evaluation in advance or in one shot. Thus, we choose to obtain (nearly)
SI-optimal scheduling in a progressive, reactive, and efficient manner. Our resulting solution is
named SipLoader, an SI-oriented page load scheduler that realizes the philosophy by employing a
novel cumulative reactive scheduling framework. As depicted in Figure 1, SipLoader implements
the cumulative reactive scheduling framework with three core techniques.
• Dependency-Merged Greedy Inference calculates the baseline scheduling at the beginning of page
loading on the client side. It is built based on the key insight that dependencies among web
page objects are beneficial to SI calculation given the cumulative nature of integral computa-
tion. Therefore, it strategically merges nodes in the dependency graph with their precedent
dependencies to enable the baseline scheduling to be calculated in a low complexity of O(n2).

• Predictive Element Region Forest efficiently handles the uncertainty of crucial elements incurred by
heterogenous viewport sizes through a server-client collaborative approach. The server predicts
each element’s coverage regions under different viewport configurations, and then leverages
computational geometry to cumulatively encode all the regions into a predictive element region
forest. With this information, the client can quickly pinpoint the web page elements overlapped
with its viewport (i.e., crucial elements) during page loading.

• Event-Driven Reactive Co-Scheduling continues to repair the baseline scheduling when network
and browser-execution uncertainties occur. It orchestrates network fetches and object evaluations
in an event-driven manner, so as to achieve near-optimal scheduling in real time.
To be more specific, at the beginning of a page load, SipLoader efficiently identifies crucial

elements based on predictive element region forest, and generates a predictive “baseline” scheduling
for the web page (which is (nearly) SI-optimal without upcoming uncertainties considered) through
dependency-merged greedy inference. Afterwards, it reactively “repairs” the baseline scheduling
by performing event-driven reactive co-scheduling when uncertainties occur during the following
page loading process, so as to recover the (near) optimality of the scheduling.
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4.1 Dependency-Merged Greedy Inference
The loading process of a web page should obey the dependencies among web page objects. For
example, a script may read or write variables defined by other scripts; an element may also “read”
CSS rules within style sheets to determine its presentation [48]. To ensure correctness, before loading
an object, the browser must load its precedent dependencies first. Such dependency relationships
among objects can be modeled as a directed acyclic graph, i.e., dependency graph.

Given a web page and its dependency graph, we then want to create the baseline scheduling for
the web page. Also, we wish the baseline scheduling to be SI-optimal if there were no upcoming
uncertainties. To achieve this, some apriori knowledge of the page is needed, including 1) SI gain of
each object (i.e., the visual contribution of each object to the above-the-fold page section) and 2) the
time cost of loading each object. These two types of information are necessary for SI calculation.

To this end, we preload the web page on the server side and record fine-grained traces as described
in §3.1, based on which the expected SI gain and the expected loading cost of each object can be
estimated (discussed in §5). Figure 8 shows an example of the final dependency graph of a web page,
where each node represents a web page object and each edge denotes the dependency between
two objects. The SI gain (%)/loading cost (ms) of each object is attached to each node. With the
dependency graph as well as objects’ SI gain and loading cost, we can better formalize the problem
of SI-optimal scheduling. Specifically, given a dependency graph where each node has an SI gain
and a loading cost, we wonder in which order we should load web page objects such that the
integration of unrendered fraction of a page’s above-the-fold area over time is minimized (i.e.,
minimize Equation 1), without violating the dependencies during page loading.

A conventional approach. A straightforward approach to calculating the above “anticipated” SI-
optimal scheduling is to first generate all possible object loading orders that obey dependencies, and
then select the one with the optimal SI value. We take advantage of a widely-adopted SI calculation
JavaScript library, Speedline [3], together with the topological sort algorithm to implement a
conventional approach to calculating the baseline scheduling. Here, the topological sort algorithm
is used to generate feasible scheduling schemes that obey the dependencies among objects.
Since the calculation of SI-optimal scheduling depends much on the client-side viewport size

(discussed in §4.2), we apply the conventional approach to the client. Specifically, at the beginning
of page loading, the server sends the dependency graph along with the SI gain and loading cost
information of each object to the client. The client then calculates the SI-optimal scheduling using
the conventional approach. Unfortunately, we observe that 94% page loading processes are slowed
down and sometimes pages even become unresponsive. Generally, more complex pages that contain
a larger number of crucial elements suffer severer decelerations. We initially assume this is owing to
the low execution efficiency of JavaScript [58]. Thus, we re-implement the conventional approach
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in WebAssembly [27], an emerging programming language that allows web applications to enjoy
near-native runtime speed, but note that the situation does not change essentially.

To demystify the obstacle, we carefully dissect the conventional approach, and find that it bears
a time complexity of O(n!) where n denotes the number of web page objects to be scheduled. This
is because the conventional approach seeks for all possible topological orders of object loading
according to the dependencies, thus exploring the entire search space. Such high complexity of the
conventional approach makes it hard to be practically applied to calculate the baseline scheduling.

