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Networking on wearable devices such as smartwatches is becoming increasingly important as fueled by
new hardware, OS support, and applications. In this paper, we conduct a first in-depth investigation of the
networking performance of Wear OS, one of the most popular OSes for wearables. Through carefully designed
controlled experiments conducted in a cross-device, cross-protocol, and cross-layer manner, we identify serious
performance issues of Wear OS regarding key aspects that distinguish wearable networking from smartphone
networking: Bluetooth (BT) performance, smartphone proxying, network interface selection, and BT-WiFi
handover. We pinpoint their root causes and quantify their impacts on network performance and application
QoE. We further propose practical suggestions to improve wearable networking performance.
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1 INTRODUCTION

Smart wearable devices are becoming increasingly popular. Take smartwatches, arguably the most
important type of smart wearables, as an example. According to a market research report published
recently [9], the global market value of smartwatches was estimated to be $10.2 billion in 2017 and
will experience an annual growth rate of 22.3% from 2018 to 2023.

In the literature, several efforts have been made towards understanding and improving the OS
execution performance [48, 49], power management [51], graphics and display [54], storage [37],
and user interface [20, 78] of wearable OSes. In this paper, we investigate an important yet under-
explored component: the wearable networking stack. We conduct to our knowledge a first in-depth
investigation of the networking performance of Wear OS, one of the most popular OSes for wear-
ables. Wear OS is a version of Google’s Android OS tailored to small-screen wearable devices. Used
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by a wide range of smartwatches and potentially other wearables, Wear OS is expected to account
for 41.8% of the market share of smartwatch OSes in 2020 [7].

Wearable networking is important. Take smartwatches as an example. One may argue they
only incur light traffic such as push notifications. This might be true for the current smartwatch
ecosystem where traffic flows are largely small, short, and bursty [51]. However, we envision
that future wearable apps will be more network-intensive by incurring much heavier network
activities as fueled by new hardware, OS support, and applications. For example, recently debuted
speaker/LTE-capable watches such as LG Watch Urbane 2nd Edition allow users to directly make
hands-free VoIP calls; the latest Wear OS 2.x allows standalone apps on wearables; also, many
emerging wearable applications incur heavy network traffic such as continuous computer vision on
smart glasses [23, 31], remote camera preview [6], real-time screen projection [2], and network-level
collaboration between phone and watch [52].

Wearable networking is also different from smartphone networking that has been well studied
in the past decade. First, wearables oftentimes do not directly access the Internet; instead, it
uses its paired smartphone as a “gateway”, which, if not carefully designed, may incur additional
performance degradation. Such a gateway mode accounts for 84% of the daytime usage period as
measured by a recent user study [51]. Second, the communication between a wearable and the
phone is usually through Bluetooth (BT) or Bluetooth Low Energy (BLE), whose characteristics
are vastly different from WiFi and cellular that dominate the smartphone interface usage; also the
cross-layer interaction between BT and upper-layer protocols such as TCP remains underexplored.
Last but not least, due to BT’s short range, network handovers frequently occur on a wearable:
when it moves away from the phone, the BT connectivity will be torn down and the wearable has
to use standalone WiFi or LTE to communicate with the external world.

Understanding the networking performance of commercial wearables is challenging, as it involves
multiple devices, networks, and protocols, which incur complex interactions. The proprietary nature
of Wear OS makes it even harder to gain deep visibility into the wearable networking stack. Note
that unlike Android for handheld devices, Wear OS is not open-source.

To address these challenges, we first build a wearable networking testbed consisting of commodity
Wear OS based smartwatches, off-the-shelf smartphones, commercial wearable apps, as well as
a series of tools we developed for instrumenting the system and collecting various types of data.
We then leverage the testbed to conduct controlled experiments in a cross-device, cross-protocol,
and cross-layer manner. Through judiciously designed experiments, we demystify the Wear OS
networking stack and quantify how it affects the wearable networking performance. Our key
findings consist of several serious performance issues regarding all three aforementioned aspects
that distinguish wearable networking from smartphone networking.

e We perform a comprehensive analysis of the BT radio state machine on both the wearable and its
paired phone. We find tricky yet critical differences of the state machine behaviors between the
two sides. They lead to our key discovery that due to the wearable’s unique BT radio management
policy and its interplay with its counterpart on the phone, a download session on the wearable
frequently (e.g., every few seconds) experiences “blackout” periods lasting for about 1 second (§3).
e When acting as a gateway proxy for a wearable, the phone dramatically inflates the end-to-end
(server to wearable) latency to 30+ seconds due to its incurred “bufferbloat”. We then break down
the end-to-end latency into various components, and identify the root cause to be the phone-side
TCP receive buffer, whose configuration does not take into account the path asymmetry between
the wearable-phone path and the phone-server path (§4).

o Wearables are equipped with multiple network interfaces such as BT and WiFi. When multiple
networks are available, the Wear OS’s default interface selection policy strictly prefers one inter-
face (e.g., BT) over others (e.g., WiFi). However, we find that such a strategy oftentimes leads to
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Table 1. Study summary: examined aspects, methodologies, key findings, root causes, and recommendations.

l Aspect [ Methodologies [ Key findings [Root causes of inefﬁciency[ Recommendations ]
BT radio Cross-device state ma- | Different state machine | Undesired BT sniff | BT state machine
resource chine inference. models on phone and | (sleep) mode is triggered | should be aware of
management wearable; BT download | during a continuous | bidirectional traffic
(83) experiences  frequent | download. and judiciously deter-

“blackout” periods. mine when to enter
the sniff mode.
Proxying Breakdown analysis of | Phone-side bufferbloat | Multiple buffers at differ- | The proxy should be
at paired end-to-end latency. inflates the end-to-end | ent layers on the smart- | aware of the path
smartphone latency to tens of sec- | phone proxy, in partic- | asymmetry between
(§4) onds; real-time apps’ per- | ular the large TCP re- | server-phone and
formance is severely af- | ceive buffer, cause the | phone-wearable
fected. high buffering delay. paths.
Network Quantify energy- | Wear OS’s default inter- | Static interface prefer- | Need QoE-aware in-
interface performance tradeoffs | face selection policy is of- | ence is not aware of apps’ | terface selection; need
selection using real wearable | tensuboptimal; BT+WiFi | QoE requirements; BT | 5GHz WiFi support
(85) apps; develop a mul- | multipath brings limited | and 2.4 GHz WiFi cause | on wearables; need
tipath framework for | performance gain. interference. BT-aware multipath
wearables. scheduler.
Network Conduct an  IRB- | Frequent BT-WiFi han- | Handovers are per- | Proactively predict a
handover approved user study; | dovers in the wild; short | formed reactively | handover; need mul-
(§6) examine each phase of | BT range on commodity | instead of proactively; | tipath support to fa-
a handover process. wearables; BT-WiFi han- | both OS and app logic | cilitate seamless han-
dovers may take 60+ sec- | contribute to  high | dovers.
onds. handover delay; lack
protocol/OS support for
handover.

suboptimal tradeoffs between performance and energy consumption. In addition, we explore the

feasibility of performing multipath transport (simultaneously using WiFi and BT) on wearables,

and identify potential obstacles such as the interference between BT and 2.4GHz WiFi (§5).

e BT’s short communication range makes handovers occur frequently on wearables. Due to insuffi-

cient protocol support and poor cross-layer coordination, a BT-WiFi handover may last for more
than 60 seconds, leading to significant disruption of the wearable application performance. By
looking into each phase of a handover, we find that both the OS and user application are responsible
for such unacceptably long handover delays (§6).

