Study guide for the final exam

Math 2374, Fall 2003

- 1. Basic coordinate and vector geometry (chapter 1, section 2.1, section 3.1)
 - (a) Key items: quadric surfaces, cylindrical and spherical coordinates, computing 2×2 and 3×3 determinants, understanding and computing dot products and cross products, equations and parametrization of lines and planes, derivatives of (vector-valued) functions of one variable, magnitudes and angles between vectors in \mathbb{R}^n , level curves, and plots of vector fields.
 - (b) Relevance to calculus: this material underlies the work of the class. Mastery of these basics is needed to do the rest.
- 2. Linear algebra
 - (a) Basic matrix properties and manipulations (section 2.2)
 - Key items: matrix-vector and matrix-matrix products, symmetric matrices, invertible matrices
 - (b) Linear transformations (section 2.3)
 - i. Key idea: The one-to-one correspondence between linear transformations (linear functions) and matrices.
 - ii. Supporting concept: vectors as column matrices.
 - iii. Important conclusion: linear functions have properties inherited from matrices.
 - iv. Relevance to calculus: the Jacobian matrix and its associated linear function
- 3. Quadratic forms (section 2.5)
 - (a) Sample HW problems: Section 2.5, #2, 8, 15
 - (b) Key idea 1: The one-to-one correspondence between quadratic forms and symmetric matrices
 - (c) Key idea 2: Categorizing definiteness of quadratic forms and symmetric matrices, i.e., positive definite, negative definite, indefinite
 - (d) Methods: Determine definiteness by inspection and using Sylvester's theorem
 - (e) Relevance to calculus: the Hessian matrix and Hessian form, finding local minima and maxima.
- 4. Derivatives
 - (a) Partial derivatives (section 3.4)
 - i. Key items: understand and compute partial derivatives
 - ii. Methods: limit definition and one-variable calculus techniques
 - (b) The total derivative (section 3.5)
 - i. Key idea 1: the total derivative is represented by the Jacobian matrix and its associated linear function.
 - ii. Key idea 2: use the total derivative to write a linear approximation (differential approximation) of a function \mathbf{f} near a point \mathbf{a} .
 - (a) The chain rule (section 3.6)
 - i. Key idea: Gives the total derivative of a composition of functions.
 - ii. Key formula: $J_{\mathbf{g} \circ \mathbf{f}}(\mathbf{a}) = J_{\mathbf{g}}(\mathbf{f}(\mathbf{a}))J_{\mathbf{f}}(\mathbf{a})$
 - iii. Note: Formulas for partial derivatives can be derived from above formula, but be careful to evaluate partials of \mathbf{g} at the point $\mathbf{f}(\mathbf{a})$.
- 5. Gradient, directional derivative, divergence, and curl (sections 4.1 and 4.2)
 - (a) Gradient key ideas: applies to scalar-valued functions only, points in direction of greatest increase, is normal to level curves and level surfaces, denoted ∇f .

