
Visual-Aware Testing and Debugging for
Web Performance Optimization

Xinlei Yang1∗, Wei Liu1∗, Hao Lin1, Zhenhua Li1

Feng Qian2, Xianlong Wang1, Yunhao Liu1, Tianyin Xu3
1Tsinghua University, China 2University of Minnesota, USA 3UIUC, USA

ABSTRACT

Web performance optimization services, or web performance op-

timizers (WPOs), play a critical role in today’s web ecosystem by

improving page load speed and saving network traffic. However,

WPOs are known for introducing visual distortions that disrupt the

users’ web experience. Unfortunately, visual distortions are hard to

analyze, test, and debug, due to their subjective measure, dynamic

content, and sophisticated WPO implementations.

This paper presents Vetter, a novel and effective system that

automatically tests and debugs visual distortions. Its key idea is to

reason about the morphology of web pages, which describes the

topological forms and scale-free geometrical structures of visual

elements. Vetter efficiently calculates morphology and compara-

tively analyzes the morphologies of web pages before and after

a WPO, which acts as a differential test oracle. Such morphology

analysis enables Vetter to detect visual distortions accurately and

reliably. Vetter further diagnoses the detected visual distortions to

pinpoint the root causes in WPOs’ source code. This is achieved by

morphological causal inference, which localizes the offending visual

elements that trigger the distortion and maps them to the corre-

sponding code. We applied Vetter to four representative WPOs.

Vetter discovers 21 unknown defects responsible for 98% visual

distortions; 12 of them have been confirmed and 5 have been fixed.

CCS CONCEPTS

· Information systems→Web interfaces; · Software and its

engineering→ Software testing and debugging.

KEYWORDS

Web Performance Optimization;Web Page Distortion; Visual-Aware

Testing and Debugging

ACM Reference Format:

Xinlei Yang, Wei Liu, Hao Lin, Zhenhua Li, Feng Qian, Xianlong Wang,

Yunhao Liu, Tianyin Xu. 2023. Visual-Aware Testing and Debugging for

Web Performance Optimization. In Proceedings of the ACM Web Conference

2023 (WWW ’23), May 1ś5, 2023, Austin, TX, USA. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3543507.3583323

∗Co-primary authors. Zhenhua Li is the corresponding author.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

WWW ’23, May 1ś5, 2023, Austin, TX, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9416-1/23/04.
https://doi.org/10.1145/3543507.3583323

1 INTRODUCTION

The ever-growing demand for fast, reliable, and resource-efficient

web browsing has been driving the active development of web

performance optimization services [3, 23, 41, 47, 59], or web perfor-

mance optimizers (WPOs). Deployed as server/client-side plug-ins

or WAN/LAN proxies by mobile ISPs, content providers, and corpo-

rations, WPOs automatically perform a wide range of optimizations

(e.g., image transcoding, JavaScript/CSS minification, and HTML/-

text compression) to save the page load time (PLT) and/or network

traffic. Many WPOs also offer add-on services like caching, web

security, and advertisement filtering.

WPOs are highly effective and popular. Google AMP has speeded

up the loading process of 5 billion web pages by 2.5× on average [23,

45]. Google Flywheel [3] and Baidu TrafficGuard [47] save mobile

traffic for tens of millions of users by over 1/2 and 1/3, respectively.

NewWPOs such as Fawkes [51], SipLoader [48], and Vroom [66] can

further reduce user-perceived page load time significantly. Besides,

selective traffic manipulation [49, 56] and symbolic execution [46]

have been proposed to prevent privacy violations.

Despite the many compelling features and measurable benefits,

WPOs could induce visual distortions, which significantly impair

users’ web experience [17, 21, 22, 70, 71]. Figure 1 shows an exam-

ple of visual distortions. Compared to the original landing page of

Bild.de (a popular German news media), the łoptimizedž version

by Ziproxy [41] (a classic WPO for traffic compression) is severely

distorted, leading to unacceptable user experience. In fact, many

users choose to opt out of WPOs simply because of visual distor-

tions [18, 30, 36]. This is particularly common for non-technical

users who cannot explain the distortions [8, 20]. In addition, our

interviews with developers of both Google Flywheel and Baidu

TrafficGuard confirm that visual distortions are a key challenge of

their services and have created major obstacles to adoption.

Unfortunately, visual distortions incurred by WPOs are under in-

vestigated. The knowledge gap hinders the development of practical

solutions for detecting, debugging, and fixing visual distortions. To

fill this gap, we conduct the first in-depth study on visual distortions

introduced byWPOs.With informed consent and a well-established

IRB, we recruit 18 users (from different age and gender groups) to

help recognize visual distortions on the landing pages of the Alexa

top and bottom 2,500 websites (among the top 1M) after being op-

timized by two widely used WPOs (i.e., Ziproxy and Compy [42]).

The experiments reveal three major findings.

• Although visual distortions seem to be subjective, for most (93%)

web pages, the inspectors have the same opinions.

• Ziproxy and Compy incur visual distortions to 3.3% and 6.1% of

the 5,000 landing pages respectively, which is significant enough

to affect user experience and discourage WPO deployments.

https://doi.org/10.1145/3543507.3583323
https://doi.org/10.1145/3543507.3583323
https://www.bild.de/

(a) Original Page (b) Optimized Page

Figure 1: A real-world example of web page distortion.

• Visual distortions are more severe (5.6% for Ziproxy and 9.0%

for Compy) in landing pages of less popular (the bottom 2,500)

websites, as these websites include more non-standard or even

incorrect web contents that confuse WPOs’ optimizations.

Driven by the prevalence and severity of distortions, we aim to

develop an effective approach to systematically address the issue.

However, our experience reveals significant challenges. First, auto-

matic detection of distortions is nontrivial. An intuitive approach

is to directly compare the image snapshots of the original and opti-

mized pages, which however cannot address dynamic contents that

vary significantly (exemplified in Figure 2). An alternative is to com-

pare the key data structures (e.g., DOM, render, and CSSOM trees)

of web pages, which also falls short for a lack of visual hints, miss-

ing layout information, and being over-general. Worse still, even

when distortions are successfully detected, it is hard to locate their

root causes in the source code, as WPOs typically have sophisti-

cated implementations for accommodating complex resources (e.g.,

images and videos), various protocols (e.g., HTTP/3 and HTTPS),

and diverse languages (e.g., HTML5 and WebAssembly).

In this paper, we present Vetter, a system for automatically test-

ing and debugging visual distortions from the perspective of how

modern web pages are generated. Today, very few web pages are

written from scratch in an ad-hoc manner; instead, most web pages

are programmatically generated by several mainstream web frame-

works (e.g., Angular [25], React [35], and Vue [73]). These frame-

works follow the standard Model-View-ViewModel (MVVM) design

pattern that decouples a web page’s layout (View) from the logic

and data (Model). As a result, while the logic and data of a dynamic

web page vary between different loads, only the scales or concrete

contents of visual elements are changed accordingly; visual ele-

ments’ topological forms and scale-free geometrical structures do

not. Such invariants are referred to as a web page’s morphology.

Vetter is built based on a key insight that visual distortions on

a web page (no matter how dynamic it is) are highly relevant to

changes in its morphology. As shown in Figure 2, in two different

loads of Pinterest’s landing page, pictures are both placed in rectan-

gles (topological form) and aligned vertically (scale-free geometrical

structure) despite significant pixel-level changes, so the optimized

page was never deemed as visually distorted by the users.

However, comparing the morphologies of two web pages is

costlyÐthe time complexity is𝑂 (𝑛!) for web pages containing 𝑛 vi-

sual elements. To address this, we discover the intrinsic hierarchy in

a web page’s morphology, which derives from the nested properties

of the markup languages (e.g.,HTML and XML) used bymainstream

web frameworks to define layouts. Vetter utilizes this to minify a

web page’s morphology, thus greatly reducing the complexity to

𝑂 (𝑛3), which only takes tens of milliseconds in practice.

(a) Page A (b) Page B

Figure 2: The landing page of Pinterest.com varies signifi-

cantly in two different loads due to the dynamic contents.

Vetter further provides debugging support for visual distortions

that are automatically detected (or manually identified). We find

that solely analyzing the visually distorted elements (detected dur-

ing testing) is ineffective, because many of them are the results of

the łchain reactionsž of neighboring visually distorted elements

instead of the defects in a WPO’s source code.

To debug visual distortions effectively, Vetter performs morpho-

logical causal inference that strategically manipulates the loading

process of these elements (e.g., replacing one visually distorted

element’s resource with its original one, or changing the loading

sequence) under the guidance of morphological hints (i.e., the graph-

ical and structural information of visually distorted elements), and

meanwhile checks whether the distortion can be resolved. Given

the results, Vetter can efficiently infer the causal relationship be-

tween the WPO’s source code and visually distorted elements, thus

greatly and safely reducing the search space for debugging.

We apply Vetter to four representative WPOs (Ziproxy, Compy,

Fawkes, and SipLoader). When using the Alexa top 2,500 websites

as the training set and bottom 2,500 websites (among the top 1M) as

the test set, Vetter can efficiently (costing 62ms per page on average)

detect visual distortions with high precision (95%) and recall (91%).

Further, Vetter finds a total of 21 previously unknown defects in the

four WPOs, most of which stem from 1) WPO developers’ undue

reliance on the correctness of the original web request/response

headers, 2) the WPO-amplified dependency violations among web

contents, and 3) the lack of support for emerging web techniques.

We fix them through either source code correction or lightweight

middleware pre-parsing, and thus clear up almost all (98%) of the

visual distortions, which are more than detected (91%) as many

undetected ones have been automatically resolved by our fixes.

