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Gilbert-Varshamov bound for linear codes

Check matrix criterion for min dist
Convert to linear algebra issue
Proof of Gilbert-Varshamov bound

Vandermonde determinants
Primitive roots in Z/p
Reed-Solomon (RS) codes
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Check matrix criterion for min dist

Keep in mind that a code with minimum
distance 2e + 1 can correct e errors.
The following fact is the starting point for
constructions of linear codes.

Theorem: Let C be a linear code with check
matrix H. Let d be the largest integer such
that any d of the columns of H are linearly
independent. Then C has minimum distance
d + 1. (And, conversely, if C has minimum
distance d + 1 then any d columns of H are
linearly independent.)

Remark: An important point is that
Hamming distance d(, ) is translation
invariant:

d(x, y) = d(x + z, y + z)

In particular, d(x, y) = d(x − y, 0). For a
linear code with codewords x, y, x − y is also a
codeword. Thus, the minimum distance between
codewords is the minimum distance from 0 to a
codeword.
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Proof: Let the check matrix be

H = ( r1 r2 . . . rn )

and v = ( c1, . . . , cn ) a codeword. Then

0 = v · H> =
∑

i

cir
>

i

If any bunch of d of the columns ris are linearly
independent, then for any codeword v there
must be at least d + 1 non-zero cis.

Conversely, if some d of the ris are linearly
dependent, then for some codeword v there are
at most d non-zero cis. ///

Remark: Thus, to look for linear codes that
correct many errors, look for check matrices
H with many with any that any 2e columns
are linearly independent. This motivates the
specifics of the constructions of Hamming codes,
BCH (Bose-Chaudhuri-Hocquengham) codes,
RS (Reed-Solomon) codes, and Goppa codes.

Corollary: If any 2e columns of the check
matrix are linearly independent, then the code
can correct any e errors, and vice versa.
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Corollary: For a binary linear code, if no 2
columns of a check matrix are the same, and
if no column of the check matrix is 0, then the
code can correct any single error.

Remark: The latter corollary is due to the
fact that the scalars are just {0, 1}.

Corollary:

• A linear code can correct any 2 errors if
and only if no 4 columns (or fewer) of a check
matrix are linearly dependent.

• A linear code can correct any 3 errors if
and only if no 6 columns (or fewer) of a check
matrix are linearly dependent.
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Proof of Gilbert-Varshamov bound

Consider linear codes with alphabet Fq, block
size n, dimension k, and minimum distance
d. A generating matrix with linearly
independent rows would be k-by-n. This would
be an [n, k, d] code. We can now prove

Theorem: (Gilbert-Varshamov) If

qn−k−1 > (q−1)

(

n−1

1

)

+. . .+(q−1)d−2

(

n−1

d − 2

)

then an [n, k, d] code over alphabet Fq exists.

The simple special case q = 2:

Corollary: If

2n−k − 1 >

(

n − 1

1

)

+ . . . +

(

n − 1

d − 3

)

+

(

n − 1

d − 2

)

then a binary [n, k, d]-code exists. ///
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Remark: The theorem assures that good
codes exist, but does not give an efficient
procedure to find them.

Remark: There is no assertion that this
is the best that a code can do, only that we
can (in principle!) expect at least this level of
performance. Still, it is very hard to make even
a single code that exceeds that GV bound.

Proof: Do the binary case for simplicity. Keep
in mind that for a linear code the minimum
distance is d if and only if any d − 1 columns
of a check matrix are linearly independent.

Consider the process of choosing n columns
for a check matrix so that any d − 1 of them
are linearly independent. The code is the row
space of a k-by-n generating matrix G (with
linearly independent rows). Its check matrix is
an (n − k)-by-n matrix of rank n − k. Suppose
that in the construction of a check matrix we
have successfully chosen ` columns with no d− 1
of them linearly dependent. Now we want to
choose an (` + 1)th column.
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The choice of (` + 1)th column must be made
from among column vectors of size n − k. There
are 2n−k such vectors.

We must exclude the all-0-column, exclude
any previous column, exclude the sum of any
previous two columns, exclude the sum of
any previous three columns, and so on up to
excluding the sum of any previous d−2 columns.

In the worst case, all these things that we must
exclude are different, leaving only

2n−k −

(

1 +

(

`

1

)

+

(

`

2

)

+ . . . +

(

`

d − 2

))

available vectors. Thus, to be sure that a choice
is available, this number must be positive.

