Sets and Functions

Recall that a set is an unordered collection of
things.

A set can be described as a comma-separated
list enclosed by braces (though the apparent
ordering is not intrinsic), like

{1,2,3}
Since order does not matter,
{1,2,3} ={3,1,2} = {2,1,3} = etc.

Also, repeating an element does not do
anything:

{1,2,3} ={1,1,1,2,2,3,2}



The things = in a set S are the elements of the
set. Notation is x € S or S > x. Examples:

1€{1,2,3}
{1,2,3} >3

4¢£{1,2,3;

The union A U B of two sets consists of the
elements lying in either set. Example:

{1,2,3} U{3,4,5} = {1,2,3,4,5}

The intersection A N B of two sets consists of
the elements lying in both. Example:

(1,2,3} N {3,4,5) = {3)



Two sets A, B are disjoint if they have no
elements in common, that is, if their intersection
is the empty set

¢ =1}

Sets can have elements which are themselves
sets. Example:

11,2,3,41, 2}, {{1}}}

has elements
1,2,3,{1,2},{{1}}

The (cartesian) product A x B of two sets is
the set of ordered pairs (a,b) with a € A and
be B.



Intuitively, a function f from a set A to a set
B is a thing which accepts inputs from A and
produces outputs in B. The notation

f:A— B

means f is a function from a set A to a set B.

(This usage is standard, so other uses of arrows
are unwise. )

A function f : A — B must: accept as input
every element of the set A, produce the same
output for the same input, produce outputs in the
set B, and not fail to produce an output.

The formal definition of a function f : A — B
is by specifying it by its graph: it is a subset
of the cartesian product A x B such that for
every a € A there is a unique b € B such that

(a,b) € f.

In practice we describe a function by either
e Listing inputs and corresponding outputs
e Giving a formula or procedure to produce

output for a given input



Other terminology: a look-up table for a
function f : A — B is a list of outputs
corresponding to all possible legal inputs of f.

Example: to describe a function

f:{1,2,3} — {7,8}

we must tell exactly 3 things, namely f(1), f(2),
and f(3). We do not have to give a formula.
For example,

F) =7 f@)=7 f(3)=38

is a legitimate description of one particular
function f.

As a set of ordered pairs, this function (its
graph) is

f — {(17 7)7 (27 7)7 (37 8)}

Functions and formulas are different things: a
function may be given by a formula, but not
necessarily.



We can list all functions

fidl,2,3) = {7,8}

by telling (for each) the output for each input:

case 1: f(1)=7 f(2)=7 f(3)=7
case 2: f(1)=7 f(2)=7 f(3)=8
case 3: f(1)=7 f(2)=8 f(3)=T
case 4: f(1)=7 f(2)=8 f(3)=8
case 5: f(1)=8 [f(2)=7 f(3)=7
case 6: f(1)=8 f(2)=7 f(3)=8
case 7:  f(1)=8 f(2)=8 f(3)=T7
case 8: f(1)=8 f(2)=8 f(3)=8

(The chosen ordering of these 8 functions is
lexicographic (‘alphabetic’) in terms of the
outputs.)



Lexicographic (alphabetic) ordering

It is important to be able to systematically list
things, being sure to neither leave anything out,
nor list the same thing twice.

It is also useful to have a set arranged to enable
insertion of new items, or searches to see
whether some specified item is there or not.

A familiar example of systematic ordering is
alphabetical ordering of English words: the
set of strings

{cat, dog, wolf, aardvark}
is alphabetized (method?!) to
{aardvark, cat, dog, wolf}
To see that 1ynx is not on the list, we look

down the list to see where it would be if it were
there, and it’s not there.



