Huffman (source/noiseless) coding

(Emulate a tree construction in words.)
Huffman encoding takes a list of probabilities
and creates a binary tree by repeatedly taking
the two smallest probabilities and creating a
parent node for them, assigning the sum of
their probabilities to that parent node. One

of the two nodes is the left child and the
other is the right child. (Here it doesn’t
matter which, but a specific decision process

is necessary.) Repeat, each time looking at

the list of nodes which have no parent. When
the tree is complete, when there is a single
node (the root node) without a parent, the
process goes back down the tree recursively to
assign codewords: the root node is assigned the
empty string ” as codeword. Left child of node
with codeword ’w’ is assigned codeword w0’
and right child is assigned 'w1’. This labeling
percolates down the tree, giving the Huffman
encoding.

Example: Huffman encode source with
probabilities 1/4, 1/5, 1/5, 1/6, 1/8, 7/120.

Two smallest probabilities 7/120 and
1/8 combine to 11/60. List becomes
(11/60,1/6,1/5,1/5,1/4).

Two smallest 1/6 and 11/60 combine to 7/20.
List now (7/20, 1/5, 1/5, 1/4).

Two smallest 1/5 and 1/5 combined to 2/5.
List now (2/5, 1/4, 7/20).

Two smallest 1/4 and 7/20 combined to 3/5.
List now (3/5, 2/5).

2/5 child of 1=" gets codeword ’0’.

1/5 child of 2/5="0" gets codeword ’00’.

1/5 child of 2/5="0" gets codeword ’'01’.

3/5 child of 1=" gets codeword ’1’.

1/4 child of 3/5="1" gets codeword ’10’.
7/20 child of 3/5="1" gets codeword '11".
1/6 child of 7/20="11" gets codeword '110’.
11/60 child of 7/20="11" gets '111".

7/120 child of 11/60="111" gets 1110

1/8 child of 11/60="111" gets "1111".

The list of probabilities and codewords is
(1/4="10", 1/5="00", 1/5="01", 1/6="110",
1/8="1111", 7/120="1110").

Example: Huffman encode source with
probabilities 1/3, 1/5, 1/6, 1/7, 1/8, 9/280.

Two smallest probabilities 9/280 and 1/8 which
get combined to 11/70. List now (11/70, 1/7,
1/6,1/5, 1/3).

Two smallest 1/7 and 11/70 combine to 3/10.
List now (3/10, 1/6, 1/5, 1/3).

Two smallest 1/6 and 1/5 combine to 11/30.
List now (11/30, 3/10, 1/3).

Two smallest probabilities 3/10 and 1/3
combine to 19/30. List now (19/30, 11/30).
11/30 child of 1=" gets codeword ’0’.

1/6 child of 11/30="0" gets codeword ’00’.
1/5 child of 11/30="0" gets codeword ’01’.
19/30 child of 1=" gets codeword ’1’.

3/10 child of 19/30="1" gets codeword "10’.
1/7 child of 3/10="10" gets codeword "100’.
11/70 child of 3/10="10" gets codeword "101’.
9/280 child of 11/70="101" gets "1010’.

1/8 child of 11/70="101" gets codeword '1011".
1/3 child of 19/30="1" gets ’11°.

Encodings: (1/3="11", 1/5="01", 1/6="00",
1/7="100", 1/8="1011", 9/280="1010").

Remarks: Huffman coding is optimal exactly
and only that for specified source words with
specified probabilities it achieves the lowest
possible expected word length (estimated in
Shannon’s theorem).

e Huffman encoding does not worry about good
or bad choices of what to use as source words.
The point of many contemporary compression
algorithms is exactly this choice. Once that
choice is made, the Huffman part is easy.

e We are neglecting the important question

of decoding algorithms, just because that is

a different story. But ease of decoding is an
important criterion, sometimes more important
than compression. In real life, there is a trade-
off between the two considerations.

e In fact, smart decoding algorithms are often
tairly wacky, probabilistic, and not obviously
intuitive. A topic in their own right. In some
cases, there are very good algorithms that seem
to work far better than anyone can prove.