The above performance inefficiencies are caused by the poorly designed networking stack of

Wear OS. Our identified issues appear on all 8 wearables of heterogeneous vendors and Wear OS
versions (including the latest version as of December 2018) as well as a variety of paired phones

as tested by us using synthetic and real apps. To mitigate the identified performance impairment,

we design, implement, and evaluate several readily deployable mitigation solutions including
the following. (1) We develop a lightweight module that completely eliminates the undesired
behavior of the wearable’s BT radio state machine (§3.3), (2) We develop a simple yet effective flow
control scheme that mitigates the phone-side bufferbloat problem, achieving up to 78x latency
reduction with less than 3% of the throughput decrease (§4.3), (3) We design and implement to
our knowledge a first multipath transport framework for wearable devices that enables adaptive
interface selection, multi-network bandwidth aggregation (§5.2), and smooth handovers between IP
and non-IP networks (§6.4). For example, our improved handover scheme reduces the BT-to-WiFi
handover delay from more than 28 seconds to less than 0.6 seconds with negligible energy overhead
incurred. Table 1 summarizes the key findings made in this paper. Note that while some identified
issues such as those incurred by the BT state machines can be relatively easily fixed, tackling
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Fig. 1. The measurement testbed (middle) and the protocol stacks of the wearable, phone, and server (left
and right).

other aspects such as bufferbloat, handover, interface selection, and multipath for wearable devices
requires considerable efforts due to various challenges in the wearable ecosystem as mentioned
earlier. We believe our work initiates this research thrust, and more future research is needed along
this direction.

Overall, this paper makes contributions in three aspects. (1) We develop novel methodologies
for measuring and analyzing the wearable networking performance. (2) We discover severe and
previously unknown performance issues of Wear OS’s networking stack. (3) We identify their root
causes and application performance impact, and propose corresponding mitigation strategies.

2 BACKGROUND AND METHODOLOGY

The wearable networking is unique in several aspects, making analyzing its performance and
resource consumption challenging.

o Instead of accessing the Internet directly, a wearable typically leverages a paired mobile device
such as a smartphone as a gateway.

o Compared to performing pure TCP/IP networking on a regular host, wearable networking involves
both BT and TCP/IP. In particular, since BT by default does not speak TCP/IP, the wearable OS
typically introduces a pair of proxies on the smartphone and the wearable to bridge TCP/IP and BT.
For the phone-side proxy, it maintains TCP connections to remote servers on behalf of the wearable.
It strips off TCP/IP (BT) headers for downlink (uplink) traffic, and encapsulate the application data
into BT (TCP/IP) packets. A reverse operation is performed at the wearable-side proxy, which also
maintains local TCP connections with client apps.

o The BT protocol stack itself is complex. It consists of higher-layer protocols realized in the host
(software) and lower-layer functions implemented in the controller that resides on the BT chip. The
host and controller are bridged by the Host-Controller Interface (HCI). The BT performance can
thus be affected by multiple factors at different layers as well as its interplay with TCP/IP and the
aforementioned proxying mechanism.

e Wearable OS developers usually keep their implementation proprietary. Unlike Android for
handheld, Wear OS is not open-source.

To address the above challenges, our high-level approach is to develop a holistic testbed and a
suite of measurement tools that comprehensively examine not only each of the aforementioned
components, but also the cross-device, cross-protocol, and cross-layer interplay on real wearables
over real wearable apps’ workload. We next describe our testbed and measurement toolkit design.

2.1 Wearable Networking Testbed

We set up a testbed shown in Figure 1 to cover common usage scenarios for a wearable to com-
municate with the external world. They include communicating locally with the phone over BT,
accessing the Internet directly with WiFi/LTE, as well as surfing the Internet via the smartphone
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Table 2. Mobile devices used in our experiments.

Smartwatch Wear OS Paired Smartphone
Model Version Smartphone Android OS
LG Urbane 1.5 Nexus 5 6.0.1
LG Urbane 2.15 Nexus 5X 7.1.1
LG Urbane 2nd Edition 2.0 Samsung Galaxy S5 5.1.1
LG Urbane 2nd Edition 2.20 Pixel 2 9.0.0
Huawei Watch 2.0 Nexus 6P 7.0.0
Huawei Watch 2 2.9 Nexus 5X 7.1.1
Asus ZenWatch 3 2.0 Nexus 5 6.0.1
LG G Watch R 2.0 Nexus 5 6.0.1

as the gateway (called the CPROXY mode in Wear OS). Our testbed consists of 8 state-of-the-art
smartwatches listed in Table 2. All of them support BT and WiFi while some higher-end watches
such as LG Urbane 2nd Edition and Huawei Watch 2 support LTE as well. The OSes we study
include the latest release (Wear OS 2.20 released in December 2018) as well as the older Android
Wear OSes 2.x and 1.x. Our measurement findings apply to all OSes unless otherwise mentioned.
The Internet server we use is equipped with a quad-core 3.6GHz CPU and 16GB memory, running
Ubuntu 16.04. We run on the testbed the workload generated by our measurement tools (described
shortly) and real apps that perform bulk data transfer, constant bitrate transfer, and real-time
streaming. We also employ a Samsung SNH-V6414BN SmartCam to stream real-time video to
smartphones and smartwatches.

2.2 The Wearable Network Measurement Tools

Given a lack of tools for measuring and analyzing wearable network performance especially over
BT, we also develop a suite of tools to fill this gap. They consist of software programs for both
active and passive measurements. We will use them to conduct carefully crafted black-box testing
without requiring the OS source code. This is to our knowledge the most comprehensive toolkit for
wearable networking performance analysis and diagnosis.

For active measurements, we develop a custom server application running on the server and
a custom client app running on the wearable. Supporting all aforementioned communication
paradigms, the client and server apps can exchange data using two traffic patterns: bulk data
transfer and constant bitrate over the uplink (from the wearable), downlink (to the wearable), or
both. Our application also allows automatic reconnection upon network failure for testing the
handover support, an important feature needed for wearables due to their short BT range (§6).

For passive measurements, we collect both WiFi and BT traces on multiple entities (phone/wearable/
server). The BT trace is captured at both the host-controller interface (HCI, using btsnoop log)
and the OS (using tcpdump), and contains both the data packets and the BT control messages. In
addition to the network traces, we collect the network state and signal strength information to
understand their impact on network performance. We also develop a tool that can instrument
different components of the packet transmission/reception pipeline in the OS kernel to identify the
performance bottleneck for the end-to-end data delivery (§4.2).

Compared to prior measurement studies, our measurement and instrumentation techniques
are comprehensive in that they cover multiple entities (wearable, phone, server), protocols (BT,
WiFi), and instrumented layers (HCL, OS, TCP, App). Note this may not be the case for many prior
works. For instance, some previous studies on smartwatches [51, 79] collect BT traces only at HCI,
incurring various limitations such as inaccurate goodput measurement (due to lower-layer padding)
and not being able to separate individual application streams from the multiplexed traffic captured
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Table 3. Data collected by our measurement toolkit.

X. Zhu et al.

Category Data Item l Method l Source

BT HCI trace Callback btsnoop log

. BT and WiFi packet trace tcpdump

Watch-side BTRSSI

BT and WiFi network state Poll (0.25) | Wear OS API
BT HCI trace btsnoop log

Phone-side TCP/IP packet. trgce Callback tcpdump

kernel packet transmission events Kernel log

BT packet trace Android log

Server-side packet trace Callback tcpdump

at HCIL. Some other methods [29, 41, 73] extract the RTT from only one side, and are therefore
incapable of inferring the end-to-end RTT when a wearable-server connection is split by a phone
when the CPROXY mode is used. Table 3 lists all types of data collected by our toolkit. The runtime
CPU overhead of collecting those types of data is less than 3% on our wearables.

The collected data will be analyzed offline. Given a lack of tools to decode BT messages, we
follow the BT specification [10] to build a tool that can parse the BT traffic to extract both the user
payload and control messages. In addition, this offline tool can perform various types of correlation
analysis on different data sources, including cross-technology (e.g., WiFi vs. BT), cross-device (e.g.,
wearable vs. phone), and cross-layer (e.g., app performance vs. BT radio state) correlation analysis.
Our toolkit is written in about 3,000 LoC using C++, Java, and Python. We have open-sourced the
entire toolkit on GitHub [12].

