Decoding from a noisy channel

One (eventually discarded) try at decoding
messages sent through a noisy channel is the
following. Let xq,...,x,, be the source words,
and suppose y is received. We might decode y
as x;, where x;, is the source word such that

P(x;, sent|y received) > P(x; sent|y received)

That is, given that y was received, the
(conditional) probability that z;, was sent is
the greatest among the z;s. This is the ideal
observer or minimume-error rule.

Remark: This rule seems reasonable but
has a fatal flaw: the receiver must know the
probabilities that x; is sent.

Therefore, do not try to use this rule.



A better rule is the maximum-likelihood
(‘ML’) decoding rule, which decodes a received
word y into x; to maximize

P(y received|z; sent)

We do not need to know the probabilities that
words x; are sent.

For a binary symmetric channel maximum-
likelihood decoding can be described in terms
of the Hamming distance between strings of
Os and 1s (after proving a little result).

The Hamming distance d(z,y) between two
binary vectors x = (x1,...,Zn), ¥ = (Y1,--+,Yn)
of the same length is

d(z,y) = number of indices ¢ so that z; # y;

The Hamming weight of a binay vector is the
number of entries that are 1.

Minimum-distance decoding decodes a
received word as the codeword x; closest (in
Hamming distance) to y.



Proposition: The Hamming distance d(, )
among binary strings of a fixed length behaves
like a ‘real’ distance function in that it has
properties

e d(z,z) = 0 for any string x, and d(z,y) = 0
implies z = y.

o (Symmetry) d(z,y) = d(y, z)
e (Triangle inequality) d(z, z) < d(x,y) + d(y, z)

Proof: The first two assertions are easy. For the
third, look at the i*® bit in all three strings. If
z and z differ at the i*" bit, then either z and

y differ at the *® bit, or 2z and y differ at the
' bit. Thus, adding up these differences over
locations i*®, we have an analogous inequality

for all 7, so the sums satisfy the same inequality.
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At first glance maximum-likelihood and
minimun-distance may not be the same, but
they turn out to be identical:

Theorem: For binary symmetric channel with

1

bit error probability p < 5, minimum-distance

decoding is equivalent to maximume-likelihood.

Proof: Let x be a possible decoding of a
received y. The probability that x became y is
p@¥) (1 — p)—4=:Y) since d(z,y) bits flip. Since
p <3, p/(1—-p)<1,so0if d(z,y) > d(z,y)

pd(':v?y)(]_ — p)n_d(way)

> pd@¥) (1 — p)n—d@y) . (_1 P
- P

— pd(z’y)(l — p)n_d(z’y)

) d(zay)_d(way)

So the probability that z became y is greatest
when z is closest to the received word . ///

So always use minimum-distance decoding.



Example: Given codewords a = 1001,
b= 0111, ¢ = 0001, and received word y = 1111,
how should we decode y?

Part of the question is answered by recalling
that we use minimum-distance (=maximum-
likelihood) decoding. That is, use Hamming
distance (the number of bits differing in two
words) d(, ) and decode the received word y as
the codeword closest to it in Hamming distance.

Compute the Hamming distances by comparing
respective bits, adding 1 for each differing bit:

d(a,y) = d(1001,1111) =0+14+14+0=2

db,y) =d(0111,1111) =1+0+0+0=1
d(c,y) =d(0001,1111) =1+14+140=3
Thus, the received word ¥ is closest to codeword

¢ (in Hamming distance), so decode y = 1111
as b = 0111.



Example: A three-word message is encoded
by a = 1000011, b6 = 0100101, ¢ = 0010110,

d = 0001111, e = 1100110, and f = 1010101,
g = 1001100. The message is sent across

a noisy channel, and you receive

’111011010001101001101°’. What was the most
likely original message?

The message is considered as three 7-bit words
in a row, each of which is a mangled form of
one a codewords. We decode each mangled 7-bit
received word by minimum-distance decoding,
using Hamming distance (which counts the
differing bits), finding the codeword which
differs from it by the least number of bits.

Shortcuts: By a one-time pre-computation,
the codewords have Hamming distances as little
as 3 from each other. Hoping for unambiguous
decoding, only consider codewords of Hamming
distance 0 or 1 from the received words. If there
is none, then decoding fails. And if we find one
codeword at distance < 1, we decode as that
codeword and stop.



