Divisibility

An integer d divides an integer n if n % d = 0. In that situation n is a multiple of d. The notation is

For example

$$5|10$$
 $35|105$ $2/5$

where the last illustrates the slash to denote does not divide.

In more colloquial terms, to say d divides n is to say that d divides n evenly, but for us that qualification is always implied.

A **proper divisor** d of n is a divisor of n in the range

An integer p > 1 with no proper divisors is a **prime**. It is a universal convention, and is very convenient, to say that 1 is *not* prime.

That is, N is prime if there is no d in the range 1 < d < N with d|N, and if N > 1.

Non-prime numbers bigger than 1 are called **composite**. The number 1 is neither prime nor composite, evidently.

Theorem: unique factorization of integers into primes: for a positive integer n there is a unique expression

$$n = p_1^{e_1} p_2^{e_2} \dots p_t^{e_t}$$

where the p_i are primes with

$$p_1 < p_2 < \ldots < p_t$$

and the exponents e_i are positive integers.

For example,

$$2 = \text{prime}$$
 $3 = \text{prime}$
 $4 = 2^2$
 $5 = \text{prime}$
 $6 = 2 \cdot 3$
 $7 = \text{prime}$
 $8 = 2^3$
 $9 = 3^2$
 $10 = 2 \cdot 5$
 $11 = \text{prime}$
 $12 = 2^2 \cdot 3$
 $13 = \text{prime}$
 $14 = 2 \cdot 7$
 $15 = 3 \cdot 5$
 $16 = 2^4$
 $17 = \text{prime}$
 $18 = 2 \cdot 3^2$
 $19 = \text{prime}$
 $19 = \text$

Trial division

Trial division is the basic method both to test whether integers are prime or not, and to obtain the factorization of integers into primes.

This is basically a brute force search for proper divisors, but knowing when we can stop. Note that, if d < N and d|N and $d > \sqrt{N}$, then $\frac{N}{d}$ is also a divisor of N and $1 < \frac{N}{d} \le \sqrt{N}$. Thus, in looking for proper divisors it suffices to stop looking at $d \le \sqrt{N}$.

Thus, for example, to test whether N is prime

Compute N % 2If N % 2 = 0, stop, N composite
Else if $N \% 2 \neq 0$, continue
Initialize d = 3.
While $d \leq \sqrt{N}$:
Compute N % dIf N % d = 0, **stop**, N composite
Else if $N \% d \neq 0$,
Replace d by d + 2, continue
If reach $d > \sqrt{N}$ without termination, N is prime

This takes at worst $\sqrt{N}/2$ steps to confirm or deny the primality of N.

For example, to test N = 59 for primality:

Compute 59 % 2 = 1

Since $59 \% 2 \neq 0$, continue

Initialize d = 3.

While $d \leq \sqrt{59}$:

Compute 59 % d

Compute 59 % 3 = 2

Since $59 \% 3 \neq 0$,

replace d = 3 by d + 2 = 5, continue

Still $d = 5 \le \sqrt{59}$, so continue

Compute 59 % 5 = 4

Since $59 \% 5 \neq 0$,

replace d = 5 by d + 2 = 7, continue

Still $d=7 \leq \sqrt{59}$, so continue

Compute 59 % 7 = 3

Since $59 \% 7 \neq 0$,

replace d = 7 by d + 2 = 9, continue

But $9 > \sqrt{59}$, so

59 is prime

This approach is infeasible for integers $\sim 10^{30}$ and larger.

To factor into primes an integer N

Initialize n = NWhile 2|n, add 2 to list of prime factors and replace n by n/2

Initialize d=3

While $d \leq \sqrt{n}$:

While d|n, add d to list and replace n by n/d

When d does not divide n replace d by d+2

When $d > \sqrt{n}$

If n = 1 the list of prime factors of the original N is complete If n > 1 then add n to the list

The nature of the process assures that the ds obtained are primes.

For example, to factor 153

Initialize n = 1532 does not divide n, so Initialize d=3 $3 \le \sqrt{153}$ and 3|153, so put 3 on the list (now (3)) replace *n* by n = 153/3 = 51 $3 \le \sqrt{51} \text{ and } 3|51, \text{ so}$ put 3 on the list again (now (3,3)) replace *n* by n = 51/3 = 17Now 3 does not divide n = 17, so replace d = 3 by d = 3 + 2 = 5 $5 > \sqrt{17} \text{ so}$ 17 is prime, add it to the list which is now (3, 3, 17)

