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ABSTRACT
A primary design decision in HTTP/2, the successor of
HTTP/1.1, is object multiplexing. While multiplexing im-
proves web performance in many scenarios, it still has sev-
eral drawbacks due to complex cross-layer interactions. In
this paper, we propose a novel multiplexing architecture
called TM3 that overcomes many of these limitations. TM3

strategically leverages multiple concurrent multiplexing pipes
in a transparent manner, and eliminates various types of
head-of-line blocking that can severely impact user experi-
ence. TM3 works beyond HTTP over TCP and applies to a
wide range of application and transport protocols. Extensive
evaluations on LTE and wired networks show that TM3 sub-
stantially improves performance e.g., reduces web page load
time by an average of 24% compared to SPDY, which is the
basis for HTTP/2. For lossy links and concurrent transfers,
the improvements are more pronounced: compared to SPDY,
TM3 achieves up to 42% of average PLT reduction under
losses and up to 90% if concurrent transfers exist.

CCS Concepts
•Networks → Network protocol design; Middle boxes /
network appliances;

1. INTRODUCTION
In May 2015, version 2 of the Hypertext Transfer Protocol

(HTTP/2) was published as RFC 7540 [17], introducing sig-
nificant changes over HTTP/1.1. The evolution to HTTP/2
was driven by various performance issues of HTTP/1.1 as
web pages became rich and complex. In particular, it is
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known that HTTP/1.1 inefficiently interacts with the under-
lying transport layer. Improving such an interplay is one of
the key focuses of HTTP/2.

The design of HTTP/2 draws heavily from SPDY [12].
The key feature of SPDY (HTTP/2)1 and other recent pro-
posals [10, 3, 7] is to multiplex multiple object transfers over
a single transport-layer connection on which HTTP transac-
tions are efficiently pipelined. Since only one connection
is used per-domain, overheads such as TCP/SSL handshake
incurred by short-lived connections in HTTP/1.1 are signif-
icantly reduced. These protocol changes help improve the
main metric of page load time (PLT), especially for complex
web pages with many small objects.

However, due to tight coupling between multiplexing and
the use of a single TCP connection, HTTP/2 underperforms
in lossy environments, remains vulnerable to different types
of head-of-line (HoL) blocking, and may suffer from band-
width under-utilization (§2). Addressing these issues is
imperative at this time when HTTP/2 is expected to be used
by applications ranging from web browsers to mobile apps.

In this paper, we focus on the following questions: (i) can
we do better by removing the limitation of a single TCP con-
nection, (ii) can different types of HoL blocking affecting
HTTP/2 be avoided, (iii) can transport-related inefficiencies
be independently addressed while considering HTTP needs,
and (iv) is there a more flexible solution that works beyond
just HTTP/SPDY over TCP and applies to a broader variety
of application and transport protocols?

Our findings, based on extensive evaluations in real set-
tings, are that answers to all questions are positive. Taking
the high-level approach of decoupling the optimization of
HTTP from the underlying transport layer, we propose a new
architecture called TM3 (Flexible Transport-layer Multi-
pipe Multiplexing Middlebox), for improving performance
of all applications. TM3 adopts positive ideas from HTTP/2
and SPDY, but overcomes many limitations in existing mul-

1Since SPDY and HTTP/2 are similar, statements about SPDY
in this paper also apply to HTTP/2 unless otherwise noted. We
conduct most experiments using SPDY whose implementation is
presumed to be more stable than HTTP/2 at this moment.
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tiplexing proposals by improving the transport layer.
First, instead of using a single connection, TM3 leverages

multiple concurrent channels (called “pipes”) for multiplex-
ing. This provides two benefits. (i) It makes TM3 robust
to non-congestion losses that usually affect only one or a
subset of pipes, and (ii) it improves bandwidth utilization
by enabling inverse-multiplexing, where an application con-
nection leverages all pipes to transfer data. To mitigate
the aggressiveness of using multiple pipes, we use host-
based congestion control that manages all pipes’ congestion
windows in an aggregated manner.

Second, TM3 eliminates various types of head-of-line
(HoL) blocking. In particular, we found that in SPDY and
HTTP/2, due to large shared FIFO queues at the sender,
when concurrent large and small (usually delay-sensitive)
objects are multiplexed together, the load time for small
objects can be tens of times worse compared to HTTP/1.1.
We propose an effective solution to eliminate this type of
HoL blocking by performing multiplexing after most shared
queues. Our solution works with diverse unmodified transport-
layer protocols and requires minimal change to the OS.

Third, as a transport-layer multiplexing solution, by lever-
aging endhost operating system support, TM3 can trans-
parently improve performance for all applications (even
for those using non-HTTP protocols) without requiring any
change to existing applications or servers. TM3 is generally
applicable to any type of network, with highest benefits for
moderate to high latency links (e.g., cellular or DSL).

Fourth, TM3 brings improved flexibility. Pipes can be
realized by diverse transport protocols, and heterogeneous
pipes can coexist. The proxies can then dynamically decide
which pipe(s) to use based on factors such as network condi-
tions and QoE requirements. TM3 thus provides a practical
platform for realizing various optimizations and policies.

We implemented TM3 and extensively evaluated it over
commercial LTE and emulated wired networks. The key
results are summarized as follows.

• TM3 substantially reduces individual file download time
for 2MB, 300KB, and 50KB files by 32%, 53%, and 58%,
respectively, over LTE. When used with HTTP/1.1 over
LTE, TM3 improves Page Load Time (PLT) by an average
of 27%. When used with SPDY, the average PLT reduction
is 24%, across 30 popular websites.

• Over a lossy link (10Mbps with 50ms RTT), when TM3 is
used with SPDY, the median improvements of PLT are 22%,
33% and 42% for 0.5%, 1% and 1.5% of random loss rates,
respectively. TM3 outperforms QUIC at handling losses,
based on comparing with another recent study of QUIC [18].

• TM3 brings significant benefits when concurrent transfers
exist. Due to the sender-side HoL blocking being eliminated,
the PLT can be reduced by 75% to 90% over LTE.

• We conduct case studies to show the transparency and the
flexibility of TM3. TM3 incurs negligible runtime overhead
and very small protocol overhead of no more than 1.5%.

2. EXISTING MULTIPLEXING SCHEMES
We motivate TM3 by revealing limitations of existing

multiplexing protocols. Among many candidates including
SST [20], SCTP [30], SPDY [12], QUIC [10], and HTTP
Speed+Mobility [3], we first focus on SPDY that is a con-
crete implementation forming the basis of HTTP/2. We then
discuss QUIC, a more recent multiplexing protocol, in §2.2.

A distinct feature of SPDY is it supports multiple out-
standing requests on one TCP connection. SPDY encapsu-
lates HTTP transactions into streams, such that a stream car-
ries usually one transaction, and multiple streams are multi-
plexed over one TCP connection. In this way, bootstrapping
overheads of short-lived TCP connections in HTTP/1.1 are
significantly reduced, leading to more “dense” traffic on
the multiplexed connection. SPDY also supports request
prioritization and header compression.

SPDY has been shown to significantly reduce PLT. How-
ever, SPDY still suffers from a few limitations. (i) Its
performance degrades under packet losses due to the use of
a single TCP connection [32], which aggressively cuts its
congestion window upon a loss (either real or spurious [19]).
(ii) Even without loss, a single connection can still suffer
from bandwidth under-utilization. For example, slow start
needs to be performed after an idle period (typically one
RTO). Compared to multiple connections performing slow
start simultaneously (as the case in HTTP/1.1), the conges-
tion window growth of a single connection is slower.

