
Solutions to Exam 2 Math 2374 (Fall 2003) Nykamp / Rogness

#1. You can do this problem by writing down a few matrices, doing one bit of matrix
multiplication, and writing down a formula. I’ll explain it in lots of detail here, though, for
people who were confused about it.

According to the chain rule,

Jh(1, 1) = Jg(f(1, 1)) · Jf (1, 1)

We’re given Jg; if we evaluate it at the point f(1, 1) = (0, 1,−2), we get[
1 12 −12

]
Next we need to find Jf (1, 1). f is a function from R

2 to R3, so its Jacobian should be a
3x2 matrix, namely 

∂f1

∂x
∂f1

∂y
∂f2

∂x
∂f2

∂y
∂f3

∂x
∂f3

∂y


If you do these derivatives correctly, you’ll get 1 −1

3x2 0
0 −2


Evaluated at the point (1, 1), this becomes 1 −1

3 0
0 −2


Now we can compute down Jh(1, 1). It’s

Jh(1, 1) = Jg(f(1, 1)) · Jf (1, 1) =
[

1 12 −12
]
·

 1 −1
3 0
0 −2

 =
[

37 23
]

The linear approximation to h at (1, 1) is L(x, y) = h(1, 1) + Jh(1, 1) · (x− 1, y − 1), or

L(x, y) = 5 +
[

37 23
] [ x− 1

y − 1

]
= 37x+ 23y − 55

This problem was similar to #7 on the sample final. (So it stands to reason that something
similar could appear on this semester’s final.)
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#2. The directional derivative is given by D~uf(2, 0) = 5f(2, 0) ·~u, where ~u is a unit vector
in the desired direction. In our case,

~u =
~v

||~v||
=

(3, 4)
5

=
(

3
5
,
4
5

)
Also, the gradient of f(x, y) is 5f(x, y) = (ey, xey − 1), and 5f(2, 0) = (1, 2− 1) = (1, 1).
Hence

D~uf(2, 0) = 5f(2, 0) · ~u = (1, 1) ·
(

3
5
,
4
5

)
=

7
5

Note that the directional derivative is a number, not a vector. If your answer was a vector,
you would have lost points here. This problem was similar to example 4.1.2, or any of the
exercises 13-23 in section 4.1.

#3. You can immediately say that F is a conservative vector field everywhere on R2,
because it’s the gradient of f(x, y) = xey − y. (Note that you should have computed this
gradient in #2, so the intent was that you get this for free.) Hence, by the Fundamental
Theorem of Line Integrals,∫

C
F · ~x =

∫
C
5f · ~x = f(ending point of C)− f(beginning point of C)

= f(1, 1)− f(0, 0) = e− 1

That’s it – nothing more was required. Note that you can’t use Green’s Theorem to evaluate
this integral, because the curve is not closed. Also, if you try to compute this integral di-
rectly (according to the definition), you’ll have to integrate et

2
. You might remember from

your Calc I days that this can’t be done, at least in terms of functions that we know how
to write down.

This problem was intended to be easier than your homework problems from section 6.1,
because you didn’t have to test the vector field for path independence. Unfortunately our
hint wasn’t clear enough, and many people did more work than they had to here.

The Fundamental Theorem of Line Integrals will return on the final exam, so please ask
your lecturer or TA for help if you don’t think you understand it fully.
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#4. The region of integration is the tetrahedron bounded by the coordinate planes (x =
0, y = 0, z = 0) and the plane 2x+3y+6z = 6. Here’s a picture generated by Mathematica:
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In the new order, the integral becomes∫ 2

0

∫ 1− y
2

0

∫ 3− 3y
2
−3z

0
f(x, y, z) dx dz dy

This type of problem is usually easier to explain in person, by drawing a few sketches, so
ask your TA or lecturer if you’d like help understanding where these bounds come from. If
you’d like to work through it yourself, I’d suggest drawing a few two dimensional piectures.
For example in the original integral, what is the two dimensional region in the xy-plane?
And in the new integral, what is the two dimensional region in the yx-plane?

This type of problem may or may not come back on the final exam, so it might be worth
brushing up on it if you had trouble. A tetrahedron is a nice, standard sort of region for
triple integral questions. This problem was almost the same as exercise 5.2.26, although
that exercise had a different plane. It was also similar to example 5.4.4, and these other
exercises from your homework: 5.4.7, 5.4.16, 5.4.26, and 5.3.26. Both lecturers also covered
triple integrals where the region of integration is a tetrahedron.

#5. Green’s Theorem says that, in this situation,∫
C
F · d~x =

∫ ∫
R

∂F2

∂x
− ∂F1

∂y
dA =

∫ ∫
R

∂

∂x
(2y)− ∂

∂y
(−4xy) dA =

∫ ∫
R

4x dA

You can evaluate this integral in either order – dx dy or dy dx, but I’ll do the latter here:∫ ∫
R

4x dA =
∫ 3

0

∫ 3x

x2

4x dy dx =
∫ 3

0
[4xy]y=3x

y=x2 dx

=
∫ 3

0
4x(3x)− 4x(x2) dx =

∫ 3

0
12x2 − 4x3 dx

=
[
4x3 − x4

]3
0

= 4(27)− 81 = 108− 81 = 27

This was a fairly typical Green’s Theorem problem. The region is similar than that of
exercise 6.2.7, for example. If you had trouble with this problem, you should ask your TA
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or lecturer for help, so that you ace any Green’s Theorem question that might show up on
the final exam.

#6. Earlier in this exam you evaluated line integrals by using Green’s Theorem and the
Fundamental Theorem of Line Integrals. The point of this problem was to compute a line
integral using the definition. In fact, that’s the only way I know how to do this problem; the
vector field is not path independent (the Jacobian is not symmetric), and Green’s Theorem
doesn’t apply (because the curve is not closed).

If we parametrize C by f(t) = (cos t, sin t), where 0 ≤ t ≤ π/2, then:∫
C
F · d~x =

∫ π/2

0
F (f(t)) · f ′(t) dt =

∫ π/2

0
(− sin t, 0) · (− sin t, cos t) dt

=
∫ π/2

0
sin2 t dt =

∫ π/2

0

1
2

(1− cos(2t)) dt =
1
2

[
t− sin(2t)

2

]π/2
0

=
1
2

(π
2
− 0− 0 + 0

)
=
π

4

The trig identity used in this problem was given to you on the cover page of the exam. A
nearly identical example, with the vector field F = (0, x), was done in each lecture, and is
posted online in both classes’ lecture notes, if you’d like to compare.

Jonathan Rogness <rogness@math.umn.edu> November 17, 2003
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