The following results illustrate the utility of the
intuition attached to the idea of distance:

Theorem: In general, when codewords have
distances at least 3 from each other, for a given
received word y there cannot be two codewords
x,z both at distance < 1 from y.

Proof: Suppose d(z,y) = d(y,z) = 1 but
d(x,z) > 3. Then by the triangle inequality

3<d(z,2) <d(r,y)+d(y,z) =1+1
contradiction. ///
Similarly:

Theorem: More generally, when codewords
have distances at least 2k + 1 from each other,
for a given received word y there cannot be two
codewords x, z both at distance < k from y.

Proof: Suppose d(z,y) = d(y,z) < k but
d(z,z) > 2k + 1. Then by the triangle inequality

2k +1 <d(z,2) < d(x,y) +d(y,2) = k+ k

contradiction. ///



In the example, instead of computing the
Hamming distance from a received word to all
codewords, stop as soon as distance < 1.

Further: gradually compare bits from left to
right and reject a codeword as soon as it differs
by 2 or more bits from the received word.

And, again, as soon as a codeword is at
distance < 1 from the received word, we
decode as that codeword and do not continue
computing distances.

The general analogues of these two shortcuts
apply when the minimum distance between
codewords is 2k + 1:

When a codeword is within k£ of the received
word, decode as that word and stop. This cuts
in half the expected number of comparisons.

Further, compare the received word and
codewords bit-by-bit, and as soon as the
number of differing bits exceeds k, reject that
codeword without further comparison. This is
another significant speedup.



The first received word 1110110’ (the first

7 bits of the whole string) differs from a =
1000011 at the 2nd and 3rd bits, so reject a. It
differs from 6 = 0100101 at 1st and 3rd, so drop
b. It differs from ¢ = 0010110 at 1st and 2nd,
so drop c. It differs from d = 0001111 at 1st
and 2nd, so drop d. It differs only at 3rd, from
e = 1100110 so has Hamming distance 1 from e.
We decode 1110110 as e = 1100110 and stop,
not even measuring the distance of 1110110 to
f = 1010101 and g = 1001100.

Similar computations apply to the second
and third batches of 7 bits from the received
message.

Summarizing,

1110110 closest (only 2nd differs) 1100110 = e
1000110 closest (only 1st differs) 1100110 = e
1001101 closest (only 6th differs) 1001100 = g

Thus, the decoding of the message
’111011010001101001101" is ’eeg’.



Channel capacity

Part of Shannon’s theorem about error-
correction is a precise meaning for channel
capacity (to carry information).

Let C be a memoryless discrete channel with
input alphabet ;, and output alphabet X,
and for x; € X, and y; € Yoyt transition
probabilities

pij = P(y; received |x; sent)
Let source X emit elements of >;, and
p; = P(X emits z;)

The output of the channel C with X connected
to its input is a memoryless source Y emitting
Yout With probabilities

p; = Z P(y; received |z; sent )
i=1

P(X sent .CCZ) = Z pijpz'
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The information about X given Y is the
decrease in entropy

I(X|Y) = H(X) — HX|Y)
= H(X)+ H(Y) - H(X,Y)

Remark: The expression for I(X|Y) is
symmetrical

I(X|Y) = I(Y|X)

so the amount of information about X imparted
by Y is equal to the amount of information
about Y imparted by X.

The channel capacity is

capacity (C) = max I(X|Y)

with max over all probability distributions for
sources emitting the given alphabet accepted as
inputs by the channel.

Remark: This is not a computationally useful
definition.
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Remark: Capacity is a continuous function
on the closed and bounded set of probabilities
D1, ..., Pm, SO the maximum exists. From
calculus the max of a continuous function on
a closed and bounded set in R™ is achieved.

Remark: Units for channel capacity are bits
per symbol.

Theorem: (Shannon) Channel capacity of
a binary symmetric channel with bit error
probability p is

1—-H(p,1—p)=1+plogyp+ (1 —p)logy(l—p)

Remark: This makes channel capacity
computable!

Remark: Sensibly, when p = % channel
capacity is 0, since what we get over the channel
is worthless. We can detect errors (by parity-
check bits) but cannot correct them. Similarly,
reasonably-enough:

Proposition: Let C be a memoryless channel
with capacity c. Then for any positive integer n
the n'? extension C™ of C has capacity nc.
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Examples: Values of channel capacity for
varying bit-error probability p:

bit-err prob channel cap

.01 0.92
.02 0.86
.04 0.76
.05 0.71
.06 0.67
.07 0.63
.08 0.60
0.1 0.93
0.2 0.28
0.3 0.12
0.4 0.03
45 0.007
0.5 0.00

Remark: This function is not linear.

