Corollaries of Fermat’s Little Thm

We are in the process of looking at several
formulas that are proven correct by using
Fermat’s Little Theorem that for prime p

b* = bmod p (for all integers b)

All these formulas are useful only if we have
a way to evaluate x¢ % m with large e.

Fortunately, the fast modular exponentiation
algorithm provides this.

We almost never directly compute a large
power of an integer without repeatedly
reducing along the way. If you find yourself
doing this, stop.



Multiplicative inverses by Fermat

Although the most direct means of
computing multiplicative inverses modulo
general moduli m is the extended Euclidean
algorithm, simple exponentiation can be
used to compute multiplicative inverses
modulo primes.

That is, for p prime and for p not dividing
b, the multiplicative inverse of b modulo p is

b= =bP7? mod p
Indeed,
b-bP2=p""1 =1modp

by Fermat’s Little Theorem.

The run-time is very roughly comparable to
extended Euclid.



Powers and roots mod m

Again, we say that a is an e power
modulo m if there is an integer b such that

b = a mod m

h

In that case, say that b is an e'® root of a

modulo m.

For e = 2 we talk about square roots and
squares.

For e = 3 we talk about cube roots and
cubes.



Principal square roots

Again, for p prime and p = 3 mod 4, if a is
a square mod p then

square root of a modulo p = aPTD/4

Remark: If a is not a square modulo p
this formula does not produce a square
root of it modulo p. If you do not know in

advance that a is a square mod p you must
check.

Generally use fast modular exponentiation
to compute this. It s not explicit that

the result be reduced modulo p, but it 1s
desirable! Always reduce it!

For square a mod p this formula gives the
principal square root of a, distinguished
not only by being the output of this
formula, but also it itself is a square modulo
p. The other square root —b of a is not a
square mod p.



Comments

Finding square roots modulo composite
numbers n is essentially equivalent to being
able to factor n, which is presumably hard
for large n. We will see in just a little bit
that if we have an oracle that takes square
roots modulo n = p - ¢ then we can factor n.

But finding square roots modulo primes is
relatively easy.

But, even for primes, where would such
formulas come from?

Why do we have a formula only for p =
3 mod 4?7 (There are more complicated
square root formulas, and a general
algorithm, for general primes.)

In fact, there is an easier formula for certain
cube roots:



Cube roots: easy case

Another use of Fermat’s Little Theorem.
Let p be a prime with p # 1 mod 3.

If we imagine that there is an exponent r
such that b" is a cube root of b modulo p,
what should r be? We want

(b")° = bmod p

Superficially, we might want r - 3 = 1, but
this is impossible. But, from Fermat, for p
not dividing b

b»~! =1 mod p
soifr-3=1+4(p—1) then
(br)3 _ b1+£(p—1) —b. (bp—l)ﬁ
—b-1* =bmod p

So for r > 0 a multiplicative inverse of 3
modulo p — 1,

b" = cube root of b mod p



Remark: This is simpler than the square
root case we already treated, since in that
square root case the simpler case would be
that p #% 1 mod 2, which doesn’t happen.

Remark: No checking is necessary with
this formula, unlike the square root formula.

Remark: With hindsight it is not
surprising that there is a computationally
accessible formula for cube roots modulo
primes. But, as with square roots, if we can
take cube roots modulo a composite number
n then we can (probabilistically) factor n.

Remark: We do use the fact that 3 is
prime, so that if 3 doesn’t divide p — 1 then
ged(3,p — 1) = 1, so the multiplicative
inverse of 3 will exist modulo p — 1.

Remark: Take a positive multiplicative
inverse of 3 modulo p — 1, or fast modular
exponentiation won’t apply.

7



Corollary: With prime p and 3 not
dividing p — 1, every integer is a cube
modulo p.

Proof: We have a formula which works!

///

Example: Find a cube root of 11 modulo
29.

First, by trial division 29 is a prime, and
29 = 2 mod 3, so the formula applies. By
brute force, 3-19 =57 =1 mod (29 — 1), so

cube root 11 mod 29 = 119 % 29

The successive states in fast modular
exponentiation are (11,19,1), (11,18,11),
(5,9,11), (5,8,26), (25,4,26), (16,2,26),
(24,1,26), (24,0,15). The last value of the
third component, 15, is the desired result.
Thus, 15 is a cube root of 11 modulo 29.

(Check? Yes, 15% %29 = 11.)



Prime-order roots, easy case

The same discussion applies replacing 3 and
cube roots by prime e and e'? roots:

For p a prime with p — 1 not divisible by
e, let r be the multiplicative inverse of e
modulo p — 1. Then any a is an e'® power
modulo p, and an e root of a is given by
the formula

et root of @ modulo p = a”

Proof: Let er =1+ £(p —1). Then

(ar)e — qf" = al—i—ﬁ(p—l)

—a- (a1 =a-1"=amodp

by Fermat’s Little Theorem. ///



Prime-order roots, harder case

Now a family of cases subsuming the earlier
square root formula for prime p = 3 mod 4.

Theorem: Let e be a prime. Let p be a
prime such that e|(p — 1) but e* does not
divide p — 1. That is, e does not divide the
integer (p — 1)/e. Let r be a multiplicative
inverse of e modulo (p — 1)/e. If a is an e*®
power modulo p, then

et root of @ modulo p = a”

and this is the only one of the e'® roots of a
which is itself an e*® root.

