
Study guide for the final exam
Math 2374, Fall 2003

1. Basic coordinate and vector geometry (chapter 1, section 2.1, section 3.1)

(a) Key items: quadric surfaces, cylindrical and spherical coordinates, computing 2×2 and 3×3 determinants,
understanding and computing dot products and cross products, equations and parametrization of lines
and planes, derivatives of (vector-valued) functions of one variable, magnitudes and angles between vectors
in Rn, level curves, and plots of vector fields.

(b) Relevance to calculus: this material underlies the work of the class. Mastery of these basics is needed to
do the rest.

2. Linear algebra

(a) Basic matrix properties and manipulations (section 2.2)

• Key items: matrix-vector and matrix-matrix products, symmetric matrices, invertible matrices

(b) Linear transformations (section 2.3)

i. Key idea: The one-to-one correspondence between linear transformations (linear functions) and ma-
trices.

ii. Supporting concept: vectors as column matrices.
iii. Important conclusion: linear functions have properties inherited from matrices.
iv. Relevance to calculus: the Jacobian matrix and its associated linear function

3. Quadratic forms (section 2.5)

(a) Sample HW problems: Section 2.5, #2, 8, 15

(b) Key idea 1: The one-to-one correspondence between quadratic forms and symmetric matrices

(c) Key idea 2: Categorizing definiteness of quadratic forms and symmetric matrices, i.e., positive definite,
negative definite, indefinite

(d) Methods: Determine definiteness by inspection and using Sylvester’s theorem

(e) Relevance to calculus: the Hessian matrix and Hessian form, finding local minima and maxima.

4. Derivatives

(a) Partial derivatives (section 3.4)

i. Key items: understand and compute partial derivatives
ii. Methods: limit definition and one-variable calculus techniques

(b) The total derivative (section 3.5)

i. Key idea 1: the total derivative is represented by the Jacobian matrix and its associated linear
function.

ii. Key idea 2: use the total derivative to write a linear approximation (differential approximation) of a
function f near a point a.

(a) The chain rule (section 3.6)

i. Key idea: Gives the total derivative of a composition of functions.
ii. Key formula: Jg◦f (a) = Jg(f(a))Jf (a)
iii. Note: Formulas for partial derivatives can be derived from above formula, but be careful to evaluate

partials of g at the point f(a).

5. Gradient, directional derivative, divergence, and curl (sections 4.1 and 4.2)

(a) Gradient key ideas: applies to scalar-valued functions only, points in direction of greatest increase, is
normal to level curves and level surfaces, denoted ∇f .
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(b) Directional derivative key ideas: applies to scalar-valued functions only, is like a partial derivative taken
in any direction, is a number representing the slope in that direction, Duf(a) = ∇f(a) · u and Duf(a) =
‖∇f(a)‖ cos θ.

(c) Divergence key ideas: applies to vector-valued functions only, measures outflow per unit volume of fluid
flow, denoted div F = ∇ · F.

(d) Curl key ideas: applies to vector-valued functions only, measures rotation of fluid flow, denoted curl F =
∇× F

6. Taylor’s theorem and local extrema (sections 4.3 and 4.4)

(a) Sample HW problems: Section 4.3 #10, Section 4.4 #19, 21

(b) Key construct 1: the Hessian matrix Hf (a) and the Hessian form h(x) = xTHf (a)x.

(c) Key construct 2: 2nd-degree Taylor polynomial f(x) ≈ f(a) +∇f(a) · (x− a) + 1
2 (x− a)THf (a)(x− a)

(d) Important application: critical points ∇f(a) = 0 can be classified as extrema based on definiteness of
Hf (a).

7. Paths (parameterized curves) (sections 5.1 and 5.2)

(a) Given a simple curve, find a parametrization.

i. For simple curves such as line segments and circle segments.
ii. Can parameterize in two directions (orientations). (In parallel to surfaces, could think of unit tangent

vector T = f ′(t)/‖f ′(t)‖ as specifying direction.)

(b) Find arclength of a parametrized curve

i. Key idea: arclength element of x = f(t) is dL = ‖f ′(t)‖dt.
ii. Formula: L(C) =

∫ b
a
‖f ′(t)‖dt.

(c) Line integrals (path integrals)

i. Line integrals of scalar-valued functions
A. Key idea: Integrate scalar function u(x) along curve (i.e., u(f(t))) using above dL.

B. Formula:
∫
C
u dL =

∫ b
a
u(f(t))‖f ′(t)‖dt

ii. Line integrals of vector-valued functions
A. Key idea: Integrate tangent component of F(x) along curve (i.e. F(f(t)) ·T) using above dL.

B. Formula:
∫
C

F · dx =
∫
C

F ·T dL =
∫ b
a

F(f(t)) · f ′(t)dt.

