
SMig: Stream Migration Extension For HTTP/2

Xianghang Mi
Indiana University
Bloomington, IN

xmi@iu.edu

Feng Qian
Indiana University
Bloomington, IN

fengqian@indiana.edu

Xiaofeng Wang
Indiana University
Bloomington, IN

xw7@indiana.edu

ABSTRACT
HTTP/2 is quickly replacing HTTP/1.1, the protocol that
supports the WWW for the past 17 years. However, HTTP/2’s
connection management and multiplexing schemes often
incur unexpected cross-layer interactions. In this paper, we
propose SMig, an HTTP/2 extension that allows a client
or server to migrate an on-going HTTP/2 stream from one
connection to another. We demonstrate through real imple-
mentation that SMig can bring substantial performance im-
provement under certain common usage scenarios (e.g., up
to 99% of download time reduction for small delay-sensitive
objects when a concurrent large download is present).

CCS Concepts
•Networks→ Application layer protocols;

Keywords
HTTP/2; Stream Migration; Head-of-line Blocking

1. INTRODUCTION
HTTP, the key protocol supporting the World Wide Web,

has been evolving. Currently, the most widely deployed
HTTP version is HTTP/1.1 [16] standardized 17 years ago.
As web pages became rich and complex, HTTP/1.1 started
to exhibit performance issues. To address them, several new
web protocols have been proposed recently. In particular,
HTTP/2 [10], the next version of HTTP, has been standard-
ized in 2015 and is replacing HTTP/1.1 quickly. From July
2015 to June 2016, the fraction of websites using HTTP/2
has increased from 0.3% to 8.1% [8]. Within the Alexa top
100 websites, 31% of them support HTTP/2 [25].

HTTP/2 introduces several new features such as a bi-
nary protocol format, header compression, and server push.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this
work owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

CoNEXT ’16, December 12-15, 2016, Irvine, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4292-6/16/12. . . $15.00

DOI: http://dx.doi.org/10.1145/2999572.2999583

Among them, a particularly notable feature is multiplex-
ing, which consolidates multiple concurrent requests into a
single TCP connection. By contrast, HTTP/1.1 only sup-
ports serving requests sequentially over a TCP connection1.
Therefore, HTTP/1.1 needs multiple concurrent connections
to support concurrency. Prior studies have shown multi-
plexing often effectively improves the page load time [27,
26, 23]. However, studies also revealed that multiplexing
may incur undesired interaction with other layers, leading
to suboptimal performance. Examples include being vul-
nerable to losses [26], poorly interacting with the cellular
radio state machine [15], and under-utilizing the network
bandwidth [23]. Note many of these issues also exist in other
multiplexing-based web protocols such as QUIC [13].

In this paper, we propose SMig (Stream MIGration ex-
tension), an extension that improves the performance and
enables new use cases for HTTP/2. In the current HTTP/2
paradigm, (1) objects are usually multiplexed over a single
connection; (2) an object transfer including both its request
and response must be bound to the same connection. SMig
instead allows the delivery of an object to be migrated
from one connection to another at any time. For example,
the request and response can be delivered over different
connections; or all bytes except for the first 100KB of an
object can be migrated to a different connection. We make
the following contributions throughout this paper.
• In §2, we motivate SMig using concrete use cases. (1)
When large and small objects are multiplexed together, HTTP/2
suffers from severe sender-side head-of-line (HoL) blocking,
toward which no effective solution exists. (2) We found
that (explicitly or implicitly) canceling a large file download
over HTTP/2 incurs a significantly larger amount of wasted
traffic compared to doing so over HTTP/1.1. This can be
effectively addressed by SMig. (3) We also describe other
new use cases enabled by SMig such as adaptive multipath.
• In §4, we present the design of SMig, which is lightweight,
backward compatible, and incrementally deployable. In
SMig, a migration can be initiated by either the server or a
client, and the migration incurs no additional delay under the
common usage scenario. A possible concern of SMig is that
it creates additional connections. However, their numbers
are still significantly less than those in HTTP/1.1. More

1An exception is HTTP Pipelining, which has various
limitations and was not widely deployed.

http://dx.doi.org/10.1145/2999572.2999583

importantly, since usually only large objects are migrated,
the connection management overhead is amortized by the
large transfer carried by a migrated connection.
•We have implemented a prototype of SMig and integrated
it with our custom HTTP/2 client and server applications.
In §5, we evaluate SMig over wired networks and commer-
cial cellular networks. The results indicate that SMig can
bring substantial performance improvement under certain
common usage scenarios (e.g., up to 99% of download time
reduction for small delay-sensitive objects when a concur-
rent large download is present, and up to 90% of reduction
of wasted traffic when canceling a large object transfer).

2. MOTIVATING EXAMPLES
We first give an overview of the multiplexing mechanism

in HTTP/2. HTTP/2 encapsulates HTTP transactions into
streams each carrying one transaction. A stream is a bidirec-
tional flow of bytes consisting of a series of frames carrying
the actual data. Each frame also contains a stream ID to
allow the receiver to de-multiplex the streams. Next, we
describe a few scenarios where applying SMig is beneficial.

