Proofs about Frobenius

Basics

Counting irreducibles




Sizes of finite fields

Theorem: Let k£ be a finite field. Let ¢ be the
smallest positive integer such that

T4...+1=0

N

t

Then t is a prime number, and the number of
elements in k is a power of t.

Proof: Define a map f:Z — k by

fl)=1+...+1€k

Vg

14

This map respects addition and multiplication,
in the sense that f(¢ +m) = f(¢) + f(n) and
f(£-m) = f(f)- f(m). This can be proven by
induction, or heuristically by drawing pictures
with braces. Let

[={(eZ:ft)=0}

It is pretty easy to check that I is closed under
addition, and under multiplication by integers,
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and thus must be of the form
I =t-7Z

for some integer t, the least positive element in
I. Therefore, we get a map

f:Z/t —k

that preserves addition and multiplication. If
the latter f were not injective, then for some
1 <i<j<twedhave f(i) = f(j), but then
f(j —i) =0and 0 < j —i < t, contradiction.



The integer t is prime, since if ¢ = ab with
1 <a<b<t, then

fla)- f(b) =0

so since k is a field one or the other of the
factors is 0. But this contradicts the minimality
of t. So t is prime.

Thus, the copy f(Z/t) of the field F; = Z/t sits
inside k. We choose to view k as a vectorspace
with scalars F;. It is finite, so must have finite
dimension, and a basis eq,...,e, over F;.

The set of linear combinations of these basis
elements is exactly the whole (field) vector

space k, and there are t" choices of coefficients,
so k has t" elements. ///

Corollary: There are no finite fields with
number of elements other than powers of

primes. ///

Definition: Given a finite field k&, the uniquely
determined prime integer p such that (a copy
of) Z/p sits insides k, and such that k is a

vector space over Z/p, is the characteristic
of k.



Field extensions

Let k be a field. A field K containing k is an
extension field of k£, and £ is a subfield of K.

Theorem: Let k be a field, P(z) an
irreducible polynomial of degree d > 0 in k|x].
Then k[x|/P is a field. Any element 3 € k|z]/P
can be uniquely expressed as

B = R(a)

where R is a polynomial with coefficients in k
and of degree strictly less than the degree of

P.<d. //

Remark: The degree of the extension K of k,

written [K : k|, is the degree of the polynomial
P.



Remark: Thinking of « as ‘existing’ and being

a root of the equation P(x) = 0, we have
adjoined a root of P(x) =0 to k. Write

k(o) = k|x]/P

Corollary: For £k = F,, for irreducible
polynomial P of degree n, K = k|x|/P(x) has
q" elements.

Proof: Every element of K has a unique
expression as Q(«a) for polynomial ) of degree
< n. There are q choices for each coefficient, so
q" choices altogether. ///



Frobenius automorphism

Let k = F, = GF(q) where ¢ = p" is a power of
a prime p. Fix N >1and K =F ~ = GF(q¢V).
The Frobenius automorphism of K over k is

P(a) =l

Proposition: The Frobenius ® of K = F ~
over £ = F, is a bijection of K to K. In
particular,
PN =Podo...0od
N

is the identity map on K (which maps every
element of K to itself).

Proof: Since the Frobenius just takes ¢'® powers
and K is closed under multiplication, ® maps K
to K. A cute way to prove that & : K — K is a
bijection is to prove ®%V is the identity map on
K. Certainly ®(0) = 0. The set K* = K — {0}
has ¢ — 1 elements, so (Lagrange’s theorem,

or computation) ﬂqN_l = lfor g € K*.
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Proposition: o € K isin k if and only if
d(a) = a.

Proof: The multiplicative group k> of nonzero
elements in k£ has ¢ — 1 elements, so by
Lagrange’s theorem the order of any element
a in k is a divisor d of ¢ — 1, so 47! = 1 and
al = a.

On the other hand, suppose &« € K and

®(a) = . Then « is a solution 2?7 — x = 0
lying inside K. By unique factorization, an
equation of degree ¢ has at most g roots. We
already found ¢q roots of this equation, namely
the elements of the smaller field k sitting inside
K. So there simply can’t be any other roots

of that equation other than the elements of k.

///

Proposition: The Frobenius ® of K over k
has the property that, for any «, 5 in K,

Pla+p) = @(a)+ ()
Ola-B) = @(a) (P

Thus, ® preserves addition and multiplication.
® is bijective, so is a field isomorphism.



Proof: The assertion about preserving
multiplication is simply the assertion that the
q*" power of a product is the product of the ¢"
powers.