All the 21 discovered defects along with our suggested fixes have

been reported to the developers of the four WPOs, among which

12 defects have been confirmed and 5 suggested fixes have been

officially adopted. The remaining ones are either under beta tests

or under code review.

In summary, this paper makes the following contributions.

• We conduct the first study on visual distortions incurred by

WPOs and release a large open dataset involving 5,000 websites.

• We develop Vetter, a visual-aware testing and debugging sys-

tem that automatically and effectively detects and debugs visual

distortions based on the morphology of web pages.

• Vetter has detected 21 unknown defects in four widely used

WPOs; to date, 12 of them are confirmed and 5 are fixed.

• The code and data involved in this work are released at https:

//github.com/Web-Distortion/Vetter (detailed in Appendix A.5).

2

https://www.pinterest.com/
https://github.com/Web-Distortion/Vetter
https://github.com/Web-Distortion/Vetter

2 BACKGROUND AND MOTIVATION

2.1 The Dilemma of WPOs

In the web ecosystem, WPOs are extensively developed and de-

ployed as client-side plug-ins, server-side middleware, or stan-

dalone proxies, by mobile ISPs [32, 65] and content providers [3, 47],

to save page load time and network traffic, to provide versatile

add-on services like web content caching [3], encrypted network

communication [46], and advertisement filtering [63].

A WPO can help optimize the web browsing experience before

(offline phase) and/or during (online phase) user access. In the offline

phase, the WPO typically pre-loads the web page to analyze the

included resources, and then executes corresponding optimization

routines, e.g., transcoding/compressing images, re-organizing the re-

source loading sequence [48, 66], and rewriting HTML files [48, 51].

Afterwards, the optimized page is usually cached on the web server

for serving later accesses. In addition, some WPOs also perform

online optimizations during web page loading. They typically run

on a standalone proxy for simpler or lighter tasks, e.g., resource

pre-fetching [66], TCP pre-connection [3], and advertisement block-

ing [47]. This is because łheavyž optimizations like analyzing and

rewriting HTML files could induce non-negligible latency penalty.

Despite the benefits, WPOs have received plenty of user com-

plaints when working in the wild due to the side effects. By exten-

sively reviewing the negative comments posted on relevant online

communities [70, 71] and customer-support websites [10, 17, 22],

we find the side effects include latency penalties, bandwidth bot-

tleneck [75], functional anomalies, visual distortions, and so forth.

In particular, most users are concerned about visual distortions,

such as layout displacement and content loss on the optimized web

pages [21, 22, 70, 71]. Worse still, some users even doubt that the

WPO has incurred security/privacy threats such as unauthorized ad-

vertisement injection [8] and undesired web page redirection [20].

2.2 Understanding Visual Distortions

To quantify the realistic prevalence and severity of visual distor-

tions incurred by WPOs, we apply two typical WPOs, i.e., Ziproxy

(a classic HTTP forwarding proxy for traffic compression and ac-

celeration) and Compy (an open-source implementation of Google

Flywheel) to the Alexa top and bottom 2,500 (thus a total of 5,000)

websites (among the Alexa top 1M) on Dec. 9th, 2021. Specifically,

we deploy the latest versions of Ziproxy and Compy on two sepa-

rate VM servers rented from AWS EC2, each with a dual-core CPU

@2.3 GHz, 2 GB of memory, and 100 Mbps access bandwidth. Also,

we develop an automated web browsing exerciser (or simply exer-

ciser) and let it work on a typical Windows-10 PC with a quad-core

CPU @3.4 GHz, 16 GB of memory, and 100 Mbps access bandwidth.

For each of the 5,000 websites, the exerciser sequentially visits

its landing page with and without the two deployed WPOs using

Chrome v79web browser, respectively. Once the page is fully loaded

(with cold browser cache every time), the exerciser takes a snapshot

of the screen display. As a result, we obtain three screenshots for

each websiteÐone for the original landing page and the other two

for the optimized versions (produced by Ziproxy and Compy).

With the screenshots of the 5,000 websites’ landing pages, we

next determine whether these optimized pages are visually dis-

torted. Here a challenge is that there is subjectivity, to some extent,

Table 1: Visual distortions occurring to the Alexa top 2,500

websites’ landing pages. ł#ž is the number of distorted pages.

Distortion Symptom # by Ziproxy # by Compy Total

Content Loss 0 63 63

Image Display Error 11 0 11

Text Confusion 13 16 29

Layout Disorder 0 3 3

All 24 82 106

in users’ perceptions of visual distortions. To deeply understand

visual distortions from real users’ perspectives, we conduct a crowd-

sourcing study by recruiting 18 users with different ages and gen-

ders. They help recognize and categorize visual distortions on the

5,000 optimized landing pages produced by the two WPOs. More

details of the crowdsourcing study are described in Appendix A.1.

Measurement Findings. Based on the collected dataset, we have

multi-fold findings on WPO-incurred visual distortions in terms of

their prevalence, severity, and key characteristics.

First, although visual distortions seem to be subjective problems,

in most cases (93%) the recruited users can in fact reach a consen-

sus. For the remainder (7%), visual distortions are determined by

majority voting; if there is a tie, we would participate to break it.

Besides, both Ziproxy and Compy bring visual distortions to

a nontrivial portion (0.96% and 3.28%) of the top 2,500 websites’

landing pages. We list the specific symptoms and their quantities in

Table 1 based on the opt-in users’ feedback. We find that Ziproxy

and Compy can vary greatly regarding the occurrence of a certain

symptom (we delay the detailed explanation to ğ4.2). While the

portions both look small (<10%), note that even a single visual

distortion can incur a direct, negative impact on the user experience,

making users unsatisfied or vigilant and thus stop using the WPO.

Also note that we only test the landing page of each website, which

typically contains quite a number of pages. That is, there might

well be much more distortions undiscovered for the 5,000 websites.

By contrast, the bottom 2,500 websites’ landing pages suffer even

more visual distortions: 5.64% for Ziproxy and 8.96% for Compy.

This is understandable: less popular websites usually include more

non-standard or even incorrect web contents that can more easily

trigger the side effects ofWPOs’ optimization routines. Our detailed

analysis in ğ4.1 also confirms this.

The study was performed under a well-established IRB. No per-

sonally identifiable information was collected.

2.3 Challenges

To combat visual distortions induced by WPOs, we have explored

several potential solutions to detecting and debugging them. Our

experience reveals significant technical challenges to automatically

detecting and debugging visual distortions using traditional metrics.

Specifically, to detect visual distortions, an intuitive approach

is using computer vision (CV) metrics to compare the rendering

results of the original and optimized pages. Unfortunately, this

approach works poorly on dynamic pages whose rendering results

differ from one load to another (detailed in Appendix A.2).

Comparing the key data structures of web pages is also ineffec-

tive. For example, a web page’s render tree which contains visible

web elements is inaccessible outside the browser. The CSS Object

3

Runtime
Parameters

Original Page

Optimized Page

Web Server

WPO

Testing Stage

Morph. Instantiation

& Minification

L0

L1

L2

L0’

L1’

L2’

Morph. Similarity

Calculation

Input Debugging Stage

WPO Code

Morph. Causal Inference

Optimized

Loading Sequence

Manipulated

Loading Sequence

Causality-Informed

Code Analysis

WPO

Defects

…

…

…

…

SwapMorph.

Hints

Hierarchy Matching

Node Matching

Distorted?

Exit

N

Y

Timeline

Call Stacks

Figure 3: Architectural overview of Vetter.

Model (CSSOM) tree is over general as it only describes the presen-

tation or formatting style of web elements. The Document Object

Model (DOM) tree only represents the logic (rather than visual)

relations of web elements; it can be changed greatly by inserting

multiple empty inner elements (e.g., <div>) into the HTML file, yet

the rendering result remains unchanged.

Worse still, even if we managed to detect visual distortions, it is

still challenging to debug them as WPOs often have sophisticated

implementations, e.g., Ziproxy has ∼20K lines of code and employs

40+ third-party modules and auto-generated functions. Meanwhile,

the available information for diagnosis is very limited. The runtime

logs of WPOs crucial to debugging are often hard to fetch, espe-

cially for those WPOs that only work in the offline mode (as their

optimizations are performed ahead of the page loading process).

3 DESIGN AND IMPLEMENTATION

3.1 System Overview

To address the challenges in ğ2.3, we present Vetter, a system for

automatically testing and debugging visual distortions.

The main idea is to rethink about visual distortions from the

perspective of how modern web pages are generated. We observe

that most of the modern web pages are programmatically generated

by mainstream web frameworks (e.g., Angular [25], React [35], and

Vue [73]), rather than manually written from scratch in an ad-hoc

manner. All these frameworks adopt the standard Model-View-

ViewModel (MVVM) design pattern that separates a web page’s

layout (View) from its logic and data (Model), so as to make the

web page easy to develop, test, and maintain. Consequently, while

the logic and data of a dynamic web page vary between different

loads, only the scales or concrete contents of the visual elements

are changed accordingly. On the other hand, the visual elements’

topological forms and scale-free geometrical structures scarcely

ever change; such invariants are termed a web page’s morphology.

Morphology provides an effective vantage point to understand

visual distortionsÐvisual distortions occurring to a web page (no

matter how dynamic it is) are highly relevant to changes in its mor-

phology. This conforms to our daily web browsing experienceÐfor

a dynamic web page (like Pinterest.com), a user does not expect or

can even notice the changes of individual visual elements between

different page loads. However, if its morphology changes drastically,

the user would easily notice and feel uncomfortable. In theory, it is

possible for a web page to swap its own morphology upon different

loads, but such a behavior is rare in practice.