Theoretical analysis. We then wonder whether there exists a more efficient solution to calculate
the SI-optimal scheduling at the beginning of a page load. However, we find that the SI-optimal
scheduling problem is NP-complete, which can be proved via a reduction from the precedence
constrained job sequencing problem on a single machine that minimizes total weighted completion
time (or PCS problem for short) [30, 42].

Formally, the PCS problem is defined as follows. Given a directed acyclic graphG = (N , E) with
n nodes, each node nj ∈ N represents a job with a positive processing time pj and a weightw j . Job
i must be completed before job j if there is a directed edge ei j ∈ E from node ni to node nj . On a
single machine, it is obvious that for any given job execution sequence, the completion time Tj of
job j is determined. The objective of the PCS problem is to minimize the weighted job completion
time

∑n
i=1Tiwi , which has been proved to be NP-complete [42].

Now we prove that the SI-optimal scheduling problem is NP-complete through a reduction from
the PCS problem. Our reduction takes any PCS instance ⟨G = (N , E) ,p,w⟩ and constructs the
SI-optimal scheduling instance as follows. For each node nj ∈ N , we define a web page object j , and
set its loading cost c j to be pj , as well as its SI gain дj to be

w j∑n
i=1 wi

. For each edge ei j ∈ E, we define
a dependency from object j to object i , i.e., object i must be loaded before object j . It is clear that the
construction can be carried out in polynomial time. For any given job execution sequence job s1,
job s2, · · · , job sn (that obeys dependency constraints) in PCS problem, we have the corresponding
object loading sequence object s1, object s2, · · · , object sn in SI-optimal scheduling problem. Then,
recall the definition of SI according to Equation 1 and the calculation process shown in Figure 2d.
The visual completeness when object sj in the sequence is loaded is 1 −

∑j
i=1 дsi , and we have:

SI =
n∑
j=1

csj

(
1 −

j−1∑
i=1

дsi

)
=

n∑
j=1

csj

(
n∑
i=j

дsi

)
=cs1

(
дs1 + дs2 + дs3 + · · · + дsn

)
+ cs2

(
дs2 + дs3 + · · · + дsn

)
+ · · · + csnдsn

=дs1cs1 + дs2

(
cs1 + cs2

)
+ · · · + дsn

(
cs1 + cs2 + cs3 + · · · + csn

)
=

n∑
j=1

дsj

j∑
i=1

csi =
n∑
j=1

дsjLsj ,

(2)

where Lsj =
∑j

i=1 csi is the load completion time of object sj . As the SI gain of loading a given
object sj in the sequence is

wsj∑n
i=1 wi

, and the loading cost csj of it is equivalent to psj , we have:

SI =
n∑
j=1

дsjLsj =
n∑
j=1

wsj∑n
i=1wi

Tsj =

(
1∑n

i=1wi

) n∑
j=1

wsjTsj . (3)

Note that the weight valuesw j (j = 1, 2, · · · ,n) are all positive. Thus, it is obvious that the job
execution sequence in the original PCS problem achieves the minimal weighted completion time
if and only if the corresponding object loading sequence in the SI-optimal scheduling problem is
SI-minimal. Thus, the SI-optimal scheduling problem is NP-complete.
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Our approach. Owing to the NP-completeness of the calculation of SI-optimal scheduling, we
intend to seek a mechanism that efficiently generates a near-optimal scheduling as the baseline.
We start with a very simple case. If there exists no dependency among different web page objects,
it is obvious that the baseline scheduling should be a loading sequence where all the objects are
sorted in an order according to their SI gain efficiency ej =

дj
c j

(or SI efficiency for short). Put simply,
the higher SI efficiency value an object possesses, the earlier it should be loaded.

However, in practice the above scheduling scheme is often unachievable since it may violate the
dependencies among objects. Fortunately, we observe that the cumulative nature of SI calculation
greatly benefits from the dependencies, which facilitates us to efficiently generate a near-optimal
scheduling. In particular, we define an object j together with all its precedent dependencies as
j’s object group (denoted as G(j)). For instance, in Figure 8, object F ’s object group is marked in
gray. If a browser tends to load F , it has to first load all the other objects in F ’s object group, i.e.,
F ’s precedent dependencies. Therefore, when taking dependencies among different objects into
consideration, the SI efficiency of a certain object j turns out to be an overall SI efficiency of loading
j’s object group, which can be formally defined as themerged SI gain efficiency (or merged efficiency

for short) of an object j: ēj =

∑
i∈G (j )

дi∑
i∈G (j )

ci
.

SipLoader assumes that to achieve a (near-)optimal scheduling, the browser should continue to
load objects from the object group with the highest merged efficiency (termed as optimal object
group) since these objects own the highest SI gain expectations. Guided by this, we devise the
dependency-merged greedy inference mechanism that keeps detecting and loading objects from
the optimal object groups, so as to efficiently generate a near-optimal scheduling.