2.1 Multiplexing Large and Small Objects
Our prior study [23] identifies an issue of the multiplexing

mechanism in SPDY [6], the predecessor of HTTP/2. When
a large object download (often delay-tolerant) is multiplexed
with small object transfers (usually delay-sensitive), the
latter’s performance will degrade dramatically. This is at-
tributed to the head-of-line (HoL) blocking at the TCP send
buffer that significantly affects HTTP/2 performance. Due to
multiplexing, large and small transfers share the same send
buffer that is inherently FIFO. Therefore, small transfers will
be blocked by the large download as long as the TCP send
buffer size is not trivially small. Note this is different from
another well-known HoL blocking happening at the receiver
side caused by packet losses or severe out-of-order [26].

Here we further confirm that server-side HoL blocking
exists in HTTP/2. We conducted experiments over a wide
range of HTTP/2 server implementations (latest versions as
of June 2016) including Nghttp2 1.11, LiteSpeed 5.0, Nginx
1.10.1, and H2O 2.0.0. We found all of them, many of
which are production-level implementations, are vulnerable
to sender-side HoL blocking. It is also worth mentioning
that HTTP/2 can be deployed either at a web server or at
a proxy. In the former scheme, objects belonging to the
same domain are multiplexed together; while in the latter, all
traffic from the same client browser is multiplexed, making
the sender-side HoL blocking an even more severe issue: a
large download will affect the entire browser’s performance.

Next, we conduct measurements to reveal that for real
websites, it is quite common that large and small objects are
hosted under the same domain (so HTTP/2 will use the same
connection to deliver them concurrently, causing potential
sender-side HoL blocking). The measurement is performed
as follows. We study the Alexa top-1500 websites. For each
website, we crawl all objects that belong to the first three
levels of its website object tree, which has its landing page’s

Contain Objects with Size... # Websites
≥ 1MB 209
≥ 5MB 43
≥ 10MB 21
≥ 25MB 10
≥ 50MB 4

Table 1: Websites among the Alexa top-1500 sites that
contain large objects in the first three levels of their website
object trees.

Scenario Tail Bytes
1. HTTP/1.1, cancel DL 150 KB
2. HTTP/2, cancel DL 2.5 MB
3. HTTP/2, close browser 150 KB

Table 2: Tail bytes in three scenarios.

HTML file as the root node (Level 1). Within the tree, Object
Y is a child of Object X if and only if X and Y have the
same domain name and X contains the URL of Y (therefore
X must be an HTML page and all objects in the tree have
the same domain name as the landing HTML page). We first
observe that the vast majority of objects are small, with the
25-th, 50-th, and 75-th percentiles measured to be 18KB,
40KB, and 115KB, respectively, across all websites. Prior
studies [24] show that for mobile versions of web pages,
their object sizes are even smaller. On the other hand,
Table 1 lists the number of websites (i.e., their object trees
with up to three levels of objects) that contain at least one
large object whose size is at least X ∈ {1, 5, 10, 25, 50}
MB. As shown, many websites contain large objects that
are under the same domain name as the landing page. If
such large objects are concurrently fetched with other small
objects, sender-side HoL blocking will occur. As will be
demonstrated in §5.1, even a mid-sized file of 1MB can
cause severe HoL blocking.

2.2 Canceling HTTP/2 Download
We found that compared to HTTP/1.1, after a single

HTTP/2 file download is canceled, the client may still re-
ceive a large number of bytes. To demonstrate this, we
conduct three experiments under the same network condition
(emulated 10Mbps link, ∼80ms RTT): (1) cancel an on-
going large HTTP/1.1 file download in Chrome browser
while keeping the browser open, (2) cancel an on-going
HTTP/2 download of the same size while keeping the browser
open, and (3) cancel an HTTP/2 download by directly clos-
ing the browser. The cancellation is done manually as how a
normal user would do. We then measure the number of bytes
delivered to the client (we call them “tail bytes”) after taking
the cancellation action. As shown in Table 2, 2.5 MB of
tail bytes appear in Scenario (2) while much fewer tail bytes
appear in Scenario (1) and (3). The issue of Scenario (2)
is also severe in cellular networks (up to a 20x difference
compared to Scenario 3) as will be shown in §5.2. This
causes bandwidth waste and monetary cost since cellular
customers are billed by bytes.

When canceling a file download in HTTP/2, the client
sends a RST_STREAM control frame to shut down its corre-

sponding stream. However, the stream’s underlying connec-
tion cannot be closed, because a TCP connection in HTTP/2
is persistent and long-lived [10] i.e., it needs to be shared by
all streams of the same domain (or all traffic of the entire
browser, if a proxy is used). Therefore, although the server
application stops delivering data of that closed stream to
TCP, all remaining data in the TCP send buffer will still be
transferred to the client. In contrast, when canceling a file
download in HTTP/1.1 or by closing the browser, the TCP
connection (with all data in its send buffer) is immediately
torn down, leaving much fewer tail bytes to arrive.

It is important to note that download cancellation occurs
frequently in the real world. It is not limited to user explic-
itly hitting a “cancel” button. Instead, it usually happens
implicitly, such as user skipping a song in a media player,
repositioning a video playback, navigating to another page
before the current page finishes loading a large object, paus-
ing background synchronization, etc. All above scenarios
will incur more tail bytes in HTTP/2 than in HTTP/1.1.