Vetter is built on the morphology insight. In order to detect visual

distortions, Vetter extracts and compares the morphologies of web

pages; further, Vetter uses the morphological differences between

the pages as important hints to pinpoint the root causes. Figure 3

depicts Vetter’s major components and workflow. Vetter takes the

original web page and its optimized version generated by a WPO as

the input, and performs the following testing and debugging steps:

• Morphology Instantiation and Minification (ğ3.2). To instantiate

a web page’s morphology, we employ scene graph, a classic

data structure in computer graphics for representing 2D/3D

scenes [19], to capture both the abstract graphical information

and spatial structures among the web page’s constituent ob-

jects. However, comparing the scene graphs of two web pages

incurs prohibitively high computational overhead. To address

this, Vetter leverages the intrinsic hierarchy in a web page’s mor-

phology to minify the scene graph into a morphological segment

tree (MST), so as to facilitate the remaining steps.

• Morphological Similarity Calculation (ğ3.3). Once two pages’

MSTs are constructed, Vetter calculates their morphological sim-

ilarity in two stages to determine visual distortions. First, Vetter

adopts hierarchy matching enhanced bymemorization algorithms

to quickly perform coarse-grained, level-by-level matching be-

tween two MSTs. Second, it zooms in on each matched level

to perform fine-grained, node-by-node matching. In this way,

the morphological similarity between two pages can be calcu-

lated with 𝑂 (𝑛3) time complexity while retaining high accuracy.

Meanwhile, Vetter records the graphical and structural informa-

tion of visually distorted elements (marked red in Figure 3) as

morphological hints to inform debugging.

• Morphological Causal Inference (ğ3.4). When diagnosing a visual

distortion, we find that focusing on all the visually distorted

elements (detected in the above testing step) is expensive and

unnecessary, as many of them are just the łchain reactionž results

of neighbouring visually distorted elements. Therefore, Vetter

strategically manipulates the loading process of these elements

(e.g., changing the loading sequence as depicted in Figure 3) using

the morphological hints; meanwhile, it invokes the testing steps

again to check if the distortion still exists after the manipulation.

By repeating the above-described trials until the distortion is

resolved, Vetter can infer the causal relationship between the

distortion and the visually distorted elements, thus effectively

and safely ruling out the distractions.

4

https://www.pinterest.com/

α α

α

β β

β

a1

a2 a3

α1 α2

α3

β β

β
b1

b2 b3

α α

α

β1 β2

β3

Left of Vertical Support

Scene A SG
A

SG
B

Scene B

(a) (b) (c) (d)

Figure 4: Two typical scenes and their scene graphs.

• Causality-Informed Code Analysis (ğ3.5). Having obtained a vi-

sual element (called a critical element) that directly causes the

distortion, Vetter then extracts specific functions that have ever

modified the parameters of the critical element at run time from

the function call stacks recorded in the previous step. These

functions are thus highly related to the distortion, but may still

not be the problematic ones. To help WPO developers efficiently

locate the problematic functions, Vetter further picks out the

runtime parameters (and their values) of these functions from

the WPO-recorded running logs, and organizes them into a time-

line, from which developers can easily notice invalid parameters

and undesirable call paths, thereby quickly pinpointing the root

causes at the source code level.

3.2 Morphology Instantiation & Minification

Effectively instantiating the concept of morphology is vital to the

design of Vetter. Through extensive literature review, we notice that

scene graph [19], a widely-used data structure in computer graphics

for representing graphic elements in a scene and their spatial rela-

tions, is an ideal choice. Figures 4(a) and (c) depict two scenes which

both contain three elementsÐa monitor, a computer, and a desk.

Their corresponding scene graphs are shown in Figures 4(b) and

(d), where each node represents a certain element and each edge

denotes a kind of structural relations (e.g., łleft ofž and łvertical

supportž). Since scene graph can well represent the 3D graphic

elements and their spatial relations, we believe that it is expressive

enough to describe (2D) web page elements’ topological forms and

scale-free geometrical structures, i.e., a web page’s morphology.

Scene Graph Construction for Web Pages. To construct scene

graphs for web pages, a critical problem is that the graphic elements

and their structural relations on aweb page are not given by the web

server or client. Currently, there are mainly two types of solutions:

1) intuitive CV-based web page segmentation [9], and 2) underlying

data structure-based page segmentation [11]. Sadly, the former

is subject to the inaccuracy of pattern recognition, and the latter

involves highly complicated rules that are not actionable in practice.

Thankfully, we note that when rendering aweb page, mainstream

web browsers such as Chrome, Firefox, and Safari all adopt the

SkPaint utility [68] to draw graphic elements on the web page’s

canvas. These graphic elements correspond to all the web objects,

and thus are ideal for scene graph construction. Besides, they are

fully accessible to outsiders rather than only the web browser.

Further, by carefully analyzing the browser’s SkPaint API in-

vocation logs of the Alexa top and bottom 2,500 websites, we

observe a highly skewed invocation pattern: nearly 99% of the

invocations merely relate to 12 SkPaint APIs, among which only

five (i.e., drawTextBlob, drawRect, drawPath, drawImageRect and

drawRRect) will add a visible graphic element (i.e., text, image,

rectangle, rounded rectangle, line, and customized shape) to the

Lightyellow
Background

Body
Text

Green
Circle

Yellowgreen
Background

Title
Text

Scrapy
Logo

(a) Rendered Page (b) MST(a) Rendered Page (b) MST

Figure 5: A typical web page and its corresponding morpho-

logical segmentation tree (MST).

web page; the other seven (i.e., restore, save, saveLayer, concat,

drawPaint, clipRect and clipRRect) do not involve actual ren-

dering operations and thus do not affect the web page’s appearance.

After filtering out useless SkPaint API invocations, we can use the

remainder to build the scene graph for a web page. Specifically, we

extract graphic elements together with their major properties (i.e.,

topological form) from the really useful SkPaint API invocations.

Such graphic elements act as the nodes in the scene graph. Further,

we need to construct edges that represent the structural relations

between different nodes. In practice, there exist multiple structural

relations including 1) containment, 2) intersection, 3) contact, 4)

adjacency, 5) above/below, 6) left/right, 7) superposition, and so on.

Unfortunately, considering all these relations would make the scene

graph (i.e., the morphology of the web page) overly complicated

for efficient storage and subsequent processing.

Morphological Segmentation Tree (MST). To address this, we

carefully study the visual structures of the Alexa top and bottom

2,500 websites, and observe that almost all their landing pages

exhibit a certain form of hierarchy in their appearance. Take Fig-

ure 5(a) as an example, on the rendered web page lie a total of nine

graphic elements, where the largest element (Lightyellow Back-

ground) contains all the other eight elements. Further, Green Circle

contains Shovel Logo, and Yellowgreen Background contains PyPI

Version, Wheel Status, and Coverage Report. In fact, the hierarchy

among graphic elements is not an incidental phenomenon but a

matter of course, recalling the nested properties of the markup

languages (e.g., HTML and XML) for defining web pages’ layouts.

Guided by the above, we minify a page’s scene graph into a

morphological segmentation tree (MST) by focusing on the intrinsic

hierarchy among graphic elements, which can be fully captured by

the containment relation. By only considering this relation, we can

naturally simplify the original graph into a tree structure, which

is named as morphological segmentation tree (MST). For example,

Figure 5(b) depicts the MST for the web page shown in Figure 5(a),

where each node represents a graphic element and each edge de-

notes the containment relation between two elements.

Apparently, the above minification process has a caveat: if con-

tainment cannot fully represent the relations between web elements

(involving 1.6% web pages in our dataset), false negatives may be

induced in distortion detection. To address this, we also use the

other structural relations together with the containment relation

for fine-grained matching between web elements (cf. ğ3.3). In ad-

dition, there exist łinfinite-scrollž web pages (e.g., social media

newsfeeds [2]) that seem to contain infinite contents and thus frus-

trate our constructing complete MSTs. Fortunately, we observe

that such pages are in fact never loaded in one shot. For a typical

infinite-scroll page, a small portion of contents are first loaded (the

5

initial page load), and then more contents are continuously loaded

as users scroll down (subsequent content loads). Given this, we

construct the MST of a web page based on the contents of the initial

page load. Note that according to our measurement study, almost

all (>98%) infinite-scroll pages have highly similar morphologies

among different loads. Thus, it is almost always sufficient to detect

distortions using MSTs constructed from the initial page load.

3.3 Morphological Similarity Calculation

With the constructed MSTs (denoted as𝑀𝑆𝑇𝐴 and𝑀𝑆𝑇𝐵) of a web

page 𝐴 and the optimized page 𝐵, we next calculate their simi-

larity to compare the pages’ morphologies. Recall that a page’s

morphology refers to the visual elements’ topological forms and

scale-free geometrical structures. Thus, we should first match the

visual elements in the two pages, i.e., the nodes in𝑀𝑆𝑇𝐴 and𝑀𝑆𝑇𝐵 .

Hierarchy Matching & Node Matching. Perfectly matching the

nodes in two MSTs is known to bear 𝑂 (𝑛!) time complexity when

there are 𝑛 nodes in each MST, which is infeasible in practice. To

address this, we first leverage MSTs’ hierarchical information to

perform coarse-grained, level-by-level hierarchy matching between

𝑀𝑆𝑇𝐴 and𝑀𝑆𝑇𝐵 by comparing the structural relations among dif-

ferent nodes in the same level. Moreover, we use a memorization

algorithm to accelerate the matching process.

Once a pair of levels in the two MSTs are matched, we then

conduct fine-grained, node-by-node matching within the two lev-

els. Specifically, we find the best matching scheme between two

levels with the highest average similarity (calculated based on the

topological forms and structural relations of the nodes) among all

pairs of matched nodes. We use the classic Hungarian algorithm [6]

to solve this problem with𝑂 (𝑘3) time complexity, where each level

contains 𝑘 nodes. The algorithmic details are in Appendix A.3.