2.1 Head-of-line Blocking in Multiplexing
Compared to HTTP/1.1, multiplexing can also cause var-

ious types of head-of-line (HoL) blockings to be described
below. We refer to them as Type-L, Type-S, and Type-O in
the rest of the paper. They can severely affect multiplexing
performance and TM3 can eliminate all three types of block-
ings. We leave describing the solutions to §4.

Type-L (Loss) Blocking. Occurring at the receiver side,
Type-L blocking is usually caused by packet loss over TCP-
based multiplexing channel. TCP ensures in-order delivery
at byte level. But such a guarantee is too strict for multiplex-
ing. HoL blocking happens when packet loss in frame A2

prevents a later frame B from being delivered to upper layers
at receiver, where A and B belong to different streams.

Type-S (Sender) Blocking. When being multiplexed
together, a large data transfer may substantially hinder the
delivery of a small transfer, because both transfers share
several FIFO queues at application, transport, and/or link
layer at the sender. Assuming their sizes are q1, q2, and
q3, respectively, when the bottleneck link is saturated, the
queues will build up, causing HoL blocking delay of at least
(q1 + q2 + q3)/b for newly arrived small transfers where b is
the bottleneck link bandwidth (in contrast, q1 and q2 are usu-
ally negligible in HTTP/1.1). By instrumenting the source
code of SPDY module for Apache (mod_spdy 0.9.4.1 [11]),

2A frame is the atomic transfer unit in SPDY and HTTP/2. A
stream contains one or more frames.



Table 1: 4KB web object load time (in second) with and w/o
concurrent bulk download, averaged across 20 measurements.

Concurrent 5Mbps BW 10Mbps BW 20Mbps BW
Download? HTTPS SPDY HTTPS SPDY HTTPS SPDY

NO 0.05 0.05 0.05 0.05 0.05 0.05
YES 0.22 17.02 0.14 8.40 0.09 4.00

we verified q1 can take up to several MBs. In cellular
networks, q2 can also grow to several MBs to accommodate
large in-network buffers [22]. q3 is by default 1000 packets
unless TCP Small Queues (TSQ) [14] is enabled.

Type-S blocking has been measured in other contexts
including the Tor overlay network [21] and synthetic appli-
cation [25]. However, to our knowledge, there has been
no its study in real settings of SPDY or HTTP/2. We
thus conduct an experiment as follows. We perform two
concurrent transfers between a laptop and a web server
(Ubuntu 14.04/Apache 2.4) with SSL and SPDY [11] con-
figured: one transfer is downloading a large file, and the
other is fetching a 4KB object. The client uses Google
Chrome browser (stable release 39.0.2171). The end-to-end
RTT is 50ms, and we vary server’s bandwidth using tc.
Table 1 measures the object load time (from sending HTTP
request to receiving the whole 4KB data). When there is no
concurrent bulk download, HTTPS and SPDY show similar
performance. Surprisingly, when the bulk download is in
progress, the transfer time of the small object over SPDY
increases dramatically (44 to 77 times of that for HTTPS).

It is worth mentioning that there are two ways to deploy
SPDY: using a server plugin (described above) and using
a SPDY proxy. In the former scenario, multiplexing is
performed at a per-domain basis. When a SPDY proxy is
used, all traffic between the browser and the proxy will be
multiplexed into a single TCP connection. We repeat the
experiments presented in Table 1 for SPDY proxy (compiled
from the Chromium Project [15]) and observe very similar
response time inflation. In this case, the bad situation gets
even worse: as long as the user downloads some large data
from any website, response time for all websites can become
unacceptably long.

Next, we show that even a medium-sized file download in
the background is sufficient to trigger latency inflation for
SPDY. We repeat the experiment with various background
file download sizes. Table 2 indicates a 500KB concurrent
file download can already inflate the 4KB object load time by
8 times. We also tested several real applications. Figure 1
compares the 4KB object load time between HTTP (using
Squid HTTP proxy [13]) and SPDY (using Chromium SPDY
proxy) when simultaneously watching a YouTube HD video.
The 75th percentiles of object load time for HTTP and SPDY
are 0.2 and 2.5 sec, respectively, yielding a 12.5x difference.

Type-O (Out-of-order) Blocking occurs when applica-
tion data is multiplexed to multiple connections. It does not
affect HTTP/2, SPDY, or QUIC that use one connection for
multiplexing. However, it affects a naive design of TM3, as

File Load
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0 0.05 sec
500KB 0.45 sec
1MB 0.94 sec
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8MB 6.70 sec
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Table 2: 4KB object load time
with concurrent download of
various sizes, averaged across 20
runs (10Mbps link, 50ms RTT).

Figure 1: 4KB object
load time with YouTube
HD streaming (10Mbps
link, 50ms RTT).

described in detail in §4.3.

2.2 From SPDY to QUIC
QUIC [10] is a new protocol proposed in 2012 for further

improving web performance. Although its key idea is still
multiplexing, it differs from SPDY in many positive aspects.
(i) At transport layer, it uses reliable UDP that allows un-
ordered delivery. (ii) It supports zero-RTT connection setup
when the client revisits a server. (iii) It uses forward error
correction (FEC) to cope with losses. (iv) It supports pacing-
based congestion control to better balance between through-
put and delay in particular for long-lived flows. Recent study
indicates QUIC outperforms SPDY in many scenarios [18].

QUIC is not without limitations. Although using UDP
addresses Type-L blocking, QUIC still suffers from Type-
S blocking. Even though QUIC recovers from losses more
aggressively, its performance may still degrade due to the
same reason as SPDY’s: using a single multiplexing chan-
nel. As a result, at high loss rate, QUIC’s PLT is often worse
than (up to 40%) HTTP/1.1 [18]. Also, QUIC’s FEC incurs
non-trivial overhead. Turning on FEC in QUIC version 21
consumes up to 1/3 of available bandwidth even when there
is no loss. Since QUIC is still experimental, in this paper we
focus on quantitative comparison between TM3 and SPDY,
with qualitative remarks on QUIC.

3. TM3 DESIGN

3.1 Overview
TM3 aims to address limitations described in §2. Table 3

compares between TM3 and SPDY/HTTP2 in terms of key
design decisions (top) and the resultant features (bottom).

• TM3 is a transparent transport-layer proxy. It performs
multiplexing for all TCP connections on an endhost. In
SPDY’s terminology, a “stream” in TM3 is an application-
issued TCP connection, and a “frame” is a chunk of the con-
nection’s user data. Multiplexing at transport layer allows
unmodified apps (e.g., mobile apps) to benefit from TM3.

• Instead of using one TCP connection, TM3 multiplexes
data into multiple concurrent transport channels called pipes.
Doing so improves bandwidth utilization and robustness to
losses. To bound the aggressiveness of concurrent pipes,



Table 3: Comparing between TM3 and HTTP/2 (SPDY).

TM3 HTTP/2
(SPDY)

Works at which layer Transport App.
Transport protocol Flexible TCP
Number of multiplexing channels Multiple One
When multiplexing happens Late Early
Transparent to applications Yes No
Robust to random loss Yes No
Free of HoL blocking Yes No
Efficient bw util. for bursty traffic Yes No
Dynamically change multiplexing channel Yes No
App-layer features (e.g., compression) No Yes
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Internet Servers
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Figure 2: The TM3 architecture.

