
Proofs about Frobenius

Basics

Counting irreducibles

1



Sizes of finite fields

Theorem: Let k be a finite field. Let t be the
smallest positive integer such that

1 + . . . + 1
︸ ︷︷ ︸

t

= 0

Then t is a prime number, and the number of
elements in k is a power of t.

Proof: Define a map f : Z → k by

f(`) = 1 + . . . + 1
︸ ︷︷ ︸

`

∈ k

This map respects addition and multiplication,
in the sense that f(` + m) = f(`) + f(n) and
f(` · m) = f(`) · f(m). This can be proven by
induction, or heuristically by drawing pictures
with braces. Let

I = {` ∈ Z : f(`) = 0}

It is pretty easy to check that I is closed under
addition, and under multiplication by integers,
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and thus must be of the form

I = t · Z

for some integer t, the least positive element in
I. Therefore, we get a map

f : Z/t → k

that preserves addition and multiplication. If
the latter f were not injective, then for some
1 ≤ i < j ≤ t we’d have f(i) = f(j), but then
f(j − i) = 0 and 0 < j − i < t, contradiction.
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The integer t is prime, since if t = ab with
1 < a ≤ b < t, then

f(a) · f(b) = 0

so since k is a field one or the other of the
factors is 0. But this contradicts the minimality
of t. So t is prime.

Thus, the copy f(Z/t) of the field Ft = Z/t sits
inside k. We choose to view k as a vectorspace
with scalars Ft. It is finite, so must have finite
dimension, and a basis e1, . . . , en over Ft.
The set of linear combinations of these basis
elements is exactly the whole (field) vector
space k, and there are tn choices of coefficients,
so k has tn elements. ///

Corollary: There are no finite fields with
number of elements other than powers of
primes. ///

Definition: Given a finite field k, the uniquely
determined prime integer p such that (a copy
of) Z/p sits insides k, and such that k is a
vector space over Z/p, is the characteristic

of k.
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Field extensions

Let k be a field. A field K containing k is an
extension field of k, and k is a subfield of K.

Theorem: Let k be a field, P (x) an
irreducible polynomial of degree d > 0 in k[x].
Then k[x]/P is a field. Any element β ∈ k[x]/P
can be uniquely expressed as

β = R(α)

where R is a polynomial with coefficients in k
and of degree strictly less than the degree of
P .< d. //

Remark: The degree of the extension K of k,
written [K : k], is the degree of the polynomial
P .
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Remark: Thinking of α as ‘existing’ and being
a root of the equation P (x) = 0, we have
adjoined a root of P (x) = 0 to k. Write

k(α) = k[x]/P

Corollary: For k = Fq, for irreducible
polynomial P of degree n, K = k[x]/P (x) has
qn elements.

Proof: Every element of K has a unique
expression as Q(α) for polynomial Q of degree
< n. There are q choices for each coefficient, so
qn choices altogether. ///
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Frobenius automorphism

Let k = Fq = GF (q) where q = pn is a power of
a prime p. Fix N > 1 and K = FqN = GF (qN ).
The Frobenius automorphism of K over k is

Φ(α) = αq

Proposition: The Frobenius Φ of K = FqN

over k = Fq is a bijection of K to K. In
particular,

ΦN = Φ ◦ Φ ◦ . . . ◦ Φ
︸ ︷︷ ︸

N

is the identity map on K (which maps every
element of K to itself).

Proof: Since the Frobenius just takes qth powers
and K is closed under multiplication, Φ maps K
to K. A cute way to prove that Φ : K → K is a
bijection is to prove ΦN is the identity map on
K. Certainly Φ(0) = 0. The set K× = K − {0}
has qN − 1 elements, so (Lagrange’s theorem,

or computation) βqN−1 = 1 for β ∈ K×.
///
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Proposition: α ∈ K is in k if and only if
Φ(α) = α.

Proof: The multiplicative group k× of nonzero
elements in k has q − 1 elements, so by
Lagrange’s theorem the order of any element
α in k is a divisor d of q − 1, so αq−1 = 1 and
αq = α.

On the other hand, suppose α ∈ K and
Φ(α) = α. Then α is a solution xq − x = 0
lying inside K. By unique factorization, an
equation of degree q has at most q roots. We
already found q roots of this equation, namely
the elements of the smaller field k sitting inside
K. So there simply can’t be any other roots
of that equation other than the elements of k.

///

Proposition: The Frobenius Φ of K over k
has the property that, for any α, β in K,

Φ(α + β) = Φ(α) + Φ(β)
Φ(α · β) = Φ(α) · Φ(β)

Thus, Φ preserves addition and multiplication.
Φ is bijective, so is a field isomorphism.
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Proof: The assertion about preserving
multiplication is simply the assertion that the
qth power of a product is the product of the qth

powers.

