Abstract Algebra

Most of the number theory we have done
so far can be viewed as special cases of very
general phenomena.

FEither the ocean of specific examples may
obscure the underlying abstraction, or

all these examples may forcefully suggest
looking for that underlying unification.

Understanding the abstractions is not
strictly necessary for understanding the
applications to cryptology.

... but without understanding the unifying
abstractions one is stuck with a long list of
similar but different examples to remember.

Abstract algebra is relatively modern, only
developing since about 1840, and recognized
as a coherent subject roughly 1920. Modern
times by mathematical standards.



Groups

A group is a set G with a single binary
operation (two inputs from G, output
an element of G) for the moment denoted
x, and an identity element e, satistying
properties

e Property of the identity: exg=g*xe =g
for all g € G

e Lixistence of inverses: For every g in G
there is h € G such that hxg = g* h = e.
This A is called an inverse of g, and is

often denoted g~ 1.

e Associativity: (g x h) xk = g * (h x k) for
all g, h,k € G



The notation ¢! would be inappropriate

except that we can prove (below) that each
group element has exactly one inverse.

If the operation g * h is commutative, that
is, if g * h = h % g then the group is
abelian. In that case, often the operation
denoted addition and the identity is written
as 0 instead of e. If the group operation

i1s written as addition, then the inverse is
written as

inverse of g = —g

Often the operation is written as
multiplication

gxh=g-h=gh
and the identity is written 1. For 0 < n € Z
g”:g*...*g
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Examples

In the following, it is easy to verify the
properties necessary for the things to
qualify as groups:

Z, with usual addition 4. Identity is 0 and
inverse of x is —x. Abelian.

FEven integers 27 with addition 4. Identity
is 0 and inverse of x is —z. Abelian.

Rational numbers Q with addition. Identity
is 0, inverse of x is —x. Abelian.

Nonzero rational numbers Q* with

multiplication. Identity is 1, inverse of x
is 1/x. Abelian.

Real numbers R with addition. Identity is
0, inverse of = is —z. Abelian.

Nonzero real numbers R”* with
multiplication. Identity is 0, inverse of x
is —x. Abelian.



Additive group of Z mod m: Z/m with
addition-mod-m as operation. Identity is
0-mod-m and the inverse of z-mod-m is
(—x)-mod-m. Abelian.

Example: With addition,

Z/5 = {0,1,2,3,4}

Example: With addition,

Z/6 = {0,1,2,3,4,5)

Multiplicative group Z/m”*of Z mod m:
Integers mod m relatively prime to m, with
multiplication-mod-m as operation. Identity
is 1-mod-m. Abelian.

Example: With multiplication,
Z/5% ={1,2,3,4}

Example: With multiplication,
Z/6* ={1,5}



Vectors in n-space R"™ with vector addition.
Identity is 0 vector. Inverses are negatives.

The set GL(2,R) of invertible two-by-
two real matrices, with group law matrix
multiplication. The identity is the matrix

(0 1)

Existence of inverses is part of the
definition. The associativity is not obvious
from the definition. This group is not
abelian.

Permutations of a set form a group,

with operation being composition (as
functions) of permutations. The do-nothing
permutation is the identity. If there are
more than two elements, the group of
permutations is non-abelian.



Not every binary operation is associative.

Subtraction is not generally associative, in
the ordinary integers. For example

(5-2)—1=3-1=2

but
5—(2—1)=5—-1=4

Division is not generally associative, in the
rational numbers. For example

2+2)+-2=1+2=1/2

while
2+-(2+2)=2+1=2



Proving some obvious things

Some assertions about groups may seem
silly, but it is worth thinking about their
proofs, because of the universality in
which we are asserting them.

That 1s, things which may be mildly silly
to bother with in stmple computational
examples are more worthwhile to consider

iof we can establish decisive facts once and
for all.

Proposition: There is exactly one
element of a group GG having the property
of the identity.

Proof: Suppose that e x g = g for all g € G,
and g x e’ = g for all g € G. Then

e = ex e (by property of €’)
= ¢’ (by property of ¢)

Thus e = €. /]



Proposition: An element g in a group G
has exactly one inverse.

Proof: Let hxg—=e, g*k =e. Then
h = h x e (property of e)

= h x (g * k) (property of k)
= (h * g) * k (associativity)
= e x k (property of h)
= k (property of e)

So h = k. /)]

The point of this and the previous
proposition is that we do not have to add a
further axiom to be sure that there’s only
one identity or only one inverse. These
properties always follow.



