Friedman attack on Vigenere

This attack illustrates that single-

letter frequencies in natural languages
combined with some maybe-not-so-intuitive
mathematical manipulations can be used to
break ciphers.

Kasiski had broken Vigenere, about 1880.

Strangely, Vigenere was still believed to be
unbreakable in the early 20th century.

Keep in mind that an even slightly mis-used
OTP degenerates into Vigenere, so a mis-
used OTP is also completely broken.

Also, Vigenere provides yet another example
of a cipher with a huge key space but which
is nevertheless completely broken.

We'll study Vigenere with a 26-character
alphabet, though the principle remains the
same generally.

The Vigenere cipher

The main variant of Vigenere is a OTP with
a periodic key.

That is, a key for Vigenere is a string of
characters which is repeated until the string
of copies is as long as the message. Then
the encryption step adds the *" character
of the copied key to the i*" character of the
plaintext, and reduces mod 26.

In other words, if the key
k = kokiko ... kn_1

is of length n then the i*" character z; of
the plaintext is encrypted as

Ti — (T; + Ko n) %026

Yes, the subscript on the characters of the
key is i % n.

For example, with key k& = dog and
plaintext t = helloworldoutthere we
encrypt by adding vectors modulo 26

Erp(x) = helloworldoutthere
+ dogdogdogdogdogdog
= KSROCCRFRGCAWHNHFK
where as usuala - 0, b = 1, ..., z — 25.

Decryption is by subtraction of vectors
modulo 26 with the repeated key.

This is a polyalphabetic substitution
cipher since a given letter of the plaintext
can be encrypted in different ways
depending where it falls in the message.

A Vigenere certainly messes up inter-letter
statistics, and also flattens single-letter
frequency statistics.

Since the key can be as long as desired, the
keyspace is unlimited.

However, if the key is less than 1/2 the
length of the message, or if more than a
single message is sent with the same key,
Friedman’s attack breaks Vigenere.

This is so even if the key is highly random
itself, since it is repeated.

Thus, the only way that Vigenere is safe is
if it’s actually a legitimate OTP, with fully
random key that is never reused. But this
has difficulties with both key generation
and key distribution.

Friedman’s Index of Coincidence

For two strings of characters of the same
length
X — X123 ...Tn

Y=Yi1Y29ys...Yn

the index of coincidence I(x,y) is

no. indices 7 for which x; = y;

I(xvy): n

If all characters were equally likely, with
probability 1/26, then the expected number
of equalities would be 1/26 of the total,
which would be

1
— ~ 0.03846
26

However, the skewed statistics of natural
languages change this.

For example, the index of coincidence of two
chunks of English

downaresortsomewheretosendauthors
whohavecompletedprojectstheirowne
xecscouldvactheretootomakethewhol
eendeavorworthwhilebutyesthebilge
thespillsoverafteradissatisfyinge
ndeavorisoftenafrustration

sometimessleepingatacrucialjunctu
reseemsabletodeflectimpendingilln
essyesalsothoughithastobeabitearl
ierintheprocessgoingforarunsomeso
rtofflushingeffectexamsstrikemeas
pointlesslymeaningless

_ 1 0.0628
191 '

This is the typical number for English.

Again, the expected Index of
equidistributed strings, or a random string
against English, is

1
I(random, random) ~ T 0.03846

1
I(random, English) ~ 56 0.03846

The expected Index of English with itself is
I (English, English)

= P(a)’ + P(b)* + ... + P(z)°
~ 0.0628

Of course, the Index of a string against
itself is always 1, so it is pointless to do
exactly this in order to test whether a string
is English or random.

Rather, compute an averaged Index, as
follows, on two strings of length n.

Love(2,y)

no. a’sinx no. a’siny

n n

no. b’sinx no. b’siny

n n

no. z’sinx no. z'’sin y

+ ...+
n n

Note that this is a dot product or scalar
product of two 26-dimensional vectors
telling the fraction of each character in the
two strings.

If Iave(z,) is close to 1/26 ~ 0.038 then
it’s probably not English.

If Iovg(z,2) ~ 0.063 this does not say
that the string x is probably English, but
something subtler.

