Fast modular exponentiation

(also called square-and-multiply)

Computing things like
z¢ % m

for x,e,m all ~ 10'% or larger, in ~ 300
steps, not ~ 10! multiplications, is
essential in public-key crypto.

Repeated squaring reduces the total
number of operations:

.’1369 _ IE26+22+20 _ (((((282)2)2)2)2)2 . (562)2 o

This is an important short cut with or
without reduction modulo m.

The other point is that it is very much
worthwhile to frequently reduce modulo m,
rather than compute a huge number and
only reduce at the end.



Further, rather than spend time and/or
energy worrying about when to reduce
modulo m in the course of this calculation,
it is more eflicient to simply do so on every
possible occasion.

The fast modular exponentiation
algorithm:

To compute ¢ % m

initialize (X, F,Y) = (x,e,1)
while £ > 0
if F/ is even
replace X by X? % m
replace F by F /2
elsif F is odd
replace Y by X - Y %m
replace ' by £ — 1

The final value of Y is ¢ % m.



For example, to compute 57 % 101,
Initialize (X, FE,Y) = (5,17,1)
(X,E,Y)=(5,17,1), E =17 is odd
replace £ =17 by 17— 1 =16
replaceY =1by X xY %101 =5
(X,E,Y)=(5,16,5), E = 16 is even
replace £ = 16 by 16/2 =8
replace X =5 by X * X %101 = 25
(X,E,Y)=(25,8,5), E =8 is even
replace K =8 by 8/2 =14
replace X =25 by X * X %101 = 19
(X,E,Y)=(19,4,5), E =4 is even
replace £ =4 by 4/2 = 2
replace X = 19 by X * X %101 = 58
(X,E,Y)=(58,2,5), E =2 is even
replace E =2 by 2/2 =1
replace X = 58 by X x X % 101 = 31
(X,E,Y)=(31,1,5), E=1is odd
replace FE =1by1—-1=0
replace Y =5 by X xY %101 = 54
Now (X, E,Y) = (31,0,54), E = 0, so

517 % 101 = current value Y = 54

3



Run-time estimate

For fast modular exponentiation, instead of
performing roughly e multiplications (and
reductions) to evaluate z¢ % m, there are

at most log, e squarings (and reductions)
and at most log, e multiplications (and
reductions).

Thus, instead of e (admittedly slightly
simpler) operations, we have at worst
2 log, e operations.

For example, with e ~ 1090 instead of
about
101%° multiplications

we have at worst
21og, (10'%%) ~ 665

square-or-multiply operations.



Square roots modulo p = 3 mod 4

Fermat’s Little Theorem gives us some
interesting formulas (below), which become
practical due to the efficiency of Fast
Modular Exponentiation.

Definition: An integer b is a square root
of a modulo m if

b> = a mod m

If a has a square root modulo m, then say a
is a square modulo m.

Much as nverses modulo m don’t have
much connection with inverses in the
rational or real numbers, square roots
modulo m do not have much direct
connection with square roots that are real
numbers.

For example, 3 is a square root of 2 modulo

7 because
32 =2mod 7



Remark: At this point, there is no
assurance in advance that numbers have
(or don’t have) square roots modulo m.

At worst (which is pretty bad for large
moduli) we could try to find a square
root of a modulo m by just trying all the
possibilities from 0 up to m — 1.

For example, to try to find a square root of
2 modulo 17:

0 =0 # 2 mod 17: 0 is not the square root
12 =1 # 2mod 17: 1 is not the square root
22 = 4 # 2mod 17: 2 is not the square root
32 =9 # 2mod 17: 3 is not the square root
42 =16 # 2 mod 17: 4 is not the square root
52 = 25 # 2 mod 17: 5 is not the square root
62 = 36 = 2 mod 17: 6 is the square root



Parallel to proving primality by failing to
find a factor, we can prove that something
has no square root mod m by failing to find
a square root:

For example, to try to find a square root of
3 modulo 7:

02 =0 # 3 mod 7: 0 is not the square root
12 =1 # 3mod 7: 1 is not the square root
22 = 4 # 3 mod 7: 2 is not the square root
32 =9 # 3 mod 7: 3 is not the square root
42 =16 # 3 mod 7: 4 is not the square root
52 = 25 #£ 3 mod 7: 5 is not the square root
62 = 36 # 3 mod 7: 6 is not the square root

We need look only in the range 0,1,...,m —
1, since by well-definedness of operations
modulo m, if b were a square root of a
modulo m, then b % m is also a square root
of a modulo m



As usual, brute force is very suboptimal.