Morphological Similarity Calculation. Finally, after all the

nodes are matched, we calculate the similarity between the two

MSTs (termed as MorphSIM) as the average similarities between all

pairs of matched nodes. Ideally, we can directly determine the occur-

rence of visual distortions by usingMorphSIM. However, in practice

we find that solely relying on MorphSIM brings a low (4.7%) false

positive (FP) rate yet a median (20.3%) false negative (FN) rate (cf.

ğ4.1), as the morphology-wise comparison is not sensitive to small

pixel-level changes. By contrast, making joint use of the widely

used CV metrics including SSIM [77], SIFT [50], and pHash [76]

(i.e., the CV-hybrid approach) often yields a median (16%) FP rate

and a low (10%) FN rate (also cf. ğ4.1). Thus, the two methods in

fact well complement each other. Given this, we make combinatory

use of MorphSIM-based and CV-based method to decide whether

there are distortions by using them as machine learning features

for training various machine learning classifiers including Decision

Tree, Random Forest [43], Logistic Regression, Naive Bayes, SVM,

SGD-Classifier [14], and RBF Neural Network [5]. Finally, Random

Forest excels with the average F1 score >93.0%.

3.4 Morphological Causality Inference

To help WPO developers effectively analyze a visual distortion, our

idea is to leverage the extracted morphological information of the

optimized web page as critical hints for determining the causal

relationships [44] between a visually distorted element and the

distortion, so as to rule out distractions and reduce the search space

of problematic code. In general, since a WPO usually modifies a

web page’s resources and their loading sequences to achieve perfor-

mance optimizations, we gradually restore the modified resources

and sequences to the original ones to see whether the distortion is

resolved. If so, the łreal culpritsž of the distortion are among the

most recently restored resources/sequences.

Specifically, we first extract the resources (including HTML/

JavaScript/CSS files, fonts, images, and videos) related to the visual

distortion based on the browser execution logs we capture during

the page’s loading process. We track the CSS rules in the stylesheet

resources that correspond to all the visually distorted elements;

meanwhile, we record the call stack information of DOM-related

JavaScript API invocations (e.g., appendChild, removeChild, and

setAttribute) that process the visually distorted elements. Based

on the above information, we can find out all the suspicious re-

sources that potentially incur the visual distortion.

In practice, we typically extract tens of (41 on average in our

dataset) suspicious resources for a single visually-distorted web

page, while only a small portion (4%) of them are the real culprits. To

narrow down the search space, we gradually replace the optimized

resources with their original versions (one at a time), and invoke

the visual-aware testing steps (cf. ğ3.3) after each replacement to

check if the distortion has been resolved. If so, we infer that the

truly problematic resources that lead to the distortion are among

the recently restored ones, without manipulating the remaining

resources. Otherwise, we further resort to restoring the web page’s

resource loading sequence using the the classic sequence alignment

algorithm [52], which turns out to be pretty efficient in practice.

3.5 Causality-Informed Code Analysis

Having identified the visually distorted elements and their corre-

sponding resources (termed critical elements/resources) that have

direct causal relationships with the distortion, Vetter quickly locates

the WPO’s functions that process the critical elements/resources

based on call stacks recorded at run time (using runtime profilers

like gdb). For example, when a JPEG image is missing from the

optimized page produced by Compy (and thus is identified as a

critical element), Vetter uses the call stack information to pinpoint

that the image has been processed by 1) proxyResponse which

extracts the the image format from the Content-Type field in the

response header, 2) AddTranscoder which informs the transcoder

of the image format, and 3) Transcode which transcodes the image

file according to its format.

To help developers locate the root causes in a more fine-grained

manner, Vetter also records the runtime logs of the WPO function

calls (generated through automatic code instrumentation), which

include the functions’ runtime parameters and entry timestamps.

With these, Vetter further organizes this critical information along

with the call stacks as a timeline, so as to clearly depict the in-situ

situations of the WPO when processing the critical elements. For

the above example of Compy, Vetter organizes the call stacks of

the above three functions together with their runtime parameters.

Based on this diagnostic information, we easily discover that the

function AddTranscoder’s input parameter Content-Type is set

as łPNGž, which is apparently inconsistent with the actual image

6

format (JPEG), causing errors during the transcoding process and

thus the content loss (detailed in ğ4.2).

3.6 Implementation

Vetter contains three major components: WPO Runtime Logger,

Distortion Detector, and WPO Debugger. The three components

are implemented with a total of 2,400+ lines of code (LoC). WPO

Runtime Logger records theWPO’s function call stacks and runtime

logs. This component is built upon gdb, Go Execution Tracer [31],

and OpenTelemetry [33]. Distortion Detector records the page’s

resources and their loading sequence using Mahimahi [58]. It also

records the SkPaint API invocations with the Skia web_to_skp

tool [24] during page loading to construct the MSTs. Finally, WPO

Debugger uses the puppeteer library [34] to monitor and manipu-

late the page loading process for debugging visual distortions.

4 EVALUATION

4.1 Visual-Aware Testing Performance

We evaluate Vetter’s efficacy and overhead of testing visual dis-

tortions with the dataset collected in ğ2 (i.e., the 5,000 web pages’

original version and two optimized versions produced by Ziproxy

and Compy). We compare Vetter with five distortion detection ap-

proaches, which are based on three common CV metrics (i.e., SSIM,

SIFT, and pHash), MorphSIM (cf. ğ3.3), and the CV Hybrid metric.

Setup. For the three CV-based approaches and the MorphSIM-

based approach, if the similarity calculated using the corresponding

metrics between the optimized and the original web pages is below

a pre-determined threshold, an optimized web page will be deter-

mined as visually distorted. To find out appropriate thresholds, we

try different threshold values and examine the approaches’ detec-

tion performance (measured by F1 score) on Alexa top 2,500 web

pages (referred to as the training set). As a result, we respectively

set the threshold values for SSIM, SIFT, pHash, and MorphSIM as

0.95, 0.99, 0.91 and 0.46, which are able to maximize their F1 scores.

As solely relying on any of the CV metrics yields low F1 scores

(as shown in ğ2.3), we further use mainstream classifiers to combine

the three CVmetrics together, including Decision Tree, Random For-

est [43], Logistic Regression, Naive Bayes, SVM, SGD-Classifier [14],

and RBF Neural Network [5]. We find that the SGD-Classifier

achieves the best performance on the training set. Similarly, we

combine the MorphSIM and CV metrics (i.e., Vetter’s testing ap-

proach) using different classifiers; this time, Random Forest excels.

With these preparations, we compare Vetter with other approaches

on Alexa bottom 2,500 (among top 1M) web pages (referred to as the

test set). Our rationale behind using top 2,500 (most popular pages)

for training and bottom 2,500 (less popular, often non-standard)

for testing is to evaluate the robustness of these approaches with

two very different sets of web pages. We use the same testbed as

that introduced in ğ2.2, and the crowdsourced results as the ground

truth. We mainly focus on testing precision, recall, F1 score and de-

tected number of visually distorted pages when evaluating different

approaches’ performance in testing visual distortions.

Testing Performance. Table 2 lists the testing performance of

Vetter and five other comparative approaches on the test set. As

shown, CV-based approaches (i.e., the first four rows in the table)

Table 2: Testing performance of Vetter and the other detec-

tion approaches based on the three CV metrics, the combina-

tion of the CV metrics (CV Hybrid), and MorphSIM. ł# Dist.ž

denotes the detected number of distorted pages.

Metric Precision Recall F1 Score # Dist.

SSIM 45% 88% 0.59 713

SIFT 48% 70% 0.57 532

pHash 44% 89% 0.59 738

CV Hybrid 49% 90% 0.63 670

MorphSIM 82% 80% 0.81 356

Vetter 95% 91% 0.93 349

yield unsatisfactory performance, as they induce many FPs when

tackling dynamic pages that differ greatly between different loads.

On the other hand, since MorphSIM is not sensitive to pixel-level

changes, some content loss and distortions cannot be detected, thus

leading to a lower recall. In comparison, Vetter makes combined

use of CV-based and MorphSIM-based approaches to avoid their

defects, achieving the best testing performance. Detailed analysis

is presented in Appendix A.4.

4.2 Visual-Aware Debugging Results

We apply Vetter to four representative WPOs: Ziproxy, Compy,

Fawkes, and SipLoader for pinpointing the root causes of the vi-

sual distortions they incur when optimizing the 5,000 pages in

our dataset. As a result, Vetter successfully unravels a total of 21

previously-unknown defects: 4 in Ziproxy, 4 in Compy, 2 in Fawkes,

and 11 in SipLoader. Moreover, the debugging efforts are signifi-

cantly reduced by Vetter. In detail, for Ziproxy Vetter reduces the

search space from ∼20K LoC to 560 LoC for each defect on average.

Similarly, for Compy, Fawkes, and SipLoader, the search space is

reduced to only 16%, 3%, and 6%, respectively.

Concretely, we classify the defects into 11 types as shown in

Table 3. In particular, we note that most of the defects root in several

misconceptions or wrong assumptions of WPO developers.

Undue Reliance on HTTP Headers. HTTP headers can be im-

properly configured by web developers. Some WPO developers

do not realize the possible misconfigurations, and directly use the

headers to decide the optimization logic, thus inducing distortions.

For example, Compy checks an image’s format solely with the

Content-Type field in HTTP headers, which can be inconsistent

with the actual format and lead to incorrect image transcoding. Also,

when compressing text files, Ziproxy adds a new Content-Encoding:

gzip field to the response header, without deleting the original

Content-Encoding field, causing text confusion.