Specifically, SipLoader first calculates the merged efficiency of each object on the entire depen-
dency graph and then selects the optimal object group (denoted as object k’s object group) as it
owns the highest SI gain expectation. Before loading object k , SipLoader needs to load k’s precedent
dependencies. Therefore, SipLoader further searches in k’s precedent dependencies (which form a
subgraph of the original dependency graph) to find the optimal object group among them. Such
operation is repeatedly performed until there is only one object left, which is selected to be loaded
next. Note that loading this selected object will not violate the dependencies since after the above
processes, only the object with no precedent dependencies can be left. The corresponding node of
this object is then deleted from the original dependency graph. Afterwards, SipLoader updates the
merged efficiencies of the remaining objects for iteratively inferring the next object to be loaded.
We go through the iteration processes of our greedy algorithm on the example dependency

graph in Figure 8. Initially, we calculate the merged efficiency ē for each object, and we find object
F has higher a merged efficiency ēF =

дA+дB+дC+дF
cA+cB+cC+cF

= 0.1 than any other object. Thus, we then
search in F ’s precedent dependencies, i.e., A, B, and C , for the first object to load. Among objects A,
B, and C , C has the highest merged efficiency ēC =

дA+дC
cA+cC

= 0.04, and we search in its precedent
dependencies, wherein only object A is left. As a result, A is selected to be loaded first. In fact,
A must be loaded first since it is currently the only object in the dependency graph that has no
precedent dependencies. Then, we delete A from the dependency graph and update the merged
efficiency for the remaining objects. In the next iteration, F still has the highest merged efficiency,
and we search in its precedent dependencies, i.e., B, and C , and choose C as the second object
to be loaded. Similarly, objects B and F will be chosen as the third and the fourth object to be
loaded respectively ( 1○), with objects D, E, and G remaining. Given that D has the highest merged
efficiency at present (ēD = 0.14) without precedent dependencies, it is selected as the fifth object
and removed from the graph. Finally,G has a higher merged efficiency (ēG = 0.1) than E (ēE = 0.06),
and thus G will be loaded next ( 2○) and E will be loaded in the end ( 3○).
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Employing the above mechanism, we can generate a (near-)optimal scheduling in an O(n2)

complexity, where n represents the number of nodes in the dependency graph. We will further
discuss the efficiency and optimality of our approach in §6.

4.2 Predictive Element Region Forest
In order to generate the baseline scheduling with dependency-merged greedy inference at the
beginning of page loading, we need to determine crucial elements in advance so that we can assign
SI gains to the corresponding web page objects. Nevertheless, neither the server nor the client
can achieve this on its own in practice. On the one hand, the client cannot determine the crucial
elements until the page is fully loaded, since the liquid layout schemes adopted in many pages can
make elements’ sizes and positions elusive on different devices as mentioned in §3.2. On the other
side, the server alone cannot determine the crucial elements for the client as well, since it does
not know the client’s viewport size beforehand. Although the client can request crucial element
information from the server by sending the viewport size at the beginning of page loading, it will
incur additional latency and decrease page load efficiency. This is because the browser must first
receive and execute the scripts that explicitly define such logic (which at least needs a round-trip
time), and then suspend page loading until the server returns the crucial element information.
To tackle this dilemma, we leverage a client-server collaborative crucial element identification

approach based on our two-fold observations. First, almost all web pages’ layout structures are
only affected by the width of a client viewport (while the height changes are usually handled by
page scrolling). Second, although an element’s absolute position varies with the viewport width, its
relative position to other elements can remain largely unchanged within the same layout scheme.
For example, Figure 9 shows the same web page under different viewport widths, where elements’
sizes and absolute positions under screen coordinates are apparently different. However, the relative
positions between elements, e.g., the relative angles {α1, β1,γ1} and {α2, β2,γ2} that characterize the
inclination of lines between geometric centers of two elements, are extremely similar. Note that
under different layout schemes, the relative positions between elements can vary greatly, e.g., in
Figure 7, some elements shift from the second row to the first row after the layout transition.

Inspired by the above, SipLoader determines the crucial elements in the following way. First, the
server repeatedly preloads the target web page under a series of viewport widths (from 500 px to
2500 px every 50 pixels) and records the possible sizes, absolute positions, and relative positions
for each element. For two page loads, when their elements’ relative positions are similar, i.e., the
average distinction of relative angles is less than a certain threshold δ , they are classified into the
same layout scheme. Currently, we set δ as 5◦, which is found to balance well the tradeoff between
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the accuracy of the classification and the scale of identified layout schemes. It is worth noting that
a too large δ leads to many false positives in classification; while an excessively small δ may incur
an explosion in the scale of layout schemes, imposing a heavy burden on further calculations and
data transmissions between clients and servers.
For each identified layout scheme of the page, we cumulatively overlay the coverage regions

of each element under different viewport widths. Figure 10 shows the overlaying process of four
elements’ coverage regions, where each gray rectangle is the bounding rectangle of the element [15]
under a specific viewport width. The overlaid coverage region of an element (termed as predictive
element region) predicts possible positions where the element may appear under the given layout
scheme. We then leverage the Graham scan algorithm [31] to calculate the convex hull for each
predictive element region so as to encode region data. Also, we record the area of each region
for determining the SI gain of the related objects (§5). The convex hulls of all predictive element
regions of a layout scheme are constructed into a k-dimensional tree [56], which will be assembled
together with other different layout schemes’ (termed as predictive element region forest).