The fact Φ preserves addition uses the fact that
the exponent is q, a power of a prime number p.
We claim that for α, β in K

(α + β)p = αp + βp

Expanding by the binomial theorem, the left-
hand side is

αp +

(
p

1

)

αp−1b + . . . +

(
p

p − 1

)

α1bp−1 + βp

All the middle binomial coefficients are integers
divisible by p, so are 0 in K. Repeatedly
invoking this,

(α + β)p2

= (αp + βp)p = ap2

+ bp2

(α+β)p3

= (αp+βp)p2

= (ap2

+bp2

)p = αp3

+βp3

That is, by induction,

(α + β)pnN

= αpnN

+ βpnN

That is, the Frobenius map preserves addition.
///
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Proposition: Let P (x) be a polynomial
with coefficients in k = Fq. Let α ∈ K
be a root of P (x) = 0. Then Φ(α) = αq,

Φ2(α) = Φ(Φ(α)) = αq2

, . . . are also roots of
the equation.

Proof: Let

P (x) = cnxn + cn−1x
n−1 + . . . + c2x

2 + c1x + c0

with all ci’s in k. Apply Frobenius to both sides
of

0 = cnαn + cn−1α
n−1 + . . . + c2α

2 + c1α + c0

to obtain

0 = Φ(cn)Φ(α)n + . . . + Φ(c1)Φ(α) + Φ(c0)

since Φ preserves addition and multiplication.
The ci are in k, so Φ doesn’t change them.
Thus, in fact

0 = cnΦ(α)n + . . . + c1Φ(α) + c0

That is,
0 = P (Φ(α))

So Φ(α) is a root of P (x) = 0. By repeating
this, we obtain the assertion of the proposition.

///
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Proposition: Let

A = {α1, . . . , αt}

distinct elements of K, with the Frobenius-

stable property, namely, that for any α in A,
Φ(α) is again in A. Then the polynomial

(x − α1)(x − α2) . . . (x − αt)

(when multiplied out) has coefficients in k.

Proof: For a polynomial

P (x) = cnxn + cn−1x
n−1 + . . . + c2x

2 + c1x + c0

with coefficients in K, define Φ(P ) by letting Φ
act on the coefficients

Φ(P )(x) = Φ(cn)xn + . . . + Φ(c1)x + Φ(c0)

Since Φ preserves addition and multiplication
in K, it preserves addition and multiplication of
polynomials

Φ(P + Q) = Φ(P ) + Φ(Q)
Φ(P · Q) = Φ(P ) · Φ(Q)
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Applying Φ to the product

(x − α1)(x − α2) . . . (x − αt)

mixes around the factors, since Φ just permutes
A. The order in which the factors are multiplied
doesn’t matter, so

Φ((x − α1)(x − α2) . . . (x − αt))

= (x − α1)(x − α2) . . . (x − αt)

Thus, the multiplied-out version

(x − α1)(x − α2) . . . (x − αt)

= cnxn + cn−1x
n−1 + . . . + c2x

2 + c1x + c0

has the property that

cnxn + cn−1x
n−1 + . . . + c2x

2 + c1x + c0

= Φ(cn)xn + . . . + Φ(c1)x + Φ(c0)

Equality for polynomials means that
corresponding coefficients are equal, so Φ(ci) =
ci, hence ci ∈ k, for all indices i. ///
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Proposition: Let α be an element of K =
k[x]/Q. There is exactly one monic irreducible
polynomial P in k[x] such that α is a root of
P (x) = 0, namely

P (x) =

(x − α)(x − Φ(α))(x − Φ2(α)) . . . (x − Φd−1(α))

where d is the smallest positive integer so that
Φd(α) = α.

Proof: Consider successive images Φi(α) of α
under Frobenius. Since the field is finite, at
some point Φi(α) = Φj(α) for some 0 ≤ i < j.
Since Φ is a bijection of K to K, it has an
inverse map Φ−1. Applying the inverse i times
to Φi(α) = Φj(α),

α = Φ0(α) = Φj−i(α)

So i = 0. Thus, for the smallest j so that Φj(α)
is already Φj(α) = Φi(α) for 1 ≤ i < j, in fact

Φj(α) = α
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Let
α, Φ(α), . . . , Φd−1(α)

be the distinct images of α under Frobenius.
Let

P (x) =

(x − α)(x − Φ(α))(x − Φ2(α)) . . . (x − Φd−1(α))

Application of Φ permutes the factors on the
right. When multiplied out, P is unchanged by
application of Φ, so has coefficients in k.
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If β is a root in K of a polynomial with
coefficients in k, then Φ(β) is also a root. So
any polynomial with coefficients in k of which α
is a zero must have factors x − Φi(α) as well, for
1 ≤ i < d. By unique factorization, this is the
unique such polynomial.

