Divisibility

An integer d divides an integer n if
n%d = 0. In that situation n is a multiple
of d. The notation is

d|n

For example
5/10  35[105 2 /5

where the last illustrates the slash to denote
does not divide.

In more colloquial terms, to say d divides n
is to say that d divides n evenly, but for us
that qualification is always implied.

A proper divisor d of n is a divisor of n in
the range
l<d<n



An integer p > 1 with no proper divisors
is a prime. It is a universal convention,
and is very convenient, to say that 1 is not
prime.

That is, IV is prime if there is no d in the
range 1 < d < N with d|N, and if N > 1.

Non-prime numbers bigger than 1 are called
composite. The number 1 is neither prime
nor composite, evidently.

Theorem: unique factorization of integers
into primes: for a positive integer n there is
a unique expression

n=pi py° ... P
where the p; are primes with

P11 < p2 <...<Dpg

and the exponents e; are positive integers.



For example,

prime

prime
2 - 3°
prime
22-5
3.7



Trial division

Trial division is the basic method both to
test whether integers are prime or not, and
to obtain the factorization of integers into
primes.

This is basically a brute force search for
proper divisors, but knowing when we can
stop. Note that, if d < N and d|N and
d > VN, then % is also a divisor of N

and 1 < % < +/N. Thus, in looking for

proper divisors it suffices to stop looking at

d < +VN.



Thus, for example, to test whether N is
prime

Compute N % 2
If N%2 =0, stop, N composite
Else if N %2 # 0, continue
Initialize d = 3.
While d < v/N:
Compute N % d
If N%d =0, stop, N composite
Else if N%d # 0,
Replace d by d + 2, continue
If reach d > v/ N without termination,
N 1is prime

This takes at worst v N /2 steps to confirm
or deny the primality of V.



For example, to test N = 59 for primality:

Compute 59%2 =1
Since 59 % 2 # 0, continue
Initialize d = 3.
While d < v/59:
Compute 59 % d
Compute 59% 3 = 2
Since 59 % 3 # 0,
replace d = 3 by d + 2 = 5, continue
Still d = 5 < /59, so continue
Compute 59%5 = 4
Since 59 % 5 # 0,
replace d = 5 by d + 2 = 7, continue
Still d = 7 < /59, so continue
Compute 59 % 7 = 3
Since 59 % 7 # 0,
replace d =7 by d + 2 = 9, continue
But 9 > \/@, SO
59 is prime

This approach is infeasible for integers
~ 103° and larger.



To factor into primes an integer N

Initialize n = N
While 2|n, add 2 to list of prime factors
and replace n by n/2
Initialize d = 3
While d < /n:
While d|n, add d to list
and replace n by n/d
When d does not divide n
replace d by d + 2
When d > /n
If n = 1 the list of prime factors
of the original NV is complete
If n > 1 then add n to the list

The nature of the process assures that the
ds obtained are primes.



For example, to factor 153

Initialize n = 153
2 does not divide n, so
Initialize d = 3
3 < v/153 and 3153, so
put 3 on the list (now (3))
replace n by n = 153/3 = 51
3 < /51 and 3|51, so
put 3 on the list again (now (3, 3))
replace n by n =51/3 = 17
Now 3 does not divide n = 17, so
replaced=3byd=3+2=5
5> /17 so
17 is prime, add it to the list
which is now (3,3,17)

The prime factorization of 153 is

153 =32%.17



gcd’s and lem’s

The greatest common divisor ged(z,y)
of two integers x, y is the largest positive
integer d which divides both z,y, that is,
d|x and d|y. For example,

ged(3,5) =1 ged(24,36) = 12
gcd(56,63) =7 ged(105,70) = 35
The least common multiple lcm(z,y) of
two integers is the smallest positive integer

m which is a multiple of both z,y. For
example,

lem(3,5) =15  lem(24,36) = 72

lem(56,63) = 504 lem(105,49) = 210



We can compute lem and gcd if we have
the prime factorizations of x and y:

The prime factorization of ged(x,y) has
primes that occur in both factorizations,
with corresponding exponents equal to the
minimum of the exponents in the two.

The prime factorization of lem(z, y) has
primes that occur in either factorization,
with corresponding exponents equal to the
mazximum of the exponents in the two.

For example, with

r=1001=7-11-13
y="T735=3.5.72

gcd(1001,735) =
_ 3min (0,1) 5min (0,1) 7min (1,2) 13min (0,1)

— 305971130 =7

But you should use this only with very
very small integers!

10



The Euclidean Algorithm

This is a wonderful and efficient 2000-year-
old algorithm to compute the ged of two
integers x,y without factoring.

To compute ged(z,y) with x > y takes
< 2log, y steps.

To compute ged(z, y):
Initialize X =z, Y =y, R=X%Y
while R > 0
replace X by Y
replace Y by R
replace R by X %Y
When R=10,Y = ged(x,y)

Roughly, this works because

Theorem: gcd(x,y) is the smallest
positive integer expressible as rax + sy for
integers r, S.