At the beginning of page loading, the predictive element region forest will be sent to the client.
The client chooses a predicted layout scheme from the forest based on its actual viewport size,
and then infer the crucial elements by querying the corresponding k-dimensional tree (as shown
in Figure 11). For web pages that have tens of thousands of elements, the O(

√
n) complexity of

k-dimensional tree query in JavaScript can have negative impacts on page load performance. To
cope with this, once a vertex of a certain convex hull is found to be overlapping with the viewport
during the query, we determine the corresponding element to be a crucial element, and then prune
the tree by removing its convex hull’s remaining vertexes, so as to reduce the search space.

With the help of the above efficient computational geometry algorithms, the time complexity of
the server-side preprocessing is only O(n · loд(n)) [53], where n denotes the number of web page
elements. In addition, the collaboration module is generic to all servers and dynamically loadable
with simple configurations.

4.3 Event-Driven Reactive Co-Scheduling
Although SipLoader manages to calculate the baseline scheduling through techniques discussed in
§4.1 and §4.2, such a scheduling scheme is often suboptimal in practice due to uncertainties that
lie in network transmission and browser executions. For instance, when a web page is preloaded
on the server where object A and B share a same SI gain but A induces a lower loading cost than
B, A will be placed ahead of B in the baseline scheduling. However, it is possible that when the
page is loaded on a client, B arrives much earlier than A due to network uncertainties. In this case,
inflexibly obeying the baseline scheduling if B has no precedent dependencies (i.e., pending object
B and waiting for A) could lead to a suboptimal scheduling result. In addition, as mentioned in
§3, the background activities of other concurrently opened tabs also add to the uncertainties of
browser evaluation time on each object, which can result in a suboptimal scheduling as well.

To cope with the above issues, SipLoader adopts an event-driven reactive co-scheduling scheme
that dynamically repairs the baseline scheduling to achieve a near-optimal page loading scheme
in real time. In particular, SipLoader orchestrates network fetches, script executions, and element
rendering by maintaining a sending queue and a receiving pool. The sending queue holds network
requests that are currently not ready to be sent, e.g., those blocked by browser’s maximal concurrent
connection constraints [36]. The receiving pool holds objects that have been fetched to the client
but are not ready for evaluation yet, e.g., those whose precedent dependencies are not fully loaded.

As shown in Figure 12, SipLoader first initializes the sending queue with all the object requests
sorted according to the baseline scheduling. The requests ranking ahead are popped up and handed
over to the network stack for concurrent fetching (the number of concurrent requests is determined
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Fig. 12. Architectural overview of event-driven reactive co-scheduling.

by the maximal network concurrency supported by the browser), while the others are held in the
sending queue. Then, SipLoader keeps monitoring the events generated from the network stack
and browser engines. Once a response is received, i.e., a Response Received event is generated
by the network stack, the fetched object is added into the receiving pool. Meanwhile, SipLoader
pops up the first request in the sending queue and passes it to the network stack. On the other side,
when an object’s evaluation is completed, i.e., an Object Evaluated event comes up, SipLoader
selects an object from the receiving pool which is headmost in the baseline scheduling and has no
unloaded precedent dependencies. This object is delivered to the JavaScript or rendering engine for
evaluation. In this way, SipLoader adaptively co-schedules network fetches and local executions so
as to achieve the near-optimal scheduling in real time.

5 IMPLEMENTATION
The implementation of SipLoader mainly focuses on scheduling images, stylesheets, and JavaScript
files, since they account for 81% of today’s web objects in total [43], but note that other types of
web page objects like fonts can be accommodated in a similar way.

Dependency graph generation. We capture the fine-grained dependency graph of a web page
by preloading the page at the server side and monitoring the entire page load process with Chrome
DevTools Protocol [14]. To estimate SI gain for each object, we first identify the web page elements
that an object can have visual impacts on. Specifically, for image objects, their impacted web page
elements are the image tags holding them. For stylesheets, their impacted elements are those
affected by their CSS rules. In terms of scripts, we use JavaScript MutationObserver API [19]
to detect the changed elements during the script execution, and we regard the visually changed
elements as their impacted elements. Based on this, we estimate the SI gain for each object at the
beginning of page loading, by summing up all the areas of its impacted crucial elements’ predictive
element regions, and then divide the result by the viewport area.

Next, we discuss how we estimate the loading cost for each object based on the page load traces
collected on the server side. The estimated loading cost of an object consists of two parts, i.e.,
network transmission time and browser evaluation time. Due to the parallel nature of network
requests during page loading, we divide the time into 10-ms slices to better perform the estimation.
Specifically, an object’s network transmission time is calculated by summing up the average network
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transmission time that they share with other objects in each slice. For example, if there are four
concurrent requests in a same 10-ms slice, the average network transmission time of each object
within this time slice is 2.5 ms. Adding up all the averaged transmission time in each slice, we get
the estimated network transmission time for each object.

In terms of browser evaluation time, for script files, we use their actual execution time recorded
in browser traces during page loading. For stylesheets, since today’s browsers do not provide their
fine-grained timing information in traces, we calculate their browser evaluation time as the sum of
the RecalculateStyle [6] time of an average CSS rule within them. Similarly, we set the browser
evaluation time of each image object to be the rendering time of an average image. We realize all
the above using Python and Node.js together with Puppeteer libraries [22].

