
Review/Outline

Recall:
If all bunches of d− 1 columns of a check matrix
are linearly independent, then the minimum
distance of the corresponding code is d.

Following this through as a counting argument
gives the Gilbert-Varshamov bound.

Vandermonde determinants

Reed-Solomon (RS) codes

Making finite fields
Irreducible polynomials
Computational models of finite fields
Basic operations Fq

Primitive elements/roots in Fq

1



Vandermonde...

One type of Vandermonde matrix is

M =



















1 1 1 1 . . . 1
x1 x2 x3 x4 . . . xn

x2
1 x2

2 x2
3 x2

4 . . . x2
n

x3
1 x3

2 x3
3 x3

4 . . . x3
n

x4
1 x4

2 x4
3 x4

4 . . . x4
n

. . .
xn−1

1 xn−1
2 xn−1

3 xn−1
4 . . . xn−1

n



















Amazing Theorem:

det M = (−1)n(n−1)/2
∏

i<j

(xi − xj)

Corollary: If the xi’s lie somewhere such that
a product of non-zero things is non-zero, and if
xi 6= xj for all i < j, then the Vandermonde
determinant is non-zero.

2



Remark: Unfortunately, if we want to stay
in the littlest finite field F2, we only have
two distinct elements 0, 1, so cannot make
a big Vandermonde matrix with non-zero
determinant.

Remark: In general the product of a bunch of
non-zero things can be 0. For example, in Z/6,
neither 2 nor 3 is 0, but their product is 0.

Remark: In a field, by definition, every non-
zero element has a multiplicative inverse. This
prevents ab = 0 unless either a or b is 0. Indeed,
if ab = 0 for non-zero a and b, then multiply
both wides by a−1 to obtain

0 = a−1 · 0 = a−1(ab) = (a−1a)b = 1 · b = b

contradiction.

3



Variant check matrices

Keep in mind the theorem about Vandermonde
determinants, and the aim of making every
batch of d − 1 columns of a check matrix
linearly independent. Let g(x) be a polynomial
generating a cyclic code of length n with
alphabet Fq. (Assume for simplicity that g(x)
has no repeated factors.) Factor g(x) into
irreducible polynomials

g(x) = f1(x)f2(x) . . . f`(x)

where each fi has coefficients in Fq. Let (!?)
βi be a root of the ith irreducible factor fi in a
larger finite field Fqm .

Proposition:

H =











1 β1 β2
1 β3

1 . . . βn−1
1

1 β2 β2
2 β3

2 . . . βn−1
2

1 β3 β2
3 β3

3 . . . βn−1
3

. . .
1 β` β2

` β3
` . . . βn−1

`











is a check matrix for G.

4



Remark: This variant check matrix H has the
property that pieces of it look like Vandermonde
matrices. Good.

Remark: ... but without knowing anything
further about the βi’s we cannot be sure that
the powers β1

i , β2
i , . . . , βn−1

i are distinct.

Remark: A downside to this construction is
that the entries in the check matrix are in a
possibly much larger finite field. But this is
actually useful, as will be seen even more clearly
with BCH codes.

Remark: The simplest family of codes
constructed using these variant check matrices
are the Reed-Solomon codes.

5



Description of RS codes

These form a family of cyclic codes which use
larger and larger alphabets.

Let Fq be a finite field. If q is simply a prime
number, then take Fq = Z/p. (Otherwise Z/q is
not a field at all.)

The block length will be n = q − 1.

Let g be a primitive root in Fq, so

1, β, β2, β3, β4, . . . , βq−3, βq−2

are distinct Choose design distance t. Take
generating polynomial

g(x) = (x − β)(x − β2) . . . (x − βt−2)(x − βt−1)

for a cyclic code, a Reed-Solomon code.

Theorem: This code has minimum distance at
least t. Length is n = q − 1, dimension is q − t,
and a generator for the check matrix is

h(x) = coefficients-reversed version of

(x − βt)(x − βt+1) . . . (x − βq−3)(x − βq−2)

= (1−βtx)(1−βt+1x) . . . (1−βq−3x)(1−βq−2x)

6



Remark: The minimum distance is (at
least) t, and the dimension is q − t, which
illustrates the conflict between trying to have
high minimum distance and also high dimension
(to have high information rate).

Remark: Since β is a primitive root,

xq−1 − 1 = (x − β)(x − β2) . . . (x − βq−1)

This is what allows explicit factorization of
h(x).