A subset H of a group GG is a subgroup if
e H contains the identity e

e H is closed under inverses, meaning
that if h € H then h=' ¢ H

e H is closed under multiplication,
meaning that if g,h € H then gxh € G

Example: The set {e} is a subgroup of
any group G.

Example: The even integers 2Z form a
subgroup of the group Z of integers with
addition.

Example: The odd integers are not a
subgroup of the group Z of integers with
addition, since 0 is not among them. Also,
they are not closed under addition.

Example: The nonzero integers are not a
subgroup of the group of nonzero rationals
Q™ with multiplication, since most inverses
are not in that set. For example, 37! ¢ Z.
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Example: The cyclic subgroup (g)
generated by an element g of G consists
of e, g, g7 !, g%, g72, etc. Not all the powers
of g need be different.

Example: The set H = (2) = {1,2,4} is
a subgroup of Z/7*. Check by brute force
(don’t do this!)

e certainly 1 is in H, by definition.

e closure under inverses: 2-4 =8 =1 mod 7,
and 1 -1 = 1mod 7, so everything in H has
an inverse in H.

e closure under multiplication: multiplying
anything by 1 gives the same thing.
Multiplying 2 -2 = 4mod 7. 2-4 = 8 =
Ilmod7. 4-4=16=2mod 7. Ok!

Example: For an abelian group, if we use
additive notation, the cyclic subgroup (g)
generated by an element g of G consists of
0, g, —g, 2g, —2g, etc. Not all the powers of
g need be different.
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Proposition: The cyclic subgroup H =
(g) generated by an element g of a group G
really is a subgroup.

Proof: This is a dressed-up version of the
so-called Laws of Exponents, which should
really be called Properties of Exponents.

1 = ¢ €H (convention)
g™ * g" g™t € H (ind’n, cases)
(")~ g~" €H  (ind'n)

Thus, we have proven: presence of the
identity in the subset, closure under
multiplication, and closure under inverses,
so H is a subgroup. ///
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Order

The order |G| of a group G is its number
of elements. The order |g| of an element

g € G is the smallest positive integer £ (if it
exists at all!) such that g* = e.

Example: In the group Z/9 with addition,

by brute force the element 3 has order 3:
1.3=3£0mod 9
2-3=6#0mod9
3-3=9=0mod 9

In that same group, the order of 4 is 9:

1-4 = 4 #0mod9
2.4 = 8 #0mod)9
3-4 = 12 3 #0mod9
4.4 16 7 #0mod9
5-4 20 2 #0mod9
6-4 24 6 # 0mod9
7-4 = 28 1 #0mod9
8-4 = 32 = 5 #0mod9
9.-4 = 36 = (0 mod 9
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Example: We determine the order of 2 in
Z /11" by brute force:

21 — 2 # 1modll
22 4 # 1mod 1l
23 8 # 1mod]l1l
24 = 16 = 5 # 1modl1l
22 = 32 = 10 # 1modl1l
260 = 64 = 9 # 1modl1l
27 = 128 7 # 1modl1l
28 = 256 3 # 1modll
29 = 512 = 6 # 1modll
210 = 1024 = 1mod 11

Thus, the order of 2 in Z/11* is 10. In
other words, 2 is a primitive root modulo
11.

Unlike additive problems, it does not seem
that there is any easy way to anticipate in
advance the order of elements of Z/m™.
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Lagrange’s Theorem

This is the first real theorem in group
theory, and is ubiquitous in mathematics.

Theorem: Let G be a finite group. The

order of a subgroup H of GG divides the
order of G.

Proof: Define the left coset gH of H by an
element g of GG to be

gH ={gh:h e H}

We will show that the union of all of the
cosets of H is all of G, that any two cosets
are either disjoint or exactly the same, and
that all cosets of H have the same number
of elements, the order |H| of H. If we do
this, then

|G| = (num. distinct cosets H) - |H|
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First, certainly
g=g-ecgl

Thus, every g € GG is in coset gH.