Web page rewriting. In order to incorporate SipLoader into page loads on top of unmodified
commodity browsers, we rewrite the web page on the server side using Beautiful Soup [12] with
Python. We delete all image, CSS, and script URLs defined in the HTML file so that we can schedule
the fetches and evaluations of the three types of objects. Then, we pack the modified HTML file,
predictive element region forest, dependency graph, and the SipLoader codes (in JavaScript) into a
new HTML file. When the client requests for the page, the server will send the rewritten version of
the HTML file instead. The client loads the rewritten page as common web pages, but during the
loading process, the SipLoader codes control both network fetches and object evaluations.

6 EVALUATION
Our evaluation of SipLoader consists of two parts. First, we demonstrate that SipLoader significantly
improves the median SI by 41%, and provides 1.43×–1.99× more benefits than state-of-the-art
solutions (§6.2). Then, we evaluate the benefits of SipLoader’s each component (§6.3).

6.1 Experiment Setup
We compare SipLoaderwith two state-of-the-art web page accelerators, Vroom [57] and Fawkes [45].
Vroom improves page load speed by scheduling resource fetching during page loading based on a
server-aided dependency resolution scheme. In terms of Fawkes, it accelerates web page loads by
generating app-like static HTML templates for web pages offline, and patches dynamic contents
when pages are being loaded. We choose these two web page accelerators since the former adopts
a dependency-driven object fetch scheduling, and the latter represents a typical visibility-aware
page load scheme, both of which have commonalities with the design of SipLoader.
Our evaluations mainly comprise the landing pages of 300 websites randomly chosen from the

Alexa top 1,000 sites, covering the categories of news, online shopping, sports, business, etc. To
create a reproducible test environment as well as enable the page rewriting procedures involved
in all the three accelerators, we use Mahimahi [51], a web record-and-replay tool, to record the
corpus pages. Web pages rewritten by the three accelerators are all deployed on top of a local server
(Ubuntu 20.04, 2.9 GHz × 16 core CPU, 16-GB memory, and 1-Gbps NIC).

We conduct evaluations on both mobile and PC devices as previously listed in Table 1. Although
Vroom and Fawkes primarily focus on mobile environments where client computation is usually the
page load bottleneck, their core designs are compatible with desktops. Also, we feel desktop clients
may still benefit from them since as we mentioned in §3.2, both network and client computation
are often uncertain during page loading. To perform apple-to-apple comparisons under the same
test environment, we re-implement Vroom and Fawkes based on their key mechanisms1. All PC
devices connect to the local server via an in-lab LAN with a bandwidth of 1 Gbps for controlled

1Owing to a small set of devices we use, we did not implement the components of Vroom that are related to device-specific
customization for simplicity.
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Fig. 13. SI improvements under desktop, cold cache settings.

-15 0 20 40 60 80
SI Improvement (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

SipLoader
Fawkes
Vroom

Mean=28.25
Median=26.79

Mean=24.19
Median=22.81

Mean=19.78
Median=16.56

(a) 5G

-15 0 20 40 60 80
SI Improvement (%)

0

0.2

0.4

0.6

0.8

1

C
D

F

SipLoader
Fawkes
Vroom

Mean=33.75
Median=32.06

Mean=26.21
Median=22.62

Mean=20.35
Median=15.57

(b) LTE

Fig. 14. SI improvements under mobile, cold cache settings.

Back-to-Back 3 Hours 6 Hours
15

20

25

30

35

40

S
I I

m
pr

ov
em

en
t (

%
)

SipLoader
Fawkes
Vroom

Fig. 15. SI improvements under
100 Mbps bandwidth, 25 ms la-
tency, and warm cache settings.

experiments ({1, 10, 100} Mbps bandwidth and {10, 25, 50, 75} ms latency), while two smartphones
connect to the local server via cellular networks including LTE and 5G networks. It is worth noting
that such experiment setup has covered the three major uncertainties (i.e., network, client-side
computation, and viewport sizes) that can affect the optimality of scheduling during page loading.
We evaluate the performance of three accelerators in both cold cache and warm cache ({0, 3, 6}

hours) settings. In particular, for Fawkes’ cold cache settings, we generate its HTML templates 24
hours apart. Under each environment configuration, every page is loaded on Chrome 91.0 with
5 repetitions, and we use the average SI value of the 5 loads of a page as the final results. We
leverage Chrome DevTools to record the visual progresses of web page loading, which are used for
subsequent SI calculation with Speedline.

6.2 End-to-End Performance

Cold cache. Figure 13a shows the SI improvements of three web page accelerators on PC-2
under the 100-Mbps broadband network with a 25-ms latency. In such a cold cache setting, the
median and average SI improvements of SipLoader are 30.23% and 33.61% respectively, significantly
outperforming the other two web page accelerators. In particular, the median SI improvement with
SipLoader is 1.84 × higher than Vroom’s, and 1.33 × higher than Fawkes’. This is because even if
Vroom prioritizes the fetches of web page objects that are in the critical path of page loading, it
does not consider objects’ visual impacts, yielding low improvements on SI. Moreover, although
Fawkes’ immediate rendering of static HTML templates speeds up the visual progress during page
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loading, the benefits are only restricted to the beginning of a page load. After the static parts of a
web page are rendered, Fawkes’ loading process of dynamic parts does not account for the visual
importance of web page objects as well.