Amplified Dependency Violations. The loading sequence of

web page resources should obey the complex dependencies among

them, so as to assure that the page is loaded properly. For instance,

before a JavaScript file’s execution, the resources (e.g., images and

CSS files) it depends on must be fully loaded. However, some mech-

anisms of WPOs like resource pre-fetching and script pre-execution

manipulate the resources’ loading sequence, and thus could cause

or amplify dependency violations. In practice, we observe that

SipLoader cannot capture all the dependencies during its optimiza-

tion phase (mainly performed offline), since some dependencies are

dynamically generated online during the page loading process. Such

7

Table 3: Defect types, symptoms and ratios of four WPOs.

Proxy Defect Type Symptom Ratio

Ziproxy
Imprudent image Image transcoding error 47.9%
Conflicting fields in HTTP header Text confusion 43.7%
Disorder of async JavaScript Layout disorder 5.4%

Compy

Object header-body inconsistency Content loss 90.1%
Insufficient support for new web
protocols

Content loss 6.7%

Incomplete request forwarding Undesirable typesetting 3.2%

Fawkes

Lack of analysis of JavaScript de-
pendencies

Incorrect DOM manipu-
lations

82.7%

Insufficient support for control
characters

Web page freezing 17.3%

SipLoader

Insufficient support for compres-
sion algorithms

Resource file corruption 15.4%

Incomplete dependency tracking
during rewriting

Content loss/layout dis-
order

52.3%

URL conversion error Content loss 32.3%

limitation results in over a half of the visual distortions induced by

SipLoader. Similar issues also exist in Ziproxy.

Lacking Support for EmergingWeb Techniques. Compy, Faw-

kes, and SipLoader do not well adapt to today’s emerging web

techniques, thus causing visual distortions on optimized pages. For

instance, SipLoader cannot recognize the resources compressed

by Brotli [1], so it directly treats the resources as uncompressed.

Besides, Compy cannot handle WebSocket requests, thus impairing

some websites’ interactive functions like online chat room.

4.3 Defect Fixing

To fix the defects, we provide either source code corrections or

auxiliary middleware pre-parsing for the WPOs.

• Consistency Checking for HTTP Headers. Given that HTTP head-

ers can often be misleading, we provide consistency checking

between the headers and the related resources. In detail, for

Compy we identify an image’s actual format by sniffing its byte

pattern rather than simply believing the headers. For Ziproxy, if

there already exists a Content-Encoding:none field, we replace

its value rather than adding a conflicting new field.

• Runtime Dependency Tracking. To prevent the optimized loading

sequence from violating resources’ dependencies, we build a

lightweight middleware to pre-parse the HTML files using a

headless Chrome browser [64]. Similar to Prophecy [57], the

middleware leverages JavaScript Proxy objects to collect the

write logs of JavaScript variables during the pre-parsing phase.

With the write logs, the middleware merges all JavaScript files

into a single inline script where all the JavaScript variables are

properly generated based on dependencies, and then sends the

rewritten HTML file to the WPO.

• Adapting to NewWeb Techniques. For Compy, we have integrated

supports forWebSocket. Also, we check the Transfer-Encoding

field in SipLoader to recognize Brotli-compressed files, and per-

form the corresponding compression/decompression on demand.

Impacts on Real-WorldWPOs. After applying the above fixes to

the fourWPOs, we find that nearly all (98%) of the visual distortions

occurred on the 5,000 web pages in our dataset disappear. Further,

to realistically improve the four mentioned real-world WPOs, we

have reported our uncovered defects and the suggested fixes to

all of them. Although Ziproxy’s and Fawkes’ developers have not

replied yet, Compy’s and SipLoader’s developers have confirmed

a total of 12 GitHub issues [15, 37] reported by us through an

anonymous GitHub account named Web-Distortion. More impor-

tantly, nearly half of the fixing patches have been upstreamed to

the master branch of their code base [16, 38], leading to the first

major update of Compy in 2021 and a major upgrade of SipLoader

in 2022. For the remaining half, they are under improvement for

compatibility/security concerns.

5 RELATED WORK

Visual Distortion Testing for Web Systems. Testing visual

distortions of web pages is crucial to the QoE of many web systems.

Prior work has proposed several tools [12, 13, 53] towards detecting

incorrect rendering of web pages for both web browsers and web

applications. Specifically, for browsers, R2Z2 [69] differentiates the

same HTML file’s rendering results on two browsers to detect and

debug incorrect rendering caused by a browser’s buggy rendering

pipeline. It identifies incorrect rendering using pHash, a CV metric

we have extensively discussed in ğ2.3. Besides, a number of formal

methods [54, 60ś62] have been devised for verifying the layout

algorithm of browsers. For web applications, existing studies [27ś

29, 40, 74] mainly focus on their cross-browser visual consistency

by comparing the page’s DOM trees on different browsers.

Differently, Vetter adopts the novel concept of morphology of

web pages to address the challenges of complex dynamic web pages,

which results in accurate and effective detection.

Web Problem Debugging. To debug web problems, existing tools

focus on recording and replaying web pages. Two popular examples

are Google’s web-page-replay [26] and Telerik’s Fiddler [72], which

intercept HTTP traffic through DNS redirection or intermediate

data forwarding to record and replay web requests/responses. Some

other tools [4, 7, 67] record the detailed information of JavaScript

executions and replay them for diagnosis purposes. While these

debugging tools can help WPO developers uncover common pro-

gram defects, they cannot well diagnose those related to web pages’

visual distortions. Vetter addresses this by strategically inferring

the causal relationships between visual elements and distortions

with the crucial morphological hints extracted from web pages.

6 CONCLUSION

This paper presents Vetter, an automatic testing and debugging

system for the visual distortion problem induced by web perfor-

mance optimizers (WPOs). The problem has long been frustrating

the industry by rendering WPOs unreliable or even unusable, but is

never addressed due to its elusiveness and difficulty. Based on a spe-

cial notion of morphology, an inherent and stable visual property

of modern web pages, Vetter effectively and efficiently identifies

visual distortions on even complex dynamic pages. The morpho-

logical insights, coupled with strategical distortion-element causal

inference, further help pinpoint the root causes at the WPO source

code level. By applying Vetter to four representative WPOs, Vet-

ter locates crucial defects and resolves almost all distortions. In a

broader sense, our ideas proposed and lessons learned root in the

fundamental design patterns of modern web pages, and thus should

also be useful in strengthening the reliability of other web systems

like web browsers, web applications, and beyond.

8

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable comments.

We thank Zifan Zhang, Tingjun Piao, and Jinlong E for their help

in data collection and analysis in the early stage of this research.

This work was supported in part by the National Key Research and

Development Program of China under Grant 2022YFB4500703, by

NSFC under Grant 62202266, and by Microsoft Research Asia.

REFERENCES
[1] 2016. RFC 7932: Brotli Compressed Data Format. Technical Report. RFC Group.
[2] 2023. Twitter. https://twitter.com. (2023). (Accessed on Feb. 8, 2023).
[3] Victor Agababov, Michael Buettner, Victor Chudnovsky, Mark Cogan, Ben Green-

stein, Shane McDaniel, Michael Piatek, Colin Scott, Matt Welsh, and Bolian Yin.
2015. Flywheel: Google’s Data Compression Proxy for the Mobile Web. In Proc.
of USENIX NSDI. 367ś380.

[4] Silviu Andrica and George Candea. 2011. WaRR: A Tool for High-Fidelity Web
Application Record and Replay. In Proc. of IEEE DSN. 403ś410.

[5] David S Broomhead and David Lowe. 1988. Multi-Variable Functional Interpola-
tion and Adaptive Networks. Complex Systems 2, 3 (1988), 321ś355.

[6] Derek Bruff. 2005. The Assignment Problem and the Hungarian Method. Notes
for Math 20, 5 (2005), 29ś47.

[7] Brian Burg, Richard Bailey, Amy J Ko, and Michael D Ernst. 2013. Interactive
Record/Replay for Web Application Debugging. In Proc. of ACM UIST. 473ś484.

[8] Chris Burns. 2015. Android Data Saver Mode for Chrome Might Also Block
Ad Images. https://www.slashgear.com/android-data-saver-mode-for-chrome-
might-also-block-ad-images-01416563/. (2015). (Accessed on Jan. 20, 2022).

[9] Deng Cai, Shipeng Yu, Ji-Rong Wen, and Wei-Ying Ma. 2003. VIPS: A Vision-based
Page Segmentation Algorithm. Technical Report. Microsoft.

[10] Christian Cantrell. 2016. Everything You Need to Know about Google’s Acceler-
ated Mobile Pages. https://www.smashingmagazine.com/2016/02/everything-
about-google-accelerated-mobile-pages/. (2016). (Accessed on Feb. 11, 2022).

[11] Jinlin Chen, Baoyao Zhou, Jin Shi, Hongjiang Zhang, and Qiu Fengwu. 2001.
Function-Based Object Model towards Website Adaptation. In Proc. of ACM
WWW. 587ś596.

[12] Shauvik Roy Choudhary, Mukul R Prasad, and Alessandro Orso. 2012. Cross-
Check: Combining Crawling and Differencing to Better Detect Cross-Browser
Incompatibilities in Web Applications. In Proc. of IEEE ICST. 171ś180.

[13] Shauvik Roy Choudhary, Husayn Versee, and Alessandro Orso. 2010. WEBDIFF:
Automated Identification of Cross-Browser Issues in Web Applications. In Proc.
of IEEE ICSM. 1ś10.