The prime factorization of 153 is

$$153 = 3^2 \cdot 17$$

gcd's and lcm's

The **greatest common divisor** gcd(x, y) of two integers x, y is the largest positive integer d which divides both x, y, that is, d|x and d|y. For example,

$$\gcd(3,5) = 1 \quad \gcd(24,36) = 12$$

$$\gcd(56,63) = 7 \quad \gcd(105,70) = 35$$

The **least common multiple** lcm(x, y) of two integers is the smallest positive integer m which is a multiple of both x, y. For example,

$$lcm(3,5) = 15$$
 $lcm(24,36) = 72$

$$lcm(56, 63) = 504 \quad lcm(105, 49) = 210$$

We can compute lcm and gcd if we have the prime factorizations of x and y:

The prime factorization of gcd(x, y) has primes that occur in *both* factorizations, with corresponding exponents equal to the *minimum* of the exponents in the two.

The prime factorization of lcm(x, y) has primes that occur in *either* factorization, with corresponding exponents equal to the maximum of the exponents in the two.

For example, with

$$x = 1001 = 7 \cdot 11 \cdot 13$$
 $y = 735 = 3 \cdot 5 \cdot 7^{2}$

$$\gcd(1001, 735) =$$

$$= 3^{\min(0,1)} 5^{\min(0,1)} 7^{\min(1,2)} 13^{\min(0,1)}$$

$$= 3^{0} 5^{0} 7^{1} 13^{0} = 7$$

But you should use this *only* with very very small integers!

The Euclidean Algorithm

This is a wonderful and efficient 2000-yearold algorithm to compute the gcd of two integers x, y without factoring.

To compute gcd(x, y) with $x \geq y$ takes $\leq 2 \log_2 y$ steps.

```
To compute gcd(x, y):
Initialize X = x, Y = y, R = X \% Y
while R > 0
replace X by Y
replace Y by R
replace R by X \% Y
When R = 0, Y = gcd(x, y)
```

Roughly, this works because

Theorem: gcd(x, y) is the smallest positive integer expressible as rx + sy for integers r, s.

Surely this is a strange picture of gcd.

For example, for gcd(6497, 7387)

$$7387 - 1 \cdot 6497 = 890$$

 $6497 - 7 \cdot 890 = 267$
 $890 - 3 \cdot 267 = 89$
 $267 - 3 \cdot 89 = 0$

so gcd(6497,7387) = 89, the last non-zero entry on the right. As another example, for gcd(738701,649701)

$$738701 - 1 \cdot 649701 = 89000$$
 $649701 - 7 \cdot 89000 = 26701$
 $89000 - 3 \cdot 26701 = 8897$
 $26701 - 3 \cdot 8897 = 10$
 $8897 - 889 \cdot 10 = 7$
 $10 - 1 \cdot 7 = 3$
 $7 - 2 \cdot 3 = 1$
 $3 - 3 \cdot 1 = 0$

So the gcd is 1, the last non-zero entry on the right.

Much faster than factoring and comparing.

Multiplicative inverses mod m via Euclid

If gcd(x, m) = 1, then by the strange characterization of the gcd above there are integers r, s such that

$$rx + sm = \gcd(x, m) = 1$$

Reduce both sides of the equation modulo m

$$rx \% m = 1$$

(since adding the multiple sm of m will not change the reduction mod m).

That is, r is a multiplicative inverse of x modulo m.

And, yes, also s is a multiplicative inverse of m modulo x.

The (extended) Euclidean Algorithm will give us a fast way to determine the integers r, s above.

WIth 101 and 87

$$\begin{array}{rcl}
101 - 1 \cdot 87 & = & 14 \\
87 - 6 \cdot 14 & = & 3 \\
14 - 4 \cdot 3 & = & 2 \\
3 - 1 \cdot 2 & = & 1 \\
2 - 2 \cdot 1 & = & 0
\end{array}$$

Going backward

$$1 = (1)3 + (-1)2$$

$$= (1)3 + (-1)(14 - 4 \cdot 3) \text{ [sub for 2]}$$

$$= (-1)14 + (5)3 \quad \text{[simplify]}$$

$$= (-1)14 + (5)(87 - 6 \cdot 14) \text{ [sub for 3]}$$

$$= (5)87 + (-31)14 \quad \text{[simplify]}$$

$$= (5)87 + (-31)(101 - 1 \cdot 87) \text{ [sub 14]}$$

$$= (-31)101 + (36)87 \quad \text{[simplify]}$$

Thus, $-31 \cdot 101 + 36 \cdot 87 = 1$, and thus -31 is a multiplicative inverse of 101 modulo 87, while 36 is a multiplicative inverse of 87 modulo 101.

If you like, since -3% 101 = 98, also 98 is a multiplicative inverse of 101 modulo 87.