2.3 Download Accelerator Using Multipath
Mobile devices are usually equipped with multiple inter-

faces. Samsung recently introduced a new feature called
Download Booster to its Android devices, for accelerating
large HTTP download (> 30MB) using both Wi-Fi and
cellular [5]. Download Booster is realized using concurrent
HTTP byte range requests: requests for different ranges of a
large file are simultaneously sent over two connections, one
over Wi-Fi and one over cellular. This approach has two
limitations. First, since the byte ranges are pre-calculated,
Download Booster usually cannot achieve the optimal down-
load time (e.g., when cellular finishes sooner than Wi-Fi).
Second, download booster does not work with files whose
sizes are not known beforehand. In §4.1, we discuss how
SMig can easily work with existing off-the-shelf multipath
solutions to addresses the above limitations.

Summary. Due to multiplexing, connection management
in HTTP/2 differs from that in HTTP/1.1 significantly. The
HTTP/2 RFC [10] recommends that clients “should2 not
open more than one HTTP/2 connection to a given host and
port pair”. However, our findings indicate that blindly using
the single connection may lead to performance degradation
(§2.1), unnecessary network traffic (§2.2), and obstacles to
realizing new use cases (§2.3). We describe how SMig can
be used in the above scenarios in §4.1.

3. RELATED WORK
Our proposal complements existing work of modeling [27,

26], measuring [13, 25], optimizing [17, 15], and apply-
ing [12, 9, 14] emerging protocols such as HTTP/2, SPDY,
and QUIC. Next, we further motivate SMig by explaining
the limitations of existing solutions to the sender-side HoL
blocking problem described in §2.1.

2The word “should” in RFC means “there may exist valid
reasons in particular circumstances to ignore a particular
item” [11].

Stream Prioritization. HTTP/2 supports assigning to
streams different priorities, which “can be used to select
streams for transmitting frames when there is limited capac-
ity for sending” [10]. Stream prioritization however does not
help mitigate the sender-side HoL blocking when the shared
buffer is at the lower (e.g., transport) layer.

Shrinking TCP Buffer can mitigate the sender-side HoL
blocking and reduce the tail bytes. But doing so may cause
performance degradation as the TCP send buffer size limits
the TCP congestion window that is often highly fluctuating.
This makes estimating the right TCP buffer size difficult.

Priority Queue Support for TCP. Nowlan et al. pro-
posed uTCP [21], which adds unordered delivery and multi-
queue support to TCP. Leveraging uTCP, the server can
avoid HoL blocking by directing large and small transfers to
different queues. However, uTCP requires changing the OS
kernel. More importantly, uTCP is incompatible with TLS
cipher suites using chained encryption where a TLS record
cannot be decrypted until all prior records are processed.

Packet Late Binding. In our prior work [23], we built
TM3, a multiplexing proxy without sender-side HoL block-
ing. The basic idea is packet late binding: TM3 moves
the multiplexer deep into the OS kernel so that an outgoing
packet is not filled with real data until it exits shared buffers.
This essentially “skips” shared buffers and thus eliminates
the HoL blocking. However, as a general transport-layer
proxy, TM3 is designed to transparently multiplex concur-
rent HTTP/1.1 (or any short-lived) TCP connections, and
it cannot optimize an HTTP/2 flow that has already been
multiplexed at the application layer. Also, the late binding
mechanism enforces restrictions on frame size and format.
TM3 also requires OS kernel modification.

Other Protocols. Sender-side HoL blocking may also
occur at other shared buffers such as Qdisc and driver buffer.
But their sizes are usually much smaller. For example, TCP
Small Queues (TSQ [7]) can be applied to limit the per-
connection Qdisc buffer size with little performance degra-
dation. Also, HoL blocking occurs in other multiplexing-
based web protocols such as SPDY [6] and QUIC [4]. QUIC
employs UDP as the transport layer. Because UDP buffers
are also FIFO, sender-side HoL blocking still exists [23].

4. SMig DESIGN
The Stream Migration Extension (SMig) is an extension

for HTTP/2 allowing an on-going stream to be migrated
from one connection to another. Either the server or a
client can initiate a migration. As an application protocol
extension, SMig only adds lightweight logic to HTTP/2 and
requires no change to the underlying OS. Note that the
HTTP/2 specification indeed permits extending the protocol
by adding new frame types or new settings [10].

4.1 Usage Scenarios of SMig
A common usage scenario of SMig is to migrate the

response of an HTTP transaction. Consider the issues de-
scribed in §2.1 and §2.2. Suppose the client sends one
or more HTTP/2 requests to the server over a multiplexed

Length (24)
Type = 0xA Flags

Stream Identifier (31)R

dstCID: Destination Connection Identifier (96)

dstSID: Destination Stream Identifier (32)

ACK END_STREAM

Figure 1: Format of the MIGRATE frame. The gray fields
belong to the fixed 9-byte header of any HTTP/2 frame.

connection. If any of the requested object(s) are large and
there are a non-trivial number of small objects being (or to
be) transferred over the same connection, then the server will
initiate migrations by moving each large object to a separate
connection so that small and large objects are not mixed
together. In other words, in this scenario, for a migrated
stream, (1) its (usually small) request and large response
are delivered over different connections, and (2) its large
response uses a dedicated connection. Note the entire mi-
gration process is transparent to the upper layer. As a result,
(1) as large transfers are migrated to different connections
with separate buffers, they will not create HoL blocking for
small object transfers; (2) since each large transfer now uses
a dedicated connection without being multiplexed, to cancel
its download, its underlying connection can be directly torn
down, leading to much fewer tail bytes.