Leveraging the above measurement infrastructure, we next answer the following important
research questions.

e What is the BT performance on commodity wearables? How is the upper-layer wearable app
performance affected by the lower-layer BT resource management state machine?

e How does the smartphone gateway impact the performance?

e How does the network selection policy affect the tradeoff between performance and energy
consumption?

e What is the performance when a network handover occurs?

3 IMPACT OF BT RADIO STATE MACHINE

To reduce the energy consumption and efficiently utilize the limited radio resources, wireless radios
usually define different radio states to operate on [38]. BT makes no exception. In this section, we
investigate how the BT radio state machine behaves on commodity wearables, and quantify its
impact on wearable networking performance. This is to our knowledge the most comprehensive
and in-depth study of the BT radio state machine on wearables. We discover that the poorly realized
BT state machine on all Wear OS smartwatches we have incurs significant performance degradation
in common usage scenarios (e.g., up to 140% inflation of the data download time over BT).

3.1 BT Radio State Primer

The BT core specification [10] defines four radio states: the Active mode, Sniff mode, Hold mode,
and Park mode. In the Active mode, the device is always listening for packet transmission and
reception, while the latter three are low-power modes where the BT device sleeps during most of
the time, and periodically wakes up to listen to the channel to check if there is any incoming data.
A state transition can be triggered by a BT device itself, or by requests from a peer device. In the
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Fig. 2. BT state machines on wearable and phone. A state transition is described by its condition (above the
bar) and its incurred action (below the bar). “nil” means no action.

latter case, to request a state transition, a BT host can issue HCI commands to its BT controller,
which will further notify the peer node (see the left side of Figure 1 for the BT protocol stack). The
peer can choose to accept or reject this state change request, and/or to suggest a different set of
parameters. Each side’s BT host will be notified with the state change request or response through
HCI. The radio states and their transitions can incur tradeoffs between the performance and energy
consumption. Note that other types of wireless radios such as WiFi and cellular also have radio
state machines, and they have been well studied in the literature [19, 56]. In contrast, BT state
machines receive much less attention in particular on wearables.

3.2 Inferring the BT Radio State Machines

Despite defining different radio states, the standard does not specify the actual state transitions,
which are up to vendors’ implementation choices. Also, a unique aspect of the BT state machine
that was not considered by the prior study [79] is that a device’s radio state is jointly determined
by itself and its paired device as described in §3.1. We thus perform a study to comprehensively
infer the BT radio state machine for off-the-shelf wearables and phones, as well as to study their
interplay. Our high-level approach is to conduct controlled experiments using strategically crafted
traffic (by controlling the direction, size, and timing of the traffic) to exercise different states and
the transitions among them. Also, instead of indirectly tracking the state transitions (e.g., using
power measurement [79]), we use our tool (§2) to capture and analyze the BT control messages at
the HCI layer to explicitly and precisely monitor the state transitions without requiring a power
monitor. We next detail our approach for inferring the BT state machines on both the wearable and
the phone as shown in Figure 2.

o State Simplification. To begin with, through extensively testing against various workloads, we
identify that among the four radio states defined by the specification, none of our 8 smartwatches
or 8 smartphones listed in Table 2 uses the Hold mode or the Park mode. We thus only need to
consider the transitions between two modes (states): the Active and the Sniff mode.

o Phone-side State Transitions. We now describe how a device determines state transitions
based on its local state and its observation of the network traffic. We first examine the phone
side. Through controlled experiments, we confirm that a Sniff—Active transition is triggered by
any data to be transmitted or received (® in Figure 2). Recall that at the Sniff mode, the device
typically sleeps, and only periodically wakes up to check incoming data. Therefore, efficient data
transmission and reception have to be performed on the Active mode. We also confirm that an
Active—Sniff transition (@) is triggered by an inactivity timer, whose value is 5 seconds based on
our measurements. The timer is reset whenever any data is sent or received at the Active mode (D).
e Wearable-side State Transitions. We apply the same method to infer the wearable-side state
transitions, which (@, ®, and ®) are found to be the same as those at the phone side except two
differences. First, very surprisingly, by testing the state machine’s behaviors using uplink, downlink,
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Fig. 3. BT control message exchanges for triggering and exiting Sniff Mode.

and bidirectional traffic, we discover that for all 8 watches, a Sniff— Active transition is only triggered
by transmissions but not by receptions (@); also the Active mode timer is only reset by transmissions
but not by receptions (©). As a result, if a wearable keeps receiving data but not transmitting any
data, it will enter the Sniff mode when the timer expires. We call this Undesired Sniff mode problem.
We will revisit it shortly and demonstrate its severe performance impact in §3.3. Second, we observe
two timers, 2s and 5s, that might be used by the wearable’s Active—Sniff transition (®). As to be
shown soon, the 2s timer worsens the undesired Sniff mode issue compared to the 5s timer.

o Interplay between Phone and Wearable. We next describe how the phone-side state transi-
tions affect the wearable-side ones, and vice-versa. Recall from §3.1 that the BT state machine has a
unique mechanism: when its own state is about to change, a device A will send a request message
to its paired device B to request B’s state to also be changed, in order to explicitly synchronize both
sides. The dotted arrows in Figure 2 illustrate such message deliveries. Per the BT specification, B
can either accept or decline this request; but our measurements indicate that in practice, the paired
device (either the wearable or the phone) will always accept the request, as shown in &, ®, @, and
® in Figure 2.

Figure 3 illustrates the above process and how it interplays with the aforementioned undesired
Sniff mode problem on wearables. Let us assume that an on-going download is in progress so
both devices are in the Active mode. We describe four sequentially occurred events. (1) Due to
the undesired Sniff mode problem, the received data does not reset the Active mode timer on the
wearable side, so the wearable will eventually enter the Sniff mode (@), and send a request to the
phone (LMP_SNIFF_REQ in Figure 3) to let the phone enter the Sniff mode as well. (2) As mentioned
above, the phone unconditionally accepts this request and enters the Sniff mode (®). (3) However,
since the phone is still transmitting data, a Sniff— Active transition will be immediately triggered
on the phone side (8, recall that the phone does not have the undesired Sniff mode problem), which
also sends a request to the wearable to change its state. (4) Through this way, the wearable exits
the Sniff mode (®) and resumes the data reception. However, this process will repeat after a while,
based on the wearable’s Active mode timer.

Figure 4 illustrates such repetitions during a long-lived data download session (monitored on
the wearable side). The green triangles are phone-originated requests received by the wearable (i.e.,
the trigger of @). The red squares represent the Sniff mode requests sent by the wearable (i.e., the
action of ®). As shown, when there is no uplink traffic, between a triangle and the next square,
there is a constant interval of 5 seconds corresponding to the wearable’s Active mode timer. Such
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Fig. 5. Correlation between the BT throughput and radio state for download, demonstrating the undesired
Sniff mode problem (LG Urbane Watch, normal RSSI).

an interval can be prolonged by uplink packets that reset the wearable’s Active mode timer, as
indicated by the blue dots in Figure 4.

3.3 Impact of the Undesired Sniff Mode

We believe that it is worthwhile reporting the undesired Sniff mode problem due to two reasons.
First, this problem is prevalent as it has been observed on all of our 8 wearables of heterogeneous
vendors and Wear OS versions. Second, the Wear OS is a tailored version of Android yet their state
machines behave differently. This may reflect several incorrect assumptions possibly made by BT
driver developers for wearables:

X The Sniff mode always helps reduce energy consumption without incurring much performance
degradation. So it should be aggressively used.

X The duration of the undesired Sniff mode is short as it can be quickly recovered by the state
change requests from the phone.

X Wearables only receive little data, or the wearable traffic is always a mixture of downlink and
uplink, so the undesired Sniff mode is unlikely to occur.

We next experimentally demonstrate the severe performance impact brought by the undesired
Sniff mode by examining two performance metrics: throughput and one-way delay (OWD) during
a long-lived data download session. The throughput is calculated every 200ms on the receiver
(wearable) side. The OWD from the server to the wearable is an important performance metric
for real-time applications. It is continuously measured as the difference between the transmission
and the reception time of each byte. Before each experiment, we connect the wearable through a
USB cable to the server, and use a custom program we developed to synchronize their clocks. The
results below are obtained on an LG Urbane smartwatch running the Wear OS 2.15 paired with a
Nexus 5X running Android 7.1.1. Other wearables and phones show qualitatively similar results.