Remark: If a is not an e power mod p
then this formula does not produce an e'"
root. Thus, if you do not know in advance
that a is an e power modulo p, then you
must check whether or not b = a” % p is an
et root. That is, compute b¢ % p and see if
you get a.

10



RSA setup

One-time preparation: Alice chooses

two large random primes p, g, from 10*%°

to 10%%0 depending on the desired security.
She computes the RSA modulus n =p - q.
She chooses encryption exponent e and
computes the decryption exponent d
which is the multiplicative inverse of e
modulo (p — 1)(¢ — 1). She publishes n, e
and keeps d secret. Primes p and g can be
thrown away.

Encryption: To encrypt a plaintext
message r and send it to Alice on an
insecure channel. (Suppose 1 < = < n)
Bob computes and transmits y = ¢ % n.

Decryption: When Alice receives the
ciphertext y, she computes y¢ % n, which
1s the plaintext .

11



Some details

Alice does not find two primes ~ 10%%° by
trial division.

Alice computes e~ mod (p — 1)(qg — 1) by
extended Fuclid.

Bob computes x€ % n by fast modular
exponentiation.

Alice to compute y® % n by fast modular
exponentiation

y? % n = x because of Euler’s Theorem (an
extension of Fermat’s Little Theorem).

Apparently, though not provably, an
eavesdropper Eve cannot factor n into

p - q, and cannot take e'® roots modulo the
composite number n, so cannot decrypt.

12



Finding big primes

To acquire 200-digit prime numbers trial
division would not succeed in the lifetime

of the universe using all the computational
power of the internet, etc.

Trial division confirms that a number is
prime by failing to factor it.

It turns out that primality testing is
much easier than factoring.

Primality testing does not try to factor
numbers.

Factoring big numbers is hard, despite
modern factorization techniques much
better than trial division.

13



The number of primes less than x is roughly
z/Inx (the natural log of x).

It is not true that primes are uniformly
distributed, but in hunting for primes
we pretend so in order to form first-
approximation expectations.

If primes were evenly distributed (which
they’re not) then near z primes would be
about In x apart.

Thus, in hunting for primes near = expect
to examine %lnw candidates:

For x ~ 1029 we have %lnx ~ 23

For = ~ 10190 we have %lnaz ~ 115

0500

For x ~ 1 we have %lnaz ~ HTH

So if each test takes only a little time
we should expect to quickly find a prime
wherever we look.

14



Fermat pseudoprimes

One more time: Fermat’s Little
theorem: If p is prime, then for any
integer b we have b? % p = b.

Contrapositive: For integer n if b" % n #
b for some b then n is composite.

The converse is false, but not very false...
Thus, we have

Converse-with-disclaimer: If ?*» %p = b
then p is fairly likely to be prime, but may
not be.

n is a Fermat pseudoprime base b if
b" = b mod n.

15



Remark:

Usage of the phrase pseudoprime is not
consistent.

My usage is that a number that has passed
a primality test (Fermat, Miller-Rabin, etc.)
is a pseudoprime.

Sometimes pseudoprime is meant to

imply non-prime, though having passed a
primality test such as Fermat. But for large
numbers which have passed pseudoprimality
tests we may never know for sure whether
or not they’re prime or composite ...

Another usage is to call a number that has
passed a test a probable prime.

But this term is dangerously close to
provable prime, which is sometimes used
to describe primes with certificates of
primality.

16



There are only 172 non-prime Fermat
pseudoprimes base 2 under 500,000 versus
41,538 primes, a false positive rate of less

than 0.41%

There are only 49 non-prime Fermat
pseudoprimes base 2 and 3 under 500,000,
a false positive rate of less than 0.118%

There are only 32 non-prime Fermat
pseudoprimes base 2, 3, 5 under 500,000

There are still 32 non-prime Fermat
pseudoprimes base 2, 3, 5, 7, 11, 13, 17
under 500,000

561 1105 1729 2465 2821 6601 8911 10585
15841 29341 41041 46657 52633 62745 63973
75361 101101 115921 126217 162401 172081
188461 252601 278545 294409 314821
334153 340561 399001 410041 449065
488881

17



n 1s a Carmichael number if it 1s a
non-prime Fermat pseudoprime to every

base b.

In 1994 Alford, Granville, and Pomerance
showed that there are infinitely-many
Carmichael numbers.

And it appears that among large numbers
Carmichael numbers become more common.

Nevertheless, the Fermat test is a very fast
way to test for compositeness, and is so

easy and cheap that it is still the best first
approximation to primality.

It is cheap because b™ % n can be computed
in ~ logn steps, not n...

18



For example, use the Fermat pseudoprime
test base 2 to test 15. We compute (by fast
modular exponentiation): successive states
are (2,15,1), (2,14,2), (4,7,2), (4,6,8),
(1,3,8), (1,2,8), (1,1, 8), (1,0,8). Thus,
2159% 15 = 8 # 2, so we have proven that 15
1s composite.

Using the Fermat pseudoprime test base
7 to test 25, we have successive states
(7,25,1), (7,24,7), (24,12,7), (1,6,7),
(1,3,7), (1,2,7), (1,1,7), (1,0,7). Thus,
7 %25 = 7. Thus 25 is a Fermat
pseudoprime base 7.

But by trial division 25 = 52 is not a prime.

19