[14] David Cournapeau. 2021. Sklearn LinearModel SGDClassifier. https://scikit-learn.
org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html. (2021).
(Accessed on Mar. 10, 2022).

[15] Barna Csorogi. 2021. Issues of Compy. https://github.com/barnacs/compy/issues.
(2021). (Accessed on Mar. 15, 2022).

[16] Barna Csorogi. 2021. Merged Fixes of Compy. https://github.com/barnacs/compy/
pull/68. (2021). (Accessed on Mar. 10, 2022).

[17] Drupal. 2020. AMP Display Is Activated for Webform, but Fields Are Not Present
in the Generated AMP Page. https://www.drupal.org/project/amp/issues/2825270.
(2020). (Accessed on Mar. 13, 2022).

[18] Facebook. 2018. How Do I Turn Data Saver Off If There Is No Option in the
Help and Settings? https://www.facebook.com/help/community/question/?id=
10154771843914157. (2018). (Accessed on Mar. 9, 2022).

[19] Matthew Fisher, Manolis Savva, and Pat Hanrahan. 2011. Characterizing Struc-
tural Relationships in Scenes Using Graph Kernels. In Proc. of ACM SIGGRAPH.
1ś12.

[20] Google. 2015. Data Saver Causes Erroneus Redirect of www.changiairport.com
to Different Site. https://support.google.com/chrome/forum/
AAAAP1KN0B0Sf855UX0cy8/. (2015). (Accessed on Mar. 10, 2022).

[21] Google. 2017. Critical AMP Error-Content Mismatch between AMP
and Canonical Pages. https://support.google.com/webmasters/forum/
AAAA2Jdx3sUp10PgfhYxUI. (2017). (Accessed on Feb. 3, 2022).

[22] Google. 2019. Content Problem with Data Saver On. https://support.google.com/
chrome/thread/2303283?hl=en. (2019). (Accessed on Mar. 10, 2022).

[23] Google. 2020. AMP Is a Web Component Framework to Easily Create User-First
Websites. https://amp.dev/. (2020). (Accessed on Feb. 12, 2022).

[24] Google. 2022. Skia web_to_skp Tool. https://github.com/google/skia/blob/main/
experimental/tools/web_to_skp. (2022). (Accessed on Mar. 24, 2022).

[25] Angular Group. 2022. Angular Platform. https://angular.io/. (2022). (Accessed
on Mar. 24, 2022).

[26] Chromium Group. 2017. Web Page Replay. https://github.com/chromium/web-
page-replay. (2017). (Accessed on Mar. 11, 2022).

[27] Dharma Group. 2018. Dharma. https://github.com/MozillaSecurity/dharma.
(2018). (Accessed on Mar. 21, 2022).

[28] Domato Group. 2018. Domato. https://github.com/googleprojectzero/domato.
(2018). (Accessed on Mar. 20, 2022).

[29] DOMFuzz Group. 2018. DOMFuzz. https://github.com/MozillaSecurity/domfuzz/
tree/master/dom. (2018). (Accessed on Mar. 20, 2022).

[30] Digital Photography Review Group. 2014. Help! Problems Watching Live TV.
https://www.dpreview.com/forums/post/53027375. (2014). (Accessed on Feb. 27,
2022).

[31] Go Group. 2017. Go Execution Tracer. https://blog.gopheracademy.com/advent-
2017/go-execution-tracer/. (2017). (Accessed on Mar. 21, 2022).

[32] Juniper Group. 2022. Juniper Networks. https://www.juniper.net/. (2022). (Ac-
cessed on Mar. 24, 2022).

[33] Open Telemetry Group. 2022. Open Telemetry. https://opentelemetry.io/. (2022).
(Accessed on May 21, 2022).

[34] Puppeteer Group. 2022. Puppeteer. https://pptr.dev/. (2022). (Accessed on May
21, 2022).

[35] React Group. 2022. React. https://reactjs.org/. (2022). (Accessed on Mar. 24,
2022).

[36] Superuser Group. 2016. Where to Turn Off Data Server in Chrome for Desk-
top. https://superuser.com/questions/1016592/where-to-turn-off-data-server-in-
chrome-for-desktop. (2016). (Accessed on Jan. 9, 2022).

[37] SipLoader Group. 2022. Issues of SipLoader. https://github.com/SipLoader/
SipLoader.github.io/issues. (2022). (Accessed on Apr. 10, 2022).

[38] SipLoader Group. 2022. Merged Fixes of SipLoader. https://github.com/SipLoader/
SipLoader.github.io/pulls?q=is%3Apr+is%3Aclosed. (2022). (Accessed on Apr. 10,
2022).

[39] TestIn Group. 2021. Landing Page of TestIn. https://www.testin.net/. (2021).
(Accessed on Feb. 24, 2022).

[40] Wadi Group. 2017. Wadi. https://github.com/sensepost/wadi. (2017). (Accessed
on Mar. 20, 2022).

[41] Ziproxy Group. 2021. Ziproxy: HTTP Traffic Compressor. http://ziproxy.
sourceforge.net/. (2021). (Accessed on Mar. 10, 2022).

[42] Compy Groups. 2021. HTTP/HTTPS Compression Proxy. https://github.com/
barnacs/compy. (2021). (Accessed on Mar. 18, 2022).

[43] Tin Kam Ho. 1995. Random Decision Forests. In Proc. of IEEE ICDAR. 278ś232.
[44] Brittany Johnson, Yuriy Brun, and Alexandra Meliou. 2020. Causal Testing:

Understanding Defects’ Root Causes. In Proc. of ACM/IEEE ICSE. 87ś99.
[45] Byungjin Jun, Fabián E. Bustamante, Sung Yoon Whang, and Zachary S. Bischof.

2019. AMP up Your Mobile Web Experience: Characterizing the Impact of
Google’s Accelerated Mobile Project. In Proc. of ACM MobiCom. 1ś14.

[46] Ronny Ko, James Mickens, Blake Loring, and Ravi Netravali. 2021. Oblique:
Accelerating Page Loads Using Symbolic Execution. In Proc. of USENIX NSDI.
289ś302.

[47] Zhenhua Li, Weiwei Wang, Tianyin Xu, Xin Zhong, Xiang-Yang Li, Yunhao Liu,
Christo Wilson, and Ben Y Zhao. 2016. Exploring Cross-Application Cellular
Traffic Optimization with Baidu TrafficGuard. In Proc. of USENIX NSDI. 61ś76.

[48] Wei Liu, Xinlei Yang, Hao Lin, Zhenhua Li, and Feng Qian. 2022. Fusing Speed
Index during Web Page Loading. In Proc. of ACM SIGMETRICS. 1ś23.

[49] Xing Liu, Feng Qian, and Zhiyun Qian. 2017. Selective HTTPS Traffic Manipula-
tion at Middleboxes for BYOD Devices. In Proc. of IEEE ICNP. 1ś10.

[50] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision 60, 2 (2004), 91ś110.

[51] Shaghayegh Mardani, Mayank Singh, and Ravi Netravali. 2020. Fawkes: Faster
Mobile Page Loads via App-Inspired Static Templating. In Proc. of USENIX NSDI.
879ś894.

[52] William J. Masek and Michael S. Paterson. 1980. A Faster Algorithm Computing
String Edit Distances. J. Comput. System Sci. 20, 1 (1980), 18ś31.

[53] Ali Mesbah and Mukul R Prasad. 2011. Automated Cross-Browser Compatibility
Testing. In Proc. of ACM/IEEE ICSE. 561ś570.

[54] Leo A Meyerovich and Rastislav Bodik. 2010. Fast and Parallel Webpage Layout.
In Proc. of ACM WWW. 711ś720.

[55] Donald Michie. 1968. łMemož Functions and Machine Learning. Nature 218,
5136 (1968), 306ś306.

[56] David Naylor, Kyle Schomp, Matteo Varvello, Ilias Leontiadis, Jeremy Blackburn,
Diego R López, Konstantina Papagiannaki, Pablo Rodriguez Rodriguez, and Peter
Steenkiste. 2015. Multi-Context TLS (mcTLS): Enabling Secure In-Network
Functionality in TLS. In Proc. of ACM SIGCOMM. 199ś212.

[57] Ravi Netravali and James Mickens. 2018. Prophecy: Accelerating Mobile Page
Loads Using Final-State Write Logs. In Proc. of USENIX NSDI. 249ś266.

[58] Ravi Netravali, Anirudh Sivaraman, Somak Das, Ameesh Goyal, Keith Winstein,
James Mickens, and Hari Balakrishnan. 2015. Mahimahi: Accurate Record-and-
Replay for HTTP. In Proc. of USENIX ATC. 417ś429.

[59] Opera. 2021. Opera Turbo Mobile Web Proxy. https://www.opera.com/turbo.
(2021). (Accessed on Jan. 7, 2022).

[60] Pavel Panchekha, Michael D Ernst, Zachary Tatlock, and Shoaib Kamil. 2019.
Modular Verification of Web Page Layout. In Proc. of ACM OOPSLA. 1ś26.

[61] Pavel Panchekha, Adam T Geller, Michael D Ernst, Zachary Tatlock, and Shoaib
Kamil. 2018. Verifying that Web Pages Have Accessible Layout. In Proc. of ACM
PLDI. 1ś14.