TM3 employs aggregated congestion control by treating all
pipes as one “virtual” connection.

• TM3 addresses all three types of HoL blocking described
in §2.1. In particular, we design a new OS mechanism
to completely eliminate Type-S and Type-O blocking by
postponing multiplexing after shared queues. It requires
very small changes to the OS kernel and can work with
unmodified transport protocols such as TCP and SCTP. This
part will be described in detail in §4.

• TM3 provides transport-layer flexibility. Pipes can be
realized by any transport protocol, and mappings from user
data to pipes can be dynamically adjusted. Such flexibility
enables new use cases such as dynamic transport protocol
selection, and makes testing new pipe realizations very easy.

3.2 Pipes and the Multiplexing Scheme
As depicted in Figure 2, TM3 consists of two key compo-

nents: a local proxy (LP) and a remote proxy (RP). LP re-
sides on the client host, and RP is deployed on a middlebox.
In cellular networks, for example, RP can be integrated with
web proxies [33]. In DSL, RP can be placed at broadband
ISP’s gateway. LP and RP transparently split3 an end-to-end
TCP connection into three segments: (i) a local connection4

3Because of this, sometimes an application may think the data
is sent to the server but it is still buffered at LP or RP and may
never reach the server. This is common with all TCP-splitting
approaches, and it does not affect the correctness of HTTP, which
explicitly acknowledges that a request has been processed.
4In the rest of the paper, for brevity, a “connection” means an
application-issued TCP connection unless otherwise noted.

SYN Msg

SYNACK Msg

Data Msg len (2) connID (2) Seq # (4) data (variable)

0xFFFF

0xFFFE

connID (2) Seq = 0 dst IP (4) dst Port (2)

connID (2) Seq = 0

FIN Msg 0xFFFD connID (2) Seq # (4) reason (1)

Figure 3: Pipe message format with headers (8 bytes) shaded.

between client applications and LP, (ii) one or more pipes
between LP and RP, and (iii) a remote connection between
RP and the remote server. The pipes serve as the transport
layer between the client and the middlebox, thus covering
the “last mile” that is usually the bottleneck link. Also note
that TM3 essentially relays traffic at transport layer so it can
support SSL/TLS although TM3 cannot decrypt the traffic.

Pipes are bidirectional and long-lived, and they are by
default shared by all connections across all applications
by multiplexing. Uplink traffic from client to server is
multiplexed onto the pipes at LP, and de-multiplexed at RP
(reversely for downlink traffic). Due to LP, multiplexing and
de-multiplexing are done transparently for all applications.

A pipe message is the atomic unit transferred on a pipe.
As shown in Figure 3, we currently designed four types
of pipe messages to support basic data transfer over pipes:
Data, SYN, SYNACK, and FIN. A data pipe message (“data
message”) carries user data; the other three messages are
used for TCP connection management (§3.3). More message
types can be added for supporting additional control-plane
features such as flow control and setting exchange.

A data message has an 8-byte header including payload
length, connection ID, and sequence number, followed by
the actual payload. Connection ID (connID) is used to
uniquely identify each connection, whose mapping to con-
nID is synchronized between LP and RP. Since pipe mes-
sages created from one TCP connection can be concurrently
delivered by multiple pipes in arbitrary order, each pipe
message of the same TCP connection needs a sequence
number that increases per message. Note this is not needed
by SPDY that uses one connection for multiplexing.

When a local connection has any uplink data coming, the
LP encapsulates the TCP payload into one or more data
messages. For each message, the LP selects a pipe and
transfers the message over that pipe. The least occupied
pipe (i.e., a pipe with the least buffer occupancy) is selected.
This helps balance the usage of all pipes and avoid pipes
experiencing loss. When a downlink data message arrives on
a pipe, the LP extracts the TCP payload and delivers it to the
corresponding local connection, if the message’s sequence
number matches the expected sequence number of the local
connection. Otherwise the message is buffered and delivered
when the sequence number gap is filled. Multiplexing and
de-multiplexing at RP are performed in the same manner.

Using multiple pipes provides three key benefits.

• Multiple pipes allow for both multiplexing and inverse
multiplexing. When many short-lived TCP connections are
present (e.g., HTTP/1.1 over TM3), they will be multiplexed
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Figure 4: TM3 Connection establishment. The data message
(Seq #1) is piggybacked with the SYN Message (Seq #0).

onto fewer pipes to avoid connection setup and slow start
overhead. When few TCP connection(s) exist (e.g., HTTP/2
over TM3), they will be inverse-multiplexed onto multiple
pipes that make better use of available bandwidth than a
single connection does. Note TM3 itself does not distinguish
between the two schemes, since an individual connection’s
data is always distributed on to multiple pipes. Whether mul-
tiplexing or inverse-multiplexing is performed only depends
on the number of connections.

• Multiple pipes are more robust to losses than a single
pipe, because congestion control of each pipe is largely inde-
pendent to others’ (although TM3 uses aggregate congestion
control to tame their overall aggressiveness, §3.4). There-
fore, the impact of throughput reduction caused by non-
congestion loss is mitigated by localizing loss to one pipe (or
very few pipes) while other pipes remain undisturbed. This
differs from, for example, using a single SCTP pipe with
multiple streams that are managed by the same congestion
control instance.

• Multiple pipes provide great flexibility at transport layer.
Pipes can be realized by any transport-layer protocol with
message-oriented ordering and reliability guarantees. Fur-
thermore, TM3 allows switching among pipes realized by
different protocols on the fly, depending on the network
conditions, traffic pattern, or application requirements. For
example, SCTP can prevent Type-L blocking in high-loss
environment with the drawback of being a heavy-weight
protocol [24]. Thus, TM3 can temporarily employ SCTP in
high-loss situations, and use TCP pipes by default without
interrupting upper-layer applications. We study this in §6.5.

3.3 TCP Connection Management
Connection establishment. When LP receives a TCP

SYN packet from an application, it immediately replies
with SYN-ACK to establish the local connection. The
LP subsequently sends a SYN pipe message (Figure 3)
containing an unused connection ID, the remote host IP
address, and the remote host port number to RP. The RP then
establishes the connection to the remote host on behalf of the
client, and sends back a SYNACK message to LP to indicate
the successful establishment of the remote connection.

As shown in Figure 4, the local connection setup takes
virtually no time. Inspired by TCP Fast Open [26] and
QUIC, we allow SYN and data pipe messages being sent
back to back, for achieving 0-RTT connection setup over

pipes. Two issues need to be resolved. First, the data piggy-
backed with the SYN message will be wasted if the remote
connection establishment fails. Second, an ill-behaved LP
may send a SYN message with a non-existing server address,
followed by a large amount of data, potentially exhausting
the buffer space at RP. To address both issues, we limit the
amount of data allowed to send to RP before the reception
of the SYNACK message, at both per-connection and per-
host basis. The two limits are known by both LP and RP so
violation leads to an error.

Connection closure. When LP receives a TCP FIN
or RST packet from a local connection, it immediately
terminates the local connection. Meanwhile, the LP sends a
FIN pipe message, whose “reason” field (Figure 3) indicates
whether the closure is caused by FIN or RST, to the RP.
Upon the reception of the FIN pipe message, the RP ter-
minates the remote connection correspondingly. Connection
closure initiated by a server is handled similarly.

