Review

Square roots modulo primes:
(exactly two square roots of b?)

Sun-Ze theorem to solve simultaneous
equations with ged(m,n) =1

{x:amodm

r = bmod n

Compute via Euclid.

Square roots modulo composites:
(exactly four square roots of b modulo p - g
with distinct primes p, q)

Square root oracle and factoring p - ¢
Pollard’s rho factorization attack

Pollard’s p — 1 factorization attack



We continue to look at ways in which
composite integers are different from primes.

Primality testing seems to be much easier

than factoring. This helps make RSA and
other PK ciphers feasible and (apparently)
secure.

Miller-Rabin pseudoprime test is about as
good as one could wish.

There are much better factorization attacks
than trial division, such as Pollard’s rho
and various sieve methods (quadratic sieve,
number field sieve), but these are still much
slower than primality testing.

Other clever PK protocols make further use
of number theory.



Polynomial algebra mod primes

In high school algebra we learn that a
polynomial equation f(x) = 0 has no more
roots than the degree of the polynomial f.

For example, a quadratic polynomial will
have at most two roots.

This is still true if we consider polynomials
with coefficients in Z/p and look for roots in
Z /p, for p a prime.

This generalizes the issue of square roots,
solving 22 — b? = 0 mod p.

This will fail for composite moduli, just as
there were more than two square roots for
composite moduli.



Proposition: A quadratic equation has at
most two roots modulo a prime p.

Proof: Suppose a is a root of f(x) =
0 mod p where f(z) = 2 + Az + B. Divide
the polynomial 2?4+ Az + B by x —a in steps

(z*+Ax+B)—z-(r—a)=(A+a)z+ B

(A+a)z+B)—(A+a)(xr—a) =a*+Aa+B

to get
’+Ar+B=(x+(A+a)) (x—a)+r

where r = a®+ Aa+B is a constant (in Z/p).
Not surprisingly, this constant is the value
f(a) of the original polynomial at x = a.
Thus, as for polynomials with rational, real,

or complex coefficients, f(a) = 0 if and only
if x — a divides f(x).

Then for f(a) =0



we see that
v’ + Az +B = (z —a)(zx — (—A — a))

so another root is —A — a. For brevity let

b=—A—a, so

flz) = (z —a)(z —b)

Now we show that there is no other root
than a and b. Suppose f(c) = 0. Then

(c—a)(c—b) =0mod p

That is, p|(c — a)(c — b). Because p is prime,
if p|st then p|s or p|t. Thus, either p|(c — a)
or p|(c — b). That is, either ¢ = a mod p or

c = b mod p.

Thus, there are at most two roots to
a quadratic equation modulo a prime.

///



Non-unique factorization mod composites

Modulo composites polynomial equations
will typically have more than the expected
number of solutions, and, the polynomials
themselves factor in more than one way.

For example
t° —3z+2=(z—1)(z—2) mod 15
showing the two roots 1 and 2 of
z® —3x 4+ 2 = 0mod 15
But also
77 -3.-7+2=49—-21+2=230=0mod 15

112—3-11+2=121-33+2 =90 = 0 mod 15

and there is another factorization

t* —3z+2=(z—"T7)(x—11) mod 15



Non-unique factorization of quadratic
polynomials is understood via Sun-Ze’s
theorem. For t to be a root of (x — a)(x —
b) = 0 mod pqg with distinct primes p and ¢
it is necessary and suflicient that

{(t—a)(t—b):()modp
(t —a)(t—b) =0mod ¢

equivalently

t =a or bmod p
t = a or b mod q

The obvious choices are ¢ = a mod both p
and g, and ¢t = b mod both p and q. The
mismatched choices

t3 = a mod p and t3 = b mod q

or
t4 = bmod p and t4 = a mod q

give two more roots. Also another
factorization

(z —a)(z — b) = (z — t3)(z — t4) mod pq



For example, to factor (z — 3)(x — 5) mod 77
in another way, note that (by trial division)
77 factors into primes 77 = 7 - 11 and
(x — 3)(x — 5) = 0 mod 77 is equivalent
to
(x —3)(x —5) =0mod 7
{(x—?))(x—5) = 0 mod 11

or

r=3or 5mod?7
r=3or 5mod11

The non-obvious solutions are the
mismatched ones

ts =3 mod 7 and t3 = 5 mod 11
ts =5mod7and t4 = 3 mod 11
cr

By Euclid 1 =2-11—-3-7, and by Sun-Ze

ts=(2-11)-5—(3-7) -3 =47 mod 77
ty=(2-11)-3—(3-7)-5 =38 mod 77

And also
(x —3)(x—5) = (x —38)(x —47) mod 77



Hensel’s Lemma

So far our discussion of composite moduli
has ignored the possibility that a modulus
has a factor of p? or p? or a higher power of
a prime.

Sun-Ze’s theorem does not get us from a
solution mod p to a solution mod p?, for
example.

For general modulus m = pi'...p" we
would need to solve separately modulo the
prime powers p{', ..., p;’ and stick them
together via Sun-Ze (and Euclid).

For example, how would we get from the
square root b = 3 ofa = 2mod 7 to a
square root of @ = 2 modulo 72 or modulo
73, supposing that such existed at all?



The method is due to Hensel, refered to as
Hensel’s lemma.