A counter-argument toward the above solution is, for large
objects, if the client can initiate their requests over separate
connections in the first place, then why do we still need
SMig? The key reason is that it is difficult for a client
to know the size of an object beforehand, so the client
has to follow the default paradigm by sending all requests
over a multiplexed connection. On the other hand, the
server usually knows the sizes of their hosted objects (the
vast majority of objects have the “Content-Length” field in
their response headers). This makes it trivial for the server
to make the migration decision based on the object size.
Nevertheless, there do exist objects whose precise sizes are
not known by server beforehand. We discuss how they can
be handled in §4.4.

SMig can also be leveraged to enable new use cases for
HTTP/2. For example, to overcome the limitations of Down-
load Booster (§2.3), SMig can be used with MPTCP [3],
the de-facto multipath solution with off-the-shelf Linux im-
plementation. MPTCP transparently splits the byte stream
of a TCP connection into multiple coupled paths (e.g., one
over Wi-Fi and one over cellular). However, it is well
known that MPTCP provides little benefit for small file
download [18]. The server can thus adopt the following
strategy to use MPTCP in an adaptive manner. By default,
for saving energy, only single path TCP over Wi-Fi is used
for file download. If the server finds the file to be large,
it can employ SMig to migrate the transfer to an MPTCP
connection that reduces the overall download time.

4.2 Stream Migration
We begin with introducing a new type of control-plane

frame defined by SMig. A MIGRATE frame is used to
expresses the intent of a stream migration, or to acknowledge
a migration initiated by a peer. As shown in Figure 1, there

Client Server

(a) (b) (c) (d)

Figure 2: Four stream migration scenarios (only downlink
data of the stream after the migration is shown).

C1, S1
Frame 1

C1, S1
Frame 2

C2, S2
Frame 4

C1, S1
MIG-ACK

C1, S1
Frame 3

C2, S2
Frame 5

Figure 3: Frames received by the server during migration.

are two key fields in a MIGRATE frame: dstCID is the
connection identifier (CID) of the destination connection that
the stream is migrated to; dstSID is the stream identifier
(SID) that the stream will be assigned to after it migrates
to dstCID. SID and its numbering convention are already
defined in the HTTP/2 specification. In SMig, CID identifies
a connection. It is a 96-bit number generated when a
connection is established, as to be detailed in §4.3. Note
that SID is defined within the namespace of CID so a stream
between two hosts is uniquely identified by (CID,SID).

The gray fields in Figure 1 belong to the fixed 9-byte com-
mon header of any HTTP/2 frame. The “Stream Identifier”
field is the SID of the stream (in its original connection) to
be migrated. The “Flag” field defines two types of flags.
The END_STREAM flag can be set to half-close a stream to be
migrated (an HTTP/2 stream is bidirectional; either side can
close the one-way data channel to its peer). The usage of the
ACK flag is explained next.

We now detail the stream migration procedure. Suppose
a stream with SID=S1 on connection CID=C1 needs to be
migrated. We first assume (1) the migration is initiated by
the server (the common case), and (2) there exists an idle
connection dstCID=C2 that the stream can be migrated to.
Note that neither assumption is mandatory for SMig. We will
describe client-initiated migration and the scenario where no
idle connection exists soon. The message exchange is shown
in Figure 2(a). The server first generates an unused stream
ID dstSID=S2 within C2. It then sends the corresponding
MIGRATE frame with ACK=0 to the client over S1 on C1.
The main purpose of the MIGRATE frame is to inform the
peer of the dstSID and dstCID so that the migrated stream
can be seamlessly handled. MIGRATE also ensures the cross-
connection ordering of frames by marking the last downlink
(server to client) frame transferred over the old connection
(example shown soon). All subsequent downlink frames
must be transferred over the new connection C2 using the
new SID S2. Also as shown, the data over the new connec-
tion can be piggybacked with the MIGRATE frame.

Upon the reception of the MIGRATE frame, the peer (in
this case, the client) acknowledges it by sending an identical
MIGRATE with ACK=1. Despite TCP ensures reliable deliv-
ery of the original MIGRATE frame, this ACK is still needed
because (similar to the downlink case) as the last uplink

frame transferred over (C1,S1), this MIGRATE with ACK
ensures the cross-connection ordering of frames. Figure 3
shows a possible sequence of uplink frames received by the
server. As shown, Frame 3 and 4 are out of order. The server
needs to buffer all frames received on the new connection
(Frame 4 in this example) until the reception of MIGRATE
with ACK, without which the server has no way to know
when the old stream ends. Note frames do not have sequence
numbers; their ordering within a connection is guaranteed by
TCP.