Remark: We delay looking at the minimum-
distance analysis of RS codes via variant check
matrices.

7



Example: Make an RS code that will correct
1 error: Take design distance t = 3. We need
t ≤ q − 1, so take q = 5. Let β be a primitive
root mod 5, for example β = 2. (Check!) Take
generating polynomial (mod 5)

g(x) = (x−2)(x−22) = (x−2)(x−4) = x2+4x+3

Thus, this will make a [q − 1, q − t] = [4, 2]-code
with generating matrix

G =

(

3 4 1 0
0 3 4 1

)

Since g(x)|x4 − 1, a check matrix in the usual
form for cyclic codes will be made from h(x),
the coefficients-reversed version of

x4 − 1

g(x)
= (x − 23)(x − 24)

= (x − 3)(x − 1) = x2 + x + 3

giving h(x) = 1 + x + 3x2 and

H =

(

1 1 3 0
0 1 1 3

)

8



Example: Let’s make an RS code to correct
2 errors. Need designed distance t = 5. Since
t ≤ q − 1, take q = 7. Let β be a primitive
root mod 7, for example β = 3. Take generating
polynomial

g(x) = (x − 3)(x − 32)(x − 33)(x − 34)

= (x − 3)(x − 2)(x − 6)(x − 4)

= x4 + 6x3 + 3x2 + 2x + 4

This will make a [6, 2]-code with generating
matrix

G =

(

4 2 3 6 1 0
0 4 2 3 6 1

)

A generator h(x) for the check matrix is the
coefficients-reversed version of

x6 − 1

g(x)
= (x − 1)(x − 5) = x2 + x + 5

so h(x) = 1 + x + 5x2, and

H =







1 1 5 0 0 0
0 1 1 5 0 0
0 0 1 1 5 0
0 0 0 1 1 5







Any 4 columns are linearly independent.

9



Remark: The rate of the RS code with
parameters q, n = q − 1, and designed distance
t ≤ q − 1 is

rate =
n − deg g

n
=

q − t

q − 1
= 1 − t − 1

q − 1

With t = 2e + 1 to correct e errors,

info rate = 1 − 2e

q − 1

And the relative error correction is

rel error corr =
2e

block length
=

2e

q − 1

We cannot both correct lots of errors per block
length and maintain a high rate.

Remark: Though a suitable RS code can
correct as many errors as we’d with, these are
not binary codes. We might want a binary code,
which is a possibility with the BCH codes
below.

10



Proof: The proof that RS codes work as
claimed wiill use a variant check matrix in
which any t columns are a Vandermonde
matrix, so are linearly independent,















1 β β2 . . . βn

1 β2 (β2)2 . . . (βn)2

1 β3 (β2)3 . . . (βn)3

1 β4 (β2)4 . . . (βn)4

. . .
1 βt−1 (β2)t−1 . . . (βn)t−1















where β is a primitive root in Fq. The jth

column consists of powers of βj−1. Since β
is primitive, the entries of the top row are
distinct. Thus, any t − 1 columns together
form a Vandermonde matrix with non-zero
determinant! This proves linear independence,
and by earlier discussions proves the minimum
distance assertion. What remains is to see that

this really is a check matrix for C.

11



Models of finite fields

The only possible sizes of finite fields are prime

powers (meaning powers of prime numbers).
(This is non-trivial.) That is, there are no

finite fields with 6, 10, 12, 14, 15, 18, or other
composite non-prime-power number of elements.

Fields with prime numbers p of elements have
easy models:

Fp = GF (p) ≈ Z/p

Fields with prime power (but not prime)
numbers of elements are less elementary. They
cannot be modeled by Z mod something!

12



Remark: For any value of q other than
primes, Z/q is not a field. Such Z/q have non-
zero elements whose products are 0, so it is not
possible that every non-zero element is prime.

GF (4) = F4 6= Z/4

GF (8) = F8 6= Z/8

GF (16) = F16 6= Z/16

GF (9) = F9 6= Z/9

Remark: Also, a widespread mistaken
belief that it is easy to make finite fields with
2k elements by taking all length-k binary
vectors, having addition be vector addition
(equivalently, XOR), and then making up some
random/whimsical ”multiplication”. It is true
that vector addition is a good addition, but it
is not easy to make up a multiplication which
is associative, commutative, distributive with
respect to addition, and such that every non-
zero element has a multiplicative inverse.