Strangely, this is very closely related to the
Newton-Raphson method for numerical
solution of equations f(x) = 0 in the

real numbers. This method is also known

as sliding down the tangent, and is a rare
example of an algorithm that is robust in
the sense that it is self-correcting in the face
of computational errors.

The Newton-Raphson method says to find a
root of f(x) = 0 make a first guess x,, and

then put
f(zo)

f'(xo)

where f’ is the usual derivative. Repeat as
necessary:
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This approximates the graph of f(x) b
the tangent line at x,, and taking the
intersection of the tangent line with the -
axis.

To solve z? = 2 for real x, let f(z) = z° — 2,
f'(xz) = 2z, guess z, = 1, and

f(z,) 12—-2 3
L1 =Ty — =1 - —
f(x0) 2.1 2
2
x2:x1_f($1):§ (3)" - _ 17
fl(zy) 2 2 - g 12
2
flza) 3 (3) —2
T3 = To — = — — ~ 1.417
ST flm) 2 2.3
S(z3)
= o — ~ 1.4142157
T ()
Ts = Tq — f,(x‘l) ~ 1.41421356374
f(z4)
vo = 25 — 1) 1 414913562373

f'(xs)
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Hensel’s Lemma says that the same
process will work to get roots of equations
modulo higher and higher powers of a
prime. It might be surprising that Taylor
expansions and derivatives have any bearing
on computations modulo p?.

A brute-force version of Hensel’s lemma:
Given that 32 = 2 mod 7, find a square root
b of 2 modulo 72.

Imagine that b = 3 + 7t for some ¢, that is,
by adjusting the initial square root 3 only by
a multiple of 7. See what this requires of ¢

(3 + 7t)* = 2 mod 7°
Simplify
9 + 42t 4+ 49¢t* = 2 mod 7°

Happily, the t? term is 0 modulo 72, giving
a linear equation

9+ 42t = 2 mod 7?

This linearization 1s not a coincidence!
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The linear equation 9 + 42¢ = 2 mod 7?
simplifies to

49t + 7 = 0 mod 72

which says 72|7- (6t +1) or simply 7|(6t + 1),
SO
6t = —1 mod 7

We would like to multiply through by
6! mod 7, which (by brute force or by
extended Euclid) is 6. Thus ¢ = 1.

That is, 3+ 7 =3+ 1-7 = 10 should be a
square root of 2 modulo 72. Yes,

102 = 100 = 2 mod 49
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Continue this example: Modulo 73, try

10 4 7%t as square root, adjusting the square
root mod 72 (namely 10) by a multiple of
72. Then solve for t in

(10 + 49¢)? = 2 mod 7°
Expand
100 + 980t + 7*t? = 2 mod 7°

The t? term is 0 modulo 73, so this
linearizes to

100 4 980t = 2 mod 7°
98 4+ 980t = 0 mod 73
2+ 20t =0 mod 7
2—t=0mod 7
t =2mod?7

Thus, 10 4+ 7%t = 10 4+ 7% - 2 = 108 should be
a square root of 2 mod 7°. Indeed,

1082 = 11664 = 2 mod 343
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This can be systematized:

Theorem: (Hensel) Let f(x) be a monic
polynomial with integer coefficients.

Let f/(x) be the derivative of f. Let p

be a prime. Let x, be an integer such

that f(x,) = 0 mod p. Suppose that
f'(z,) # 0mod p. Let f'(z,) ! mod p be a
multiplicative inverse of f'(x,) mod p. Then

1 =, — f(o) - f(2,)” mod p?

is a solution of f(x) = 0 mod p?. Similarly
zo =1 — f(z1) - f'(x0) " mod p’

is a solution of f(x) = 0 mod p° and
z3 = 3 — f(22) - f'(2,)”" mod p*

is a solution mod p*. Etc.

Notice that the only inverse needed is

f'(z,)"! mod p, not mod p* and not
f(x1)™1, ete. Just f'(z,)" L.
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Example: Given that 2 is a fifth root of 3
modulo 29, find a fifth root of 3 modulo

292,

Note that 29 is prime (trial division). Let
f(z) = x° — 3,50 f'(x) = 5z* Let
r, = 2. Hensel’s Lemma gives the next

approximation (mod 29?)

1 = 2o — f(xo) - f(2o)” " mod 297

where f’(z,)”! is the multiplicative inverse

mod 29 (not mod 29?)

() ' =(5-2)"1=80""' =4 mod 29

Thus, a fifth root of 3 mod 297 is

T =2—(2°-3)-4=—-114 =

16

727

mod 29?



To get from the fifth root 727 of 3 modulo
292 to a fifth root of 3 mod 293, repeat: still
with f(z) = 2° — 3,

Ty =x1 — f(x1) - f(z,)”" mod 29°

Again, note that the inverse of the value
of the derivative is just the inverse mod 29
which we computed (namely, 4), not mod
292 nor 293. Thus, the next approximation

is a fifth root of 3 modulo 293

Ty = 727 — (727° — 3) - 4 ={ 12501 | mod 29°

Continuing in this manner gives a fifth root
of 3 modulo any power of 29.

Note that the new mod 29'*! solution
is congruent to the previous (mod 29*)
solution modulo 29°.
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