Despite not a common use case, a migration can also
be initiated by a client by following a similar procedure:
the client sends a MIGRATE and the server acknowledges it
with a MIGRATE with ACK, as shown in Figure 2(b). Note
regardless of who initiates the migration, the connection that
carries the migrated object is always initiated by the client.

Next we consider scenarios where there does not exist an
idle connection. If the client initiates the migration, it first
creates the connection before sending MIGRATE, as shown in
Figure 2(d). If the server initiates the migration, it sends a
MIGRATE with dstCID=0. The client will then create a new
connection on behalf of the server before sending a MIGRATE
with ACK and a valid dstCID, as shown in Figure 2(c).

Migration Overhead. We analyze the migration over-
head for the scenarios in Figure 2. We consider the delay
incurred by migration on the downlink data (the uplink cases
are symmetric). In plot (a), when the server initiates a
migration to an existing connection, the migration takes no
additional delay as the data over the new connection can
be piggybacked with the MIGRATE frame. The same case
happens in (b) except that the migration will be delayed by
one RTT. If the connection needs to be created, the overhead
is higher: in both (c) and (d), it takes the connection establish
time (including the SSL/TLS handshake delay) plus one
RTT before data appears on the new connection. During
this period, data transmission of the stream being migrated is
paused. However, note that since usually only large objects
are migrated, such delay is dwarfed by the long object
transfer time. To eliminate the connection establishment
overhead, a client application can always be ready for mi-
gration by maintaining one idle connection for certain (host,
port) pairs (detailed in §4.3). Note SMig never affects the
performance of objects that are not migrated.

4.3 Other Design Considerations
CID Generation. When creating a new HTTP/2 connec-

tion, an SMig-capable client generates a 96-bit CID, and
embeds it to a SETTINGS frame sent to the server. A
CID has two parts. The first 64-bit string is called AppID,
which is used for distinguishing multiple applications (apps)
on the same host; the last 32 bits identify a particular
connection within an app. When generating a CID, a client
app thus needs to ensure that (1) the CID is unique among
all currently established connections to the same (host, port)
pair, and (2) all CID belonging to the same app session
have the same AppID. When a stream is migrated from one
connection to another, their CID must have the same AppID.
This prevents a stream from being migrated to a connection

belonging to a different app running on the same client.
The SETTINGS frame also ensures backward compatibility:
an SMig-capable server must ACK it so both sides know
SMig is enabled; otherwise it will be ignored per HTTP/2
specification. The SETTINGS frames can be piggybacked
with the very first request and response so they do not incur
additional delay.

Internal State Migration. When a stream migrates to a
new connection, its internal states are migrated together with
the stream. They include header compression state [22], flow
control state, stream priority etc. Note that there is no need to
migrate the states at TLS and TCP layers. Optimization can
be made though to allow a migrated connection to cache a
subset of the old connection’s lower-layer states (e.g., certain
congestion control parameters) for better performance.

Idle Connection Management. As described in §4.2,
a client can optionally “cache” idle connections to reduce
the migration overhead. One issue here is to decide the set
of domains whose idle connections will be cached. Here
the tradeoff is between performance and connection man-
agement overhead. Consider two extreme cases. Caching
an idle connection for every domain essentially doubles the
number of connections, while not performing any caching
may slightly delay a migration as illustrated in Figure 2(c)(d).
A possible strategy here is to leverage historical information
to predict on which domains migrations are more likely to
happen. Then the browser will only create additional idle
connections for those domains.

Interplay with Server Push. Server push is a new feature
introduced in HTTP/2. Using server push, a server can
preemptively push (i.e., send) resources to a client without
requiring the client to request for the resource. Server push
enables early resource discovery and thus can potentially
reduce the page load time [17]. To push an object, the
server first sends a PUSH_PROMISE frame on an existing
client-initiated stream. The PUSH_PROMISE frame contains
a Promised Stream ID as well as the header information of
the to-be-pushed object. After that, the server initiates the
new stream over which the object’s data is transferred. SMig
works well with server push. The procedure for migrating
a pushed object is largely the same as that for migrating a
regular object as illustrated in Figure 2. Note if the migration
is initiated by the server, the server must send the MIGRATE
frame after the PUSH_PROMISE frame, and set the stream
identifier in the MIGRATE frame to be the ID of the promised
stream, which is the stream to be migrated.

Simultaneous MIGRATE. Consider a corner case where
both sides send MIGRATE frames simultaneously for the
same stream. They can be reconciled if their dstCID are the
same (or server-side dstCID is zero) despite their dstSID
being different (details omitted). To avoid the case where
two simultaneous MIGRATE frames contain different dstCID,
SMig requires that when multiple idle connections are avail-
able, the one with the smallest CID should be picked as
dstCID.

Security. To our knowledge, SMig brings no new security
vulnerability to HTTP/2. A possible concern is information
leak: an adversary can infer a possible migration by observ-

ing data being sent over a new connection. It can further
infer that, for example, the client is downloading large files.
Nevertheless, we believe this is not a big concern because
the leaked information is insignificant.