Error detection, error correction

Now a complementary problem, detection of
errors, and correction of errors.

As always, we can certainly think of the literal
idea that a message is sent over a channel
which is a wire, or wireless, but the idea can be
abstracted. Your notes, your mind, and many
other things are channels in abstraction.

The simplest type of channels is discrete
memoryless channels C'. There is a finite
input alphabet ¥, = {z1,...,z,,} and finite
output alphabet Y.t = {y1,...,¥n}. When
input x; is sent into the channel, output y; is
received with probability p;;.

pij = Pc(received = y,|sent = x;)

These are conditional probabilities.

Suppose the channel operates so that
transmission and receipt of each character

are independent of the transmission and
receipt of other characters. So probabilities are
independent of what comes before or after.

sz'j =1
J

since the sum of probabilities of possible output
characters that might be received (for given
input x;) is 1.

Necessarily

The collection
M={p;;:1<i<m,1<j<n}

is the channel matrix. The probability p;;

is the entry in the *® row and j*® column. A
matrix such that rows and columns are non-
negative and sum to 1 is a stochastic matrix.

Remark: Stochastic matrices also occur in
Markov processes, and are called transition
probabilities.

Example:

The binary symmetric channel model is the
simplest meaningful example.

Input alphabet is ¥;;, = {0,1} and output
alphabet is Yo, = {0, 1}.

Probability that the channel transmits ‘0’ as ‘1’
or ‘1’ as ‘0’ (that is, makes a mistake) is p.
Probability that a character is transmitted
correctly is 1 — p.

The quantity p is the (bit) error probability
of the channel.

(Often ¢ is a convenient shorthand for 1 — p.)
Remark: As simple as this example is, it

already can be made to illustrate nearly all
interesting phenomena.

Example: Erasure channel: This model
includes the idea that a channel may lose some
characters entirely.

For example, with input alphabet ¥;, = {0,1}
the output alphabet would be ¥y = {0, 1, %}
where x is an erasure of a character. Let ¢
be a small positive real number, and let the
transition probabilities be

in\out 0 1 x
0 1 —¢ 0 €
1 0 1l—¢ ¢

That is, the two characters ‘0’ and ‘1’ never
transmute into each other, but either one may
be erased with probability €. This is the binary
erasure channel with erasure probability .

The N** extension CY) of a channel C is a
channel whose input alphabet is all N-tuples

of characters from the input alphabet of C,
whose output alphabet is the collection of N-
tuples of characters from the output alphabet
of C', and transition probabilities correspond to
having N copies of the original channel working
independently, in parallel. That is,

PC(N) (out — bl ce bN|iIl =al .. .G,N)

= PC(OU.t = b1|in = CL1)X

... X Po(out = byl|in = ayn)

We consider a source X emitting words

w1, ..., Wy, with probabilities p; = P(X = x;)
encoded (perhaps by Huffman) into binary,
sent across a binary symmetric channel C, and
decoded on the other side.

The encoding to binary is noiseless and is
known to the decoder.

The channel bit-error probability often denoted
p is known.

With independence assumptions, probability
that N bits a7 ...ay will be transmitted
correctly is the product of the probability
that a; is transmitted correctly, that as is

transmitted correctly, ..., and that ay is
transmitted correctly:
N
(1-p)

The fundamental question is can we do better
than this?

(Of course, the answer is ‘yes’ or we wouldn’t be
here talking about it.)

10

There are two parts to the question of
improvement: detection of errors, and
correction of errors.

Detection is easier than correction.

Sometimes detection is good enough: maybe we
can ask for a retransmission.

Sometimes (in deep space transmission, video,
audio, and other examples) retransmission is
infeasible or impossible or ridiculous.

In other cases correction of errors is necessary
based on the original but flawed transmission.
This is forward error correction.