Coming from the other direction, to
systematically list all 4-character strings made
from letters o, x we might use a lexicographic
ordering (o comes before x)

0000
000X
00XO
00XX
O0XO0O0
O0XO0X
OXXO
OXXX
X000
X00X
X0XO
XOXX
XXO0O0
XX0X
XXXO
XXXX



To systematically list all 2-character
strings made from letters a, b, ¢, d use a
lexicographic ordering

aa
ab
ac
ad
ba
bb
bc
bd
ca
cb
cC
cd
da
db
dc
dd

This is not mysterious, but when you order
or list something you should tell hAow, and
lexicographic ordering is common and useful.



A function f : A — B is surjective (=onto) if
every element of the target set B is hit by some

element of the source set A. That is, for every
b € B there is a € A such that f(a) = 0.

Example: the function f : {1,2,3} — {4,5}
given by

f)=4 f(2) =4 f(3) =5

1s surjective because both elements of the target
are hit. But

f()=4 f(2) =4 f(3) =4

is not surjective because the element 5 in the
target is maissed.
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A function f : A — B is injective (=one-
to-one) if every element of the target set B is
hit by at most one element of the source set A.
That is, for a;,a2 € A we have f(a1) = f(as)
only when a1 = as.
Example: the function f : {1,2} — {4,5,6}
given by

f1)=4 f(2)=6

15 injective because no two elements of the
source hit the same element of the target. But

f(1)=4 f(2) =4

is not injective because the element 4 in the
target is hit twice.
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Counting without listing

For example, we can count the number of
functions f : A — B from one set A to another
set B without listing them.

To refer to the elements of A, order them.
Suppose A has 4 elements and B has 7.

There are 7 possible outputs (in B) for the first
input from A.

For each choice of output for first input, there
are 7 possible outputs for second input from A.

For each choice of outputs for 15* and 27d

inputs, there’re 7 possible outputs for 3¢ input.

For each choice of outputs for first, second, and
third inputs, there are 7 choices for the output
for the 4*" input.

Thus, altogether, there are

Z><7><7><Z:74
1

functions from 4-element set to 7-element set.
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Another Example

We can count the number of injective
functions f : A — B from one set to another
without listing them all. Again suppose A has
4 elements and B has 7.

There are 7 possible outputs (in B) for the first
input from A.

For each choice of output for first input, there
are 7 — 1 possible outputs for the second input
from A, since the output for the second input

must be different from the output for the first
input.

For each choice of outputs for first and second
inputs, there are 7 — 2 possible outputs for the
third input from A, since it must be different
from both the first and second outputs (which
are not the same as each other).
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And for each choice of outputs for first. second,
and third inputs, there are 7 — 3 choices for the
output for the 4" input since it must different
from the first three outputs (which are all
different).

Thus, altogether, there are
TxX(7T—1)x(7T-2)x (7T-23)

injective functions from a 4-element set to an
7-element set.
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Count the number of orderings of a 4-element
set. (without listing them).

There are 4 choices for the first element of the
subset.

For each choice of first element there are 4 — 1
remaining choices for second element, since we
can’t re-use the first choice.

For each choice of first and second elements
there are 4 — 2 choices for third element, since
we can’t re-use the first two (different) choices.

And just 4 — 3 choices for the last element. So,
altogether,

4x(4—1)x(4—2)x (4-23)

orderings of a 4-element set.
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The factorial function and notation is
convenient: for non-negative integer n

nl=nn-1)m-2)...4-3-2-1

By convention
0l=1

So the number of orderings of a set with n
elements is n!

The binomial coefficients are

n n!
o pum— h
(k) o (n — k:)! n choose k

Note: the definition of the binomial coefficient
does not promise anything about it. It is not
immediately clear that it is an integer. (It is.)

It is not immediately clear that it has anything
to do with choosing anything, even though it is
pronounced ‘n choose k’.
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Count the 3-element subsets of a 7-element set,
(without listing).

7 choices for the first element of the subset.

For each choice of first element there are 7 — 1
choices for second element of the subset, since
we can’t re-use the first choice.