///
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Remark: That is, if the Gilbert-Varshamov
inequality holds then in principle we could make
a code with the given [n, k, d]. However, as far
as seems to be known, following the proof of
Gilbert-Varshamov would give a construction no
better than an extremely labor-intensive brute
force search. That is, there does not seem to be
any good algorithmic approach here.

Remark: The converse assertion is false. That
is, there do exist some linear codes exceeding the
Gilbert-Varshamov bound. Such codes are very
good indeed. In fact, certain of the geometric
Goppa codes were proven by Tsfasman, Vladut,
and Zink to exceed the Gilbert-Varshamov
bound.
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Vandermonde determinants

We have shown that linear code can correct e
errors if and only if any 2e columns of its check
matrix are linearly independent.

How to make this happen?

From linear algebra, ` vectors of length `
are linearly independent if and only if the
determinant of the matrix made by stacking
them up is not 0.

But determinants are hard to evaluate in
general, especially for random matrices which
might have a chance of fulfilling the conclusion
of Shannon’s theorem.

We want a systematic trick to know that a
whole class of determinants is non-zero, for
check matrices for cyclic codes. Two standard
types of Vandermonde matrix have non-zero
determinants.
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Recall that n vectors

(v11, v12, v13, v14, . . . , v1n)
(v21, v22, v23, v24, . . . , v2n)
(v31, v32, v33, v34, . . . , v3n)

. . .
(vn1, vn2, vn3, vn4, . . . , vnn)

are linearly independent if and only if the
determinant of the n-by-n matrix made by
stacking them as rows is non-zero:

det











v11 v12 v13 v14 . . . v1n

v21 v22 v23 v24 . . . v2n

v31 v32 v33 v34 . . . v3n

. . .
vn1 vn2 vn3 vn4 . . . vnn











6= 0

Remark: Whether or not you remember how
to evaluate determinants, you should try to
avoid evaluating big determinants.

Remark: We don’t want its value, but the
assurance that it’s not 0.
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One version of Vandermonde matrix is

M =



















1 1 1 1 . . . 1
x1 x2 x3 x4 . . . xn

x2
1 x2

2 x2
3 x2

4 . . . x2
n

x3
1 x3

2 x3
3 x3

4 . . . x3
n

x4
1 x4

2 x4
3 x4

4 . . . x4
n

. . .
xn−1

1 xn−1
2 xn−1

3 xn−1
4 . . . xn−1

n



















The determinant of a Vandermonde matrix is
called a Vandermonde determinant.

Amazing Theorem:

det M = (−1)n(n−1)/2
∏

i<j

(xi − xj)

Corollary: If the xi’s lie in a set of things
with the property that a product of non-zero
things cannot be zero, and if for all i < j
we have xi 6= xj then the Vandermonde
determinant is not 0.

Corollary: For example, if the xi’s are
distinct and lie in Z/p with p prime, then the
Vandermonde determinant is 6= 0.
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Remark: Unfortunately, if we want to stay
in the littlest finite field F2, it is hard to find
many distinct xi’s to use in a Vandermonde
determinant.

Remark: Keep in mind that in greatest
generality the product of a bunch of non-zero
things can nevertheless be 0. For example, in
Z/6, neither 2 nor 3 is 0, but their product is 0.

But this counter-intuitive phenomenon does not
occur in Z/p with p prime.

Remark: More generally, in a field, by
definition, every non-zero element has a
multiplicative inverse. This prevents ab = 0
unless either a or b is 0. More generally, a
commutative ring in which ab = 0 only when
either a or b is 0 is an integral domain. Every
field is an integral domain. The ordinary
integers Z are an example of an integral domain
which is not a field.
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For example, for α in a field k, assuming that
all the quantities 1, α, α2, α3, . . ., αn−1 are
different from each other, by taking xi = αi−1,
we get a non-zero determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1
1 α α2 . . . αn−1

1 α2 (α2)2 . . . (αn−1)2

1 α3 (α2)3 . . . (αn−1)3

1 α4 (α2)4 . . . (αn−1)4

. . .
1 αn−1 (α2)n−1 . . . (αn−1)n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0

Remark: Since the xi’s in a Vandermonde
determinant need not be consecutive powers of a
common α, the different powers of α inside the
parentheses don’t have to be consecutive, only
not equal to each other.
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That is, for non-zero element α of a field and for
integers `1, . . . , `n so that

α`1 , α`2 , α`3 , . . . , α`n

are distinct, we have a non-zero determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1
1 α`1 α`2 . . . α`n−1

1 (α`1)2 (α`2)2 . . . (α`n−1)2

1 (α`1)3 (α`2)3 . . . (α`n−1)3

1 (α`1)4 (α`2)4 . . . (α`n−1)4

. . .
1 (α`1)n−1 (α`2)n−1 . . . (α`n−1)n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

6= 0
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If a row or column of a matrix is multiplied by
β, then the determinant is multiplied by β.