Surely this is a strange picture of gcd.
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For example, for gcd (6497, 7387)

7387 —1-6497 =
6497 — 7-890 =
890 — 3 -267 =

267 — 3-89 =

890
267
89
0

so gcd(6497,7387) = 89, the last non-zero
entry on the right. As another example, for

gcd (738701, 649701)

738701 — 1649701
649701 — 7 - 89000
89000 — 3 - 26701

26701 — 3 - 8897

8897 — 889 - 10
10—-1-7
=23 =
3—3-1 =

89000
26701
8897
10

7

3
1
0

So the ged is 1, the last non-zero entry on

the right.

Much faster than factoring and comparing.
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Multiplicative inverses mod m via Euclid

If ged(x,m) = 1, then by the strange
characterization of the gcd above there are
integers r, s such that

re 4+ sm = ged(x,m) =1

Reduce both sides of the equation modulo
m
re%m =1

(since adding the multiple sm of m will not
change the reduction mod m).

That is, r is a multiplicative inverse of x
modulo m.

And, yes, also s is a multiplicative inverse of
m modulo .

The (extended) Euclidean Algorithm will
give us a fast way to determine the integers
r, s above.
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WIth 101 and 87

101 -1-87 = 14
—6-14 = 3
14—-4-3 2
3—1-2 1
2—2-1 = 0

Going backward

1 = (1)3+ ( 1)2

(1)34+ (—1)(14 — 4 - 3) [sub for 2]
—1)14 4 (5)3 [simplify]
(—1)14+(5)(87—6 - 14) [sub for 3]
(5)87 + (—31)14 [simplify]

— (5)87+(—31)(101—1 - 87) [sub 14]
— (—31)101 + (36)87 [simplify]

Thus, —31 - 101 + 36 - 87 = 1, and thus —31
is a multiplicative inverse of 101 modulo

87, while 36 is a multiplicative inverse of 87
modulo 101.

|

If you like, since —3 % 101 = 98, also 98 is a
multiplicative inverse of 101 modulo 87.
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With 131 and 101:

131-1-101 = 30

101-3-30 = 11
30—-2-11 = 8
11-1-8 = 3
8—2-3 = 2
3—1-2 = 1
2—2-1 = 0

)3+ (—1)2 [simplify]

=(1)3+ (-1)(8—2- 3) [subst]
= (-1)8+(3)3 [simplify]

= (-1)8 + (3)(11—1 - 8) [subst]
= (3)11+ (4)8 [simplify]

=(3)11 + (4)(30—2 - 11) [subst]
= (4)30+ (11)11 [simplify]

=(—4)30 + (11)(101—3 - 30) [subst]
= (11)101+(37)30 [simplify]

— (11)1014(=37)(131—1- 101) [subst]
—  (=37)131 + (48)101

So —37-131+48-101 = 1.
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What’s happening in Euclid’s Algorithm?

Let’s abstract the process a little.
Divisibility riffs:
If d|lx and d|y then d|(x + y) and d|(x — y).

Proof: Since d|z there is an integer m such
that £ = dm. Since d|y there is an integer n
such that y = dn. Then

r+y=dm+dn=dm+n)

r—y=dm—dn=d(m—n)

so both x + y and x — y are multiples
of d, which is to say that d divides them.

///

Notice that we do not think in terms of
prime factorizations here.
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For any n, gcd(n,n + 2) is either 1 or 2.

Proof: From the previous page, if d|n and
d|(n 4 2) then d divides the difference

n+2)—n=2

That is, any divisor d of both n and n + 2
must divide 2. Thus, gcd(n,n + 2) must
divide 2. By trial division, 2 is prime, so the
only possible (positive) divisors are 1 and 2.

/]
For any n, gcd(n,n+6) is 1, 2, 3, or 6.

Proof: From the previous page, if d|n and
d|(n + 6) then d divides the difference

(n+6)—n==~6

That is, any divisor d of both n and n + 6
must divide 6. Thus, gcd(n,n + 6) must
divide 6. By trial division, the positive
divisors of 6 are 1, 2, 3, or 6. ///
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For any x,y, for any r, s, if d|lx and d|y then
d|(rx + sy).

Proof: Since d|z there is an integer m such
that £ = dm. Since d|y there is an integer n
such that y = dn. Then

re + sy = r(dm) + s(dn) = d(rm + sn)

so rx + sy is a multiple of d, which is to say
that d divides it. ///

For any n, ged(n? +1,n) is 1.

Proof: From the previous, if d|n® + 1 and
d|n then d divides the difference

1-(n*+1)—n-n=1

That is, any divisor d of both must divide
1. So certainly the greatest positive divisor

divides both. ///
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A step in Euclid’s algorithm is of the form
rT—q-y=r

If d|x and d|y then d|r, from above. But
also, by rearranging,

rtqy=2x
so if d|r and d|y then d|x. Thus

ged(z,y) = ged(y,7)

This persists through the algorithm. The
last two lines are of the form

w’—q’-y’:r’
y’—q”-r':O

We know that the gcd of the original two
numbers is equal

ged(2',y') = ged(y', r’) = ged(r’, 0)

so the last non-zero right-hand value
is the gcd of the two original numbers.