The fact ® preserves addition uses the fact that
the exponent is ¢, a power of a prime number p.
We claim that for o, 8 in K

(@ +0)" =a" + 57

Expanding by the binomial theorem, the left-
hand side is

alf 4 (?)ozp_lb%— R (pf 1)0411719_1 + 67

All the middle binomial coeflicients are integers
divisible by p, so are 0 in K. Repeatedly
invoking this,
(0 B = (aF + B = a” 41
(a4 B)7 = (P +7)7 = (a” +17 )P = o + "
That is, by induction,
(Oé _|_/8)pnN _ &pnN _|_6pnN

That is, the Frobenius map preserves addition.

///



Proposition: Let P(x) be a polynomial
with coefficientsin k = F,. Let € K
be a root of P(z) = 0. Then ®(a) = a¥f,

2(a) = ®(P(a)) = af, ... are also roots of
the equation.

Proof: Let
P(x) =cpx™ +cp12" P+ . 4 cxt + iz + o

with all ¢;’s in k. Apply Frobenius to both sides
of

0=c,a”+c, 1" 1+ ...+ ca?+cra+c
to obtain
0=®(cn)P()" + ...+ P(c1)P(cx) + P(co)
since ® preserves addition and multiplication.

The c; are in k, so ® doesn’t change them.
Thus, in fact

0=c,®(a)"+... 4+ 1P(a) + ¢

That is,
0=P(®(x))

So ®(«) is a root of P(x) = 0. By repeating
this, we obtain the assertion of the proposition.

///
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Proposition: Let
A:{Oél,..., Oét}

distinct elements of K, with the Frobenius-
stable property, namely, that for any « in A,
®(a) is again in A. Then the polynomial

(x —a1)(x —ag)...(x — ay)
(when multiplied out) has coefficients in k.

Proof: For a polynomial
P(z) = cpx™ + Cho1x" 4.+ e+ + o

with coefficients in K, define ®(P) by letting ®
act on the coefficients

O(P)(x) = P(cn)x™ + ...+ P(c1)x + P(co)

Since ® preserves addition and multiplication
in K, it preserves addition and multiplication of
polynomials

(P + Q)
o(P-Q)

|
& &
N
.+
e
L

11



Applying ® to the product
(x —a1)(x —ag)...(x — ay)

mixes around the factors, since ® just permutes
A. The order in which the factors are multiplied
doesn’t matter, so

O((x —ar)(r—ag)...(x —ay))
=(r—a1)(x—asz)...(x —ay)
Thus, the multiplied-out version
(x —ar1)(x—ag)...(x — ay)
— o2 e, 12" 4+ e e+ o
has the property that
cnx™ + e 12"+ eox? 4 crx + o

= ®(cp)z" + ...+ P(c1)x + D(co)

Equality for polynomials means that
corresponding coefficients are equal, so ®(c¢;) =
ci, hence c; € k, for all indices 1. ///
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Proposition: Let o be an element of K =
klx]/Q. There is exactly one monic irreducible
polynomial P in k|z] such that a is a root of
P(x) = 0, namely

P(z) =

(z — a)(z — ®(a))(z — P*(a)) ... (x — P41 ()
where d is the smallest positive integer so that
d(a) = a.

Proof: Consider successive images ®'(a/) of «
under Frobenius. Since the field is finite, at
some point ®*(a) = ®7(«) for some 0 < 7 < j.
Since P is a bijection of K to K, it has an
inverse map ®~!. Applying the inverse ¢ times
to ®'(a) = &/ (av),

a=®a) =d""(a)

So i = 0. Thus, for the smallest j so that ®7(«)
is already ®7(a) = ®'(a) for 1 < ¢ < 7, in fact

®’ () = «
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Let
a, ®(a), ..., 2 «)

be the distinct images of o under Frobenius.
Let
P(x) =

(z — a)(x — ®(a))(z — P*(a)) ... (z — @d_l(a))

Application of & permutes the factors on the
right. When multiplied out, P is unchanged by
application of ®, so has coeflicients in k.
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If 3 is a root in K of a polynomial with
coefficients in k, then ®(3) is also a root. So
any polynomial with coefficients in k£ of which «
is a zero must have factors z — ®*(«) as well, for
1 < ¢ < d. By unique factorization, this is the
unique such polynomial.