8. Parameterized surfaces (section 5.5 and 5.6)

(a) Given a surface, find a parameterization

i. Key surfaces: spheres, cylinders, planes, any surface of form z = h(x, y).

ii. Unit normal n = ∂f
∂s ×

∂f
∂t

/∥∥∂f
∂s ×

∂f
∂t

∥∥ specifies orientation.

(b) Find surface area of a parameterized surface

i. Key idea: surface area element of x = f(s, t) is dσ =
∥∥∂f
∂s ×

∂f
∂t

∥∥ ds dt
ii. Formula: σ(M) =

∫ ∫
R

∥∥∂f
∂s ×

∂f
∂t

∥∥ ds dt.
(c) Surface integrals

i. Surface integrals of scalar-valued functions
A. Key idea: Integrate scalar function g(x) across surface (i.e., g(f(s, t))) using above dσ.
B. Formula:

∫ ∫
M
g dσ =

∫ ∫
R
g(f(s, t))

∥∥∂f
∂s ×

∂f
∂t

∥∥ ds dt.
ii. Surface integrals of vector-valued functions

A. Key idea: Integrate normal component of F(x) across surface
(i.e., F(f(s, t)) · n) using above dσ.

B. Formula:
∫ ∫

M
F · n dσ =

∫ ∫
R

F(f(s, t)) ·
(
∂f
∂s ×

∂f
∂t

)
ds dt.
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9. Double and triple integrals (sections 5.3 and 5.4)

(a) Key idea: although defined by Riemann sums over rectangles (double integrals) or boxes (triple integrals),
these integrals can be computed through iterated integrals.

(b) One trick: computing bounds for iterated integrals, especially for the different orders of integration.
(c) Remember: outer limits must be constant; inner limits can depend only on variables from the outside

integral(s).

10. Change of variables (sections 5.7 and 5.8)

(a) In double integrals
i. Important special case: polar coordinates
ii. Key idea: Evaluate integral in new region over new coordinates with new area measure dA =∣∣∣∂f(s,t)

∂(s,t)

∣∣∣ ds dt.
iii. Formula:

∫ ∫
R
g(x, y)dx dy =

∫ ∫
R∗
g(f(s, t))

∣∣∣∂f(s,t)
∂(s,t)

∣∣∣ ds dt.
(b) In triple integrals

i. Important special cases: cylindrical coordinates, spherical coordinates
ii. Key idea: Evaluate integral in new region over new coordinates with new volume measure dV =∣∣∣∂f(s,t,u)

∂(s,t,u)

∣∣∣ ds dt du.

iii. Formula:
∫ ∫

S
g(x, y, z)dx dy dz =

∫ ∫
S∗
g(f(s, t, u))

∣∣∣∂f(s,t,u)
∂(s,t,u)

∣∣∣ ds dt du.

11. The fundamental theorem for path integrals (section 6.1)

(a) Key idea: test if a vector field is path-independent (conservative). If it is, your life got a lot easier (that
is, if you’re trying to compute a line integral of the vector field).

(b) Fact: if a vector field F is path-independent, then
i. its line integral depends only on the endpoints (so is zero over closed curves)
ii. F = ∇f
iii.

∫
C

F · dx = f(b)− f(a), where a and b are the endpoints of the path.
(c) Test for path-independence: on a simply connected domain, F is path-independent if and only if its

Jacobian matrix is symmetric.

i. In 2D, the symmetric Jacobian condition is
∂F2

∂x
− ∂F1

∂y
= 0.

ii. In 3D, the symmetric Jacobian condition is curl F = 0.
(d) Don’t forget the consequence of having a hole through the domain.

12. Green’s Theorem (section 6.2)

(a) Key idea: If computing a line integral of a vector field F over a closed curve in 2D, you can convert it to
a double integral (if F is defined in the whole interior of the curve).

(b) Formula:
∫
∂R

F · dx =
∫ ∫

R

(
∂F2

∂x
− ∂F1

∂y

)
dA.

13. Stokes’ Theorem (section 6.3)

(a) Key idea: to calculate circulation of F around closed curve C, you can choose any surface with boundary
C and calculate flux integral of curl F over surface.

(b) Need positively oriented boundary: walk on positive side of surface near boundary and surface is on left
(CCW boundary viewed from positive side). Positive side is side with normal.

(c) Formula:
∫
∂M

F · dx =
∫ ∫

M
curl F · n dσ.

14. Divergence Theorem (section 6.4)

(a) Key idea: to calculate flux of F across closed surface M from inside to outside, instead calculate the triple
integral of div F over solid enclosed by M .

(b) Formula:
∫ ∫

∂S
F · n dσ =

∫ ∫ ∫
S

div F dV .
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