In Figure 5, we show the performance of the bulk data download, which represents important
use cases such as downloading apps, software update, or media files to a wearable. As shown,
the wearable’s radio state oscillates between the Active and the Sniff mode during a continuous
download. As a result, for every ~5 seconds (the wearable’s Active mode timer), the BT throughput
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Fig. 7. End-to-end OWD for CBR traffic on LG Urbane.

drops to almost 0 for about 0.5 to 1.2 seconds. A similar observation is made for CBR streaming,
which represents real-time traffic such as VoIP and live radio streaming (figure not shown).

To further quantify the impact of the undesired Sniff mode in diverse environments, we repeat
the above bulk data download experiment by varying the location of the smartphone: (1) on a desk
where the user sits in front (-50 dBm); (2) in the user’s pocket (-60 dBm); (3) in the user’s bag (-70
dBm); (4) meters away from the watch (-80 dBm). Note that the smartwatch is always worn on the
user’s wrist. As shown in Figure 6a, in all the settings, we observe throughput drop and at least
10% of the no-reception time. We also use three different data rates for CBR traffic (-50 dBm BT
RSSI) and observe severe throughput degradation for all three rates, as shown in Figure 6b.

We next measure the impact of the undesired Sniff problem on the OWD for CBR traffic. Similar
to Figure 6a, Figure 7a measures the OWD for CBR traffic at 500 kbps under four settings with
different BT RSSI readings. The long tails indicate that about 30% of the OWD samples are affected.
The OWD can inflate to up to 5 seconds. A similar observation is made in Figure 7b, which measures
the OWD distributions for downlink CBR traffic at three data rates with -50 dBm BT RSSI.

Mitigation Solutions. The ultimate fix of the undesired Sniff mode problem requires modifying
the wearable-side state machine residing in the lower protocol stack. Nevertheless, the results in
Figure 4 suggest a simple temporary fix: generating light uplink traffic during a download session.
We implement this solution by developing a lightweight background app running on a wearable.
It tracks the wearable’s BT radio state based on the observed traffic, and sends a small uplink
packet when the wearable’s Active—Sniff timer is about to expire. We find that this simple solution
completely eliminates the undesired Sniff mode and therefore its incurred performance degradation.
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Real App Performance. We also conduct tests on real apps. We confirm that the undesired Sniff
mode problem does occur on commercial wearable apps and indeed affects the user experience. We
run two apps under good BT network condition (-50 dBm RSSI): downloading the PaperCraft game
app of 16 MB from the Google Play store and watching a YouTube video!. The left plot in Figure 8
shows the app QoE for the two workloads: the overall download time for the app download (the left
Y axis) and the initial video buffering time (the right Y axis). We show three bars for each app. “5s”
and “2s” correspond to having a wearable-side Active—Sniff timer of 5s and 2s, respectively. “NS”
refers to the scenario where the undesired Sniff mode problem is fixed using the above solution of
dynamically injecting light uplink packets. The right plot in Figure 8 shows the energy consumption
in each case. We calculate the energy consumption using a full-fledged smartwatch energy model
developed recently [51]. Each experiment is repeated 10 times. We make two observations. First,
the undesired Sniff mode brings significant QoE degradation to both apps. Compared to the 5s
Active—Sniff timer, fixing the undesired Sniff mode issue reduces the app download time and the
initial video buffering delay by 27% and 37%, respectively. Compared to the 2s timer, the gains
are even higher — 58% and 65% respectively. Second, entering the Sniff mode more frequently is
supposed to bring energy savings. However, for app download, it actually increases the overall
energy consumption by 25% and 113%, when the timer is 5s and 2s, respectively, because the overall
download time is lengthened. For YouTube video streamed at a lower bitrate (compared to the file
download), eliminating the undesired Sniff mode only slightly increases the energy consumption
(by 4% when the timer is 5s).

4 IMPACT OF SMARTPHONE PROXYING

As mentioned earlier, a paired smartphone gateway plays a critical role in wearable networking. In
this section, we study the performance impact of the CPROXY. Recall that typically residing on a
paired phone, the CPROXY splits an end-to-end client-server connection into a server-phone TCP
connection and a phone-wearable BT RFCOMM connection, while being transparent to both the
wearable-side and server-side apps. Because of the two heterogeneous links, the CPROXY needs
multiple buffers at various layers, such as the receive buffer in the TCP/IP stack, the app-layer
buffer, and the transmission buffers in the BT RFCOMM stack. These buffers, along with other
existing in-network and on-device buffers, can potentially cause “bufferbloat” that inflates the
end-to-end delay. This is particularly undesired for real-time traffic with low latency requirements.

4.1 Substantial Bufferbloat in CPROXY

We begin with characterizing the overall end-to-end latency under the CPROXY mode. Specifically,
we measure the one-way delay (OWD) from the server to the wearable, an important performance
metric for real-time applications. To emulate the real-time traffic, we use the CBR traffic with three
rates as the workload: 1.5Mbps, 1Mbps, and 500kbps. For comparison, we also measure the OWD
of bulk data download without a rate limit.

1Video streaming on smartwatches has its use cases such as watching a tutorial when performing cooking or house
maintenance. The playback can be controlled by voice.
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Fig. 9. E2E delay of bulk transfer and CBR traffic (LG Urbane paired with Nexus 5X, normal RSSI).

For each sending rate, the server sends data to the wearable for at least 160s. The OWD is
measured using the method introduced in §3.3.

Figure 9 shows the OWD of CBR traffic and the bulk download from the server to an LG Urbane
Watch paired with a Nexus 5X over one representative measurement. For CBR traffic whose data
rate is much lower than the BT bandwidth, we still observe fluctuating OWD over time, with the
standard deviation being 324ms (99ms) for 1IMbps (500kbps). When the CBR rate becomes higher,
e.g., at 1.5Mbps, the OWD inflates to an unacceptably high level, with the median delay being
20.1s (up to 28.6s). For bulk download, its median OWD further increases to 29.0s. We also observe
high delays on other combinations of watches and phones we have. Recall from §1 that many
wearable apps incur high-bitrate real-time traffic, such as real-time camera streaming, HD VolP,
and real-time screen projection [2]. The high OWD will incur unacceptable QoE for such apps.

4.2 Identifying the Root Cause

We now seek to understand the root cause of the high OWD under the CPROXY mode. The multiple
buffers scattered in the end-to-end data transmission pipeline present a challenge towards our
analysis. We thus dissect the end-to-end (E2E) delay by instrumenting at multiple entities and layers.
Specifically, we use our toolkit (Table 3, §2) to collect BT and TCP/IP traces at several locations,
and then perform offline analysis to obtain for each byte various timestamps as illustrated in
Figure 10. (1) ts: from the tcpdump trace captured on the server when the data is being transmitted
out; (2) tyg from the tcpdump trace captured on the smartphone when the data is received in
the smartphone OS kernel; (3) t4: from the kernel log captured on the smartphone when the
data is copied to the proxy app’s userspace (by instrumenting tcp_input.c); (4) tgs: from the
Android log captured on the smartphone when the proxy app sends the data to the BT stack (by
instrumenting BluetoothSocket. java); (5) tgr: from the tcpdump trace on the wearable when the
data is delivered to wearable OS. The end-to-end latency can thus be broken down into four parts:
the transmission delay from server to phone (d; = tjg — ts), the buffering time in the TCP/IP stack
on the phone (d; = t4 — t1r), the buffering time in the proxy app buffer on the phone (ds = tgs —t4),
and the delay of BT transfer from the phone to the wearable (d; = tggr — tgs). Note that d; is
dominated by the delay incurred by the TCP receive buffer on the smartphone. The IP queueing
delay at the qdisc is confirmed to be very small. Also, we separate d, and ds, both residing on the
smartphone, due to the difference between their associated buffers: the TCP buffer incurring d; is
maintained at a per-connection basis, whereas the proxy app buffer incurring ds is shared by all
wearable app streams, and is therefore more likely to cause potential cross-traffic interference.
Measurement Results. Figure 10b shows the OWD breakdown for CBR traffic at 1.5Mbps for
an LG Urbane watch paired with a Nexus 5X, over a representative experiment. We observe that
the buffering delay in the TCP/IP stack (d;) accounts for almost the entire OWD. Recall that d; is
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Fig. 10. E2E delay breakdown of CBR traffic in CPROXY mode (LG Urbane with Nexus 5X, normal BT RSSI).