9

https://twitter.com
https://www.slashgear.com/android-data-saver-mode-for-chrome-might-also-block-ad-images-01416563/
https://www.slashgear.com/android-data-saver-mode-for-chrome-might-also-block-ad-images-01416563/
https://www.smashingmagazine.com/2016/02/everything-about-google-accelerated-mobile-pages/
https://www.smashingmagazine.com/2016/02/everything-about-google-accelerated-mobile-pages/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://github.com/barnacs/compy/issues
https://github.com/barnacs/compy/pull/68
https://github.com/barnacs/compy/pull/68
https://www.drupal.org/project/amp/issues/2825270
https://www.facebook.com/help/community/question/?id=10154771843914157
https://www.facebook.com/help/community/question/?id=10154771843914157
https://support.google.com/chrome/forum/AAAAP1KN0B0Sf855UX0cy8/
https://support.google.com/chrome/forum/AAAAP1KN0B0Sf855UX0cy8/
https://support.google.com/webmasters/forum/AAAA2Jdx3sUp10PgfhYxUI
https://support.google.com/webmasters/forum/AAAA2Jdx3sUp10PgfhYxUI
https://support.google.com/chrome/thread/2303283?hl=en
https://support.google.com/chrome/thread/2303283?hl=en
https://amp.dev/
https://github.com/google/skia/blob/main/experimental/tools/web_to_skp
https://github.com/google/skia/blob/main/experimental/tools/web_to_skp
https://angular.io/
https://github.com/chromium/web-page-replay
https://github.com/chromium/web-page-replay
https://github.com/MozillaSecurity/dharma
https://github.com/googleprojectzero/domato
https://github.com/MozillaSecurity/domfuzz/tree/master/dom
https://github.com/MozillaSecurity/domfuzz/tree/master/dom
https://www.dpreview.com/forums/post/53027375
https://blog.gopheracademy.com/advent-2017/go-execution-tracer/
https://blog.gopheracademy.com/advent-2017/go-execution-tracer/
https://www.juniper.net/
https://opentelemetry.io/
https://pptr.dev/
https://reactjs.org/
https://superuser.com/questions/1016592/where-to-turn-off-data-server-in-chrome-for-desktop
https://superuser.com/questions/1016592/where-to-turn-off-data-server-in-chrome-for-desktop
https://github.com/SipLoader/SipLoader.github.io/issues
https://github.com/SipLoader/SipLoader.github.io/issues
https://github.com/SipLoader/SipLoader.github.io/pulls?q=is%3Apr+is%3Aclosed
https://github.com/SipLoader/SipLoader.github.io/pulls?q=is%3Apr+is%3Aclosed
https://www.testin.net/
https://github.com/sensepost/wadi
http://ziproxy.sourceforge.net/
http://ziproxy.sourceforge.net/
https://github.com/barnacs/compy
https://github.com/barnacs/compy
https://www.opera.com/turbo

[62] Pavel Panchekha and Emina Torlak. 2016. Automated Reasoning for Web Page
Layout. In Proc. of ACM OOPSLA. 181ś194.

[63] Behnam Pourghassemi, Jordan Bonecutter, Zhou Li, and Aparna Chan-
dramowlishwaran. 2021. adPerf: Characterizing the Performance of Third-Party
Ads. In Proc. of ACM SIGMETRICS. 37ś38.

[64] Puppeteer. 2020. Headless Chrome Node.js API. https://pptr.dev/. (2020). (Ac-
cessed on Feb. 12, 2022).

[65] Riverbed. 2022. Riverbed Networks. https://www.riverbed.com/. (2022). (Ac-
cessed on Mar. 24, 2022).

[66] Vaspol Ruamviboonsuk, Ravi Netravali, Muhammed Uluyol, and Harsha V. Mad-
hyastha. 2017. Vroom: Accelerating the Mobile Web with Server-Aided Depen-
dency Resolution. In Proc. of ACM SIGCOMM. 390ś403.

[67] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. 2013.
Jalangi: A Selective Record-Replay and Dynamic Analysis Framework for
JavaScript. In Proc. of ACM FSE/ESEC. 488ś498.

[68] Skia. 2020. SkPaint Overview. https://skia.org/user/api/skpaint_overview. (2020).
(Accessed on Mar. 12, 2022).

[69] Suhwan Song, Jaewon Hur, Sunwoo Kim, Philip Rogers, and Byoungyoung Lee.
2022. R2Z2: Detecting Rendering Regressions in Web Browsers through Differ-
ential Fuzz Testing. In Proc. of ACM/IEEE ICSE.

[70] Stackoverflow. 2017. Google Chrome Issue with Data Saver: WebApp Not Load-
ing. https://stackoverflow.com/questions/43736942/force-android-chrome-to-
not-downsample-images/43742876#43742876. (2017). (Accessed on Jan. 13, 2022).

[71] Stackoverflow. 2018. Disable Chrome’s Data Saver Optimization.
https://stackoverflow.com/questions/31314119/disable-chrome-s-data-saver-
optimization. (2018). (Accessed on Jan. 15, 2022).

[72] Telerik. 2020. Fiddler: The Free Web Debugging Proxy for Any Browser, System
or Platform. http://www.telerik.com/fiddler. (2020). (Accessed on Mar. 1, 2022).

[73] Vue. 2022. Vue.Js. https://vuejs.org/. (2022). (Accessed on Mar. 24, 2022).
[74] Wen Xu, Soyeon Park, and Taesoo Kim. 2020. FREEDOM: Engineering a State-

of-the-Art DOM Fuzzer. In Proc. of ACM CCS. 971ś986.
[75] Xinlei Yang, Hao Lin, Zhenhua Li, Feng Qian, Xingyao Li, Zhiming He, Xudong

Wu, Xianlong Wang, Yunhao Liu, Zhi Liao, Daqiang Hu, and Tianyin Xu. 2022.
Mobile Access Bandwidth in Practice: Measurement, Analysis, and Implications.
In Proc. of ACM SIGCOMM. 114ś128.

[76] Christoph Zauner. 2010. Implementation and Benchmarking of Perceptual Image
Hash Functions. Ph.D. Dissertation. University of Applied Sciences, Hagenberg.

[77] Wang Zhou, Bovik Alan, Hamid Rahim Sheikh, et al. 2004. Image Quality Assess-
ment: From Error Visibility to Structural Similarity. IEEE Transactions on Image
Processing 13, 4 (2004), 600ś612.

A APPENDIX

A.1 Crowdsourcing Study on Visual Distortions

We distribute our volunteer recruitment requests on a popular

crowdsourcing platform [39], where opt-in users need to recognize

whether there are visual distortions incurred by Ziproxy/Compy,

using the screenshots of the optimized and original landing pages.

If the user believes that there is a visual distortion, s/he is further

asked to list the specific symptom (e.g., content loss). Eventually,

18 users opted in during Dec. 11ś21, 2021. Among them, 7 are male

and 11 are female, with ages ranging from 20 to 53. Each user can

take any number of tasks and receive the corresponding rewards.

The only constraint is that each task should be finished by at least

three users, so that majority voting is possible for each task.

A.2 Challenges of Detecting Visual Distortions
with CV Metrics

In order to understand the performance of detecting visual distor-

tions using CV metrics, we treat the entire web page as a static

snapshot image, and directly compare the original and optimized

pages’ final rendering results using three widely-used CV metrics,

including 1) structural similarity (SSIM) [77], 2) scale-invariant fea-

ture transform (SIFT) [50], and 3) perceptual hash (pHash) [76]. Our

evaluation results (cf. Table 2) show that making both separate

and combined use of the three CV metrics yield poor detection

MSTB

b1

b3 b4 b5

b2

b7 b8

b6

MSTA' MSTB'

b1

b3 b4 b5

b2

b7 b8

b6

a1

a2 a3 a4

a9

a6 a7

a10a5

MSTA

a1

a2 a3 a4

a6 a7a5 a8

a8 b9 b10

(b) (c) (d)(a)

Figure 6: Hierarchy matching between two MSTs by adding

virtual nodes to realign them.

results (precision <50%). A deeper analysis shows that such un-

satisfactory performance is owing to dynamic web pages whose

rendering results differ from one load to another. Specifically, the

dynamic visual elements include rotating banners, randomly se-

lected texts/images, visitor counters, and so on. These dynamics can

easily disrupt the above-described pixel-by-pixel CV comparisons

between two pages’ snapshots, incurring many false positives.

A.3 Matching Strategies between MSTs

This part first details the algorithm design of the level-by-level

hierarchy matching between two MSTs at the granularity of node

groups. Here a node group refers to a set of nodes that share the

same parent node. Then, we discuss the node matching among the

already matched groups’ inner nodes.

Hierarchy Matching. To begin with, we are at the root level

(Level-0) of both𝑀𝑆𝑇𝐴 and𝑀𝑆𝑇𝐵 . Here by level we refer to nodes

that have the same number of edges along their paths to the root

node, e.g., node 𝑎5, 𝑎6, 𝑎7, and 𝑎8 in Figure 6(a) are of the same level.

Therefore, a level may contain several node groups (e.g., 𝑀𝑆𝑇𝐴’s

Level-2 contains three groups).

For each group in𝑀𝑆𝑇𝐴’s root level (obviously there is only one

group in the root level), we examine whether it exactly matches

𝑀𝑆𝑇𝐵 ’s any group in the root level in terms of their nodes’ number

and inner structure, i.e., the groups have the same number of nodes

and inner structure. Note that the specific process for structure

matching between two groups of counterpart nodes will soon be

detailed in Node Matching. Naturally, there are two outcomesÐwe

either find two groups that match each other, or we do not. If it is

the former case, we can mark them as matched and move to the

next group in the current level in 𝑀𝑆𝑇𝐴; if all groups at the level

have been traversed, we go down to the lower level. Otherwise, we

say a hierarchy mismatch occurs.