3.4 Managing Aggressiveness of Pipes
Compared to a single pipe, employing multiple pipes can

be more aggressive. Because each pipe runs congestion con-
trol independently without explicit coordination with other
pipes, the aggregated congestion window across pipes is
more likely to overshoot the bandwidth-delay product. To
address this, we propose to employ host-based congestion
control (CC) [16] by treating pipes as “virtual” connections,
and control the aggregated congestion window across all
pipes. The host-based CC co-exists and loosely couples with
per-pipe CC, which provides more fine-grained control of,
for example, the congestion window growth. In literature,
numerous CC algorithms have been proposed, and many of
them can be easily converted to host-based CC. We conduct
a case study in §6.6.

4. ELIMINATING HOL BLOCKING
Recall in §2.1 that existing multiplexing schemes such

as SPDY and QUIC suffer from at least one type of HoL
blocking. We describe how TM3 eliminates them.

4.1 Type-L (Loss) Blocking
Type-L blocking can be eliminated by using transport

protocols (e.g., SCTP or QUIC) that support out-of-order
delivery as pipe realization. For example, SCTP serves a
role similar to that of TCP while allowing an upper layer
to define multiple message-oriented streams that can be
delivered independently, thus eliminating Type-L blocking.

4.2 Type-S (Sender) Blocking
Recall that Type-S blocking is caused by shared FIFO

queues at sender side. We first discuss why existing ap-
proaches (to our knowledge) are not ideal for our purposes.

Reducing shared queue size can mitigate Type-S block-
ing [21]. However, doing so (in particular, reducing TCP
send buffer size, which caps the congestion window size)
may cause side effects such as degraded performance.



Replacing a FIFO queue with a priority queue also
helps, as Type-S blocking will not happen among data with
different priorities. We discuss doing so at different layers.

At application layer, SPDY supports at most 8 priorities.
Our inspection of the Chrome source code indicates that the
priority is statically determined by the content type (e.g.,
a binary object always has higher priority than an image).
Therefore a large object can still block small objects of the
same priority.

At transport layer, the TCP/UDP/SCTP output queue (send
buffer) is by nature FIFO. Making them support priority
queues is difficult but doable. For example, uTCP [25] mod-
ifies TCP internals to add multi-queue support. However,
to satisfy the flexibility requirement, TM3 should be able
to work with diverse and unmodified transport protocols as
pipe realization. So uTCP’s approach is not ideal for us.

At link layer, the Linux queuing discipline (qdisc) uses a
FIFO queue (pfifo_fast) by default. Although multiple
qdisc can be easily configured, making them work with mul-
tiplexing is challenging due to the difficulty of specifying
the filter rules (i.e., which traffic goes to which queue).
TCP 4-tuples cannot be used as a filter since multiplexed
traffic is no longer separated by TCP connections. Even
the per-packet ToS bits are inadequate since several pipe
messages (or frames in SPDY) with different priorities may
be multiplexed into one packet in both TM3 and SPDY.

It is important to note that to completely eliminate Type-
S blocking, priority queues need to be set up at all above
layers. This greatly increases the solution complexity, and is
another reason why we did not take this approach.

4.2.1 Starvation-free Late Multiplexing (LMux)
As discussed above, multiplexing creates unique chal-

lenges for eliminating Type-S blocking. We design an OS
mechanism called Starvation-free Late Multiplexing (LMux).
Unlike existing approaches that perform multiplexing before
most shared queues in user space as shown in Figure 5a,
LMux postpones multiplexing until the packet is dequeued
from most shared queues. LMux achieves three goals:
(i) eliminate Type-S blocking without starvation (explained
shortly), (ii) work with diverse unmodified transport proto-
cols that realize pipes, and (iii) incur minimal change to the
OS, as well as small computation and bandwidth overhead.

LMux is a self-contained feature deployed only at sender,
and is transparent to the receiver. Figure 5b illustrates its
workflow in 5 steps. (i) When data comes from a TCP
connection, TM3 writes blank data to a pipe, generating
one or more packets (with blank data) called containers.
Meanwhile, (ii) the real data is copied to the corresponding
in-kernel connection buffer. (iii) The OS routes the contain-
ers as regular packets, which might be queued in various
queues. When a container is dequeued from qdisc, (iv) the
scheduler selects one or more TCP connections based on the
scheduling algorithm and their buffered data sizes, and (v)
the pipe message header(s) and their actual data are written
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Figure 5: Multiplexing (a) without LMux, and (b) with LMux.

to the container. Note that a pipe message never crosses
containers i.e., a container must contain one or more full pipe
message(s). Otherwise the receiver cannot assemble data in
multiple containers into a full message because there is no
in-order delivery guarantee across pipes.

How does LMux eliminate Type-S blocking? Consider
a scenario where a bulk data transfer A is in progress, sat-
urating all shared FIFO queues. Now some small data with
high priority from another connection B arrives and the data
is copied to its connection buffer (Step ii). Then immediately
(Step iv and v), B is scheduled and its data is pushed to a
container leaving the qdisc. It is important to note that the
container(s) carrying B’s data were generated earlier by A,
and have already traversed the shared queues beforeB’s data
arrives, so B does not need to wait for queuing (and later, in
return, A will occupy some container(s) generated by B).
In contrast, if the same scheduling decision is made before
the shared queues as shown in Figure 5a, B’s data can be
promptly pushed to the shared queues in which, however, it
will still be blocked by A’s bulk data.

Generality. LMux only alters the data plane. It does
not affect any transport-layer control plane behavior (e.g.,
congestion control) as the protocol stack is completely un-
aware of LMux. This makes LMux generally applicable to
different unmodified transport protocols. The container filler
only needs to be aware of the pipes’ protocol (e.g., TCP or
SCTP) and fills their containers accordingly (§5).

Determining the number of containers is a key chal-
lenge for LMux design. Generating too many containers
wastes bandwidth, while having too few causes starvation
i.e., some data cannot be sent out due to a lack of outbound
packets. For u bytes of user data, a naive solution is to emit
kmin = du/(m− h)e containers where h is the pipe message
header length (8B) and m is the maximum container size
i.e., the maximum packet payload size. The u bytes will be
split into kmin containers each containing a pipe message (the
last container may be smaller than m). The total container
space required is thus u + hkmin. But this may still cause
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Figure 6: Example: different ways of filling containers.

starvation. As mentioned before, when multiple connections
exist, a connection may use containers generated by other
connections (this is the key reason why Type-S blocking can
be eliminated). In this case multiple messages may share a
container, and more container space for headers is required.
This is the key reason why precisely determining the number
of containers is difficult.

For example, assume 10 and 21 bytes of user data come
from Connections 1 and 2, respectively, which then generate
two containers ofO1=18B andO2=29B (h=8B), as shown in
Figure 6. No starvation happens if each connection uses the
container generated by itself as shown in Figure 6a (so each
container holds one message). However, depending on the
scheduler, Connection 2 may first consume O1 and then part
of O2. The remaining space in O2 can only accommodate 2
bytes for Connection 1 due to an additional header, leading
to starvation shown in Figure 6b.