Table 4. Impact of TCP receive buffer size on the severity of CPROXY bufferbloat on different phones.

l ‘ Nexus 5X ‘ SGS5 ‘ Nexus 5 ‘

tcp_rmem_max 8,291,456 | 4,525,824 | 2,097,152
rmem_max 8,388,608 | 2,097,152 | 2,097,152

dy: TCP/IP recv (s) | 26.1 ~28.6 | 4.0~55 | 41~57
Total E2E OWD (s) | 27.9 ~30.1 | 5.7 ~6.7 | 5.9~7.0

dominated by the delay incurred by the TCP receive buffer (recvBuf). We thus explicitly confirm
how the recvBuf size affects the OWD on three smartphones in Table 4. The effective recvBuf size is
determined by the minimum value of two configurable OS parameters rmem_max and tcp_rmem_max
(both are in bytes). As shown, a phone with a smaller recvBuf indeed experiences a smaller d; as
well as a lower overall E2E OWD. However, setting the recvBuf to be too small will throttle the
TCP congestion window and hence the throughput — a tradeoff that is difficult to balance.

While the bufferbloat problem has been well studied in different contexts such as broadband
wired network [74], cellular download [41], and cellular upload [29], we highlight two differences
that make bufferbloat in the CPROXY mode a unique problem. First, due to the highly asymmetric
bandwidth of the BT/BLE link and the WiFi/cellular link, the CPROXY-side bufferbloat will always
occur when the WiFi/cellular link throughput becomes higher than ~1.1Mbps. The above breakdown
analysis indicates that the TCP recvBuf configuration does not take into account such bandwidth
asymmetry. Second, the lower-layer BT state machine also affects the severity of the bufferbloat. In
particular, the undesired Sniff Mode identified in §3.2 slows down the BT data transmission and
thus causes the proxy-side buffer to further build up. This is confirmed in Figure 10b where dy
exhibits periodical spikes, whose occurrences well match those of entering the sniff mode.

4.3 Mitigating the CPROXY Bufferbloat

We now consider how to mitigate the CPROXY bufferbloat. In the literature, numerous bufferbloat
mitigation solutions have been proposed, but we found it is difficult to directly apply them in
our context due to various practical or fundamental issues. For example, blindly reducing the
TCP recvBuf may throttle the congestion window and thus the throughput [29]; delay-based TCP
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congestion control [16, 50] is not aware of the BT protocol stack between the phone and the
wearable; various Active Queue Management (AQM) techniques [55, 63] only regulate the qdisc
buffering, and may need substantial modifications for tackling the CPROXY-side bufferbloat.

Developing a full-fledged bufferbloat mitigation solution for wearable networking with hetero-
geneous links is beyond the scope of this paper. Here, we propose a simple, practical, yet effective
solution to demonstrate the need for coordinating the heterogeneous links as well as the substantial
performance improvement. Note that other (better) solutions may exist.

In our scheme, the phone maintains a virtual queue (shared by all apps) whose size increases as
bytes arrive from the remote server and decreases upon the reception of BT ACKs. Based on the
virtual queue size, our scheme dynamically throttles the connection between the phone and the
server (if needed) to bound the actual buffering delay. Specifically, we maintain two thresholds, an
upper bound Qp g and a lower bound Qy g. The throttling is enabled when the buffer level exceeds
QuB, and is disabled when the buffer level drops below Qrp. Qup is set to BW X (1 — ¢)T where BW
is the current estimation of the BT link bandwidth, T is the upper bound of the tolerable queueing
delay (configurable based on the app’s QoE requirement), and ¢ controls the aggressiveness of
our scheme. Qyp is set to BW X (1 — 2¢)T so that both thresholds are proportional to the BT link
bandwidth. We empirically use T=1s, £€=0.3, and set the throttling rate to %. Note that BW may
vary over time.

Evaluation. We implement the above scheme using our toolkit (§2) for performance monitoring
and Linux tc for bandwidth throttling. We then conduct controlled experiments to evaluate its
effectiveness. We consider two workloads: TCP bulk download and receiving short messages
delivered by the Telegram messaging app [3] when there is an on-going concurrent transfer. The
latter scenario may happen when, for example, a user receives a message when a media player
is performing audio or video streaming in the background. We repeat both experiments 10 times
under a normal network condition (-60 dBm BT RSSI) on an LG Urbane smartwatch paired with a
Nexus 5X phone. Figure 11 measures the OWD and throughput for the bulk download, as well as
the per-message delivery time for Telegram messaging. As shown, for bulk download, our scheme
substantially reduces the packet OWD by 78 times with less than 3% of throughput reduction. Our
scheme also reduces the Telegram message delivery delay by 76%.

5 PERFORMANCE & ENERGY IMPACT OF NETWORK SELECTION

Today’s wearables are usually equipped with multiple network interfaces. For example, most
smartwatches have WiFi and BT/BLE, and advanced editions even have the cellular interface [44].
Typically, the Wear OS employs a static interface selection policy: all 7 smartwatches except Huawei
Watch 2 use BT (through the CPROXY) when both BT and WiFi networks are available. At first
glance, this simple policy is energy-wise beneficial as BT is known to be more power-efficient
than WiFi. Interestingly, Huawei Watch 2, which uses a custom Wear OS, actually prefers WiFi
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Fig. 12. QoE-energy tradeoffs across four real workloads using different interface selection policies (LG
Urbane Watch, normal BT RSSI, Good/Fair WiFi network condition).

over BT, leading to potentially high energy consumption. In this section, we quantitatively analyze
how the network selection policy affects the important tradeoff between performance and energy
consumption, using real-world workload on COTS smartwatches.

5.1 Impact of Single-path Interface Selection

We first study the single-path interface selection, i.e., using only one interface at any given time.
We consider four real-world workloads: (a) downloading a wearable app of 16MB from the Google
Play Store, (b) streaming a 2-min YouTube video to a watch, (c) delivering a short message by
Telegram, and (d) streaming from an IP-camera in real time for 150s using the TinyCam app [5].
For these diverse workloads, we employ the app download time, the video throughput, the message
delivery delay, and the real-time data streaming rate as the QoE metrics, respectively. Similar to
that in Figure 8, we calculate the energy consumption using the energy model developed by [51].
Regarding the network selection policy, we consider the following four options: (1) always using
BT, assuming a good network condition (-50 dBm RSSI), (2) always using WiFi, assuming a good
network condition (10Mbps BW, 10ms RTT), (3) always using WiFi, assuming a fair network
condition (5Mbps BW, 20ms RTT), and (4) an approach that dynamically switches between BT and
W Fi as to be detailed in §5.2.

For each combination of the workload and network selection policy, we repeat the experiment 10
times. We show the results in Figure 12 to illustrate the tradeoff between QoE and energy consump-
tion. Each plot in Figure 12 corresponds to a workload; each plot has four clusters corresponding
to the four interface selection policies described above. Ideally, we prefer a cluster to be located in
the bottom-left corner with a good QoE (the X Axis) while incurring a low energy overhead (the Y
Axis). Our key observation from Figure 12 is that, depending on the app workload, the preferred
interface selection policy differs. For (a) and (b), given their large data sizes, WiFi offers both lower
energy consumption and a better QoE due to its higher throughput and higher energy efficiency
(i.e., joule per byte) compared to BT. In contrast, for (c), WiFi only marginally reduces the message
delivery latency while incurring considerably higher energy consumption compared to BT. This is
because the small message size and WiFi’s high base power consumption lead to a higher joule
per byte compared to BT. For (d), the workload consists of CBR traffic that BT can already sustain.
This makes BT more energy-efficient than WiFi, which has a higher base power consumption and
bandwidth under-utilization.