When network conditions become worse, SipLoader’s benefits increase. As shown in Figure 13b,
when the network condition degrades from 100 Mbps with a 25-ms latency to 10 Mbps with a 50-ms
latency, the median and average SI improvements of SipLoader increase to 40.59% and 40.30%,
respectively. Compared with Vroom and Fawkes, SipLoader enjoys larger SI improvements as
network conditions get worse. The average SI benefits of SipLoader increase by 6.69% after the
degradation, while those of Fawkes and Vroom are only 3.88% and 2.38%. This is because SipLoader
fetches and evaluates web page objects based on their merged SI gain efficiencies. Poor network
conditions require a more efficient utilization of available network capacities to fetch objects with
higher SI gains and lower transmission time. Similarly, when client performances are relatively
poor, SipLoader provides the highest SI improvements among three accelerators (as shown in
Figure 13c), as it gives priority to evaluating objects with higher SI gains and lower evaluation time.
Figure 14 shows the SI improvements of the tested accelerators under 5G and LTE mobile

environments. SipLoader keeps outperforming Vroom and Fakes in both scenarios. Also, the
average benefits of SipLoader on the LTE network are more significant than those on the 5G
network (33.75% v.s. 28.25%), owing to the higher latency and lower bandwidth of the LTE network.
We omit the results of other environment configurations as their trends are basically the same.

Warm cache. We also evaluate SipLoader in warm cache settings. As shown in Figure 15, for
back-to-back loads (i.e., pages are loaded immediately after preceding warming-up loads), Fawkes
presents a higher improvement on average SI over the corpus pages than SipLoader and Vroom. In
detail, the average improvement on SI of Fawkes reaches 29.02%, while that of SipLoader and Vroom
are 27.93% and 19.15%, respectively. We attribute this to Fawkes’ static HTML templating feature
that caches unchanged objects across different versions of web pages. When pages are loaded
in a back-to-back manner, the vast majority of objects within the pages remain unchanged [45],
thus incurring little overhead of Fawkes’ dynamic content patching and bringing significant SI
improvements. Despite SipLoader’s fewer SI benefits than Fawkes’, the differences are subtle. This is
due to the fact that when objects can be quickly fetched from the browser cache (i.e., network is no
longer one of the bottlenecks during page loading), SipLoader keeps evaluating them in a (nearly) SI-
optimal order, and therefore is still able to improve SI. On the other side, after prioritizing resource
fetches and receiving prioritized objects from the browser cache, Vroom does not further schedule
the object evaluation based on any visibility-aware heuristics. Thus, its benefits on improving SI
are rather limited compared with SipLoader and Fawkes.

In terms of 3-hour and 6-hour warm cache settings, SipLoader continues to outperform the other
accelerators because, as time goes by, the number of changed objects within web pages increases,
and thus more objects need to be transmitted through the network, which makes scheduling
the object fetching process more important to improving SI. In contrast, the benefits of Fawkes
gradually drop since more objects are loaded through dynamic patching rather than from the
cached HTML templates.

Sensitivity analysis. Although SipLoader presents promising improvements on the SI of page
loads inmost scenarios, we do notice performance degradation (5%–15%) in someweb pages. Delving
deeper, we find that these pages are quite simple and have very few page objects (typically no
more than 20 objects). This is reasonable since the crucial element identification and the scheduling
process of SipLoader require extra time, which cannot be compensated by SipLoader’s benefits on
these pages. Thus, for pages with a small number of objects (i.e., ≤20 objects), we can simply leave
them unmodified to avoid performance degradation.
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6.3 Individual Components
To better understand the benefits of SipLoader, we evaluate its individual components to uncover
their impacts by incrementally enabling one at a time. When the mechanism of predictive element
region forest is disabled, we regard all of the web page elements as crucial elements. When
dependency-merged greedy inference is disabled, we use the loading order of the default web page
as the substitute. When event-driven reactive co-scheduling is disabled, we fetch and evaluate
objects strictly according to the baseline scheduling without repairing it. We perform the evaluation
on top of PC-3 with our 300 corpus pages under the 100 Mbps network with cold cache settings.

Predictive element region forest. After the client determines crucial elements in the current
user viewport based on the predictive element region forest sent from the server, we dynamically
append link tags to the header of the DOM tree, with their rel attributes set as “preload” and
their href attributes set as the URLs of objects related to crucial elements. In this way of utilizing
HTTP/2 Preload policy, the browser will fetch objects that have visual impacts on crucial elements in
advance for future evaluations. As shown in Figure 16 ( 1○), when only the mechanism of predictive
element region forest is enabled, we enjoy an average SI improvement of 8.45%, indicating that
prioritizing the fetches of objects related to crucial elements is important to SI improvements.