This implies that a larger class of determinants
is non-zero. From

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 1 . . . 1
x1 x2 x3 x4 . . . xn

x2
1 x2

2 x2
3 x2

4 . . . x2
n

x3
1 x3

2 x3
3 x3

4 . . . x3
n

x4
1 x4

2 x4
3 x4

4 . . . x4
n

. . .
xn−1

1 xn−1
2 xn−1

3 xn−1
4 . . . xn−1

n
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∣

∣

∣

6= 0

for distinct x1, . . . , xn we can multiply through
the ith column by xi to obtain

∣

∣

∣

∣
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x1 x2 x3 x4 . . . xn

x2
1 x2

2 x2
3 x2

4 . . . x2
n

x3
1 x3

2 x3
3 x3

4 . . . x3
n

x4
1 x4

2 x4
3 x4

4 . . . x4
n

x5
1 x5

2 x5
3 x5

4 . . . x5
n

. . .
xn

1 xn
2 xn

3 xn
4 . . . xn

n
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6= 0

for the x1, . . . , xn all different from each other,
and non-zero. This type of matrix is also called
a Vandermonde matrix.
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Primitive roots in Z/p

From thinking about Vandermonde
determinants, we want some set of numbers in
which there is an element g such that

1, g, g2, g3, . . . , gN

are distinct for as large as possible exponent
N . This should remind us of primitive roots.
Recall

Theorem: For p prime, there exist primitive
roots g modulo p. That is,

1, g, g2, . . . , gp−3, gp−2

are all different.

Remark: In more structural terms: the
multiplicative group Z/p× of the finite field Z/p
with p elements is a cyclic group.
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Remark: Any generator of the cyclic group
Z/p× is a primitive root for Z/p. As a corollary
of a study of cyclotomic polynomials, one would
know that the multiplicative group k× of any
finite field k is cyclic. So all we would need do
is check that Z/p is a field. That is, we must
check that any non-zero element b ∈ Z/p has a
multiplicative inverse.

Recall the (important!) explanation of why
there is a multiplicative inverse for any non-zero
thing b modulo p prime:

Since p is prime, if b 6= 0 mod p, then gcd(p, b) =
1. Thus, by the peculiar characterization of
gcd’s, there are integers s, t so that

sp + tb = 1

Looking at the latter equation mod p, t
is a multiplicative inverse to b modulo p.

///
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Remark: Recall that g (relatively prime to p)
is a primitive root modulo a prime p if and only
if for every prime r dividing p − 1

g
p−1

r 6= 1 mod p

Note that gp−1 = 1 mod p by Fermat’s Little
Theorem, so we need not test this.

Remark: If p is very large, it may happen
that it is infeasible to factor p − 1.
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Reed-Solomon (RS) codes

Let Fq = GF (q) be a finite field. Reed-Solomon
codes over Fq are of block length n = q − 1.

Let β be a primitive root in Fq, so

1, β, β2, β3, β4, . . . , βq−3, βq−2

are distinct, and every non-zero element of Fq is
a power of β. So (!)

xq−1 −1 = (x−1)(x−β) . . . (x−βq−3)(x−βq−2)

Choose design distance t in the range 2 ≤ t ≤
q − 1. Define

g(x) = (x − β)(x − β2) . . . (x − βt−2)(x − βt−1)

The cyclic code specified by this is a [n, n−t+1]-
code using the alphabet Fq, a Reed-Solomon
code.

Theorem: The RS code C over Fq with
generating polynomial

g(x) = (x − β)(x − β2) . . . (x − βt−2)(x − βt−1)

(β a primitive root in Fq) has minimum
distance at least its design distance t.
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Remarks: The only possible sizes of finite
fields are prime powers (meaning powers of
prime numbers).

There are no finite fields with 6, 10, 12, 14, 15,
18, or other such non-prime-power number of
elements.

Fields with prime numbers p of elements have
easy models:

Fp = GF (p) ≈ Z/p

Fields with prime power (but not prime)
numbers of elements are less elementary. They
cannot be modeled by Z mod something!

For any value of q other than primes, Z/q is
not a field. Such Z/q have non-zero elements
whose products are 0, so it is not possible that
every non-zero element is prime.

GF (4) = F4 6= Z/4

GF (8) = F8 6= Z/8

GF (16) = F16 6= Z/16
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GF (9) = F9 6= Z/9
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