The energy results in Figure 12 only consider the energy consumed on the wearable. In addition,
using BT incurs additional energy footprint on the paired smartphone that acts as a proxy forwarding
traffic between the wearable and the server. The smartphone needs to utilize both its WiFi interface
(with the server) and BT interface (with the wearable). To quantify such an energy overhead, we
focus on the “static: use BT” scenario in Figure 12, and apply the smartphone WiFi [19] and BT [27]
power models to calculate the overall smartphone-side radio energy consumption to be 121.984 J,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.



3:16 X. Zhu et al.

125.76 J, 0.524 ], and 157.2 ], respectively, for the four workloads. This non-trivial energy overhead
on the smartphone makes it more complex to make interface selection decisions for the wearable.

The above results indicate that the static interface selection policy, which strictly prefers one
interface over another as employed by almost all of today’s smartwatches, does not always provide
a preferred tradeoff between performance and energy consumption. The results suggest the need for
a more adaptive interface selection policy. In §5.2, we will describe such an example corresponding
to the “Adaptive” cluster in Figure 12.

5.2 Multipath Performance on Wearables

Multipath transport, which simultaneously uses multiple network interfaces, is becoming popular
on smartphones, as fueled by standardized solutions such as MPTCP [1]. Despite a lack of prior
work, we do believe that multipath transport can also benefit wearable networks in two aspects: (1)
enhancing the throughput by aggregating bandwidth, and (2) facilitating seamless handover or fast
interface switch. We examine the first aspect now and address the second one later.

We consider a common usage scenario involving a WiFi path and a BT path. In the wearable
context, we do not expect multipath to be always used due to energy constraints. Instead, a wearable
can adaptively enable multipath (e.g., enhancing BT using WiFi) to meet user-specified deadlines or
to prevent stalls for multimedia streaming [34]. Note that maintaining active WiFi connectivity
incurs negligible power consumption due to WiFi’s deep power-saving mode [13, 45, 66].

A Multipath Framework for Wearables. The Wear OS by default does not support multipath
transport. Also, it is difficult to directly use MPTCP because BT does not speak TCP/IP by default.
We thus make a methodological contribution of adding the multipath transport feature (over WiFi
and BT) to the Wear OS. Specifically, we first leverage ConnectivityManager in the Wear OS to
keep WiFi active when BT is also on. We then use the Linux socket API and Bluetooth API to
build a custom multipath framework. In our framework, each path is a standalone TCP connection.
The WiFi path is established directly between the wearable and the server?, and the other path is
wearable-CPROXY —server where the wearable-CPROXY segment is over BT. On the sender side,
the original data stream is split into data chunks that are distributed onto the paths. We add to each
chunk a custom header containing the metadata such as the size and global sequence number of the
chunk. The receiver side then uses the metadata to reassemble the received chunks into the original
data stream. To provide application transparency, we use netfilter [4] to transparently intercept
application TCP connections on the wearable side. We also implement three off-the-shelf scheduler
algorithms that determine how to distribute the traffic onto the paths: MPTCP’s default minRTT
scheduler [62], a round-robin scheduler, and a redundant scheduler. The first two schedulers help
improve the throughput by aggregating the bandwidth of all paths; the third scheduler helps reduce
the latency by sending duplicate data to all paths. Our system consists of around 10K lines of Java
and C/C++ code. It is also open-sourced on GitHub [11].

Energy Overhead. We measure our multipath framework’s energy overhead using a Monsoon
power monitor [8]. Compared to the base power level of an LG Urbane Watch with the screen being
turned off, our framework incurs only 0.6% of additional device-level power consumption. Some
use cases such as fast interface switch further require our framework to keep the WiFi interface
turned on and maintain a long-lived TCP subflow. We find that doing so incurs a device-level
energy overhead of 6.2% based on an 8-hour measurement, using a 4-minute keep-alive timer as
suggested by the RFC [15].

%In our experiments, to make our multipath framework fully transparent to the original server, we actually run the server-side
code of our framework on an in-cloud proxy. The proxy-server path is verified not to be the performance bottleneck.
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Fig. 13. BT-WiFi multipath under 2.4/5 GHz WiFi (Nexus 5, normal BT/WiFi RSSI).

Performance Aggregation Results on Wearables. Leveraging our wearable multipath frame-
work, we conduct experiments on an LG Urbane paired with a Nexus 5X to assess the multipath
performance over WiFi and BT. Other watch and phone pairs yield qualitatively similar perfor-
mance. We focus on two types of improvements brought by multipath: the latency reduction when
the redundant scheduler is used, and the bandwidth aggregation when the minRTT scheduler is
used. For the latency reduction, we observe positive results. For example, using the redundant
scheduler helps reduce the average RTT by 29% for CBR traffic at 500kbps (WiFi: 10Mbps BW, 10ms
RTT; BT: -50 dBm RSSI). However, we find that the bandwidth aggregation results are much worse
than our expectation. Ideally, for long-lived data transfers, the aggregated throughput achieved
by multipath should be the sum of all paths’ data rate. In reality, we observe that the bandwidth
gain from multipath is far less than that. For example, when we throttle the WiFi and BT path’s
bandwidth to both 1Mbps, the multipath bandwidth gain compared to a single path is only 7%.

We realize the reason for the above unexpected results are multifold and cross-layer. For example,
at the transport layer, we need a better scheduler that takes into account the heterogeneity between
WiFi and BT. Very importantly, we also discover another key reason rooted deeply at the PHY layer:
all our smartwatches support only 2.4 GHz WiFi that operates at the same frequency band of BT.
The WiFi and BT thus cause interference when simultaneously transmitting data. This is confirmed
by the following experiment: a Nexus 5 smartphone performs bulk data transfers over BT and WiFi
at the same time (the phone supports both 2.4 GHz and 5 GHz WiFi), with the WiFi throughput
being capped at 1Mbps. The left (right) plot in Figure 13 shows the BT and 2.4 GHz (5 GHz) WiFi
throughput measured on the phone. As shown, compared to 5 GHz WiFi, when 2.4 GHz WiFi is
used, the BT and WiFi throughput drops by 47% and 7%, respectively. Overall, our findings suggest
the need for introducing 5 GHz WiFi on COTS wearables for reducing the WiFi-BT interference, in
order to facilitate multipath transport over BT and WiFi.

Fast Interface Switch on Wearables. Recall from the beginning of this subsection that another
important use case of multipath transport is to support fast interface switch, which seamlessly
and transparently migrates a TCP connection from one path to another path without requiring
re-establishing the connection. We utilize this feature to develop an adaptive interface selection
policy corresponding to the “adaptive” cluster in Figure 12. Specifically, assuming an on-going
download (the upload case is similar), our scheme uses BT over the CPROXY mode by default.
Meanwhile, it monitors the number of bytes buffered at the CPROXY by tracking the incoming
and outgoing bytes’ to/from the CPROXY. When the buffer occupancy level exceeds B bytes for T;
seconds (we empirically choose B=10KB and T;=500ms), we switch to WiFi as BT does not drain
the buffer fast enough. The switch from WiFi back to BT is triggered by a low WiFi throughput (we
use <500kbps) for T, seconds (we use T,=5 seconds).

We implement this adaptive interface selection strategy using our developed wearable multipath
framework. The experimental results in Figure 12 suggest that it outperforms the static policies
over all four workloads. In addition, we will apply multipath to improve the BT-WiFi handover
performance in §6.
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6 BT-WIFI HANDOVER PERFORMANCE

In previous sections, we consider the scenario where both the wearable and its paired phone are
stationary. In reality, either device can be mobile. Consider a typical mobility scenario where a
user wearing a smartwatch walks away from her paired smartphone placed on a table. As the user
walks away, the wearable will lose its BT connectivity. In this case, ideally the wearable needs a
seamless handover from BT to WiFi, an important feature that is missing on today’s wearables as
we will reveal in this section.

