A little more about divisibility

One need not use unique factorization into
primes to prove things like the following
important and often-used fact.

Proposition: If gcd(d,a) = 1 and d|ab
then d|b.

Proof: This proof is very similar to the
proof that if p is prime and does not divide
a but plab then p|b.

Let r, s be integers such that rd + sa = 1,
from the peculiar characterization of gcd.

Let ab = Nd. Then
b=0b-1=0b-(rd+ sa)

= drb+ sab=drb+ sNd = d(rb+ Ns)
so d divides b. ///



Equality modulo m

To understand the interaction of reduction
modulo m with addition and multiplication:

Gauss was the first to notice that divisibility
properties can be recast as a kind of equality,
thereby making use of our prior experience
with manipulation of equalities.

Recall that £ % m is an operation which
accepts ordinary integer inputs and
produces an integer output.

Equality modulo m is a relation

r =y modm if and only if m|(z — y)

Sometimes this is written with three lines
instead of two, as in
r =y modm

and called a congruence. But it is really a
modified form of equality. Think of mod m
as an adverb modifying the verb equals.



For example,

2 = 7mod 5 because 5|(2 — 7)

12 = 7mod 5 because 5[(12 — 7)

127 = T7mod5 because 5[(127 — 7)
-123 = 127Tmod 5  because 5|(—123 — 127)

Although the definition does not explicitly
compare equality modulo m with
reduction modulo m, there is a simple
connection:

Lemma: r = y mod m if and only if
% m=y%m.

Proof: it m|(x — y) and if x = gm + r
and y = ¢m + r’ with 0 < r < |m| and

0 <7’ < |m|, then m|(gm+r—¢'m—1r") and
m|(r — r’). Since r and r’ are non-negative
and smaller than m, it must be that r = r’.
Thus x %m = y%m. On the other hand,

if t%m = y%m then m|(r — r’) and
ml(gm +r —q¢'m —r'), so m|z —y. ///




Equivalence relations, equivalence classes

For fixed modulus m, £ = y mod m is an
equivalence relation in the sense that

r=xmodm  (Reflexivity)

r = y mod m implies y = x mod m (Symmetry)

x =y mod m and y = z mod m implies
r=zmodm  (Transitivity)

The equivalence class of congruence
class or residue class of x modulo m is
the set of all integers x’ equal to x modulo
m. It is often denoted T without explicit
reference to the modulus. And x mod m
may refer to this set. Thus,

rmodm=T={z'€Z:2 =2 modm}
={...,x—2m,x —m,x,x + m,z + 2m,...}

There 1s no explicit reference to reduction
modulo m wn this.



For example,

2modb={...,-8,-3,2,7,12,...}
—1modb={...,—6,—-1,4,9,14,...}
4modb={...,—6,—-1,4,9,14,...}
9modb5=4{...,—6,—1,4,9,14,...}
5modb5={...,-10,-5,0,5,10,...}
Omodb5={...,-10,-5,0,5,10,...}
But the mental picture of one of these

equivalence classes should be as a single
entity, not an infinite set.



Well-definedness of arithmetic mod m

To prove that reduction modulo m interacts
well with addition and multiplication, we
really prove, instead, that addition and
multiplication (and subtraction) are well-
defined modulo m.

Well-definedness is not a concept that one
meets in more elementary mathematics, but
it comes up often in modern mathematics.
The point is that something that appears
to be a reasonable definition as output of
an operation may fail by secretly specifying
more than one output. One way that this
frequently occurs is in a situation where
objects have many different names, by
specifying the output in terms of one name,
but getting different outputs depending on
which name of the same object is used.

We want the outcome to depend on the
object, not on a name for it.



In the case at hand, we want to prove that

If x = 2’ mod m and y = vy’ mod m, then
exr+y=1c+1y modm
er-y=21a-vy modm

In other words, we claim that if =, vy, 2", v’

are integers with T = 2’ and ¥ = ¢’ then
cTFy=a+y
.x.yle.y/

That is, the equivalence class of a sum or
product does not depend on the name we
use for equivalence classes, but only upon
the equivalence classes themselves.