4.4 The Migration Policy
SMig provides the protocol support for stream migration.

Applications (e.g., web server) also need migration policies,
which are expected to be simple, concise, and easy to con-
figure. We next exemplify policies for mitigating sender-side
HoL blocking and reducing tail bytes.

The policy executes on the server side. When an HTTP
request arrives, the server checks the object size s, and the
number of on-going and pending HTTP transactions on the
same connection n. A simple policy is to invoke migration if
both s and n are larger than pre-defined thresholds. A more
adaptive policy is to further consider the network condition:
the server measures the network bandwidth b (e.g., using
existing methods [19]) and performs migration when both
s/b and n are larger than pre-defined thresholds where s/b
is the estimated HoL blocking time (an upper bound).

The above policy assumes that the object’s size s is known
by the server. To handle the less common case where the
file size is not known, the server can use robust heuristics
to roughly estimate the size. Note even in this case, the
server has more knowledge than the client so server-initiated
migration is still helpful. An alternative approach is to allow
up to t bytes (a pre-defined threshold) of an object with
unknown size to be multiplexed into the existing connection.
If the object size turns to be larger than t, the remaining
part of the object will be migrated. This approach does not
need file size estimation but it may incur slight HoL blocking
caused by the first t bytes.

5. IMPLEMENTATION AND
EVALUATION

We have implemented our custom HTTP/2 client and
server, which are user-level applications for Linux/MacOS
(∼7.5K C++ LoC). They conform to the HTTP/2 specifica-
tion except that a small number of advanced features such as
server push were left as future work. We then implemented
the SMig extension (∼1K LoC) and integrated it with our
client and server.

Our evaluation testbed consists of the following. The
client is a commodity Macbook with 2.7GHz Intel Core
i5 CPU and 8GB memory; the server is a Ubuntu 14.04
machine with 3GHz Intel Core2 Duo E8400 CPU and 4GB
Memory. We use default TCP settings unless otherwise
mentioned. We conduct experiments over two types of
networks: an emulated 10Mbps link with 50ms RTT and
a commercial LTE network provided by a large cellular
ISP. The cellular connectivity is provided to the laptop by
a tethered LTE smartphone. We next use this testbed to
evaluate SMig, focusing on addressing the issues described
in §2.1 and §2.2 (the use case in §2.3 is more self-explained).

One limitation here is our experiments were not con-
ducted on commercial browsers and servers (integrating

them with SMig is our on-going work). Nevertheless, we
believe SMig will work with them effectively given that the
SMig logic is simple and does not depend on a particular
server/browser implementation.

5.1 Mitigating Sender-side HoL Blocking
We first evaluate how well SMig mitigates sender-side

HoL blocking under the following setting. The client keeps
fetching a 10KB object every 1 sec. During this process,
the client also fetches a large file (50 MB) using the four
migration schemes: (1) NoMig: the large file is still multi-
plexed with small objects without migration; (2) MigSW: the
migration is initiated by the server and the whole response
is migrated immediately after the request is received by the
server; (3) MigSP: the migration is initiated by the server and
only part of the response (after the first 100KB) is migrated.
This corresponds to the scenario where the large file’s size
is not known so migration is performed in a “lazy” manner;
(4) MigCP: the migration is initiated by the client and part
of the response (after the first 100KB) is migrated.

Figure 4 measures the small object download time over
emulated wired network with the default server-side TCP
send buffer configuration (min: 4KB, default: 16 KB, max:
1MB). We repeat the experiment for 10 times, each down-
loading 25 small objects after the large file’s request is sent.
We report the average download time across all runs (the
variation is small). As shown, SMig dramatically reduces
the download time for small objects, which are usually
delay-sensitive, by up to 90%. Figure 6 repeats the above
experiments over cellular network, and qualitatively similar
results are observed.

Next, instead of using the default TCP send buffer, we
increase it (min: 1MB, default: 4MB, max: 8MB) and do
the experiments again, with results shown in Figure 5 and 7
for wired and cellular networks, respectively. Note that it is a
common practice of network administrators to increase TCP
buffers [2, 1] for improving the network performance. For
HTTP/2, however, a key downside is that this exacerbates
sender-side HoL blocking. In Figure 5 and 7, SMig reduces
the small file download time by up to 93% and 92%, re-
spectively. We observe MigCP leads to worse performance
than other migration schemes do. This is because when a
migration is initiated by the client, the server’s send buffer
already becomes heavily occupied, making small objects
vulnerable to HoL blocking before the buffer drains.

Impact of Object Sizes. The above experiments use
10KB small objects. Figure 8 plots how SMig accelerates
small file download with different sizes (wired network,
large TCP buffer) when a concurrent large file download
(50MB) is present. The Y axis corresponds to the ratio of
the download time for MigSW to that for NoMig. As shown,
decreasing the small object size makes SMig more effective
e.g., for 1KB small files, SMig reduces their download time
by 95%. This is because when the size of small objects
decreases, their download time without blocking is reduced
while their HoL blocking time largely remains the same.
Over cellular network, we observe even more download time
reduction – up to 99% brought by SMig (figure not shown).