13



Definition: A polynomial P (x) of positive
degree with coefficients in Fp is irreducible if
it cannot be factored into polynomials of strictly
smaller degree.

Proposition: If P is not irreducible, then
there exists a polynomial D with

deg D ≤ 1

2
· deg P

dividing P .

Proof: Use the fact that

deg(A · B) = deg A + deg B

for polynomials with coefficients in a field. If D
divides P , then E = P/D is a polynomial with

deg E = deg P − deg D

If deg D > (deg P )/2, then deg E < (deg P )/2.
///

14



Thus, for small degree, we can test P for
irreducibility by trial division: divide P by
all polynomials of degree less-than-or-equal
deg P

2 . If no such smaller polynomial divides P ,
then P is irreducible. Further, we need only
attempt division by monic polynomials (highest
coefficient 1).

Remark: If it is convenient, one may, further,
only attempt division by irreducible smaller
(monic) polynomials.

Example: Test P = x3 + x + 1 for reducibility,
in F2[x]. Since (deg P )/2 = 3/2, we need
only attempt division by polynomials D of
degree 1 ≤ d ≤ 3/2. Since degree must be an
integer, we need only consider linear (monic)
polynomials D. To enumerate these, we have
only a choice of constant coefficient, 0 or 1.
That is, try to divide by x and by x + 1.

x3 + x + 1%x = 1 6= 0

x3 + x + 1%(x + 1) = 1 6= 0

so x3 + x + 1 is irreducible.

15



Example: Test P = x4 + x + 1 for
reducibility, in F2[x]. Since (deg P )/2 = 4/2,
we need only attempt division by polynomials
D of degree 1 ≤ d ≤ 4/2. Degree is an
integer, so consider linear and quadratic (monic)
polynomials D. Enumerate these by degree
and by a lexicographic ordering on lower-degree
coefficients. First, consider linear polynomials,
where we have only a choice of constant
coefficient, 0 or 1, giving x and x + 1. Try to
divide by x and by x + 1

x4 + x + 1%x = 1 6= 0

x4 + x + 1%(x + 1) = 1 6= 0

To enumerate quadratic (monic) polynomials
lexicographically, but excluding reducible ones,
skipping polynomials divisible by x means to
ignore polynomials with constant coefficient 0.
And (x + 1)2 = x2 + 1, so the linear term must
be 1 to avoid divisibility by x+1. Thus, we only
attempt division by x2 + x + 1:

x4 + x + 1%(x2 + x + 1) = 1 6= 0

so x4 + x + 1 is irreducible.

16



Let p be a prime. Then Fp = GF (p) = Z/p is
a field with p elements, since b not divisible by
p has a multiplicative inverse mod p. This much
is easy.

Remark: This is completely analogous to the
notion of prime number in the integers.

Let P be an irreducible polynomial of degree k
with coefficients in Fp. The abstract model of
Fpk is

Fpk = Fp[x] mod P (x) = Fp[x]/P

Multiplication and addition are polynomial
multiplication and addition of equivalence
classes, which (one can prove) are well defined.

This is a viewpoint which allows us to prove

theorems about fields, but is not optimal for

computation.

17



Remark: Constructing larger fields containing
a given field K as sets

K[x] mod P = K[x]/P

of equivalence classes mod P (for irreducible P )
may be unsatisfying in some regards, but it is
useful.

For example, with such a construction we
do not need to postulate anything about the
existence of desired entities somewhere out

there.

For example, what about
√
−1 and the complex

numbers C as a larger field containing the real
numbers R? On one hand, we may argue about
whether

√
−1 exists or not, and in what sense.

On the other hand,

C = R[x] mod x2 + 1 = R[x]/(x2 + 1)

constructs C. Note that

x2 = x2 − (x2 + 1) mod (x2 + 1)

= −1 mod (x2 + 1)

so x modulo x2 +1 is a square root of −1 in this
construction.

18



For computational purposes we make tangible
choices of elements from equivalence classes:

Definition: A polynomial f is reduced mod
P if

deg f < deg P

For fixed choice of irreducible P of degree
k with coefficients in Fp, the corresponding
computational model of Fpk is

Fpk = {reduced polynomials mod P (x)}

addition given by polynomial addition (which
does not increase degree), multiplication given
by polynomial multiplication followed by

reduction modulo P (x).