Thus, we have an addition and
multiplication of equivalence classes
modulo m.



This well-definedness implies that reduction
modulo m interacts well with addition and
multiplication. To show that

(x%m)+ (y%m))%m=(x+y)%m
note that 2% m = z mod m for any z € Z.
With z = (x %m) + (y %om) gives

((x%om) + (y %om)) %om
= (x % m) + (y om) mod m

With 2z = 2% m and z = y%m, using
well-definedness of addition modulo m, this
becomes

=+ ymodm

Similarly, using the principle with z = x + v,
the right-hand side is
(x+y)%m=x+y modm

Thus, the two things are equal modulo m,
which by an earlier observation implies that
their reductions modulo m are the same.

///



Algebra modulo m

Equality modulo m has advantages in
computations.

For example, let’s compute the ones’-place
digit of 3916, First, realize that the ones’-
place digit of an integer n is nothing other

than n % 10. So we want 3916 % 10.

Note that we have no reason to think
that the 616 in the exponent can be reduced
modulo 10.

Note that if you attempt to have your
calculator/computer compute 3919 first,

and look at the ones’-place digit, even if
you don’t get an overflow error the roundoff
error will lead you to believe that the ones’-
place digit is 0. That is, you might think
that 10 divides a large power of 3. How
likely is this, given unique factorization into
primes? Ha.



To evaluate 310 % 10 we should experiment
a little with powers of 3 modulo 10:

32 =9 mod 10
33 = 7mod 10
3% = 1 mod 10

The fact that 3* = 1 mod 10 allows us to do
the following:

616 4-154 4\154
3016 — 34154 — (34)

= 1'% mod 10 = 1 mod 10
So the ones’-place digit of 3°1° is 1.

Similarly, the ones’-place digit of 3714

be computed as

Ccan

3714 34 178+2 __ (34)178 32

— 11" .32 mod 10 = 9 mod 10

So the ones’-place digit of 371* is 9.
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Factoring by algebraic identities

Trial division does not scale upward well.
All methods for factoring integers above
about 10%° use other methods, most based
in part on algebraic factoring.

Polynomials of the form z?2—1, z3—1, 2*—1
have at least one systematic factorization

" —1=(z—1)(z"  +2" 2. i +z+1)

Equivalently, polynomials like z? — %2,
3 — 3, and z* — y* have factorizations

(x—y)(a:”_l+x”_2y+...+xy”_2+y” 1)

For odd n, replacing y by —y gives a variant

n n __

(ZIS‘ + y)(xn—l . x”_2y+ S xy”_z _I_yn—l)
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For composite exponent n one obtains
several different factorizations

20 —1= (29 -1= (20— 1)@ +2'°+1)
3V —1=(2%°-1= (2 —1)()*+...+1)
% —1=(2*)°—-1=(°=1)((z°)°+...+1)
9 1= ()1 =(2° -1 ((z*)’+...+1)
30—1=(2>)%-1=(2-1)((=>)*+.. . +1)

in addition to the basic

3V —1=(x-D@*+...+1)

12



Such algebraic factorizations yield numerical
partial factorizations of some special large
numbers, such as

233 L 1 — (211)3 L 1 — (211 L 1)(222 _|_211 _|_1)
259 1= -1=2°-1)(2"° +...+1)

Thus, 2% — 1 has factors 2 — 1 = 7 and
211 _1 =23.89. It is then easier to complete
the prime factorization

233 _ 1 =17-23-89-599479

Note that
1<2t —1<«<2%3 -1

which assures that 2! — 1 is a proper factor
of 233 — 1.