To address this problem, one can generate more containers
when starvation happens. But doing so delays packet trans-
mission because a waiting period is needed to differentiate
real starvation from containers’ delayed arrival (e.g., due to
busy CPU). Instead, we allocate additional space for every
container to guarantee starvation never happens. In the pre-
vious example, starvation can be prevented by allocating 4
more bytes for each container (Figure 6d) although they may
be wasted (Figure 6c). The exact amount of additional space
is given by the following theorem (proof omitted): when
there are n concurrent connections, given any scheduling
scheme, starvation will not happen iff each container is
allocated with at least dh(n− 1)/ne additional bytes. �

We therefore allocate h additional bytes for each container
to ensure no starvation for any n. Given h is only 8 bytes,
the incurred protocol overhead is very small. Note the new
scheme may require slightly more containers (du/(m−2h)e)
than kmin = du/(m− h)e to prevent starvation.

4.3 Type-O (Out-of-order) Blocking
This type of blocking happens when a large flow is inverse-

multiplexed to multiple pipes due to pipe messages being
out-of-order, which is explained first.

Consider how inverse multiplexing is performed without
LMux. When all pipes are saturated, a block of empty space
in any pipe results in a train of consecutive pipe messages
being pumped into that pipe. Pipes are then treated as normal
transport-layer connections by the OS, which schedules the
pipes in a way where it tries to send as much data as possible
from the same pipe until some limit is reached, e.g., imposed
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Figure 8: Application and TCP throughput for downloading a
100MB file (4 pipes, 10Mbps, 50ms RTT, default send buffer).

by congestion window or the pipe is empty. Usage of multi-
threading inside the kernel further adds uncertainties to such
scheduling. As a result, because the OS is unaware of pipe
message sequence numbers, messages sent to the network
can be severely out-of-order, as illustrated in Figure 7a.

Type-O blocking is caused by such out-of-order and it
forces the receiver to buffer a large number of pipe mes-
sages to ensure in-order delivery of messages of the same
connection. In Figure 7a, message 19 to 23 will be buffered
before 18 is received. Type-O blocking has two negative
impacts. First, it causes significant receiver-side buffering
delay. Based on our measurement, when using 4 pipes, the
buffering delay can reach up to 9.6 seconds in LTE, requir-
ing more than 20MB buffer space. Second, the buffering
delay has high variation, leading to significant fluctuation
of application-layer throughput although the transport-layer
throughput remains stable, as shown in Figure 8.

Elimination. Interestingly, LMux also eliminates Type-
O blocking. As shown in Figure 7b, pipe messages are
sequentially filled into the stream of containers. Because this
occurs after OS schedules the transmission of pipes, LMux
can guarantee that for each connection, its sequence numbers
increase monotonically as pipe messages leaves the endhost.

It is worth mentioning that multipath TCP (MPTCP) also
has receiver-side out-of-order issue [28], which however has
a different cause of network paths’ diverse characteristics. In
contrast, Type-O blocking in TM3 is completely caused by
endhost, and can thus be completely eliminated by LMux.



Table 4: Implemented components for the TM3 prototype.
Component Type Lang. LoC

LP and RP User-level application C++ 4,500
Traffic forwarder for LP Kernel module C 500
LMux Kernel module C 1,000
LMux Kernel source modification C 30

5. IMPLEMENTATION
We implemented the TM3 prototype on standard Linux

platforms, with its components summarized in Table 4.
Both LP and RP are implemented as user-level programs.

They share most of the source code. On the client side, to
realize the transparency requirement, we built a lightweight
kernel module that automatically forwards packets generated
by user applications to LP via the loopback interface. It also
forwards downlink packets from LP to user applications.

Pipe Realization. We implemented two types of pipes:
TCP and SCTP. SCTP eliminates Type-L blocking that af-
fects TCP. However, SCTP is heavy-weight, and only ex-
hibits advantages in high-loss environments [24]. It is often
blocked by middleboxes (e.g., in the LTE carrier we tested).

LMux Implementation consists of three components. (i)
The main LMux logic, including multiplexing, connection
scheduling, and container filling are implemented in a kernel
module that can be injected to LP, RP, or both. (ii) The con-
tainer generation is implemented in the LP/RP application.
(iii) We slightly modified the Linux kernel source code by
adding a socket option and several ioctl commands allow-
ing control-plane communication between user and kernel
space. User/kernel shared memory is used for connection
buffers. We also add a flag to the sk_buff data structure to
distinguish among non-TM3 packets, empty container, and
filled container so that, for example, retransmitted containers
will not be filled twice. We further implemented a non-
LMux version of TM3 for comparison purposes. Both
LMux and non-LMux versions employ the same round-robin
scheduling for selecting an application connection although
more sophisticated scheduling algorithms can be plugged in.

We implemented container filling logic for TCP and SCTP
based on their packet formats. Their main differences are: (i)
in TCP, there is a one-to-one correspondence between con-
tainer and packet (as described in §4.2.1), while a container
in SCTP is a data chunk which is the basic transmission
unit of SCTP, and multiple chunks can be bundled in a one
packet; (ii) for SCTP, LMux also needs to fill in stream ID
and stream sequence number (different from the transmis-
sion sequence number that is maintained by the OS). The
maximum container size is inferred from handshake for TCP
and a lightweight probing for SCTP.

Limitation. In our LMux implementation, multiplexing
happens after pipe socket buffers but before the qdisc, which
is shrunk to 4KB per pipe using TCP Small Queues [14].
This simplifies our implementation (based on Netfilter [6]).
We found that unlike reducing TCP buffer, decreasing qdisc
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Figure 9: File DL time over LTE with varying # of pipes.

buffer occupancy does not impact throughput. Given this is
only an engineering issue, we are working on a new version
of LMux that addresses this limitation.

6. EVALUATION
We installed LP on a commodity laptop with Ubuntu

Linux Desktop 13.10. We consider two types of networks.
(i) Most experiments were conducted on a commercial LTE
network in the U.S. The client laptop obtains LTE access
by tethering to a Samsung Galaxy S5 smartphone via USB.
The RP is located in a cloud near the cellular network
gateway. The experiments took place in two locations (New
Jersey and Indiana), under good signal strength (-80 to -75
dBm). We found no qualitative difference between the two
locations so we report the Indiana results unless otherwise
noted. (ii) We also test TM3 on a wired network. The
LP and RP run on two laptops connected by a desktop
Gigabit Ethernet switch. We use tc to emulate a 10Mbps
broadband access link with 50ms RTT between LP and RP.
The link parameters are selected by following a recent SPDY
study [32]. To ensure fair comparison with other approaches,
we use TCP CUBIC (the default TCP variant in Linux and
in most of today’s web servers) with default parameters, and
default qdisc (pfifo_fast) unless otherwise noted.

6.1 Single File Download
We first examine TM3’s performance for individual file

download, which captures a wide range of application sce-
narios such as downloading an email attachment or an im-
age. The setup is as follows. A custom server program
transfers a fixed-size file to the client over a single TCP
connection. The file sizes are 50KB, 300KB, and 2MB.