Theorem: Let p be a prime with p =
3 mod 4. If a is a square modulo p, then

a5 (and/or its reduction mod m)

is a square root of a modulo p. (If a is not
a square modulo m, then obviously this
expression does not yield a square root of
a modulo m.)

Positive real numbers have positive and
negative square roots (and negative real
numbers have no real square roots) and we
tend to think of the positive square root as
being more important.

Similarly, if a is a square modulo p as
above, the square root b = aPt1/4 mod p
given by that formula is called the
principal square root of a, and —b is the
other square root of a modulo p.



Proof: The fact that p = 3 mod 4 assures
that (p+1)/4 really is an integer. Otherwise
the formula makes no sense in the first
place.

Suppose that a = b? mod p. Then all
modulo p

p+1 2 p+1 2
(a%> = ((b2)%) = bPT! mod p

By Fermat’s Little Theorem, b = b mod p,
so this becomes

=b-b=amodp
since by hypothesis b = a mod p. ///

Ok, once told the formula we could verity
that it is correct. But how would a person
get the idea of such a formula?



Remark: For cryptographic purposes, it
is important to realize that we have or will
have formulas for square roots (and other
roots) modulo primes, but not modulo

composite numbers unless we can factor
them.

In fact, if n = p - ¢ with secret primes p = q,
any oracle that can compute square roots
modulo n gives a probabilistic algorithm to
factor n.

We’ll look at this later in the context of
Sun-Ze’s theorem (sometimes called the
Chinese Remainder Theorem).

10



Remark: In computations, we may not
have any idea in advance as to whether a is
or is not a square modulo p, so we do not
know whether the formula is producing the
principal square root or just garbage.

One must square the result and see whether
or not the result 1s the thing whose square
root we want!

That is, in a computational setting, usually
we have to check whether or not the output
of the formula is or is not a square root of
the given thing.

If it does square to the original thing, then
certainly the original thing is a square.

If it does not square to the original, then
the original was not a square ... since if

it were a square the formula would have

produced its (principal) square root!

11



For example, we try to find a square root of
2 modulo 31. We do not know in advance
whether or not 2 is a square modulo 31.

First, note that (by trial division) 31 is
indeed prime, and 31 = 3 mod 4. Thus,
the formula applies: if 2 is a square modulo
31, then its (principal) square root is

3141

274 mod 31

The numbers are so small here that
there’s not mandate to use Fast Modular
Exponention:

3141

272 = 9% = 256 = 8 mod 31

Thus, if 2 is a square mod 31 then its
(principal) square root is 8. How do we

test? Square 8 and see if we get 2 modulo
31: all modulo 31

82 =64 =64%31=64 —2-31 =2mod 31

So, yes, 8 is the (principal) square root of 2
modulo 31. ///

12



For example, we try to find a square root of
3 modulo 31. We do not know in advance
whether or not 3 is a square modulo 31.

First, (by trial division) 31 is indeed prime,
and 31 = 3 mod 4. Thus, the formula
applies: if 3 is a square modulo 31, then
its (principal) square root is

3141

372 mod 31

31+1

372 = 3% = 6561 = 20 mod 31

If 3 is a square mod 31 then its (principal)
square root is 20. We must test. Square 20
and see if we get 3 modulo 31: all modulo

31
20% = 400 = 400 % 31 = 28 # 3 mod 31

So, no, 20 is not a square root of 3 modulo
31, and in fact 3 is not a square mod 31. (If
it were, we would have found its square root
by the above process!) ///

13



Remark: Actually, if a is not a square
mod p, then the formula above gives the
principal square root of —a modulo p
instead.

This is not easy to verify, but examples
would suggest this fact.

Remark: In larger examples it would
become wise or even necessary to use the
Fast Modular Exponentiation algorithm to
do the relevant computations.

14



