
Outline

Recall: For integers
Euclidean algorithm for finding gcd’s
Extended Euclid for finding multiplicative inverses
Extended Euclid for computing Sun-Ze
Test for primitive roots

Now, some analogues for polynomials with
coefficients in F2 = Z/2

Euclidean algorithm for gcd’s
Concept of equality mod M(x)
Extended Euclid for inverses mod M(x)

Looking for good codes
Hamming bound for arbitrary codes
Idea of linear codes
Gilbert-Varshamov bound for linear codes

1



Divisibility for (binary) polynomials

As for integers, use notation

f(x)% g(x) = remainder dividing f(x) by g(x)

Say that g(x) divides f(x) if f(x)% g(x) = 0,
and write

g(x)|f(x)

Write
f(x) = g(x) mod m(x)

if
m(x)|[f(x) − g(x)]

As with ordinary integers, this relation of
equality modulo m(x) is an equivalence
relation, and is compatible with addition and
multiplication.

The greatest common divisor gcd(f(x), g(x))
of two polynomials is the largest-degree
polynomial dividing both.

2



Euclid for (binary) polynomials

The Euclidean algorithm for polynomials with
coefficients in a field (ok, let’s say the field is
F2 = Z/2) is exactly parallel in structure to the
Euclidean algorithm for integers.

Each step in the Euclidean algorithm is a
division with remainder (now somewhat harder
than with integers), and the dividend for the
next step is the divisor of the current step, the
next divisor is the current remainder, and a new
remainder is computed.

That is, to compute the gcd of polynomials f(x)
and g(x), initialize F (x) = f(x), G(x) = g(x),
R(x) = f(x)% g(x).

While R(x) 6= 0
replace F (x) by G(x)
replace G(x) by R(x)
recompute R(x) = F (x)%G(x).

When R(x) = 0, G(x) = gcd(f(x), g(x))

3



Example: To find gcd(x4 + x2 + 1, x2 + 1), do
Euclid with these two polynomials as inputs

(x4 + x2 + 1) − (x2) · (x2 + 1) = 1

(x2 + 1) − (x2 + 1) · (1) = 0

Thus, the gcd of x4 + x2 + 1 and x2 + 1 is 1.

Example: To find gcd(x5 + x4 + x + 1, x2 + 1),
do Euclid with these two polynomials as inputs

(x5 +x4 +x+1)− (x3 +x2 +x+1) · (x2 +1) = 0

Thus, the gcd of x5 + x4 + x + 1 and x2 + 1 is
x2 + 1.

Example:
To find gcd(x5 + x4 + x + 1, x4 + x2 + 1), do
Euclid with these two polynomials as inputs

(x5 +x4 +x+1)− (x+1) · (x4 +x2 +1) = x3 +x2

(x4 + x2 + 1) − (x + 1) · (x3 + x2) = 1

(x3 + x2) − (x3 + x2) · (1) = 0

So the gcd of x5 + x4 + x + 1 and x4 + x2 + 1 is
1.

4



Example:
To find gcd(x6 + x5 + x3 + x + 1, x4 + x2 + 1),
do Euclid with these two polynomials as inputs

(x6+x5+x3+x+1)−(x2+x+1)·(x4+x2+1) = 0

Thus, the gcd of x6 + x5 + x3 + x + 1 and
x4 + x2 + 1 is x4 + x2 + 1. (Not at all obvious
that the second poly divides the first!)

Example: To find
gcd(x6 + x5 + x3 + x + 1, x4 + x3 + x + 1), do
Euclid with these two polynomials as inputs

(x6+x5+x3+x+1)−x2·(x4+x3+x+1)=x2+x+1

(x4 + x3 + x + 1) − (x2 + 1) · (x2 + x + 1) = 0

Thus, the gcd of x6 + x5 + x3 + x + 1 and
x4 + x3 + x + 1 is x2 + x + 1.

Remark: These gcd’s are indeed less intuitive
than gcd’s of integers.

5



Peculiar characterization of gcd’s

Our polynomials could have coefficients in any
field, such as Q, R, C, Z/p with p prime, or
any other finite field, but we’ll focus on binary

ones, meaning with coefficients in F2 = Z/2.
Just as with integers, and with the same proof,
we have

Theorem: The gcd of g(x) of two polynomials
A(x) and B(x) is the polynomial of lowest
degree expressible as

g(x) = R(x) · A(x) + S(x) · B(x)

for some polynomials R(x) and S(x).
///

6



Multiplicative inverses mod M(x)

A polynomial i(x) is a multiplicative inverse
of f(x) modulo M(x) if

[f(x) · i(x)]%M(x) = 1

or, equivalently, if

f(x) · i(x) = 1 mod M(x)

As a corollary of the peculiar characterization of
the gcd, for gcd(f(x),M(x)) = 1, there are r(x)
and s(x) such that

1 = gcd(f(x),M(x)) = r(x) · f(x) + s(x) · M(x)

Considering the equation

r(x) · f(x) + s(x) · M(x) = 1

modulo M(x), we have

r(x) · f(x) = 1 mod M(x)

so r(x) is a multiplicative inverse of f(x) mod
M(x).

(And, symmetrically, s(x) is a multiplicative
inverse of M(x) mod f(x).)

7



As with ordinary integers, use the (extended)
Euclidean algorithm to find polynomials r(x)
and s(x) such that

gcd(f, g) = r · f + s · g

Example: To find a multiplicative inverse of x
mod x2 + x + 1, use extended Euclid with inputs
these two polynomials:

x2 + x + 1 − (x + 1)(x) = 1
x − (x)(1) = 0

1 = (1)(x2 + x + 1) − (x + 1)(x)

Since in general

1 = r · f + s · g

implies that r is a multiplicative inverse of f
mod g we see that x + 1 is a multiplicative
inverse of x mod x2 + x + 1.