Figure 9 shows the file transfer time over LTE with dif-
ferent number of pipes, normalized to using a single pipe.
The latency between the RP and the file server is set to be
4ms, which is the median latency from RP (located near LTE
gateway) to servers of 30 popular websites (§6.2). For each
file size, we repeated the experiment 100 times at different
times of day. As shown in Figure 9, using multiple pipes
reduces download time. For example, using 8 pipes reduces
the download time for 2MB, 300KB, and 50KB files by
32%, 53%, and 58%, respectively. Using a traditional TCP-
splitting proxy yields results similar to those of using TM3

with one pipe. TM3 adds a benefit of eliminating one RTT
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between LP and RP due to SYN/data piggyback (§3.3).
When multiple pipes are used, the improved performance

is attributed to inverse multiplexing i.e., the initial conges-
tion window is essentially multiplied by k when k pipes are
used. For the 50KB file, its transfer time remains stable for
4 or more pipes because the entire file can fit into the overall
initial congestion window (ICW=10*1460B*4≈58KB) so
the transfer takes one single RTT. While this appears aggres-
sive, we argue that all today’s browsers are already doing this
much more aggressively (e.g., Chrome uses up to 32 concur-
rent connections across all domains). By adopting the merits
of both HTTP/1.1 and HTTP/2, TM3’s approach of using
a fixed number of pipes per-host is in fact less aggressive,
more flexible (works for one or many TCP connections), and
more controllable (the per-host ICW is bounded by the fixed
number of pipes). For long-lived flows, the aggressiveness
issue can be mitigated by host-based congestion control.

6.2 Web Browsing
We consider four configurations illustrated in Figure 10.
Config I: HTTP only. The client connects to an HTTP

proxy (Squid 3.3.11) running on the middlebox. The HTTP
proxy ensures the network path is the same as those of the
other three configurations that all need to use the middlebox.

Config II: HTTP+TM3. It is similar to Configuration I
except TM3 is enabled with 8 pipes, selected based on trends
shown in Figure 9. The HTTP proxy and RP are co-located
so the forwarding overhead between them is negligible.

Config III: SPDY only. The client connects to a SPDY
proxy [15], which is used for two reasons: (i) SPDY is not
yet used by most web servers today and a proxy is the easiest
way to deploy SPDY, and (ii) the SPDY proxy brings the
ideal usage scenario of the SPDY protocol by getting rid
of “hostname sharding” (having one SPDY connection per
domain) that makes SPDY behave similarly to HTTP/1.1 [2].

Config IV: SPDY+TM3. This is the TM3 version (8
pipes) of Configuration III.

The client uses unmodified Chrome browser. We pick 30
diversely designed websites5 for automated testing imple-
mented using the Chrome debugging interface. Each exper-
iment consists of testing the 30 landing pages. Each test

5Website categories: news (5), enterprise portal (4), retailer
(3), photo sharing (2), technology (2), government (2), finance
(1), online shopping (1), travel (1), movie (1), online radio (1),
classified ads (1), sports (1), business review (1), social (1),
encyclopedia (1), question answer (1), university (1). 25 of the
30 sites belong to the Alexa Top 100 U.S. sites.
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Figure 11: PLT improvement brought by TM3 (8 pipes),
compared to plain HTTP/SPDY, across 30 sites, over
commercial LTE, using both real servers and the replay server.

includes four cold-cache loadings (i.e., caches are cleared)
in the aforementioned four configurations, respectively, in a
random order. The whole experiment was repeated until we
obtain results for at least 50 successful tests for each website.

As shown in Figure 10, the HTTP proxy can be connected
to either a real web server or a replay server. For the latter,
we use a modified Google Web Page Replay tool [1] to
record landing pages of the 30 websites and host them on our
local replay server. Using replay overcomes issues such as
frequent content change of some websites (e.g., cnn.com).
We measure the RTT from RP (near the LTE gateway) to
the real servers, and set the same RTT for the link between
the middlebox and the replay server when replaying each
website. The 25th, 50th, and 75th percentiles of measured
RTTs are 3ms (due to CDN), 4ms, and 39ms, respectively.

6.2.1 Experimental Results
Figure 11 quantifies the effectiveness of TM3 in four

scenarios: using HTTP (SPDY) to load pages from the
replay server (real servers). For example, the “HTTP replay”
curve plots the distribution of p1−p2

p1
across the 30 landing

pages on the replay server, where p1 and p2 are the average
page load time (PLT) for Config I and II, respectively. In all
scenarios, the LP and RP communicate over LTE.

HTTP over TM3 (Config I vs. II). Loading a webpage is
a complex process interleaved with network transfer and lo-
cal computation whose fraction is considerable (35% median
estimated by [32]). Therefore the PLT reduction brought
by TM3 is less than that of file download. Nevertheless,
for HTTP, TM3 significantly reduces PLT for all websites.
Across the 30 sites, the PLT reduction ranges from 8% to
51% with both mean and median of 27%. The benefits of
TM3 originate from multiplexing that removes overheads
of connection setup (on pipes) and slow start overhead for
short-lived TCP connections in HTTP/1.1. We observe a
positive correlation between PLT reduction and the number
of TCP connections, with Pearson correlation coefficient of
around 0.5. This indicates that multiplexing, which leads
to higher bandwidth efficiency, is more effective for pages
transferred by a larger number of TCP connections.

SPDY over TM3 (Config III vs. IV). Unlike HTTP
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Figure 12: PLT improvement brought by SPDY+TM3 (8
pipes), compared to plain SPDY, across 30 sites, over 10Mbps
link with 50ms RTT and losses, using the replay server.

where the benefits of TM3 come from multiplexing, for
SPDY, TM3 helps by inverse-multiplexing a TCP connection
to multiple pipes. The PLT reduction ranges from 12% to
39% with mean and median being around 24%. Several
factors affect the effectiveness of TM3 for SPDY: page
complexity, object sizes, and concurrency of connections.

Replay vs. Real Page Load. When fetching pages from
real sites, the PLT reduction achieved by TM3 is smaller but
still considerable. For HTTP, TM3 shortens PLT by 10% to
37% (mean: 22%, median: 21%). For SPDY, the reduction
is between 7% and 37% (mean: 19%, median: 18%). The
decreased benefits are attributed to factors including: (i)
paths between RP and real servers possibly becoming longer
and slower (in particular due to 3rd-party domains such as
ads), and (ii) server delays with dynamic content generation.

6.3 Robustness to Random Losses
Following the previous subsection, we study how TM3

helps improve web browsing performance under losses.
SPDY over TM3. Figure 12 quantifies how much SPDY

over TM3 (Config IV) outperforms plain SPDY (Config III)
under packet losses. Unlike Figure 11 that uses LTE, exper-
iments of Figure 12 are conducted over an emulated wired
link (10Mbps, 50ms RTT) with three loss rates (0.5%, 1%,
and 1.5%, chosen based on prior SPDY study [32]), using
page replay. As shown, over a lossy link, the advantage
of using multiple pipes is even greater, because sporadic
non-congestion losses usually only affect one or a subset
of pipes, while the performance of the remaining pipes is
unaffected. In contrast, for SPDY, any loss will force its
only multiplexing channel to experience severe performance
degradation. The median PLT reduction brought by TM3

across the 30 sites for the three loss rates (0.5%, 1%, and
1.5%) are 22%, 33%, and 42%, respectively. More improve-
ments are observed as the loss rate increases.

HTTP over TM3. We study Config I and II under 2%
packet loss, 10Mbps bandwidth, and 50ms RTT. We choose
this configuration to compare with a recent study [18], which
shows under the same network condition, QUIC’s PLT is
about 20% (40%) worse than HTTP for medium-size (large-
size) page. To ensure apple-to-apple comparison, we gener-

Table 5: Normalized PLT (2% loss, 10Mbps, 50ms RTT) with
HTTP/1.1 as the baseline. QUIC results were reported by [18].