MigSW MigSP MigCP NoMig0

200

400

600

800

1000

1200
Do

wn
lo

ad
 T

im
e(

m
s)

Figure 4: SMig’s impact
on small file download
(default TCP buffer, wired)

MigSW MigSP MigCP NoMig0

500

1000

1500

2000

Do
wn

lo
ad

 T
im

e(
m

s)

Figure 5: SMig’s impact on
small file download (large
TCP buffer, wired)

MigSW MigSP MigCP NoMig0

1000

2000

3000

Do
wn

lo
ad

 T
im

e(
m

s)

Figure 6: SMig’s impact
on small file download (de-
fault TCP buffer, cellular)

MigSW MigSP MigCP NoMig0

1000

2000

3000

4000

5000

Do
wn

lo
ad

 T
im

e(
m

s)

Figure 7: SMig’s impact on
small file download (large
TCP buffer, cellular)

14%

12%

10%

8%

6%

4%

2%

0 1KB 5KB 25KB 50KB
Small File Size

M
ig

SW
 T
im
e

/ N
oM

ig
 T
im
e

Figure 8: SMig’s impact
on small file download.
Changing small file sizes
(large TCP buffer, wired)

14%

12%

10%

8%

6%

4%

2%

0
1MB 5MB 10MB 25MB

M
ig

SW
 T

im
e

/ N
oM

ig
 T

im
e

Large File Size

Figure 9: SMig’s impact
on small file download.
Changing large file sizes
(large TCP buffer, wired)

50MB 10MB0

10000

20000

30000

40000

50000

Do
wn

lo
ad

 T
im

e(
m

s)

w/ Existing Conn.
w/o Existing Conn.
No Migration

Figure 10: SMig’s impact on
migrated large file download
time (default TCP buffer,
wired network)

Large TCP Buf Default TCP Buf0

500

1000

1500

2000

2500

3000

Ta
il

By
te

s(
KB

)

w/o Migration

w/ Migration

Figure 11: Impact of SMig
on incurred tail bytes (cel-
lular network, default/large
TCP buffer)

On the other hand, when the large file’s size changes, the
HoL blocking duration changes accordingly. Figure 9 plots
the impact of SMig on 10KB file download time when down-
loading different large files over wired networks. As shown,
even when simultaneously fetching a mid-sized file of 1MB,
SMig can effectively reduce the 10KB file download time
by 88%. We observe similar results over LTE networks.
For example, on LTE, even downloading a 10MB file over
HTTP/2 (e.g., an HD video chunk or a podcast audio) can
block small objects for more than 5 seconds. This can be
effectively mitigated by SMig.

Impact of Large File Download Time. SMig incurs
no impact on objects that are not migrated. For migrated
(large) objects, the performance impact of SMig on them is
small. Figure 10 plots the large object (50MB and 10MB)
download time under three scenarios: (1) no migration, (2)
migrating the object to an existing idle connection (Fig-
ure 2(a)), and (3) creating a new connection and then per-
forming migration (Figure 2(c)). The download time in-
crease in Scenario (2) and (3) is less than 2.5% compared to
Scenario (1). The slight increase is due to two reasons. First,
in Figure 2(c), the large file download needs to be paused
while the new connection is being established. Second, the
new connection needs to experience an additional slow start.

5.2 Reducing Tail Bytes
Recall that in the current HTTP/2 paradigm, an HTTP/2

connection is by default long-lived. As a result, even when
a large stream is closed, its data in the TCP buffer cannot be
removed, leading to many tail bytes. After migrating a large
object to a dedicated connection, canceling its download can
be done by directly tearing down its connection, resulting

in much fewer tail bytes. Figure 11 measures the tail bytes
without and with migration for LTE network. When the TCP
buffer is large, migration helps cut the tail bytes by 90%.
Under the scenario of default TCP buffer, migration still re-
duces the tail bytes by 53%. The findings are consistent with
the measurement over wired networks (Table 2). Note SMig
cannot eliminate all tail bytes because they also include all
“in-flight” bytes being transmitted in the network when the
TCP connection is closed/reset. We also note that even with
migration, cellular incurs more tail bytes than the emulated
wired network does. Besides the apparent reason of their
different bandwidth-delay products, another reason is that
there exist buffers inside cellular networks causing the tail
bytes to inflate [20]. But as shown, the main contributor of
tail bytes is still the on-device TCP send buffer whose impact
can be eliminated by SMig.

6. CONCLUDING REMARKS
We have designed and implemented SMig, a novel HTTP/2

extension that substantially improves the HTTP/2 perfor-
mance in certain common usage scenarios. It also enables
several new use cases for HTTP/2. SMig is backward
compatible, incrementally deployable, and incurs negligible
runtime overhead. We are currently working on adding SMig
support to the Chrome browser and Nginx HTTP/2 server.

Acknowledgements
We would like to thank our shepherd, Ramesh Sitaraman,
and the anonymous reviewers for their valuable comments
and suggestions. This research was supported in part by the
National Science Foundation under grant CNS-1566331.

7. REFERENCES
[1] How To: Network / TCP / UDP Tuning. https://wwwx.

cs.unc.edu/~sparkst/howto/network_tuning.php.
[2] Linux Tune Network Stack (Buffers Size) To Increase

Networking Performance.
http://www.cyberciti.biz/faq/linux-tcp-tuning/.