- (b) Directional derivative key ideas: applies to scalar-valued functions only, is like a partial derivative taken in any direction, is a number representing the slope in that direction, $D_{\mathbf{u}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot u$ and $D_{\mathbf{u}}f(\mathbf{a}) = \|\nabla f(\mathbf{a})\| \cos \theta$.
- (c) Divergence key ideas: applies to vector-valued functions only, measures outflow per unit volume of fluid flow, denoted div $\mathbf{F} = \nabla \cdot \mathbf{F}$.
- (d) Curl key ideas: applies to vector-valued functions only, measures rotation of fluid flow, denoted curl $\mathbf{F} = \nabla \times \mathbf{F}$
- 6. Taylor's theorem and local extrema (sections 4.3 and 4.4)
 - (a) Sample HW problems: Section 4.3 #10, Section 4.4 #19, 21
 - (b) Key construct 1: the Hessian matrix $H_f(\mathbf{a})$ and the Hessian form $h(\mathbf{x}) = \mathbf{x}^T H_f(\mathbf{a}) \mathbf{x}$.
 - (c) Key construct 2: 2nd-degree Taylor polynomial $f(\mathbf{x}) \approx f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} \mathbf{a}) + \frac{1}{2} (\mathbf{x} \mathbf{a})^T H_f(\mathbf{a}) (\mathbf{x} \mathbf{a})$
 - (d) Important application: critical points $\nabla f(\mathbf{a}) = \mathbf{0}$ can be classified as extrema based on definiteness of $H_f(\mathbf{a})$.
- 7. Paths (parameterized curves) (sections 5.1 and 5.2)
 - (a) Given a simple curve, find a parametrization.
 - i. For simple curves such as line segments and circle segments.
 - ii. Can parameterize in two directions (orientations). (In parallel to surfaces, could think of unit tangent vector $\mathbf{T} = \mathbf{f}'(t)/\|\mathbf{f}'(t)\|$ as specifying direction.)
 - (b) Find arclength of a parametrized curve
 - i. Key idea: arclength element of $\mathbf{x} = \mathbf{f}(t)$ is $dL = \|\mathbf{f}'(t)\| dt$.
 - ii. Formula: $L(C) = \int_{a}^{b} \|\mathbf{f}'(t)\| dt$.
 - (c) Line integrals (path integrals)
 - i. Line integrals of scalar-valued functions
 - A. Key idea: Integrate scalar function $u(\mathbf{x})$ along curve (i.e., $u(\mathbf{f}(t))$) using above dL.
 - B. Formula: $\int_C u \, dL = \int_a^b u(\mathbf{f}(t)) \|\mathbf{f}'(t)\| dt$
 - ii. Line integrals of vector-valued functions
 - A. Key idea: Integrate tangent component of $\mathbf{F}(\mathbf{x})$ along curve (i.e. $\mathbf{F}(\mathbf{f}(t)) \cdot \mathbf{T}$) using above dL.
 - B. Formula: $\int_C \mathbf{F} \cdot d\mathbf{x} = \int_C \mathbf{F} \cdot \mathbf{T} \, dL = \int_a^b \mathbf{F}(\mathbf{f}(t)) \cdot \mathbf{f}'(t) dt$.
- 8. Parameterized surfaces (section 5.5 and 5.6)
 - (a) Given a surface, find a parameterization
 - i. Key surfaces: spheres, cylinders, planes, any surface of form z = h(x, y).
 - ii. Unit normal $\mathbf{n} = \frac{\partial \mathbf{f}}{\partial s} \times \frac{\partial \mathbf{f}}{\partial t} / \left\| \frac{\partial \mathbf{f}}{\partial s} \times \frac{\partial \mathbf{f}}{\partial t} \right\|$ specifies orientation.
 - (b) Find surface area of a parameterized surface
 - i. Key idea: surface area element of $\mathbf{x} = \mathbf{f}(s,t)$ is $d\sigma = \left\|\frac{\partial \mathbf{f}}{\partial s} \times \frac{\partial \mathbf{f}}{\partial t}\right\| ds dt$
 - ii. Formula: $\sigma(M) = \int \int_{R} \left\| \frac{\partial \mathbf{f}}{\partial s} \times \frac{\partial \mathbf{f}}{\partial t} \right\| ds dt.$
 - (c) Surface integrals
 - i. Surface integrals of scalar-valued functions
 - A. Key idea: Integrate scalar function $g(\mathbf{x})$ across surface (i.e., $g(\mathbf{f}(s,t))$) using above $d\sigma$.
 - B. Formula: $\iint_M g \, d\sigma = \iint_R g(\mathbf{f}(s,t)) \left\| \frac{\partial \mathbf{f}}{\partial s} \times \frac{\partial \mathbf{f}}{\partial t} \right\| ds \, dt.$
 - ii. Surface integrals of vector-valued functions
 - A. Key idea: Integrate normal component of $\mathbf{F}(\mathbf{x})$ across surface (i.e., $\mathbf{F}(\mathbf{f}(s,t)) \cdot \mathbf{n}$) using above $d\sigma$.
 - B. Formula: $\int \int_M \mathbf{F} \cdot \mathbf{n} \, d\sigma = \int \int_R \mathbf{F}(\mathbf{f}(s,t)) \cdot \left(\frac{\partial \mathbf{f}}{\partial s} \times \frac{\partial \mathbf{f}}{\partial t}\right) ds \, dt.$