6.1 Wearable Handovers are Common

Although the theoretical BT range can be up to 100m [10], in real-world scenarios the range is
much shorter due to attenuations incurred by obstructions or vendors’ intentional reduction of the
radio power for saving energy. For example, on the Samsung Galaxy Gear, the effective BT range
is less than 2 meters based on our measurement. Due to such a short range, network handovers
are likely to occur very frequently when a wearable moves away from the paired smartphone.
To understand how often handovers occur “in the wild”, we conduct an IRB-approved user study
involving 10 voluntary users each wearing an LG Urbane Watch. The 10 participants consist of 4
students, 3 faculty members, and 3 staff members in a large U.S. university. 5 of them are female.
We develop a data collector that infers handover events by monitoring the network interfaces’
states (the method will be described in §6.2). The user study lasted for two months in 2017. During
the daytime (9 AM - 9 PM) across all users, the median handover frequency is once every 1.6 hours.
For some users, handovers can happen as frequently as every 7 minutes. The results suggest the
need for properly handling handovers to provide smooth network switches.

6.2 Poor Wearable Handover Performance

Motivated by the user study, we quantify the handover performance on state-of-the-art wearables
through controlled experiments.

Monitoring the Network State. A prerequisite for measuring handovers is to monitor the
network state change. We capture the state of each network interface from the Wear OS’s Connec-
tivityManager in the background. The state information includes whether the network interface
is up, i.e., available or not, and whether the interface provides actual network connectivity, i.e.,
connected or not. For example, when a smartwatch is associating with the WiFi AP, its WiFi is
available but not yet connected.

Experimental Setup. Our experiment focuses on understanding handovers from BT to WiFi
(handovers from WiFi back to BT can be studied using similar methods). We keep both BT and
WiFi enabled on the wearable (so both interfaces are available) and let the Wear OS use the default
network management policy. We use two wearable apps to generate the traffic workload. The first
is a simple app developed by us (conveniently called RTApp). It represents a typical wearable app
developer’s best-effort user-space implementation of the handover logic, which requires the synergy
between both the app and the OS. Our app emulates the same traffic pattern as the tinyCam app (to
be detailed soon), i.e., downloading a data chunk of 3KB every 160ms from our server, generating
150kbps downlink traffic over TCP. When a handover occurs, the old interface (BT) will lose its
connectivity and shortly after that, the connectivity will appear on the new interface (WiFi). At this
time (detected through polling), our RTApp will establish a TCP connection over the new interface
and resume the data transfer.

The second app we test for handover is the tinyCam security camera app [5]. It is a popular,
professionally designed commercial app that requires continuous network connectivity to stream
real-time video captured from an IP camera to a wearable. We perform a black-box test for this app

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 1, Article 3. Publication date: March 2019.



Understanding the Networking Performance of Wear OS 3:19

Frame OWD §Y1; . WiFi throughput (Y2) - -
Bluetooth throughput (Y2) - -

3 7 300 ’cg
25 BT-to-WiFi handover 250 8
z 2 " 200 5
> [N 5
g5 ug 150 &
3
a 1 P1 P2 P3 P4 "Iy 100 g
> 05 50 F
0 T T - bo ¢
L WiFi conn'ed -
S
g WiFi not conn’ed - B
S
2 Bluetooth conn’ed T
[}
z
No network : . :
20 40 60 80
Time (s)

Fig. 14. Impact of BT-WiFi handover on QoE of tinyCam app (Huawei Watch, normal BT/WiFi RSSI).

to reveal its handover performance. We define two QoE metrics for the tinyCam app: (1) the frame
one-way delay (OWD), which is the time to transmit a video frame from the security camera to the
watch (including the encoding and rendering time)*, and (2) the downlink throughput on the watch.

Measurement Results. The top plot in Figure 14 shows the QoE metrics of the tinyCam app
during a typical BT-WiFi handover: the frame OWD, the BT throughput, and the WiFi throughput.
As shown, the app QoE severely degrades during the handover. At around t = 6s, the app stops
receiving the video data from the SmartCam and the BT throughput drops to zero. The video
transmission resumes over WiFi at around 72.5s, with high frame OWD observed at the beginning.
We repeat this experiment for 10 times and the average “blackout” period during which the app
does not receive any video data is surprisingly 70.0s. We then run the experiment under the same
setting for our RTApp, whose average handover delay is measured to be 38.6s across 10 runs
(we will explain the difference shortly). We further conduct the experiment on three different
smartwatches and observe high handover delays on all of them as shown in Table 5. The results
show that handovers are poorly handled by the Wear OS and/or the wearable app.

6.3 Root Cause of the High Handover Delay

To understand the root cause of the high handover delay, we break it down into four phases based
on the captured network state information, as shown in the bottom plot in Figure 14: (P1) BT is
still connected but the data cannot be actually transmitted due to poor signal strength, (P2) no
network is available, (P3) the WiFi AP association period, i.e., WiFi is available but not connected,
and (P4) WiFi is connected but there is no application data transmission. The methodology for
the breakdown analysis is as follows. For each network, our measurement tool (Table 3, §2) logs
whether the network is ready to use by applications, i.e., available or not, and whether the interface
provides actual network connectivity, i.e., connected or not, through Wear OS APIs. We then group
both networks’ logged states as shown in Figure 14.

Our analysis reveals two sources of delay that contribute to the overall handover latency: the
delay from the Wear OS (P1, P2, and P3), as well as the delay incurred by the wearable app (P4). We
next detail both types.

Delay from the Wear OS. Under the default network management policy of Wear OS based
wearables, when BT is connected, WiFi is not available (i.e., its interface is turned off by the OS)
even if the device is under the coverage of both BT and WiFi. In this case, when the wearable moves
away from the BT coverage, the Wear OS needs to: wait until the BT connectivity is completely

3To measure the frame OWD, we use a phone to display continuously increasing timestamps from a stopwatch app as the
input stream to the SmartCam. The tinyCam app then shows the captured timestamp on the watch. The frame OWD can
thus be calculated by comparing the timestamps when the same stopwatch frame appears on the phone and watch, whose
timestamps are synchronized beforehand.
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Table 5. BT-to-WiFi handover delay on 3 smartwatches for tinyCam app and RTApp (normal BT/WiFi RSSI).

| | LG Urbane | LG Urbane 2nd | HUAWEI Watch |

tinyCam | 43.1£5.7s 529+£82s 70.2+9.7s
RTApp | 283+26s 143+13s 38.6+53s

lost as its RSSI drops below a threshold (P1), turn on the WiFi interface (P2), and then perform an
AP association (P3). The whole process incurs a long period of time. Across the 10 runs on an LG
Urbane watch, the average duration of P1, P2 and P3 are 12.9s, 15.5s and 8.3s, respectively, with
their total duration accounting for 52% of the overall handover delay.

Delay Incurred by the Wearable App. We next investigate the wearable app’s behavior during
a handover event. In the tinyCam app case, even after WiFi gains its connectivity (after P3), the
app still takes around 33.3s on average before the actual data transfer resumes over WiFi (P4). In
contrast, our RTApp only takes 5.6s on average to resume the data transfer. Such a disparity of the
P4 duration causes the two apps’ vastly different handover duration shown in Table 5. In other
words, although the handover completes after P3 from the OS’s perspective, it takes additional time
for the app to actually resume the data transfer (P4). The variation of P4 is very likely attributed to
the app logic. Unfortunately, since Wear OS does not provide an API for seamlessly migrating data
transfers between IP-based and non-IP networks, wearable apps need to implement their own data
migration logic at the app layer. Doing so is tedious and challenging for average app developers.

