[1] Given integer $n > 1$, exhibit a non-abelian group of order n^3.

[2] Show that $\mathbb{Z} \oplus \mathbb{Z}$ modulo the subgroup $\mathbb{Z} \cdot (13, 27)$ is isomorphic to \mathbb{Z}.

[3] Let S, T be linear operators on a finite-dimensional complex vectorspace, $S^5 = 1$ and $T^7 = 1$, and with $ST = TS$. Show that there is a basis consisting of eigenvectors for both S and T.

[4] Show that the ideal in $\mathbb{Q}[x, y]$ generated by x and y is maximal.

[5] Show that $x^4 + 1$ is reducible in $\mathbb{F}_p[x]$ for every prime p.

[6] Let ω be a primitive seventh root of unity. Show that $\sqrt{-7} \in \mathbb{Q}(\omega)$.

[7] Show that $\mathbb{Z}[i]/\langle 2 + i \rangle$ and and $\mathbb{Z}[i]/\langle 2 - i \rangle$ are non-isomorphic $\mathbb{Z}[i]$-modules.