///
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Proof of the strange property of gcd

The gcd of two integers x,y (not both Q) is
the smallest positive integer expressible as
rx + sy with integers r, s.

Proof: Let ¢ = rx + sy be the smallest
such positive value. On one hand, if d|z
and d|y then (from above) d divides any
such expression ax + by, so d divides g. On
the other hand, by the Division Algorithm
x=qg+r with0<r<g. And

r=r—qg=1z—q(rz+ sy)

= (I —gqr)z+ (—qs)y

which is of that same form. Since g was
smallest positive of this form and 0 < 7r < g,
it must be that »r = 0. That is, g|z.

Similarly, gly. ///
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Can we prove that division works?

Given positive integer m and integer x,
there are unique integers q and r such that
0<r<mand

r=qm-+r

Proof: Let t = x — £m be the smallest non-
negative integer of the form x — gm with
integer q. If t < m we’re done. If £ > m,
thent —m > 0,and x — (/ + 1)m is a
non-negative integer smaller than x — /m,
contradiction. Thus, it could not have been
that ¢t > m. ///

Underlying this all is the Well-ordering
Principle, that every non-empty set

of non-negative integers has a smallest
element. This is a defining aziom for the
integers.
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The crucial property of primes

To prove Unique Factorization of integers
into primes, the crucial property which
must be proved beforehand is

For prime p if plab then either pla or p|b.

Proof: Let ab = mp for integer m. If
pla, we're done, so suppose not. Then
gcd(p,a) < p, and is a positive divisor of
p, so gcd(p,a) = 1 since p is prime. From
above, there are r, s such that

rp+sa =1
Using this and ab = mp
b=b-1=0b-(rp+ sa)
= brp + bsa = brp + smp = p(br + sm)
That is, b is a multiple of p. ///

This proof is probably not intuitive... but is
the right thing!
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More about gcd’s

The most naive definition of ged(x,y) is not
really the point, as it turns out.

Lemma: For integers x,y, the two integers
x/ged(z,y) and y/ged(x,y) are relatively
prime in the sense that their gcd is 1.

Proof: Let r, s be integers such that
ged(z,y) = rxz + sy. Divide this equation
through by ged(z,y) to get

£T + S y
ged(z,y) ged(z,y)

l=r

So 1 is the smallest positive integer which is
the sum of integer multiples of x/gcd(z, y)
and y/gcd(x,y), so 1 is the ged of these two.

///
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Now we can give a more functional
characterization of gcd.

Theorem: gcd(z,y) has the property
that it is the unique positive integer which
divides = and y and such that if d divides
both x and y then d divides ged(z,y).

Proof: If d divides x and v, then d divides
rx + sy for any r,s. Since (from above)
ged(z,y) is of this form, d divides ged(x, y).
To prove uniqueness, if g and h were two
positive integers with that property, then
g|h and h|g. That is, for some positive
integers a,b g = ah and h = bg. Then

g = ah = a(bg), so (1 — ab)g = 0. Thus,
ab = 1, which for positive integers implies

a=b=1. Sog=h. /]
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An analogous characterization of lcm.

Theorem: lcm(z,y) is the unique positive
integer divisible by x and y such that if m is
divisible by both z and y then lecm(x, y)|m.

Proof: Let L. = lecm(zx,y). Let m be a
multiple of x and y. From above, let r, s
be such that

ged(Lyom)=r-L+s-m

Let L = Ax and m = Bz for integers A, B.
Then

ged(L,m) =r(Azx) + s(Bzx) = (rA+sB) -z

shows that the gcd is a multiple of .
Likewise it is a multiple of y. As L is the
smallest positive integer with this property,
L < ged(L,m). But the ged divides L, so
L = gcd(L,m). That is, Lim. And any
other positive integer L’ with this property
must satisfy L'|L and L|L', so L. = L.

/]
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lem versus gcd

For two integers x, y

lem(z,y) = © Y
| ged(z, )
Proof: Certainly
Ty Y
ged(z, y) ged(z, y)

and y/gcd(x,y) is an integer, so that
expression is a multiple of z (and,
symmetrically, of y).

On the other hand, suppose NN is divisible
by both z and y. Let N = ax and N = by.
From above, let r, s be integers such that

ged(zx,y) = rx + sy
Dividing through by ged(x, y) gives
L Y

+ S

l=r
ged(z,y)  ged(z,y)
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Then

x Y
N=N-1=N-|r + s )
( ged(z,y)  ged(z,y)

Nrx Ns
n Y

- ged(z,y)  ged(z,y)

_ _yrz  (az)sy
ged(z,y)  ged(z, y)
LY
ged(z,y)
Thus, N is a multiple of xy/ged(x,y).

= (br + as) -

///
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