With 131 and 101:

$$\begin{array}{rcl}
131 - 1 \cdot 101 & = & 30 \\
101 - 3 \cdot 30 & = & 11 \\
30 - 2 \cdot 11 & = & 8 \\
11 - 1 \cdot 8 & = & 3 \\
8 - 2 \cdot 3 & = & 2 \\
3 - 1 \cdot 2 & = & 1 \\
2 - 2 \cdot 1 & = & 0
\end{array}$$

$$1 = (1)3 + (-1)2 \quad [simplify]$$

$$= (1)3 + (-1)(8-2 \cdot 3) \quad [subst]$$

$$= (-1)8 + (3)3 \quad [simplify]$$

$$= (-1)8 + (3)(11-1 \cdot 8) \quad [subst]$$

$$= (3)11 + (-4)8 \quad [simplify]$$

$$= (3)11 + (-4)(30-2 \cdot 11) \quad [subst]$$

$$= (-4)30 + (11)11 \quad [simplify]$$

$$= (-4)30 + (11)(101-3 \cdot 30) \quad [subst]$$

$$= (11)101 + (-37)30 \quad [simplify]$$

$$= (11)101 + (-37)(131-1 \cdot 101) \quad [subst]$$

$$= (-37)131 + (48)101$$
So $-37 \cdot 131 + 48 \cdot 101 = 1$.

What's happening in Euclid's Algorithm?

Let's abstract the process a little.

Divisibility riffs:

If
$$d|x$$
 and $d|y$ then $d|(x + y)$ and $d|(x - y)$.

Proof: Since d|x there is an integer m such that x = dm. Since d|y there is an integer n such that y = dn. Then

$$x + y = dm + dn = d(m+n)$$

$$x - y = dm - dn = d(m - n)$$

so both x + y and x - y are multiples of d, which is to say that d divides them.

///

Notice that we do *not* think in terms of prime factorizations here.

For any n, gcd(n, n + 2) is either 1 or 2.

Proof: From the previous page, if d|n and d|(n+2) then d divides the difference

$$(n+2) - n = 2$$

That is, any divisor d of both n and n+2 must divide 2. Thus, gcd(n, n+2) must divide 2. By trial division, 2 is prime, so the only possible (positive) divisors are 1 and 2.

For any n, gcd(n, n + 6) is 1, 2, 3, or 6.

Proof: From the previous page, if d|n and d|(n+6) then d divides the difference

$$(n+6) - n = 6$$

That is, any divisor d of both n and n+6 must divide 6. Thus, gcd(n, n+6) must divide 6. By trial division, the positive divisors of 6 are 1, 2, 3, or 6.

For any x, y, for any r, s, if d|x and d|y then d|(rx + sy).

Proof: Since d|x there is an integer m such that x = dm. Since d|y there is an integer n such that y = dn. Then

$$rx + sy = r(dm) + s(dn) = d(rm + sn)$$

so rx + sy is a multiple of d, which is to say that d divides it.

For any n, $gcd(n^2 + 1, n)$ is 1.

Proof: From the previous, if $d|n^2 + 1$ and d|n then d divides the difference

$$1 \cdot (n^2 + 1) - n \cdot n = 1$$

That is, any divisor d of both must divide 1. So certainly the greatest positive divisor divides both.

A step in Euclid's algorithm is of the form

$$x - q \cdot y = r$$

If d|x and d|y then d|r, from above. But also, by rearranging,

$$r + qy = x$$

so if d|r and d|y then d|x. Thus

$$\gcd(x,y) = \gcd(y,r)$$

This persists through the algorithm. The last two lines are of the form

$$x' - q' \cdot y' = r'$$

$$y' - q'' \cdot r' = 0$$

We know that the gcd of the original two numbers is equal

$$\gcd(x', y') = \gcd(y', r') = \gcd(r', 0)$$

so the last non-zero right-hand value is the gcd of the two original numbers.

///

Proof of the strange property of gcd

The gcd of two integers x, y (not both 0) is the smallest positive integer expressible as rx + sy with integers r, s.

Proof: Let g = rx + sy be the smallest such positive value. On one hand, if d|x and d|y then (from above) d divides any such expression ax + by, so d divides g. On the other hand, by the Division Algorithm x = qg + r with $0 \le r < g$. And

$$r = x - qg = x - q(rx + sy)$$
$$= (1 - qr)x + (-qs)y$$

which is of that same form. Since g was smallest positive of this form and $0 \le r < g$, it must be that r = 0. That is, g|x. Similarly, g|y.

Can we prove that division works?