11

Example of detection: parity checks

To detect single bit errors use a parity
check.

This approach is so simple that it is often used.
But it does not correct errors.
As a detection device it is somewhat limited.

All single-bit errors in a message or block can
be detected by a parity-check.

12

For binary encoding f : X — {0,1}* of a
source into strings of Os and 1s, we can add a
check-bit and detect single-bit errors. Replace
encoding f by encoding f

f (w)
fw)

Decoding rejects a word if the last bit does not
correctly reflect the odd/even-ness of the rest of
the word. Equivalently, every augmented word
should have an even number of 1’s.

f(w)+ ‘0" f(w) has even no. 1’s
f(w)+1 f(w) has odd no. 1’s

Remark: If the code is instantaneous then
adding this parity-check bit does not create any
conflicts.

Change of a single bit (including the check bit)
of the new codewords can be detected. That
is, all single-bit errors are detected by a parity-

check bit.

13

Example: A source emits 2-bit binary
codewords 00,01, 10,11. Suppose the binary
symmetric channel has bit error probability 1/8.
Then the probability that at least one bit error
occurs (and will necessarily be undetected!) in
transmission of one of these 2-bit words is

P(> 1 error) = P(1 error) = P(2 errors)

2\ 1 7 1 1 15
b— —_ e & & — _—e i pu— - % 00234
(1) 38788 64

Add a parity-check bit by replacing these
words with 000,011,101,110. What errors are

detected?

Single bit errors are detected. In fact, if any odd
number of bits are flipped, this will be detected.
But change of 2 bits will not be detected. So
probability of undetected error is the probability
of exactly 2 bit errors (out of 3)

N117 21
—2 o2 0,041 << 0.234
(2)888 s1g 0041 << 023

Remark: But this detection scheme does
not tell how to correct an error, only that it
occurred.

14

Example: What happens with more noise on
the channel? Again use codewords 00,01, 10,11,
but take the channel’s bit error probability to
be 1/3. The probability that at least one bit
erroT OCCUrs 1s

1 2 2 1
—+

5) 1
§'§—|—§'3 —§~0.5555>—

1 1
3 3 2
Unlikely we’d have a succesful transmission!

A single parity-check replaces these words with
000,011,101, 110. Single bit (and 3-bit) errors
are detected, but 2-bit errors are not. So the
probability of undetected error is

3\ /1\?% /2 6
1) = — ~0.22222 << 0.555
(o) (5) (5) =z mo2m <

Remark: The probability of undetected error
is now below 1/2, but still high.

Remark: We still have no means of correcting
an error even though we may know an error
occurred.

15

Example: A channel as noisy as possible:
take bit error probability 1/2, codewords

00,01,10,11. The probability that at least one
bit error occurs in transmission is

N11 /2\ /1\? 3 1
<1)§§+<2> (5) == 0Py

Adding a single parity-check bit replaces the
words with 000,011, 101, 110, respectively.
Single bit errors (and 3-bit) are detected. 2-
bit are not. The probability of at least one
undetected bit error is

()1 ()-2-omeo

Thus, parity-check bits reduce the probability
of undetected bit error within a word to 3/8,
significantly below 1/2, even with a maximally
noisy channel.

Remark: This is detection, not correction.
Perhaps the messages can be retransmaitted.
Retransmission is the mechanism by which TCP

makes IP robust, though not just using a simple
check-bit.

16

Example: Consider 3-bit binary words
transmitted over a binary symmetric channel
with bit error probability 1/8. The probability
that at least one bit error will occur in
transmission of a 3-bit word is

OO OO E-0)

With a parity-check bit, the probability of an
undetected error is the probability of 2 (or 4) bit
errors, namely

BIONORINIORILEEE

Remark: Mere detection of errors may be

silly or worthless if it is impossible or expensive
to retransmit, as in deep space transmissions,
and video, especially live video, or with a high
volume of highly structured or synchronized
information. So we’ll care mostly about not just
detection but correction of errors.

17