In this case the largish number 599479
might be awkward to understand. A little
later we can see how to more efficiently
factor or prove prime a special number such

as 599479. (It is prime.)
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As another example, to start to factor
510 — 1 = 9765624 use

51 —1=(5%)° -1

=52 —1)((BH)*+ (B*)° + ...+ 5+ 1)
5190 —1=(52-1=(5>-1)(5°+1)

So52 —1 = 24 and 5° — 1 = 3124 (and
5° + 1 = 3126) are factors. By Euclid,
gcd(24,3124) is 4, and 3124/4 = 781 is
readily factored into primes by trial division
as 11 - 71. Since 24/4 = 6 and 11 - 71 are
relatively prime and both divide 9765624,
their product also divides it, and

9765624 _ 3126 _r91
4-6-11-71 6

Trial division shows that 521 is prime, so
519 —1=2%.3.11-71-521

(Tedious to check 5217 7817 See below...)
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Another algebraic emulation of numerical
methods involves thinking in terms of
the Euclidean algorithm and its effect on
numbers of special forms like 2™ — 1.

Theorem: For any integers a,b with
gcd(a, b) = 1 and for positive integers m, n

gcd(am o bm7 a® — bn) _ agcd(m,n) - bng(m’n)
This is often invoked where b = 1, so

gcd(a™ —1,a" — 1) = g&dmn) _q

For example,
ng(2105 . 1, 2140 . 1) — 2ng(105,140) . 1

— 2% _ 1
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Proof: We’ll just give the proof in the
simpler case that b = 1. Suppose m < n,
and suppose that d divides both a” — 1 and
a™™ — 1. Then d divides

(@™ =1)—=a"" (@™ —-1)=a""™ -1

And we can go back: if d divides both
a"~™ — 1 and a™ — 1 then d divides a™ — 1.

If n — m > m this step can be repeated.
Eventually, we’ll find that if d divides a™ — 1
and a™ — 1, then d divides a9 — 1 with
n —qgm < m. And if d divides a™ — 1 and
a9 — 1 then it divides a™ — 1. This 1s
like a single step of the Euclidean algorithm
applied to n, m.

Filling this out gives the results...

///
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Fermat-Euler shortcut

Above, one might worry that in
233 1 =17-.23-89-599479

the large number 599479 remains.

Theorem: (Fermat, Euler) A prime factor
p of b™ — 1 either divides b® — 1 for a
divisor d < n of the exponent n, or else

p = 1 mod n. ///

Since here the exponent 33 is odd, and since
primes bigger than 2 are odd, in fact we can
say that if a prime p divides 233 — 1 and is
not 7,23,89, then p = 1 mod 66.

Thus, in testing 599479 by trial division by
D < /599479 ~ 774 we do not test all odd
numbers, but only 67,133,199, ... and only
need to do

v/599479/66 ~ 11

trial divisions to see that 599479 is prime.
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In the smaller example 5% — 1 = 9765624 we
easily found proper factors

5 -1=23124 52 -1=24

(and 3126 =5° +1=(5+ 1)(5* — ... +1)).
As before
3124 . 3126

976524 = 4 - 6 ——
4 6

=4-781-6-521

The Fermat-Euler trick says that any prime
factor of 5° — 1 = 4 - 781 not already
appearing in 59 — 1 for d|5 and d < 5 is

= 1 mod 10. 5' — 1 is relatively prime

to 781 (Euclid). Thus, we need only look
among 11 (not 21, it’s not prime), 31, ...
but already 31 is above \/m, so if 781 is
not prime it is divisible by 11, which is so:
781 = 11-71. The same idea applies further:
if 71 were not prime it would be divisible
only by primes = 1 mod 10, but 11 > 1/71.
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Similarly, if the factor 521 of the factor
(5°+1)/(5+1) of 51 — 1 were not prime it
would be divisible either by

a prime dividing 5° —1 (11 and 71) or 5% —1
or b1 — 1,

or by a prime = 1 mod 10.

Any common factor of 5° + 1 and 5° — 1
divides their difference, namely 2, which
does not divide 521. The only odd factor of
24 = 5% — 1 is 3, which does not divide 521.