8



Example: To find a multiplicative inverse of
x2 +1 mod x3 +x2 +1, use extended Euclid with
inputs these two polynomials:

x3 + x2 + 1 − (x + 1)(x2 + 1) = x
x2 + 1 − (x)(x) = 1

x − (x)(1) = 0

1 = (1)(x2 + 1) + (x)(x)
= (x2+1)+(x)((x3+x2+1)+(x+1)(x2+1))
= (x)(x3 + x2 + 1) + (x2 + x + 1)(x2 + 1)

Since in general

1 = r · f + s · g

implies that r is a multiplicative inverse of f
mod g, x2 + x + 1 is a multiplicative inverse of
x2 + 1 mod x3 + x2 + 1.

9



Back to codes

Review:
Memoryless, binary, discrete channels
We always do minimum-distance decoding
This is the same as max likelihood decoding

This includes ‘error correction’: If a received
word is closer to the sent word than to any
other codeword, the ‘correction’ is correct.

If by mischance there are so many bit
errors that the received word is closer to a
different codeword than the one sent, then the
‘correction’ is wrong.

... but we have no way of knowing this.

As a default, we imagine that any pattern
of errors with more bit errors than half
the minimum distance between codewords
will not be correctly corrected.

If the minimum distance is d = 2e + 1, then any
e bit errors can be (correctly) corrected.

10



Shannon’s theorem assures that good codes
exist...

Our goal is to find/make good codes.

This has proven surprisingly difficult, by
contrast to relative success in compression

(source) coding.

This entails trying to make a code meet two
conflicting conditions:

Have a high information rate
Have a high minimum distance

These two conditions are in conflict because,
for a fixed length, the higher the minimum
distance the less room (intuitively!?) there is for
codewords, which pushes the information rate
down.

On the other hand, if we push the information
rate up by adding codewords, in general this
decreases the minimum distance, so decreases
the number of bit errors that can be (easily,
nicely) corrected.

How to arrange codewords cleverly?

11



Hamming bound

Using the physical analogy that Hamming
distance is really like distance:

the set of all length n codewords with an
alphabet with q letters (maybe q = 2) is like
a container

codewords with specified minimum distance
d = 2e + 1 between them are like balls of radius

e

and the question of how many codewords
of length n (alphabet size q) with minimum
distance d = 2e + 1 can be chosen is analogous
to asking

How many balls of a fixed radius can be packed

into a box with a specified volume?

This is a hard question, but an easier version is
definitive:

the total volume of the balls packed cannot be
greater than the volume of the container.

(Duh!)

12



Here total volume is the number of length n
words on a q-character alphabet, namely qn.

The volume of a ball of radius e centered at a
word w is the number of length n words that
differ from w at ≤ e positions:

no. differing at 0 positions = 1

no. differing at 1 positions =
(

n

1

)

· (q − 1)

no. differing at 2 positions =
(

n

2

)

· (q − 1)2

no. differing at 3 positions =
(

n

3

)

· (q − 1)3

. . .
no. differing at e positions =

(

n

e

)

· (q − 1)e

So the volume is

volume of ball radius e of dimension n

= 1+

(

n

1

)

(q−1)+

(

n

2

)

(q−1)2+. . .+

(

n

e

)

(q−1)e

13



Thus, with ` codewords of length n, alphabet
with q characters, with minimum distance
d = 2e + 1, the constraint that the sum of the

volumes of the balls cannot be greater than the

volume of the whole container in which they’re

packed is

qn ≥ ` ·

[

1 +

(

n

1

)

(q − 1) + . . . +

(

n

e

)

(q − 1)e

]

This is the Hamming bound.

If a code exists with ` codewords, of length n,
and minimum distance d = 2e+1, this inequality
must hold.

The contrapositive assertion is that, given `, n,
q, and d = 2e + 1 if the inequality fails then
there cannot exist any such code.

Remark: Even when the equality holds, there
is no assurance that a code exists. Failure
to meet the Hamming bound can prove non-
existence, but meeting the bound cannot prove
existence.

14



Example: Is there a binary code of length 5
with minimum distance 3 and 7 codewords?

Since the code is binary, the parameter q telling
the size of the alphabet in the Hamming bound
is just q = 2. The minimum distance d = 2e + 1
in the statement of the Hamming bound is 3,
so the parameter e would be 1. The length is
n = 5, and the alleged number of codewords is
` = 7. Thus, the assertion

qn ≥ ` ·

[

1 +

(

n

1

)

(q − 1) + . . . +

(

n

e

)

(q − 1)e

]

of the Hamming bound in this case would be

25 ≥ 7 ·

[

1 +

(

5

1

)]

or
32 ≥ 42

which is false. Thus, there is no such code.

Remark: When the Hamming bound is
violated we are asking for far too much from
the alleged code.

15



Example: Is there a binary code of length 6
with minimum distance 3 and 7 codewords?

Since the code is binary, the parameter q telling
the size of the alphabet in the Hamming bound
is q = 2. The minimum distance d = 2e + 1
in the statement of the Hamming bound is 3,
so the parameter e would be 1. The length is
n = 6, and the alleged number of codewords is
` = 7. Thus, the assertion

qn ≥ ` ·

[

1 +

(

n

1

)

(q − 1) + . . . +

(

n

e

)

(q − 1)e

]

of the Hamming bound in this case would be

26 ≥ 7 ·

[

1 +

(

6

1

)]

or
64 ≥ 49

which is true.

We reach no conclusion.

Remark: When the Hamming bound is
satisfied we cannot say whether there does or
does not exist any such code.

16