Imagine what would happen if we encrypted
an English plaintext with a monoalphabetic
cipher, that is, where each letter of the
alphabet is encrypted the same way
throughout the message. Though e itself
will no longer occur .11 of the time,
whatever charcter it’s encrypted to will
occur at that rate. The analogue is true for
each letter of the alphabet.

Thus, the set of single-letter probabilities of
monoalphabetically encrypted English is the
same as English.

Thus, if Iyye(z,z) ~ 0.063 then x is probably
encrypted from English by a monoalphabetic
cipher.

Vigenere is polyalphabetic. But the
repeating or periodic nature of the key
means that many pieces are encrypted by
the same monoalphabetic cipher.

For example, with key dog, the 0", 3%h.

6th. 9th . characters are shifted in the
alphabet by 3 ~ d, the 1th 4th 7th 10th
... are shifted in the alphabet by 14 ~ o,
and the 2th 5th gth 17th characters are
shifted by 6 ~ g.

Let z!*! be the same string = but shifted in
positions forward by ¢, with wrap-around.
Then, if the key is dog, the 0t 3th 6th.
9th .. characters of both z and z!®! are
all shift-encrypted by 3 ~ d, the 1t®, 4th
7th 10t ... are shifted in the alphabet

by 14 ~ o, and the 2t 5th gth 11th
characters are shifted by 6 ~ g.

10

That is, with key dog of length 3, at each
position in the strings the character of x is
encrypted by the same shift cipher as the
corresponding character in z!3!, so

I(z,z3) ~ 0.063
And similarly
I(z,z'%) ~ 0.063

I(z,z%) ~ 0.063

because 3, 6,9 are multiples of the key
length.

But it happens that for shifts z!t] with the
position shift ¢ not a multiple of the key
length,

I(z,z!Y) << 0.063

11

For example, with x the second block of
English above encrypted with key dog

x = VCSHHOPSYVZKHDOQUGWOIUIILORMI
TFHAUSYHSSVOHOSZRRKIZKFHOPDKQROQUO
OZTHGYBSYDZYRHNRIMKWZKOYWCHHOHLHKD
FRLSXLBZKSVUCIHGYJCOQULRFGUIVCSHG
UUHUITRXGNLBMHTLHQZHLGPGYWFONSSHOY
SCOQHRHGYOMSHOTLBMOSYVZEFFAHZ

compute, noting one bad number:

I(z,z!%) ~ 1.000

I(z,z!) ~ 0.046 low
I(z,z!2) ~ 0.036 low
I(z,z3) ~ 0.072 high
I(z,z) ~ 0.036 low
I(z,2%) ~ 0.087 777
I(z,z!5) ~ 0.072 high
I(z,zl) ~ 0015 low
I(z,z®) ~ 0.036 low
I(z,z) ~ 0.082 high
I(z,21%) ~ 0.041 low

—_
DO

But still the preponderance of high numbers
are at multiples of 3.

To start the Friedman attack: for
various physical shifts x!!! of the ciphertext

T, compute
I(z,z")

and conclude that the key length is the
gcd of the values of ¢ that give the high
numbers.

Oops, due to probabilistic fluctuations, this
will fail.

Instead, compute the ged of the values of ¢
giving high indices allowing yourself to drop
one or more.

13

Getting the key

We now know (tentatively) that the key
length is 3.
Let the ciphertext characters be

X = Xogl1x2x3 ...

To determine the key, we look at the slices
of the ciphertext corresponding to the key-

length 3
CU(O) — XoX3Txegxg . ..

213(1) — X1 X4TX7X10 - - -
58(2) — X2Xx5TXLL11 - - -

Each character of (%) is encrypted by the
same shift cipher (secretly by 3 ~ d).

Each character of (1) is encrypted by the
same shift cipher (secretly by 14 ~ o).

Each character of (9 is encrypted by the
same shift cipher (secretly by 6 ~ g).

14

Let E; be encryption by a plain-old shift
cipher with key ¢.

Preliminary to determining the first,
second, and third shifts (secretly dog) in
the key, the Friedman attack determines the
differences of the shifts.

Compute (29, E_,(zM)) for t =
0,1,2,....

The values of ¢ which give ~ 0.064 are the
most likely values for the difference

1*shift — 0*"shift
Compute (29, E_,(z(®)) for t =
0,1,2,....

The values of ¢ which give ~ 0.064 are the
most likely values for the difference

2thshift — Ot shift

15