P must be irreducible in kx|, because if it
factored in k[x] as P = P; P, then (by unique
factorization) a would be a root of either

Pi(x) = Oor Py(z) = 0, and all the d
distinct elements ®*(«) would be roots of the
same equation. Since the number of roots is at
most the degree, there cannot be any proper
factorization, so P is irreducible. ///

Corollary: Let § be the image of v in K =
F,|x]/Q, and let n be the degree of (). Then

Q(r) =

(z = B)(z — 2(8)(z — 2*(B))...(z — 2"~ 1(B))

Also ®"(8) = (3, and n is the smallest positive
integer such that this is so. ///
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Let e denote the identity map of K = F,[x]/Q
to itself, and

G=1{e® &, . .. 0" 1

where () is of degree n. This is a set of maps
of K to itself, and these maps when restricted
to F, are the identity map on F,. Since

each ®° is the identity on F, and maps K
bijectively to itself, we say that G is a set of
automorphisms of K over F,,.

Proposition: This set G of automorphisms
of K over F, is a group, with identity e. (The
Galois group of K over F,.)

Proof: (Exercise using the defintion of group.
Definition: The stabilizer subgroup G, of
a in G is

Go={9€G:gla)=a}

Proposition: For « in K the stabilizer
subgroup G, of « is a subgroup of G.

///

16



Proposition: Given a in K = F[z|/Q, the
number of distinct images ®*(«) of o under
repeated applications of the Frobenius map is
a divisor of the degree n of ().

Proof: Actually, the collection of images

®*() is in bijection with the cosets G/G.,
where G, is the stabilizer subgroup of « in the
automorphism G. Indeed, if ¢ € G and h € G,
then

(gh)(a) = g(h(a)) = g(a)

This proves that ¢G, — g(«) is well-defined.
And if g(a) = ¢'(a), then o = g 1¢'(a), so
g~ 1g’ is in the stabilizer subgroup G,. So no
two distinct cosets ¢G,, and ¢'G,, of G, send «
to the same thing. ///
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Corollary: For « in the field K = k[z]/Q,
the degree of the unique monic irreducible
polynomial P with coeflicients in k so that
P(a) = 0 is a divisor of the degree n of Q.

Proof: From above,
P(z)

= (z - a)(z - 2(a))(z — 2*(a)) ... (z = 2" (a))

where o, ®(a), ®?(a), ..., ®4"H(a) are the
distinct images of a and d is the degree of P.
From Lagrange’s theorem, all cosets of G, have
the same cardinality.

card (G) = d - card (G,,)

In the special case of the image 8 of x in K, the
stabilizer subgroup is just {e}, so

card(G) =n-1

so card (G) = n, and d|n. ///
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Counting irreducibles

Proposition: Let P be an irreducible monic
polynomial of degree d with d dividing the
degree n of an irreducible (). Then P(x) = 0

has d distinct roots in K = k[x|/Q, and P(x)
factors into distinct linear factors in K.

Proof: The quotient ring L = k[x]|/P is a field.
Let o be the image of x. We know P(a) = 0,

and
P(x) =

(z — a)(z — ®(a))(z — P%(a))...(z — P Ha))

1

By Lagrange, ad’-l = 1. By unique

factorization, P(x) divides zd' -1 1.
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On the other hand, the existence of a primitive
root ¢ in K means that ¢ ~' = 1 but no
smaller positive exponent works. Thus, g*, g2,
g3, ..., g? ~1 are distinct. For any ¢

n

()" =gt ) =1 =1

so these ¢" — 1 elements are roots of 27 —1 —1 =
0. On the other hand, this equation is of degree
g™ — 1, so has at most ¢ — 1 roots. We conclude
that

2 1= (z—g")a—g*)(x—g%) ... (x—g" ")
For d dividing n,

" —1=(¢" =) ("D + "+ .+ +1)
Thus, ¢% —1 divides ¢" — 1, and 27 ~! — 1 divides
24" =1 — 1. As P(z) divides 29" ~! — 1, P(z)

divides 29" ~! —1. Thus, P(x) = 0 has d roots in
K, since ¢ ~1 — 1 factors into linear factors in

Klz]. /]
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Proof: (of theorem) We count elements of

K by grouping them in d-tuples of roots of
elements of irreducible monic polynomials

with coefficients in k = F,, where d runs over
positive divisors of n including 1 and n. Let Ny
be the number of irreducible monic polynomials
of degree d with coeflicients in £ = F,. Then
this grouping and counting argument gives

qnzz d- Ny
dln

Let p be the Mobius function

 (=1)t (¢t primes divide n)

and n square-free

pn) = < ( ! )
. 0 (n not squarefree)

By Mobius inversion (inclusion-exclusion!)
we obtain the formula

n-Np =Y u(d)g"?
d|n

which gives the assertion of the theorem.

///
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