Second, suppose tH NyH # ¢. Anything in
the intersection is expressible two ways

xh = yk

for some h,k € H. Right multiply by
k—1 € H to obtain

zhk™1 =y
Thus, for any ¢ € H,
yl = chk™ 14
so yH C xH. Symmetrically, tH C yH, so

xH = yH. Thus, if two cosets overlap they
are equal.
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Finally, we claim that all cosets have |H|
elements. Indeed, the map f : H — gH
by f(h) = gh is a bijection. Indeed, if
gh1 = ghs, left multiplication by g~' shows
that hy = hsg, so f is an injection. And,
given gh € gH, surely f(h) = gh, so f is a
surjection. So f is a bijection.

In summary: Every element of GG lies

in some coset of H. Distinct cosets

are disjoint. Any coset has exactly |H |
elements. Thus, we can count (without
repetition) elements in G' by the cosets in
which thy lie

|G| = (num. distinct cosets H) - |H|

which is Lagrange’s theorem. ///
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Abstracting Euler’s Theorem

Proposition: The order £ of an element
g of a group G is equal to the order of
the cyclic subgroup (g) generated by

g. In particular, e, g,¢2%,...,¢g" 1 is an
irredundant list of elements in (g). And

g" = e if and only if £|n.

Proof: Prove the last assertion first.
Suppose ¢g" = e. Write n = ¢f + r with
0<r< /. Then

T r

e=g"=g"""=(¢") g =el-g" =g

Thus, by the minimality of £ necessarily
r = 0. That is, £|n. And if ¢|n the same
argument can be run backward to prove
that g™ = e.
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Next, prove that the elements

e, q,g%,...,¢" 1 are distinct. If g° = ¢’ for
i < g4, then e = ¢?~*, and by the first part

ll(j —1). For 0 < ¢ < 5 < /£ —1 this cannot

happen.

Next, prove that any g™ is equal to some
one of the e, g, ¢?,...,¢""'. Again, write
n =gl +r with 0 <r < £. Then, as usual,

g =gt = (") -9 =g =g
This proves that (g) consists exactly of
6797927 © e 796_1'

Finally, in particular, the order of the

subgroup (g) is the number of these elements
e, q,g%,...,¢° 1, which is ¢, the order of the

element g. ///
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Corollary: (Euler’s Theorem) Let ¢(n)
be Euler’s ¢-function of n. For b relatively
prime to n,

b?(") = 1 mod n

Proof: The multiplicative group G =

Z/n* has p(n) elements. For b € G, by
Lagrange’s theorem and the proposition
that |(g)| = |g|, the order £ of b divides the
order |G| = ¢(n) of G, so write £ = N - p(n).
Then

pP(") = (V)N =1V =1 mod n

///
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Rings

A ring R is a set with two binary
operations + and * (addition and
multiplication) with special element 0 such
that

e R with + and 0 is an abelian group

® x 1S assoclative

e Distributivity: a*(b+c¢) =a*xb+a*c and
(b+c)xa=bxa+cx*xa

If the multiplication is commutative, say the
ring is commutative.

If there is an element 1 € R such that
1xr =rx1=r call this 1 a multiplicative

identity. The 0 is the additive identity.

Example: The integers Z with the usual
addition, multiplication, and 0 and 1 form a
commutative ring.
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As an example of a universally true
assertion which transcends our usual
intuition for multiplication as repeated
addition:

Proposition: In any ring R, for all » € R

Oxr=20

Proof: We have

Oxr=(04+0)*r (property of 0)
=0xr+0x7r  (distributivity)

Add the additive inverse s = —(0 * r)
(whatever it may be!) to both sides

O0=s+(0xr+0x*7) (inverse prop)
=(s4+0*7)+0x*r (associativity)

=04+0xr (inverse property)
=0x*r (identity property)
as claimed. ///
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Another example, which gives a stronger
explanation of the slogan a minus times a
minus 1s a plus:

Proposition: In any ring R

(—7)*(—s) =r=xs

Proof: First, claim that —(—r) = r. Using
uniqueness of additive inverses in a group,
check by adding, namely that (—r) +r = 0.

Next, claim that —(r * s) = (—r) * s. Using
uniqueness of additive inverses, check by
adding, using distributivity

rxs+(—s)xs=(r+(-r))*s=0%xs=0

Then

—(r=*s)+ (—r)*x(—s)
= (—r)*s+(—7)*(—9)
=(—r)x(s+ (=) =(—r)*x0=0
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This proves that (—r) * (—s) is additive
inverse of —(r * s). But also r x s is an
additive inverse of (—r * s), so by uniqueness
of additive inverses

(—7r)*(—s) =rxs

as claimed. ///
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