For each choice of first and second elements
there are 7 — 2 choices for third element of
the subset, as we can’t re-use the first two
(different) choices.

But this approach imparts a fictitious ordering
to the subset, and we must compensate.

We must divide by the number of possible
orderings of 3 things, namely 3! from above.

Thus, the number of 3-element subsets of a 7-
element set is
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Count the number of surjective functions
f:{1,2,3} — {4,5}. This is inefficient but
educational: Look at all functions to see how a
function might fail to be surjective:

case 1: f(1)=4 f(2)=4 f(3)=4
case 2: f(1)=4 f(2)=4 f(3)=5
case 3: f(1)=4 f(2)=5 f(3)=4
case 4: f(1)=4 f(2)=5 f(3)=5
case 5: f(1)=5 f(2)=4 [f(3)=4
case 6: f(1)=5 f(2)=4 f(3)=5
case 7:  f(1)=5 [f(2)=5 [f(3)=4
case 8: f(1)=5 f(2)=5 f(3)=5

Looking down the list, only the first and last fail
to miss one or the other of the two elements in
the target set.

This can be thought about more systematically:
To miss one or the other target element (cases
1, 8) all inputs go to a single output. There are
two choices of the single output, so the number
of surjections is

(no. all) - (no. failures) = 2% — 2
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Example:

To count surjections
£:11,2,3,4,5} — {8,9}

again the only failures are functions which have
a single output for all inputs, since the target
set has just two elements.

The number of surjections is thus
(no. all) - (no. failures) = 2° — 2

since (as above) the number of all functions
from a 5-element set to 2-element set is 2°.
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Example:

To count surjections
£:1{1,2,3,4,5} — {6,7,8,9}

take a different approach.

Since the target set has just one fewer than the
source set, a surjective function can send just
two inputs to the same output, and all others
must go to different outputs.

So we count the number of 2-element subsets of
{1,2,3,4,5}, and for each such choice there are
4(4 —1)(4 — 2)(4 — 3) choices of outputs.

Thus, the number of surjections from 5-element
to 4-element set is

(no. 2-element subsets of source) x 4!

()¢
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Example:

Without listing them, count the pairs of disjoint
3-element and 5-element subsets of a 12-element
set.

There are 12 choices for the first element of the
first set, 12 — 1 for the second, 12 — 2 for the
third, so there are 12(12 — 1)(12 — 2) choices
for an ordered subset of 3 elements. But this
style of choosing artificially orders the chosen
elements. To take this into account, divide by
3!, the number of ways to order a set with 3
elements. (As earlier) there are

12(12 — 1)(12 — 2)/3! = (132)

choices for a 3-element subset of a 12-element
set.
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From the remaining (12 — 3)-element subset,
there are (12 — 3) choices for the first element
of the second set, (12 — 3) — 1 choices for the
second element of the second set, and so on.
Divide by 5! to discount the artificial ordering.
So for each choice of the first set there are

(12-3)(12—-3—-1)...(12—-3—-5+1)/5!
Thus, altogether there are

12! (12 — 3)!
(12 —3)!3!1 (12—3 —5)!5!

12!
(12 — 3 —5)!3!5!

choices of 3-element and H-element subsets of a
12-element set.

Note that we get the same answer if the roles of
3 and 5 are reversed in the derivation.
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One more counting problem

Count the number of sets of 3 disjoint 2-element
subsets of a 12-element set.

As above, there are (122) choices for the first

(?!) subset, (*°?) choices for the second, and

(12_22_2) choices for the third. But there is no

ordering on the set of 2-element subsets, so our
choice procedure will choose the same thing
several times (unlike the case where the disjoint
subsets are different sizes)! For example,

11,2}, {7,8},{3,4}}
would be chosen separately as
{{7,8},{3,4},{1,2};

and altogether 3! ways. Thus, we must divide
by 3!, the number of ways to order 3 things,
getting the final count

(00 e
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