Dependency-merged greedy inference. We then only enable dependency-merged greedy in-
ference on SipLoader, and attempt to infer the (nearly) SI-optimal page load scheduling over all
of the web page objects (i.e., all web page elements are regarded as crucial elements). As shown
in Figure 16 ( 2○), this brings few SI improvements (3.83% on average). The main reason is that
inferring the baseline scheduling over all web page objects can hardly obtain the (nearly) SI-optimal
loading orders, since not all objects have visual impacts on users. For example, some web pages may
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hold a large portion of contents in their below-the-fold sections, which have a higher probability to
be prioritized when only the greedy inference is used. These contents do not contribute to the visual
completeness during page loading, and worse still, they can delay the rendering of above-the-fold
visible page contents, resulting in a high SI value.

The unsatisfactory performance of the single use of dependency-merged greedy inference
demonstrates the importance of identifying crucial elements at the beginning of page loading.
Thus, we combine the predictive element region forest mechanism and dependency-merged greedy
inference together to test their impacts. As shown in Figure 16 ( 3○), by taking the contribution to the
visual completeness of each object into account, dependency-merged greedy inference generates the
(nearly) SI-optimal page load scheduling, which guides object loading and significantly improves SI
by 25.93% on average. Note that neither the single use of predictive element region forest nor the
single use of dependency-merged greedy inference can have such a high improvement. Therefore,
the combination of these two mechanisms is critical to the performance of SipLoader.

Efficiency and optimality. We next compare the efficiency and the optimality of dependency-
merged greedy inference with the topological sort-based approach. Figure 17 depicts the average
computation time of them on web pages with a small number of objects. When the object number
reaches 12, the topological sort-based approach bears an average computation time of 1,261 ms,
significantly delaying the page loading process. Moreover, when the number of objects exceeds 14,
the computation time of the topological sort-based approach even makes further comparisons hard
to be conducted. In contrast, the polynomial complexity of dependency-merged greedy inference
allows us to quickly obtain the nearly SI-optimal scheduling. For web pages with tens of objects,
it only consumes no more than 1-ms computation. Also, as shown in Figure 18, for all of the 300
corpus web pages, we can obtain the nearly SI-optimal scheduling in 12.08 ms on average.
To evaluate the optimality of the baseline scheduling created by dependency-merged greedy

inference, we first choose landing pages from the Alexa top 2,000 sites whose SI-optimal page
load scheduling can be calculated by the topological sort-based approach in 20 minutes. Finally,
we have 134 pages’ SI-optimal schedulings as the ground truth. We then compare them with the
corresponding baseline schedulings generated by dependency-merged greedy inference, but observe
no substantial difference in the optimality of these two types of scheduling. The NP-completeness
of the SI-optimal scheduling problem prohibits us from further evaluating our greedy inference
algorithm. Nevertheless, considering the uncertain environments in most page loading processes,
we feel that the baseline generated by our greedy inference algorithm is sufficient since the widely-
existed uncertainties make a theoretically optimal baseline scheduling unnecessary, and it will be
more important to actively react to these uncertainties during the real scheduling process (which is
also the key idea of the original predictive-reactive scheduling framework [37]).

Event-driven reactive co-scheduling. We further evaluate the impacts of the event-driven
reactive co-scheduling mechanism. As shown in Figure 16 ( 4○), when it is enabled along with
the other two mechanisms, the SI improvement increases from 25.93% to 32.24%. This illustrates
that page loading processes are oftentimes subject to considerable uncertainties, causing the
“anticipated” SI-optimal scheduling to easily become suboptimal. Thus, reactively repairing the
baseline scheduling during page loading can provide additional benefits.

6.4 Additional Results

Benefits on other metrics. Although SipLoader mainly focuses on improving SI, it actually
benefits other page load metrics as well. For instance, SipLoader benefits Above-the-Fold Time
since it gives higher priorities to loading crucial elements and thus web pages’ above-the-fold
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sections can be renderedmore quickly. Figure 19 shows the cumulative distribution of the Above-the-
Fold Time of the 300 corpus pages with/without SipLoader. As shown, the average Above-the-Fold
Time improvement is 26.08%. Moreover, SipLoader improves Page Load Time (shown in Figure 20).
This is because SipLoader receives the dependency graph at the beginning of page loading, which
allows it to proactively fetch web page objects as long as the network pipe is not busy, rather than
issues network requests until the objects are really requested by the page.

Additional traffic overhead. As SipLoader requires apriori knowledge such as the dependency
graph and the predictive element region forest to perform page load scheduling, we also measure the
extra traffic overhead incurred by the transmission of these data. Among tested pages, SipLoader
only consumes 12.32 KB additional data usage on average, which is negligible compared with
usually MB-level traffic overhead of common web pages’ loading processes.

Server-side overhead. SipLoader incurs negligible overhead to the server in the phase of web
page preloading and rewriting owing to the design that takes advantage of efficient computational
geometry algorithms. For an average web page, it only needs ∼30 seconds to finish all the jobs,
indicating that page changes on a time granularity of >30 seconds can all be handled well. The
average memory usage during the preloading and rewriting of a page is 386 MB, most (87%) of which
comes from the headless puppet browser [16]. Also, SipLoader does not incur extra CPU/memory
overhead on web servers during the real page loading, as the client requests the rewritten version of
the page as normal pages, and the page load scheduling is performed entirely at the client browser.