[3] MultiPath TCP - Linux Kernel implementation.
http://www.multipath-tcp.org/.

[4] QUIC, a multiplexed stream transport over UDP.
https://www.chromium.org/quic.

[5] Samsung Download Booster. http:
//www.samsung.com/uk/support/skp/faq/1061358.

[6] SPDY Protocol Version 3.1. http://www.chromium.
org/spdy/spdy-protocol/spdy-protocol-draft3-1.

[7] TCP Small Queues (TSQ).
http://lwn.net/Articles/507065/.

[8] Usage of HTTP/2 for Websites. https:
//w3techs.com/technologies/details/ce-http2/all/all.

[9] V. Agababov, M. Buettner, V. Chudnovsky, M. Cogan,
B. Greenstein, S. McDaniel, M. Piatek, C. Scott,
M. Welsh, and B. Yin. Flywheel: Google’s Data
Compression Proxy for the Mobile Web. In NSDI,
2015.

[10] M. Belshe, R. Peon, and M. Thomson. Hypertext
Transfer Protocol Version 2 (HTTP/2). RFC 7540,
2015.

[11] S. Bradner. Key words for use in RFCs to Indicate
Requirement Levels. RFC 2119, 1997.

[12] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha,
and V. Sekar. Klotski: Reprioritizing Web Content to
Improve User Experience on Mobile Devices. In
NSDI, 2015.

[13] G. Carlucci, L. D. Cicco, and S. Mascolo. HTTP over
UDP: an Experimental Investigation of QUIC. In ACM
SAC, 2015.

[14] W. Cherif, Y. Fablet, E. Nassor, J. Taquet, and
Y. Fujimori. DASH fast start using HTTP/2. In
NOSSDAV, 2015.

[15] J. Erman, V. Gopalakrishnan, R. Jana, and
K. Ramakrishnan. Towards a SPDY’ier Mobile Web.
In CoNEXT, 2013.

[16] R. Fielding, J. Gettys, J. Mogul, H. F. L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer
Protocol - HTTP/1.1 . RFC 2616, 1999.

[17] B. Han, S. Hao, and F. Qian. MetaPush:
Cellular-Friendly Server Push For HTTP/2. In All
Things Cellular Workshop, 2015.

[18] B. Han, F. Qian, S. Hao, and L. Ji. An Anatomy of
Mobile Web Performance over Multipath TCP. In
CoNEXT, 2015.

[19] Q. He, C. Dovrolis, and M. Ammar. On the
Predictability of Large Transfer TCP Throughput. In
SIGCOMM, 2005.

[20] H. Jiang, Y. Wang, K. Lee, , and I. Rhee. Tackling
Bufferbloat in 3G/4G Networks. In IMC, 2012.

[21] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Amin, and
B. Ford. Fitting Square Pegs Through Round Pipes:
Unordered Delivery Wire-Compatible with TCP and
TLS. In NSDI, 2012.

[22] R. Peon and H. Ruellan. HPACK: Header
Compression for HTTP/2. RFC 7541, 2015.

[23] F. Qian, V. Gopalakrishnan, E. Halepovic, S. Sen, and
O. Spatscheck. TM3: Flexible Transport-layer
Multi-pipe Multiplexing Middlebox Without
Head-of-line Blocking. In CoNEXT, 2015.

[24] F. Qian, S. Sen, and O. Spatscheck. Characterizing
Resource Usage for Mobile Web Browsing. In
MobiSys, 2014.

[25] M. Varvello, K. Schomp, D. Naylor, J. Blackburn,
A. Finamore, and K. Papagiannaki. Is The Web
HTTP/2 Yet? In PAM, 2016.

[26] X. S. Wang, A. Balasubramanian, A. Krishnamurthy,
and D. Wetherall. How speedy is SPDY? In NSDI,
2014.

[27] K. Zarifis, M. Holland, M. Jain, E. Katz-Bassett, and
R. Govindan. Modeling HTTP/2 Speed from HTTP/1
Traces. In PAM, 2016.

https://wwwx.cs.unc.edu/~sparkst/howto/network_tuning.php
https://wwwx.cs.unc.edu/~sparkst/howto/network_tuning.php
http://www.cyberciti.biz/faq/linux-tcp-tuning/
http://www.multipath-tcp.org/
https://www.chromium.org/quic
http://www.samsung.com/uk/support/skp/faq/1061358
http://www.samsung.com/uk/support/skp/faq/1061358
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://www.chromium.org/spdy/spdy-protocol/spdy-protocol-draft3-1
http://lwn.net/Articles/507065/
https://w3techs.com/technologies/details/ce-http2/all/all
https://w3techs.com/technologies/details/ce-http2/all/all

	Introduction
	Motivating Examples
	Multiplexing Large and Small Objects
	Canceling HTTP/2 Download
	Download Accelerator Using Multipath

	Related Work
	SMig Design
	Usage Scenarios of SMig
	Stream Migration
	Other Design Considerations
	The Migration Policy

	Implementation AndEvaluation
	Mitigating Sender-side HoL Blocking
	Reducing Tail Bytes

	Concluding Remarks
	References