- 9. Double and triple integrals (sections 5.3 and 5.4)
 - (a) Key idea: although defined by Riemann sums over rectangles (double integrals) or boxes (triple integrals), these integrals can be computed through iterated integrals.
 - (b) One trick: computing bounds for iterated integrals, especially for the different orders of integration.
 - (c) Remember: outer limits must be constant; inner limits can depend only on variables from the outside integral(s).
- 10. Change of variables (sections 5.7 and 5.8)
 - (a) In double integrals
 - i. Important special case: polar coordinates
 - ii. Key idea: Evaluate integral in new region over new coordinates with new area measure $dA = \left|\frac{\partial f(s,t)}{\partial(s,t)}\right| ds dt$.

iii. Formula:
$$\int \int_R g(x,y) dx \, dy = \int \int_{R^*} g(\mathbf{f}(s,t)) \left| \frac{\partial f(s,t)}{\partial(s,t)} \right| ds \, dt.$$

- (b) In triple integrals
 - i. Important special cases: cylindrical coordinates, spherical coordinates
 - ii. Key idea: Evaluate integral in new region over new coordinates with new volume measure $dV = \left|\frac{\partial f(s,t,u)}{\partial(s,t,u)}\right| ds dt du$.
 - iii. Formula: $\int \int_S g(x, y, z) dx dy dz = \int \int_{S^*} g(\mathbf{f}(s, t, u)) \left| \frac{\partial f(s, t, u)}{\partial (s, t, u)} \right| ds dt du.$
- 11. The fundamental theorem for path integrals (section 6.1)
 - (a) Key idea: test if a vector field is path-independent (conservative). If it is, your life got a lot easier (that is, if you're trying to compute a line integral of the vector field).
 - (b) Fact: if a vector field \mathbf{F} is path-independent, then

i. its line integral depends only on the endpoints (so is zero over closed curves) ii. ${\bf F}=\nabla f$

 $\mathbf{r} = \mathbf{v}_j$

iii. $\int_C \mathbf{F} \cdot d\mathbf{x} = f(\mathbf{b}) - f(\mathbf{a})$, where **a** and **b** are the endpoints of the path.

(c) Test for path-independence: on a **simply connected** domain, **F** is path-independent if and only if its Jacobian matrix is symmetric.

i. In 2D, the symmetric Jacobian condition is
$$\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} = 0.$$

- ii. In 3D, the symmetric Jacobian condition is $\operatorname{curl} \mathbf{F} = \mathbf{0}$.
- (d) Don't forget the consequence of having a hole through the domain.
- 12. Green's Theorem (section 6.2)
 - (a) Key idea: If computing a line integral of a vector field **F** over a closed curve in 2D, you can convert it to a double integral (if **F** is defined in the whole interior of the curve).

(b) Formula:
$$\int_{\partial R} \mathbf{F} \cdot d\mathbf{x} = \int \int_{R} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dA$$

- 13. Stokes' Theorem (section 6.3)
 - (a) Key idea: to calculate circulation of \mathbf{F} around closed curve C, you can choose any surface with boundary C and calculate flux integral of curl \mathbf{F} over surface.
 - (b) Need positively oriented boundary: walk on positive side of surface near boundary and surface is on left (CCW boundary viewed from positive side). Positive side is side with normal.
 - (c) Formula: $\int_{\partial M} \mathbf{F} \cdot d\mathbf{x} = \int \int_{M} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \, d\sigma$.
- 14. Divergence Theorem (section 6.4)
 - (a) Key idea: to calculate flux of \mathbf{F} across closed surface M from inside to outside, instead calculate the triple integral of div \mathbf{F} over solid enclosed by M.
 - (b) Formula: $\int \int_{\partial S} \mathbf{F} \cdot \mathbf{n} \, d\sigma = \int \int \int_{S} \operatorname{div} \mathbf{F} \, dV.$