Thus, we look at primes = 1 mod 10. Not
11, it divides 5° — 1. Not 21, it’s not prime.
31 is prime but > +/521. Thus, without
really computing, 521 is prime.

19



By these algebra identities, 2" — 1 is
definitely not prime unless the exponent n
is prime. For p prime, if 2P — 1 is prime, it
is Mersenne prime.

Not every number of the form 27 — 1 is
prime, even with p prime. For example,
2!t —1=123-89
2%% — 1 =47-178481
2% —1=233-1103 - 2089
237 — 1 =1223-616318177
2*! — 1 =13367- 164511353

Nevertheless, usually the largest known
prime at any moment is a Mersenne prime,

such as
26972593 1

Theorem (Lucas-Lehmer) Let L, = 4,
L, =L? . —2. For p an odd prime, 2?7 — 1

n—1
is prime if and only if

Lp_2 = 0mod 2 — 1
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Not every algebraic factorization really
gives a proper numerical factorization. For
example,

n*—1=(mn-1n+1)
yet with n = 2 we have
22 —1=3= prime
The point is to check that the algebraic

factors give proper numerical factors. Here,
solving

n—1>1 n+1>1

for integers n we get n > 2. Thus, for n > 2
the value of n? — 1 is definitely composite,
because each of the algebraic factors n — 1
and n 4+ 1 is greater than 1 (and, thus,
necessarily less than n? —1).
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The algebraic factorization
n*+Mm+12=(n+3)(n+4)

shows that n? + 7n + 12 is composite when
bothn+3 > 1and n +4 > 1, that is, for
n > —2.

By contrast, for example when n = —2
(=22 +7(=2)+12=(—2+3)(-2+4) =2

which s prime.
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Fermat’s Little Theorem

A fundamental and non-obvious fact about
integers modulo a prime p.

Theorem: (Fermat’s Little Theorem)

For p prime for any integer b we have
b? = b mod p.

Theorem: (Variant) For p prime for

an integer b not divisible by p we have
b?~1 =1 mod p.

Remark: Notice that this is very different
from a possible naive expectation. Modulo
p, an exponent of p cannot be replaced by 0,
despite the fact that p = 0 mod p. That is,
generally

b? #£ b° mod p

Instead, the variant version asserts that, for
b prime to p,

w1 =1=01"modyp
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Proof: Proven by induction on b, using
b+1)P =0+ ()P +... + ()b +1

Those binomial coefficients are integers
since they are the inner coefficients in

(x+y)P=aP+...+ 9"

On the other hand all these binomial
coefficients are are divisible by p since

(ZZ) il (pp!— i)!

and the denominator has no factor of p.
(Unique Factorization!) Thus, we have

b+1)P=b+1=b+1modp

by induction. ///
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The factorizations of ™ — 1 above are
cyclotomic factorizations. Less well known
are Lucas-Aurifeullian-LeLasseur
factorizations

vt +4 = (z* + 42° + 4) — (22)?
— (w2—|—233—|—2)(x2 — 22 + 2)

More exotic are

6 127

22—:3 = (z? + 3z + 3)(2* — 3z + 3)
.’1310—55
225

(z* + 52 + 152% + 25z + 25)
x (z* — 5z + 152° — 252 + 25)

and
r1? + 6°

4 +36
(z* + 62> + 18z + 362 + 36)
x (z* — 62° 4+ 18z — 362 + 36)
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and further
rld 4+ 77

2+ 7
(20 + 72 + 212" + 492° 4 14727 + 3432 + 343)
x (2% —7x°+212* —492° 4+ 147x* — 3432 +343)

These Aurifeuillian factorizations yield
further factorizations of special large
numbers, such as

22 4+ 1=4-(2>)*+1
= (2(2°)* +2(2°) + D(2(2°)* — 2(2°) + 1)
= 21131985 = 2113 - 5- 397
and similarly

33 +1  27-(3%)°+1
31141 3-(35)2+1

= (3(3°)2+3(3°) + D(3(3°)2 +3(3°) + 1)
— 7.925411 - 176419
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