Case study. Finally, we take the landing page of MSN as an example to reveal the real benefits of
SipLoader on user experience. Figure 21 shows the visual progress of page loads with the page’s
default loading scheme and the (nearly) SI-optimal scheduling generated by SipLoader. At the
beginning of page loading, there is no significant difference between the two loading schemes. This
is because both of them obey the same dependency policy of the page, within which some objects
must be loaded strictly ahead of the others, such as scripts that initialize global variables.

However, at around 1,800 ms, the default page loading scheme starts to evaluate scripts to load
several small and non-static icon images (e.g., icon A and icon B in the figure) that contribute little
to the visual completeness but occupy the network connection slots for a long time ( 1○). As a result,
requests for subsequent static and large images have to wait until the browser receives the preceding
small icons ( 2○). In contrast, SipLoader determines the nearly SI-optimal loading orders for web
page objects, and therefore loads the large, static images (that have no precedent dependencies) first
( 3○) and then evaluates the scripts for loading small icons. Also, when uncertainties cause objects
to be received later than expected, SipLoader reactively repairs the scheduling by selecting objects
that have no precedent dependencies to be fetched or evaluated first ( 4○). In this way, uncertainties
hardly block the loading process, and user-perceivable page elements are oftentimes rendered with
higher priorities, which provides a better experience for users during page loading.

7 RELATEDWORK

Page load performance. The performance of web page loading has attracted increasing attention
from both industry and academia. For example, Lighthouse [17] is an automated tool integrated in
Chrome DevTools [13] for web page developers to measure web page performance, debug page load
processes, and pinpoint the performance bottleneck. Also, a recent study in [46] builds a testbed to
measure mobile web page load performance. They characterize the unique factors that can cause
poor performance to mobile page loading, including the computational power of mobile devices,
the different critical path from the desktop-version pages, etc.
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In this paper, we conduct a measurement study to uncover the uncertainties during page loading,
and thereby provide useful insights on the design of web page performance optimization methods.

Web page accelerators. In the past ten years or so, there have been plenty of techniques for
optimizing web page loading, which can be mainly classified into three categories: 1) dependency-
based page load scheduling, 2) snapshot-based optimization, and 3) user-oriented QoE enhancement.
WProf [61] resolves the dependencies of object loading during the real page load process.

Scout [48] uncovers hidden dependencies among objects by tracking fine-grained data flows. Based
on such detailed dependency information together with observations about real-time network
conditions, Polaris [48] schedules the fetching of a page’s objects by dynamically prioritizing those
in the critical loading path. Moreover, Vroom [57] adopts a server-aided dependency resolution
scheme to make the dependency-based page load scheduling both efficient and secure. On the other
side, strategies on placing high-latency objects in CDN cache hierarchies are also studied in [55].

For snapshot-based optimization techniques, the most notable one among them is Prophecy [49].
The Prophecy server precomputes the final states of JavaScript and DOM tree for a page, which are
transformed into write logs for the client to quickly initialize the page. Another snapshot-based
accelerator, Shandian [62], preloads the web page on the server side and migrates the page state
to the client with inefficient loading processes removed. In addition, the study in [63] provides a
tool that allows developers to identify nondeterminisms [63] of JavaScript executions, so that the
correctness of snapshot-based page loading can be effectively guaranteed.

Recent studies also take the first step to optimizing page loading from the aspect of users’ subjec-
tive feelings. For instance, Klotski [29] generates page load scheduling that prioritizes high-utility
contents for arbitrary users. WebGaze [40] prioritizes objects that are more visually interesting to
users. Besides, adPerf [54] identifies pages’ third-party ads that can cause user experience issues.
However, all the above efforts use page load metrics to retrospectively evaluate the benefits of

page load schemes, rather than use them as active guidance to direct page loading. In contrast, we
proactively take an advanced page load metric, Speed Index, into the design and implementation
processes of page load schemes to enable metric-guided page load acceleration.

8 CONCLUSION
We present SipLoader, an SI-oriented page load scheduler that proactively takes SI as guidance to
page loading. Based on our novel cumulative reactive scheduling framework, SipLoader “repairs” the
anticipated (nearly) SI-optimal scheduling when scheduling uncertainties deriving from network,
browser execution, and user-side viewport size actually occur during page loading. Evaluations
show that SipLoader improves the median SI by 41%, outperforms the state-of-the-art solutions by
1.43×–1.99×, and incurs limited computation and traffic overhead.

Despite the above merits, SipLoader still bears two major limitations at the moment. First, the
mechanism of predictive element region forest does not well accommodate personalized or highly
dynamic pages whose layouts can vary greatly across different page loads. Second, SipLoader may
cause performance degradation in a small part of simple pages because scheduling page loading
incurs extra overheads, which cannot be compensated by the benefits gained on these simple pages.
We are exploring practical ways to overcome these limitations.
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