Page Plain HTTP over HTTP over QUIC
Size HTTP TM3 (1 pipe) TM3 (8 pipes)

Medium 1 2.1 0.95 ∼1.2
Large 1 2.9 0.99 ∼1.4

ate the same synthetic pages6, and use the same web server
to host the pages, as well as the same client browser, as
those used in [18]. The results are shown in Table 5. When
8 pipes are used, HTTP over TM3 exhibits slightly better
performance than plain HTTP/1.1 (due to multiplexing), and
significantly outperforms QUIC and HTTP over a single
pipe. Note that QUIC yields much smaller PLT than TM3

with one TCP pipe, because QUIC’s congestion control uses
a modified loss recovery parameter compared to CUBIC:
when loss happens, QUIC’s multiplication decrease factor
for cwnd reduction is 0.15, while CUBIC uses 0.3 (a similar
fix to TCP CUBIC is suggested by [32]). Despite of this,
since QUIC uses a single multiplexing pipe, it is still vulner-
able to losses as shown in Table 5.

Using multiple pipes exhibits advantages when random
(non-congestion) losses happen. It will not help in the case
of congestion losses that impact all pipes (this is mitigated
by host-based congestion control, §6.6). Nevertheless, non-
congestion losses may occur frequently (in particular in Wi-
Fi [31]). Even for LTE, loss rate for certain QoS classes can
still be high (e.g., 1%) [9], making our approach beneficial.

6.4 Addressing Type-S/O Blocking by LMux
Type-S Blocking. We first evaluate TM3’s effectiveness

on mitigating Type-S blocking by fetching a 4KB object
while performing background download. Table 6 compares
the 4KB object download time with and without LMux, over
emulated 10Mbps link with 50ms RTT. In Table 6, we vary
the sizes of pipe socket buffer and application buffer. Note
that LMux and non-LMux versions of TM3 use the same
round-robin scheduling for connections. When LMux is not
used, due to the shared buffers, the delivery of the small
object is significantly delayed, and the severity depends on
the shared buffer sizes. With LMux, the Type-S blocking
is completely eliminated, leading to object load time of
around 60ms, which is the same as the object load time when
background download is not present. Also, in Table 6, LMux
does not impact the background download throughput.

We then repeat the same experiment on LTE and present
the results in Table 7, which shows trends similar to those
in Table 6 with one difference: in LTE, applying LMux does
not always reduce the 4KB object load time to the minimum,
which is about 80ms. This is because of deep buffers inside
LTE networks. When bulk transfers are in progress, they
cause in-network “bufferbloat” that cannot be addressed by

6The “medium” page used in [18] consists of 40 jpeg images of
2.6KB each, and 7 jpeg images of 86.5KB each; the “large” page
consists of 200 2.6KB jpeg images and 17 86.5KB jpeg images.



Table 6: 4KB object load time with background transfer, over
10Mbps link with 50ms RTT, averaged over 30 measurements.

# of Pipe App 4KB object load time (sec)

Pipes Send Buffer Without With
Buffer LMux LMux

1 default 0 0.24 0.06
1 default 2MB 2.30 0.06
1 2MB 0 1.23 0.06
1 2MB 2MB 2.67 0.06
8 default 0 0.31 0.07
8 default 2MB 1.98 0.07
8 250KB 0 1.22 0.07
8 250KB 2MB 2.75 0.07

Table 7: 4KB object load time with on-going background
transfer over LTE, averaged over 30 runs. App buffer is set
to 0 to assume no Type-S blocking at app layer.

# of Pipe 4KB object load time (sec)

Pipes Send Without With
Buffer LMux LMux

1 default 0.89±0.20 0.17±0.04
1 4MB 1.06±0.26 0.19±0.05
8 default 1.12±0.62 0.34±0.18
8 500KB 1.46±0.65 0.37±0.19
1∗ 4MB 3.41±0.45 0.08±0.01
8∗ 500KB 3.77±0.35 0.10±0.01

∗Rate-limit background transfer to 10Mbps.

LMux [22]. To confirm this, we rate-limit the background
transfer to 10Mbps to reduce in-network buffer occupancy.
As indicated by the last two rows in Table 7, doing so
reduces load time to almost the minimum when LMux is
used. Similar to Table 6, for all cases in Table 7, LMux has
no impact on the background download throughput.

Type-O Blocking. Next, we examine how TM3 handles
Type-O blocking by downloading a 200MB file under vari-
ous combinations of networks and pipe configurations. Ta-
ble 8 measures the 75-percentile receiver-side pipe message
buffering delay. Without LMux, when multiple pipes are
used, the buffering delay increases as pipes’ send buffers,
which accommodate potentially unordered pipe messages,
become larger. With LMux enabled, almost all receiver-
side buffering delays are eliminated. We also verified that
with LMux, the application-layer throughput matches well
the transport-layer throughput, as shown in Figure 8.

Lastly, we quantify how TM3 helps improve user ex-
perience for web browsing when concurrent traffic exists.
Figure 13 plots SPDY PLT across 12 websites (randomly
chosen from the 30 websites; other sites have similar results)
over LTE when background data transfer is present. TM3

is configured with 8 pipes and the replay server is used
to serve the content. LMux helps significantly reduce the
PLT, from 75% to 90%, without hurting the bulk download
performance (not shown). Repeating the experiments on
emulated wired network (10Mbps, 50ms RTT) yields similar
PLT reduction from 75% to 90%, which is attributed to the
elimination of Type-S blocking, although the background

Table 8: 75-th percentile of receiver-side buffering delay of
pipe messages. Measured by downloading a 200MB file. Wired
link is 10Mbps with 50ms RTT.

# of Pipe Buffering delay (sec)
NW Pipes Send Without With

Buffer LMux LMux
Wired 4 default 0.81 0.00
Wired 8 default 1.36 0.00
Wired 4 2MB 3.15 0.00
LTE 4 default 0.97 0.00
LTE 4 2MB 3.33 0.00
LTE 4 4MB 5.13 0.00
LTE 8 default 1.76 0.00
LTE 8 2MB 5.98 0.00
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Figure 13: PLT improvement brought by LMux across 12 sites
over LTE, averaged over 50 runs, using page replay. TM3 (8
pipes) is used with SPDY. Background transfer is present.

transfer can be impacted by Type-O blocking.

6.5 Address Type-L Blocking by SCTP Pipes
All prior evaluations use TCP pipes to ensure apple-to-

apple comparisons. Here we replace TCP pipes with SCTP
pipes to show how SCTP overcomes Type-L blocking.

SCTP exhibits benefits when there are packet losses and
multiple concurrent streams exist. We therefore design three
experiments as follows. (i) Use one connection to download
a file of varying sizes with and without loss. (ii) Load 12 web
pages listed in Figure 13 using replay under 1% loss. (iii)
Under 1% loss, simultaneously load web page and perform
bulk transfer, whose throughput is set to 3Mbps. The link
between LP and RP has 10Mbps bandwidth with 50ms RTT.
In SCTP (lksctp 1.0.16 [4]), we set the number of streams to
512, and map connections to streams by hashing the connID.