Given positive integer m and integer x, there are unique integers q and r such that $0 \le r < m$ and

$$x = qm + r$$

Proof: Let $t = x - \ell m$ be the smallest non-negative integer of the form x - qm with integer q. If t < m we're done. If $t \ge m$, then $t - m \ge 0$, and $x - (\ell + 1)m$ is a non-negative integer smaller than $x - \ell m$, contradiction. Thus, it could not have been that $t \ge m$.

Underlying this all is the **Well-ordering Principle**, that every non-empty set of non-negative integers has a smallest element. This is a defining *axiom* for the integers.

The crucial property of primes

To prove Unique Factorization of integers into primes, the crucial property which must be proved beforehand is

For prime p if p|ab then either p|a or p|b.

Proof: Let ab = mp for integer m. If p|a, we're done, so suppose not. Then gcd(p,a) < p, and is a positive divisor of p, so gcd(p,a) = 1 since p is prime. From above, there are r, s such that

$$rp + sa = 1$$

Using this and ab = mp

$$b = b \cdot 1 = b \cdot (rp + sa)$$

$$= brp + bsa = brp + smp = p(br + sm)$$
 That is, b is a multiple of p. ///

This proof is probably not intuitive... but is the right thing!

More about gcd's

The most naive definition of gcd(x, y) is not really the point, as it turns out.

Lemma: For integers x, y, the two integers $x/\gcd(x,y)$ and $y/\gcd(x,y)$ are **relatively prime** in the sense that their gcd is 1.

Proof: Let r, s be integers such that gcd(x, y) = rx + sy. Divide this equation through by gcd(x, y) to get

$$1 = r \cdot \frac{x}{\gcd(x,y)} + s \cdot \frac{y}{\gcd(x,y)}$$

So 1 is the smallest positive integer which is the sum of integer multiples of $x/\gcd(x,y)$ and $y/\gcd(x,y)$, so 1 is the gcd of these two.

///

Now we can give a more functional characterization of gcd.

Theorem: gcd(x, y) has the property that it is the *unique* positive integer which divides x and y and such that if d divides both x and y then d divides gcd(x, y).

Proof: If d divides x and y, then d divides rx + sy for $any \, r, s$. Since (from above) $\gcd(x,y)$ is of this form, d divides $\gcd(x,y)$. To prove uniqueness, if g and h were two positive integers with that property, then g|h and h|g. That is, for some positive integers $a, b \, g = ah$ and h = bg. Then g = ah = a(bg), so (1 - ab)g = 0. Thus, ab = 1, which for positive integers implies a = b = 1. So g = h.

An analogous characterization of lcm.

Theorem: lcm(x, y) is the *unique* positive integer divisible by x and y such that if m is divisible by both x and y then lcm(x, y)|m.

Proof: Let L = lcm(x, y). Let m be a multiple of x and y. From above, let r, s be such that

$$\gcd(L, m) = r \cdot L + s \cdot m$$

Let L = Ax and m = Bx for integers A, B. Then

$$\gcd(L, m) = r(Ax) + s(Bx) = (rA + sB) \cdot x$$

shows that the gcd is a multiple of x. Likewise it is a multiple of y. As L is the smallest positive integer with this property, $L \leq \gcd(L,m)$. But the gcd divides L, so $L = \gcd(L,m)$. That is, L|m. And any other positive integer L' with this property must satisfy L'|L and L|L', so L = L'.

///

lcm versus gcd

For two integers x, y

$$lcm(x,y) = \frac{x \cdot y}{\gcd(x,y)}$$

Proof: Certainly

$$\frac{x \cdot y}{\gcd(x,y)} = x \cdot \frac{y}{\gcd(x,y)}$$

and $y/\gcd(x,y)$ is an integer, so that expression is a multiple of x (and, symmetrically, of y).

On the other hand, suppose N is divisible by both x and y. Let N = ax and N = by. From above, let r, s be integers such that

$$\gcd(x,y) = rx + sy$$

Dividing through by gcd(x, y) gives

$$1 = r \frac{x}{\gcd(x,y)} + s \frac{y}{\gcd(x,y)}$$

Then

$$N = N \cdot 1 = N \cdot \left(r \frac{x}{\gcd(x, y)} + s \frac{y}{\gcd(x, y)}\right)$$

$$= \frac{Nrx}{\gcd(x, y)} + \frac{Nsy}{\gcd(x, y)}$$

$$= \frac{(by)rx}{\gcd(x, y)} + \frac{(ax)sy}{\gcd(x, y)}$$

$$= (br + as) \cdot \frac{xy}{\gcd(x, y)}$$

Thus, N is a multiple of $xy/\gcd(x,y)$.

///