P must be irreducible in k[x], because if it
factored in k[x] as P = P1P2 then (by unique
factorization) α would be a root of either
P1(x) = 0 or P2(x) = 0, and all the d
distinct elements Φi(α) would be roots of the
same equation. Since the number of roots is at
most the degree, there cannot be any proper
factorization, so P is irreducible. ///

Corollary: Let β be the image of x in K =
Fq[x]/Q, and let n be the degree of Q. Then

Q(x) =

(x − β)(x − Φ(β))(x − Φ2(β)) . . . (x − Φn−1(β))

Also Φn(β) = β, and n is the smallest positive
integer such that this is so. ///
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Let e denote the identity map of K = Fq[x]/Q
to itself, and

G = {e,Φ,Φ2, . . . ,Φn−1}

where Q is of degree n. This is a set of maps
of K to itself, and these maps when restricted
to Fq are the identity map on Fq. Since
each Φi is the identity on Fq and maps K
bijectively to itself, we say that G is a set of
automorphisms of K over Fq.

Proposition: This set G of automorphisms
of K over Fq is a group, with identity e. (The
Galois group of K over Fq.)

Proof: (Exercise using the defintion of group.

Definition: The stabilizer subgroup Gα of
α in G is

Gα = {g ∈ G : g(α) = α}

Proposition: For α in K the stabilizer
subgroup Gα of α is a subgroup of G.

///
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Proposition: Given α in K = Fq[x]/Q, the
number of distinct images Φi(α) of α under
repeated applications of the Frobenius map is
a divisor of the degree n of Q.

Proof: Actually, the collection of images
Φi(α) is in bijection with the cosets G/Gα

where Gα is the stabilizer subgroup of α in the
automorphism G. Indeed, if g ∈ G and h ∈ Gα,
then

(gh)(α) = g(h(α)) = g(α)

This proves that gGα → g(α) is well-defined.
And if g(α) = g′(α), then α = g−1g′(α), so
g−1g′ is in the stabilizer subgroup Gα. So no
two distinct cosets gGα and g′Gα of Gα send α
to the same thing. ///
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Corollary: For α in the field K = k[x]/Q,
the degree of the unique monic irreducible
polynomial P with coefficients in k so that
P (α) = 0 is a divisor of the degree n of Q.

Proof: From above,

P (x)

= (x−α)(x−Φ(α))(x−Φ2(α)) . . . (x−Φd−1(α))

where α, Φ(α), Φ2(α), . . ., Φd−1(α) are the
distinct images of α and d is the degree of P .
From Lagrange’s theorem, all cosets of Gα have
the same cardinality.

card(G) = d · card(Gα)

In the special case of the image β of x in K, the
stabilizer subgroup is just {e}, so

card(G) = n · 1

so card(G) = n, and d|n. ///
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Counting irreducibles

Proposition: Let P be an irreducible monic
polynomial of degree d with d dividing the
degree n of an irreducible Q. Then P (x) = 0
has d distinct roots in K = k[x]/Q, and P (x)
factors into distinct linear factors in K.

Proof: The quotient ring L = k[x]/P is a field.
Let α be the image of x. We know P (α) = 0,
and

P (x) =

(x − α)(x − Φ(α))(x − Φ2(α)) . . . (x − Φd−1(α))

By Lagrange, αqd−1 = 1. By unique

factorization, P (x) divides xqd−1 − 1.
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On the other hand, the existence of a primitive
root g in K means that gqn−1 = 1 but no
smaller positive exponent works. Thus, g1, g2,
g3, . . . , gqn−1 are distinct. For any t

(gt)qn−1 = (gqn−1)t = 1t = 1

so these qn − 1 elements are roots of xqn−1 − 1 =
0. On the other hand, this equation is of degree
qn − 1, so has at most qn − 1 roots. We conclude
that

xqn−1−1 = (x−g1)(x−g2)(x−g3) . . . (x−gqn−1)

For d dividing n,

qn − 1 = (qd − 1)(q(n−d) + q(n−2d) + . . . + qd + 1)

Thus, qd−1 divides qn−1, and xqd−1−1 divides

xqn−1 − 1. As P (x) divides xqd−1 − 1, P (x)
divides xqn−1 −1. Thus, P (x) = 0 has d roots in
K, since xqn−1 − 1 factors into linear factors in
K[x]. ///
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Proof: (of theorem) We count elements of
K by grouping them in d-tuples of roots of
elements of irreducible monic polynomials
with coefficients in k = Fq, where d runs over
positive divisors of n including 1 and n. Let Nd

be the number of irreducible monic polynomials
of degree d with coefficients in k = Fq. Then
this grouping and counting argument gives

qn =
∑

d|n

d · Nd

Let µ be the Möbius function

µ(n) =







(−1)t (t primes divide n)
(and n square-free)

0 (n not squarefree)

By Möbius inversion (inclusion-exclusion!)
we obtain the formula

n · Nn =
∑

d|n

µ(d) qn/d

which gives the assertion of the theorem.
///
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