We describe the results. For Experiment (i), TCP and
SCTP achieve statistically the same file download time be-
cause there is no concurrent transfer. For Experiment (ii), the
difference between TCP and SCTP is small, with the average
HTTP PLT differing by less than 5% across the 12 sites,
when 2 pipes are used. This is likely because the incurred
Type-L blocking is usually not severe enough to lengthen
the critical path in the object dependency tree (however,
SCTP may shorten the time-to-first-byte [25] which we do
not evaluate here). SCTP provides no improvement on
SPDY that uses one connection. For Experiment (iii), the
bulk transfer causes much more severe Type-L blocking
when multiplexed with web traffic, making SCTP noticeably
outperform TCP. Figure 14 shows the reduction of PLT
brought by SCTP pipes compared to TCP pipes across the
12 sites in four scenarios: using HTTP (SPDY) over 2 (8)
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pipes. For 2 pipes, using SCTP reduces HTTP (SPDY) PLT
by 32% to 49% (26% to 51%). However, if 8 pipes are
used, the advantages of SCTP pipes are dampened, with PLT
reductions only ranging from 6% to 16% for HTTP and 6%
to 20% for SPDY. The explanation is that Type-L blocking
does not occur across pipes (i.e., a loss in Pipe 1 never blocks
Pipe 2). Therefore, increasing the number of pipes increases
chances for delivery without HoL blocking, thus diminishing
the difference between SCTP and TCP.

As described in §3.2, changing pipe realization can also
be done dynamically. To demonstrate this, we implemented
a TM3 plugin that dynamically switches between SCTP and
TCP. We set up n TCP pipes and n SCTP pipes. TCP is
used by default and traffic is temporarily directed to SCTP
pipes only when the loss rate is greater than a threshold (e.g.,
0.5%), so we do not pay the price of SCTP’s high overhead
when the loss rate is low. The plugin takes less than 100
LoC. We measured no delay during pipe switching, and no
disturbance to long-lived connections.

6.6 Host-based Congestion Control
Recall that TM3 can use host-based congestion control

to control the aggressiveness of multiple pipes (§3.4). To
demonstrate this, we adapt Dynamic Receive Window Ad-
justment (DRWA) to multiple pipes. DRWA [22] is a delay-
based CC that addresses excessive buffer occupancy (a.k.a.
“bufferbloat”) in cellular and potentially other networks. It
limits per-TCP-connection congestion window by putting a
cap on the TCP receive window, using end-to-end RTT as
indicator. In DRWA, the receive window is continuously
adjusted as follows: R← λ∗RTTmin/RTTest∗C. R is the
receive window size. C is the estimated congestion window.
RTTest and RTTmin are currently estimated RTT and the
minimum RTT (when in-network queues are almost empty),
respectively. Parameter λ controls DRWA’s aggressiveness.

We apply the concept of DRWA as follows. (i) We adjust
the send instead of the receive window, as controlling the
sender makes our approach more responsive. This is feasible
because the RP (LP) has visibility of all out-going traffic
for the entire client host. (ii) The window adjustment is
performed in an aggregated manner, and each pipe receives
an equal share of the overall adjusted window (although
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Figure 15: DSWA (Dynamic Send Window Adjustment) over
LTE. Averaged over 100 measurements.

more sophisticated approaches exist). Therefore we have
S ← λ ∗ RTTmin/RTTest ∗ C/n where S is per-pipe
send buffer size, C is the total cwnd, and n is the number
of pipes. We call our modified approach DSWA (Dynamic
Send Window Adjustment).

We conduct an experiment over LTE by inverse-multiplexing
a file transfer to 8 pipes with DSWA enabled (using pa-
rameters in the original DRWA paper [22]). We measure
average RTT, bytes-in-flight (BIF), and throughput (Thrpt)
in Figure 15. Compared to the scenario without DSWA, the
RTT and BIF are reduced by 48% and 55% respectively, with
only 5% throughput loss when λ is set to 2. Note DSWA
can to some extent mitigate Type-S blocking by reducing
the overall pipe send buffer, but is far from completely
eliminating it compared to LMux. As DSWA is highly
adaptive, even for λ=2, often more than 1MB of data remains
in pipe buffers, in some cases up to 5MB. We also verified
that DSWA has little impact on the web performance studied
in §6.2 and §6.3 due the burstiness of web traffic.

6.7 Protocol Overhead
With TM3 enabled, we run various workloads such as web

browsing, file transfer, and video streaming on LTE, Wi-
Fi, and wired networks. The measured protocol efficiency,
defined as the total user data divided by the total size of
all transferred pipe messages, ranges between 98.5% and
98.9%. It is less than 100% is due to pipe message headers
and additional bytes used to prevent starvation for LMux.

7. RELATED WORK
Other Multiplexing Protocols besides SPDY and QUIC

have been proposed. For example, Structured Stream Trans-
port (SST) [20] is a transport layer protocol that more com-
prehensively encompasses ideas of multiplexing, hierarchi-
cal streams, and prioritization. PARCEL [29] uses multi-
plexing at the web object level to reduce PLT. Other similar
proposals include HTTP Speed+Mobility [3] and Network-
Friendly HTTP Upgrade [7], both supporting multiplexing.
The PRISM system [23] employs an inverse multiplexer
that leverages multiple WWAN (wireless wide-area net-
work) links to improve TCP performance. The inverse-
multiplexing approach in TM3 has a conceptually similar
idea but has a different goal of improving performance for
short TCP flows over a single bottleneck link.



Late Binding. The high-level idea behind LMux is late
binding for the data plane. The concept of late binding
has been used in other scenarios. The Connection Manager
(CM) system [16] performs late binding at application layer
using callbacks. Doing so can avoid additional transport-
layer buffering, but requires significant changes to the proto-
col stacks and the socket APIs, thus defeating our flexibility
requirement. In [34], the authors employ interface late
binding during handoff, to prevent unnecessary queuing for
the old interface. The SENIC system [27] late-binds packet
transmissions to the NIC to enable scalable rate limiting.
In comparison, in LMux, the packets themselves are not
late-bound. It instead performs data-plane late binding in
the context of multiplexing. In addition, we address the
starvation challenge by deriving the precise bound of the
number of containers.

Multipath TCP (MPTCP) [28] allows a TCP connection
to use multiple paths. TM3’s flexile pipes provide more
opportunities for leveraging multipath: pipes can use ei-
ther MPTCP, or single-path TCP associated with different
interfaces. We leave multipath support of TM3 as future
work. Researchers also proposed MPTCP extensions that
allow MPTCP to work with one interface [5]. While this is
conceptually similar to inverse multiplexing (each MPTCP
subflow can be regarded as a “pipe”), TM3 further allows for
both multiplexing and inverse multiplexing, and eliminates
various types of HoL blocking in (inverse) multiplexing.

TCP-splitting Proxies or Performance-Enhancing Prox-
ies (PEP) are in wide use in today’s Internet [8, 33]. TM3

takes the TCP splitting concept one important step further,
by adding a splitting point on the client host. Doing so
enables transparent multiplexing over the last mile link.

8. CONCLUSION AND FUTURE WORK
TM3 improves application performance by strategically

performing transparent multiplexing. It introduces several
novel concepts such as flexible concurrent pipes, starvation-
free late multiplexing, and inverse multiplexing, providing
new insights into improving transport layer to better serve
application-layer protocols including HTTP/2. In our future
work, we plan to quantitatively compare TM3 with other
multiplexing-based web protocols such as QUIC. We also
plan to leverage the pipe flexibility provided by TM3 to
improve user experience in diverse application scenarios.
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