Upon a hierarchy mismatch, we try to find a matched group in

𝑀𝑆𝑇𝐵 no matter which level the group lies at. To this end, we exam-

ine groups in𝑀𝑆𝑇𝐵 also in a top-down manner. If we cannot find

any matches, we will go back to the specific level in𝑀𝑆𝑇𝐵 where

the hierarchy mismatch occurs, and directly use a group at the level

that best matches the mismatched group in𝑀𝑆𝑇𝐴 . Else, if we find a

matched group at𝑀𝑆𝑇𝐵 ’s Level-K, we then mark them as matched

as well, and realign the counterpart matched group in 𝑀𝑆𝑇𝐴 to

Level-K by adding virtual nodes (as shown in Figures 6(c)(d)). By

traversing all the groups in𝑀𝑆𝑇𝐴 following the above procedure,

we can eventually accomplish hierarchy matching.

10

https://pptr.dev/
https://www.riverbed.com/
https://skia.org/user/api/skpaint_overview
https://stackoverflow.com/questions/43736942/force-android-chrome-to-not-downsample-images/43742876#43742876
https://stackoverflow.com/questions/43736942/force-android-chrome-to-not-downsample-images/43742876#43742876
https://stackoverflow.com/questions/31314119/disable-chrome-s-data-saver-optimization
https://stackoverflow.com/questions/31314119/disable-chrome-s-data-saver-optimization
http://www.telerik.com/fiddler
https://vuejs.org/

During the above process, we recursively compare and realign

the MSTs’ node structures (from top to bottom) to mitigate the

negative influence of their different hierarchies. In the worst case,

there exists no group of nodes in 𝑀𝑆𝑇𝐴 that matches any group

of nodes in 𝑀𝑆𝑇𝐵 ; assuming 𝑀𝑆𝑇𝐴 and 𝑀𝑆𝑇𝐵 both contain 𝑂 (𝑛)

nodes, our hierarchy matching procedure would incur 𝑂 (𝑛2) time

complexity, which would be pretty high for a large yet realistic 𝑛,

especially when each operation of hierarchy matching is accom-

panied by multiple node matching operations (as detailed soon)

whose complexity is not included here. To reduce the required

comparisons, we further adopt a memorization algorithm [55] to

accelerate hierarchy matching as follows.

Our idea of memorization algorithm is motivated by a key obser-

vation: when we go down to lower levels in the two MSTs, identical

comparisons may appear many times. To avoid such repetitive com-

parisons, when we compare two groups, we insert the comparison

results to a hash table. If two groups are identical, they are stored

under a same key as an array: (𝐾 , [𝑉1,𝑉2]); here 𝐾 is the inner

structure of either group, while 𝑉1 and 𝑉2 respectively include the

two groups of nodes’ labels. Otherwise, they are stored under dif-

ferent keys. Thereby, all the repetitive comparisons can be avoided,

and we only need to make 𝑂 (𝑛) comparisons to fulfill hierarchy

matching, rather than the original 𝑂 (𝑛2) comparisons.

Node Matching between Groups. We now detail the process

of node-by-node structure matching between two groups of nodes

from two MSTs. This process acts as the basic operation unit in-

voked by hierarchy matching as described above.

Given two groups of nodes from two MSTs, the first thing is to

extract a set of properties for each node, based on which we can

measure the similarity among different nodes for structure match-

ing. When constructing the set of properties, we ignore a node’s

non-morphological properties such as size and position; instead, we

focus on the node’s topological form and structural relations to the

other nodes within the same group. The two kinds of information

are both obtained from the logs of the SkPaint APIs (as discussed in

ğ3.2). Recall that we take seven major structural relations between

the graphic elements of a web page into consideration. All in all,

we make integrated use of all the eight properties (one from the

topological form and seven from the structural relations), which

together constitute the node’s property set (PS).

Based on the above, we define the similarity of different nodes

through an intuitive similarity function: 𝑆𝐼𝑀𝑎,𝑏 =

|𝑃𝑆𝑎
⋂

𝑃𝑆𝑏 |
|𝑃𝑆𝑎

⋃
𝑃𝑆𝑏 |

,

where 𝑃𝑆𝑎 and 𝑃𝑆𝑏 are the property sets of nodes 𝑎 and 𝑏.

Hence, we conduct structure matching as follows. First, nodes in

two groups with identical property sets are matched preferentially,

which can be accomplished with 𝑂 (𝑛2) time complexity, where

each group contains 𝑂 (𝑛) nodes. Further, to generate the (best)

matching with the highest average similarity among the remaining

nodes, we convert the two groups of nodes to a bipartite graphÐ

the two groups of nodes constitute two vertex subsets, and each

edge between the two vertex subsets is given a weight as specified

in the similarity function above. Thereby, finding the matching

scheme with the highest average similarity between the two groups

of nodes is equivalent to finding the maximum matching in the

derived bipartite graph; for the latter, we can leverage the classic

Hungarian algorithm [6] to solve it with 𝑂 (𝑘3) time complexity,

where each group contains 𝑘 nodes.

A.4 Evaluations of Detecting Visual Distortions

Testing Performance of Different Approaches. As shown in

Table 2, the performance of all the CV-based approaches are unsat-

isfactory, with F1 score <0.65, and precision <50%. By analyzing

the results, we find that CV-based approaches induce many false

positives (FPs), most of which are related to dynamic pages that

differ greatly between different loads. On the other side, the testing

recalls of CV-based approaches are reasonable (≤90%), inducing a

few false negatives (FNs), which mostly are content loss that causes

obvious layout changes but only slight pixel-level differences.

Compared with CV-based approaches, the MorphSIM-based ap-

proach substantially improves the testing precision from <50% to

82%, but slightly decreases the recall from 90% to 80%. The results

indicate that the MorphSIM-based approach can well distinguish

dynamic pages from visually distorted ones, thus bringing remark-

able precision improvements compared with CV-based approaches.

On the other hand, as MorphSIM is not sensitive to pixel-level

changes, some content loss/distortions cannot be detected, thus

leading to a lower testing recall.

Given that the CV metrics and MorphSIM well complement

each other, Vetter makes a combined utilization of them, and thus

achieves the highest testing F1 score (0.93), precision (95%) and

recall (91%). Of course, Vetter also incurs false positives and nega-

tives in practice. On the test set, Vetter’s FP rate is 1% and FN rate

is 9%. By manually examining the false positives, we find that all

of them are highly dynamic in terms of not only concrete content

but also visual structure. For example, the visual structure of an

HTML5 gaming page optimized by Ziproxy changes significantly

compared with that of the original page. In this case, MorphSIM

between the original and optimized pages falls below the threshold

(0.46), leading to a wrong decision.

As to the false negatives, we observe that all of them suffer a

small-size content loss. In particular, on the optimized page, the

absence of a small visual element leads to a leaf node’s missing in its

MST, which usually brings little impact on the calculation of both

MorphSIM and the CV metrics. Thus, this small content loss can

hardly be captured by Vetter. However, when these elements are

semantically or functionally important, e.g., a login button, users

could easily notice such distortions, thus leading to FNs. Note that

such FNs are strongly related to the page-specific semantics, and

thus are really hard to detect.

Testing Efficiency of Vetter. We next evaluate the time overhead

of Vetter for testing visual distortions. In general, the overhead

mainly involves: (1) the page loading process of the original and

optimized pages, (2) calculation of the CV metrics and MorphSIM

for each page, and (3) delays incurred by machine learning models.

We then measure the time overhead of Vetter when testing visual

distortions on the test set. When running on a budget VM server

with a dual-core CPU @2.3 GHz, Vetter’s average testing time of a

web page ranges from 1.7 s to 5.2 s, averaging at 3.2 s. In particular,

we observe that the time overhead is mainly incurred by the page

loading process, which takes 3.1 s on average, while the other two

factors together take only 62 ms on average. That is to say, almost

11

all (98%) the time overhead comes from the loading process or op-

timization routines of WPO, rather than the Vetter’s testing logic.

Such performance of Vetter is largely owing to Vetter’s minifica-

tion of a page’s morphology (ğ3.2) and its efficient morphological

similarity calculation (ğ3.3).

A.5 Artifact Appendix

Abstract

The artifacts of Vetter are publicly available at GitHub. To facilitate

a better understanding of Vetter, we provide detailed instructions

on how to build, deploy, and use Vetter. Please refer to our README

file at https://github.com/Web-Distortion/Vetter/ for details.

Scope

The artifacts can be used to reproduce the major results of Vetter.

Contents

The artifacts include the source code of Vetter, the detailed defects

of four widely usedWPOs (Ziproxy, Compy, Fawkes, and SipLoader)

we have found using Vetter, and the crowdsourcing datasets involv-

ing 5,000 websites regarding the WPO-incurred visual distortions.

Hosting

Code and data are hosted in the main branch of Vetter repository.

GitHub Repo. https://github.com/Web-Distortion/Vetter

DOI for the Artifacts. https://doi.org/10.5281/zenodo.7601984

12

https://github.com/Web-Distortion/Vetter/
https://github.com/Web-Distortion/Vetter
https://doi.org/10.5281/zenodo.7601984

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 The Dilemma of WPOs
	2.2 Understanding Visual Distortions
	2.3 Challenges

	3 Design and Implementation
	3.1 System Overview
	3.2 Morphology Instantiation & Minification
	3.3 Morphological Similarity Calculation
	3.4 Morphological Causality Inference
	3.5 Causality-Informed Code Analysis
	3.6 Implementation

	4 Evaluation
	4.1 Visual-Aware Testing Performance
	4.2 Visual-Aware Debugging Results
	4.3 Defect Fixing

	5 Related Work
	6 Conclusion
	References
	A Appendix
	A.1 Crowdsourcing Study on Visual Distortions
	A.2 Challenges of Detecting Visual Distortions with CV Metrics
	A.3 Matching Strategies between MSTs
	A.4 Evaluations of Detecting Visual Distortions
	A.5 Artifact Appendix