6.4 Reducing the Handover Delay

We now design and implement a solution that reduces the handover delay. Our basic idea consists
of the following. First, an important reason for Wear OS’s bad handover performance is its reactive
nature, i.e., the WiFi connectivity is not established until the BT connectivity is fully torn down.
Our scheme instead predicts a BT-WiFi handover by monitoring the BT channel quality. When the
quality drops below a threshold (but BT is still usable), we proactively establish the WiFi connectivity
and perform a handover to WiFi (assuming the WiFi channel quality is acceptable). Second, we
leverage the multipath framework introduced in §5.2 to provide application transparency. Before a
BT-WiFi handover, once the WiFi connectivity is established, the OS adds a new WiFi subflow to
the corresponding TCP connection, and schedules future data to the WiFi subflow. No modification
is needed at the user application, which always sees the same TCP connection. Third, our scheme
further leverages reinjection to facilitate seamless data migration. Specifically, when it decides to
perform a BT-WiFi handover, it also sends all unacknowledged (i.e., “in-flight”) data on the BT path,
which may experience long delays due to its weak channel quality, to the WiFi path. In multipath
transport, this is called packet reinjection, which trades a small number of redundant bytes for
better performance (smoother handover in our case).

We implement the above design points and integrate them into our wearable multipath framework
(§5.2). We use the BT RSSI as the BT channel quality metric [76], and empirically set its threshold
for initiating a handover to -66dBm. A future research direction here is to further leverage the
wearable’s motion sensors or acoustic ranging [64] to precisely track the wearable’s relative position
to the phone in order to facilitate more accurate handover prediction. Using a similar approach, we
also implement the handover mechanism from WiFi back to BT. We take two approaches to prevent
oscillations between BT and WiFi. First, we use the Kalman filter to smooth the RSSI samples [18].
Second, after a BT-WiFi handover, we require the wearable to stay on WiFi for at least 5 seconds (a
configurable parameter) unless the WiFi connectivity is lost.

Evaluation. We evaluate how our scheme helps accelerate the BT-WiFi handover process. The
experimental setup is as follows. A user puts her Nexus 5X smartphone in a typical conference
room (5m by 6m) and moves out of the room at a normal walking speed with a paired LG Urbane
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Fig. 15. Reducing the BT-to-WiFi handover delay for tinyCam/RTApp on an LG Urbane paired with Nexus 5X.

smartwatch worn on her wrist. As she walks out of the smartphone’s BT coverage, the watch
will experience a BT-WiFi handover. We use the two apps introduced in §6.2 as the workload: the
tinyCam app that streams video contents from our camera in real-time, and our RTApp program
that performs CBR streaming with improved application handover logic. The handover delay is
measured using the same approach for generating Figure 14. We compare three handover schemes
in Figure 15: “default” is the reactive handover approach used by Wear OS; “on-demand WiFi”
corresponds to our proposed scheme where the WiFi connectivity and the multipath subflow are
established in an on-demand fashion based on BT channel quality prediction; “always-on WiFi”
also refers to our scheme, but we always maintain the WiFi connectivity and pre-establish the WiFi
subflow to further speed up the handover. We repeat each experiment 10 times to overcome the
randomness incurred by the user’s walking paths. As shown in Figure 15, our scheme is extremely
effective: it reduces the handover delay from more than 28s to less than 0.6s (123x and 51x reduction
for tinyCam and RTApp, respectively). Note the Y axis is in log scale. For the “always-on WiFi”
variation, the improvement is even higher (172x and 63x respectively) since the pre-established WiFi
subflow allows immediate data transfers, but the cost is a slightly higher radio energy consumption
(measured to be 6.2% as described in §5.2) compared to the “on-demand WiFi” variation.

7 RELATED WORK

Mobile Network Performance has been extensively studied in the past decade. Examples include
crowd-sourced smartphone measurements [28, 39, 40], WiFi/LTE radio energy efficiency [38],
network interface management [14, 65], power management [19, 68, 72], smartphone app perfor-
mance [21, 57], and mobile multipath [56, 58]. Our work differs from the above by investigating
wearable networking with unique characteristics. We propose novel measurement methodologies
and gain new insights in the wearable context.

Wearable Systems. R. Liu et al. analyzed the execution of Android Wear OS and identified
several inefficiencies [48, 49]. X. Liu et al. conducted a user study to understand smartwatch usage
in the wild [51]. Kolamunna et al. studied the user behavior and application traffic characteristics for
SIM-enabled wearables [44]. Chauhan et al. [17] characterized smartwatch apps. Hester et al. [35]
developed an energy-efficient and multi-application wearable platform. There also exist studies
on other aspects of wearable systems including display [54], storage [37], user interface [20, 78],
energy [32, 79], and security [53, 77]. Researchers have also designed new sensing applications [60,
70] using wearables and studied the human-wearable interaction [69, 80]. Our work instead focuses
on the networking aspect of commercial wearable OSes.

Improving Wireless Performance. There has been work on improving BT/BLE communica-
tions [24, 42, 47] and localization [36]. Compared to them, our study identified new BT performance
issues on COTS wearables and provide guidelines for improving the wearable networking per-
formance over BT. There have also been studies on bufferbloat [16, 50, 55, 63, 71]. We instead
discovered severe and unique bufferbloat issues in the wearable context when a paired smartphone
is serving as a proxy (§4.2). In addition, vertical handovers in wireless networks have also been
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studied in the literature [43, 61, 67]. Here we focus on the handover between IP and non-IP net-
works, and consider both the OS and wearable application behaviors. We also develop a multipath
framework to support bandwidth aggregation and seamless handover. It differs from existing work
on mobile multipath [22, 25, 26, 30, 33, 34, 46, 56, 58, 59, 75] in that our framework focuses on
WiFi/BT networks in the wearable context. We also identify unique performance issues that hinder
wearable multipath on COTS wearables, such as the interference between BT and 2.4G Hz WiFi.

8 LIMITATIONS AND FUTURE WORK

We describe several limitations and future work of our study.

o Besides BT and WiFi, a wearable may have other network interfaces such as LTE and NFC. In
this study, we focus on BT and WiFi due to their popularity and prevalence in today’s wearable
ecosystem (in particular, smartwatches [51, 79]). In our future work, we plan to study the interplay
among more than two types of networks, such as BT, WiFi, LTE, and ZigBee, in terms of multipath,
interface selection, and handover, in the wearable context.

e We only studied a limited number of real wearable apps (YouTube for wearable, TinyCam,
Telegram Messenger, Play Store, etc.). This is mostly because most of today’s wearable apps do
not incur a significant amount of traffic. Nevertheless, we envision that future wearable apps
will become more network-intensive as fueled by new hardware, OS support, and applications.
Examples include continuous computer vision on smart glasses [23, 31], remote camera preview [6],
real-time screen projection [2], and network-level collaboration between phone and watch [52].
We plan to study these new applications in our future work.

e Our study can also be extended to considering multiple devices that a person wears (e.g., smart-
watch, smart glasses, smart activity tracker, etc.). This creates novel use cases, but also brings in
new challenges on, for example, energy-efficient content delivery in a body-net and choosing the
appropriate Internet gateway when there are multiple such gateways.

o Finally, another limitation of our work is that all measurement results are based on the Wear OS,
which, together with its predecessors (Android Wear), are expected to account for 41.8% of the
market share of smartwatch OSes in 2020 [7]. There exist many other wearable OSes. In particular,
due to its proprietary platform and closed ecosystem, it is difficult for us to perform an in-depth
study of Apple’s Watch OS. Nevertheless, we believe that the high-level lessons we learned from
the Wear OS are general, and can benefit the design and implementation of future wearable OSes.
Note that all our findings are applicable to old Android Wear 1.x versions as verified by us.

9 CONCLUDING REMARKS

We have learned many lessons from smartphones [38, 39] about the importance of properly handling
the interaction between the lower-layer radio (e.g., WiFi MAC and cellular RRC/RLC) and upper-
layer protocols (e.g., TCP, apps). Our study reveals that it is also the case for wearable networking.
Indeed, many of its unique characteristics motivate us to conduct an in-depth investigation of the
networking performance of Wear OS. We identify severe performance issues and make suggestions
for improvements regarding several key aspects of wearable networking: Bluetooth performance,
smartphone proxying, network selection, and handover. We believe our findings provide key
knowledge and experiences for improving the networking subsystem of future wearable OSes.
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