Remark: For bit-error rate 1/2 or anything
close to it, the channel capacity approaches
0.000 quite rapidly. Not linearly.
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Shannon’s noisy coding theorem

Shannon’s 1948 theorem proves that there

erists an error-correcting encoding so that
information can be sent through a noisy channel
at a rate arbitrarily close to the capacity of the
channel.

Word error probability of encoding f

is average probability of error in decoding,
weighted-averaging over source words
wi,...,wy This is not a good model,

since an assumption of equal probability is
invariably stupid, and we might not know the
probabilities.

A better measure to minimize is
maximum word error probability
= max P(error|w; sent)
7

If max prob error prob is small, then avg word
error prob is small, since

maximum word error probability of f
> average word error probability of f
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We now emphasize binary codes, so everything
is 0’s and 1’s.

We think of a binary symmetric channel
(and, without explicit mention, its extensions
to process a stream of bits), whose nature is
completely described by the single parameter p,
the bit-error probability.

Always use maximume-likelihood
(equivalently, minimum-distance) decoding.

From Shannon, a symmetric binary channel C
with bit error probability p has capacity

c=1+plogy,p+ (1 —p)logy(1—p)

Definition: The rate of a binary code with
maximum word length n with £ codewords is

defined to be

logot  log,(number codewords)
rate = =
n max word length
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Remark: The maximum possible rate is 1,
which can occur only for a binary code with
maximum word length n where all the 2" binary
codewords of length n are used in the code.

This represents the fullest possible transmission
of information through a channel.

Remark: In a noisy channel where the bit
error probability is > 0 it is unreasonable to
use a code with info rate too close to 1, because
such a code will not have enough redundancy to
either detect or correct errors.

Example: For binary code 001, 110, 010, 101

logy (no. codewords) log, 4

info rate =

2
max length 3 3

Example: For binary code 001, 110, 010

log, (no. codewords)

info rate =
max length

~ log, 3
3

~ 0.585
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Examples:
For three-fold binary repetition code 111, 000

log, (no. codewords) logy 2 1

info rate =
HHO Tate max length 3

For 5-fold binary repetition code 11111, 00000

log, (no. codewords) logy 2 1

info rate =

max length 5!

Remarks: Repetition codes can correct errors
by majority vote/logic, meaning assume that
the majority of bits are correct.

But repetition codes are very ineflicient, since
they have a very low information rate.
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Theorem: (Noisy Coding) For symmetric
binary channel C' with bit error probability
p < %, let R be an info rate

0<R<1+plog, p+ (1—p)log, (1—p)

There is a sequence C1, (s, ... of codes of
lengths n; with rates R; approaching R such
that

00

lim word length (C;)

lim max word error probability (C;) =0

1

More specifically, given € > 0, for sufficiently
large n there is a code C of length n with rate
Ro < R such that

1
|[Rop — R| < —

n

and

max word error probability (C) < e
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Remark: The unusual nature of the proof
gives no explanation of how to find or create
the codes, nor how rapidly the maximum word
error probability decreases to 0.

Shannon’s amazing insight was that whatever
the average value P,,s of Pc, averaged over all
length n codes C' with ¢ codewords, there must
be at least one code Cy which has

PCOSPavg

This is elementary: let aq,...,ax be real
numbers, with average

+...+an
N
We claim that there is at least one a; (though

we do not know which) with a; < A. Ifa; > A
for all a;, then

A=4

a1 +...+tay>A+...+A=N-A
and
a+...+a
N

contradicting the fact that equality holds (since
A is the average).

N> A
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Remarks:

Only in the last decade or two has there been
much systematic success in finding codes that
approach the Shannon bound.

Length 7 Hamming codes were the first good
codes found, about 1950. But these do not scale
up well, giving only good small codes.

Reed-Solomon (RS) and Bose-Hocquengham-
Chaudhuri (BCH) codes were and are
reasonably good medium-small codes, and are
still in use.

It turns out that making good error-correcting
codes seems to be a much harder problem than
COMPTeESSILON 1SSUES.
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