This is reasonable because among the
polynomials which are reduced mod P there
is exactly one polynomial from each equivalence
class:

Proposition: Two polynomials f, g which are
reduced mod P are equal modulo P if and only
if they are equal (in Fp[x]).

19



Multiplicative inverses in Fpk , when
modeling Fpk as polynomials reduced modulo
P , are simply inverses modulo P .

For f 6= 0 reduced mod P , P does not divide f ,
so

deg gcd(f, P ) < deg P

Since P is irreducible,

deg gcd(f, P ) = 0

Adjusted by multiplying through by a non-zero
constant

gcd(f, P ) = 1

By the peculiar characterization of gcd’s for
polynomials, there are polynomials a, b such
that

af + bP = 1

Then
a · f = 1 mod P

giving a multiplicative inverse of f mod
P . ///

Remark: The Euclidean algorithm gives a
good computational approach to compute these
inverses.

20



The following peculiar result shows that this
sort of construction creates ‘numbers’ satisfying
any equation we like:

Theorem: Let P be irreducible of degree k
with coefficients in Fp. Let α be x-mod-P .
Then

P (α) = 0

Proof: This is as much an issue about well-
definedness as anything. We want to show that,
for any polynomial M ,

P (x + M · P ) = 0 mod P

Indeed, by the Binomial Theorem,

(x + MP )` = x` + (multiple of P )

Applying this to all the terms of P (x + MP )
and adding gives

P (x + M · P ) = P (x) + (mult of P ) = 0 mod P

as desired. ///

21



Primitive roots/elements in Fpk

Definition: An element β of Fpk is a
primitive root or primitive element if it
has the maximal possible order pk − 1, or,
equivalently, if

β, β2, . . . , βpk
−1

are distinct.

Remark: It is a non-trivial theorem that any
finite field has primitive elements.

For P irreducible degree k in Fp[x] model Fpk

as Fp[x] mod P . A reduced polynomial g mod
P is a primitive element if and only if for every
prime q dividing pk − 1

g
pk

−1

q 6= 1 mod P

Remark: Irreducibility of P assures that

gpk

= g mod P

so this need not be checked.

22



Example: Find an element of order 15 in F24

modeled as F2[x]/(x4 + x + 1).

Remark: This question may be paraphrased
as asking to find a primitive root in F24 .

Remark: It deserves comment, but is implied
by the question, that x4 + x + 1 is irreducible.
Still, it is nice that we happened to have verified
this above as an example.

There is nothing more systematic to do than
brute force, that is, to guess and check. First,
guess that x mod x4 + x + 1 is primitive.
Applying the criterion above, we should verify
that for every prime q dividing 2degree − 1 =
24 − 1, namely q = 3, 5, that

x
2degree

−1
q 6= 1 mod (x4 + x + 1)

Indeed, by dividing,

x
24−1

5 = x3 6= 1 mod (x4 + x + 1)

x
24−1

3 = x5 = x2 + x 6= 1 mod (x4 + x + 1)

Thus, x is primitive modulo x4 + x + 1.

23



Example: Find an element of order 15 in F24

modeled as F2[x]/(x4 + x3 + x2 + x + 1).

Remark: It is implied by the question that
x4 + x3 + x2 + x + 1 is irreducible. Still, one
might check this.

Brute force. First, guess that x mod x4 + x3 +
x2 + x + 1 is primitive. Applying the criterion
above, we should verify that for every prime q
dividing 2degree − 1 = 24 − 1, namely q = 3, 5,
that

x
2degree

−1
q 6= 1 mod (x4 + x3 + x2 + x + 1)

By dividing,

x
24−1

5 = x3 6= 1 mod (x4 + x3 + x2 + x + 1)

but

x
24−1

3 = x5 = 1 mod (x4 + x3 + x2 + x + 1)

so x is not primitive.

Enumerating candidates by degree and some sort

of lexicographic order, we would try x + 1 next.

24



(x + 1)
24−1

5 = (x + 1)3 = x3 + x2 + x + 1

6= 1 mod x4 + x3 + x2 + x + 1

(x + 1)
24−1

3 = (x + 1)5 = x5 + x4 + x + 1

= x3 + x + 1 6= 1 mod (x4 + x3 + x2 + x + 1)

by dividing.

Thus, x+1 is primitive mod x4 +x3 +x2 +x+1.

Remark: If x + 1 had also failed, we would
proceed to try quadratic polynomials as
candidates, then cubic, etc.

25


