Pseudo-random number generators

A (pseudo-) random number generator
(pPRNG) is an algorithm which produces a
long stream of seemingly random numbers
in a prescribed range, from a specified
initial state, the seed.

But what does (pseudo-) random mean?

Note that a determanistic process cannot
produce truly random outputs, no matter
how haphazard or confusing the outputs may
appear.

There are two types of conditions we
might demand of a stream of numbers,
to suit various purposes: statistical and
cryptographic.

Statistical conditions on a stream of
numbers are requirements that the stream
resemble samples from a sequence of idential
random variables.

Such pRNGs are useful in simulations and
modeling.

But periodicity or other accidental internal
patterns in pRNGs can produce dangerously
erroneous results in simulations if those
patterns happen to resonate with the model
being studies.

Cryptographic conditions are strictly
stronger than statistical conditions, and
demand unpredictability.

A stream of numbers can meet a great
variety of statistical tests and still be
predictable.

One cryptographic application is to
asynchronous stream ciphers where a
small key produces a long random-looking
keystream

S = (80,81,82,83, ..)

of integers modulo m by a chosen pRNG to
use as key for a fake one-time pad.

This is a fake one-time pad because the
keystream is not truly random.

If the keystream is pertodic, then the
cipher degenerates into a Vigenere, which
is vulnerable. Therefore, the very first
imperative for pRNGs is to assure that the
period (number of steps before it repeats)
is as long as possible.

Periodicity is an extreme example of
predictability, a bad cryptographic feature
for a pRNG to have.

More precisely, a sequence

S50,S81,52,...
is said to be periodic with period p if

Si+p = S; (for all indices ?)

Certainly not every sequence is periodic,
but sequences produced by simple
mechanisms by ‘finite-state’ machines

tend to be. The first issue is to make the
period as large as possible for a given size of
mechanism.

Internal versus external states

In the most naive form of pRNGs the next
output is computed from the previous
output (or from a finite set of previous
outputs) using a public algorithm but secret
constants and secret seed value.

A subtler version uses a little more memory
to keep track of a secret internal state,
which is computed from the previous
internal state using a public algorithm

and secret constants and secret seed. But
the actual outputs are computed from the
internal state in a supposedly irreversible
manner.

That is, in the first, more naive version, the
state is external.

In the second, more sophisticated version,
the state is internal.

Linear congruential generators (LCGs)

Linear congruential generators (LCGs) are
not good by themselves for use in secret
ciphers but are useful for other things, such
as simulation.

Fix a modulus m, an a invertible mod m,
and integer b. Take a seed sy in Z/m. The
stream of pseudorandom numbers produced
from this data is

s1=(a-so+b)%m
sy = (a-s1+0b)%m
s3=(a-sy+b)%m

Sni1 = (a- s, +b) %m

Thus, the state 1s external. The secrets are
the constants a,b,m and the seed s, .

For example, m = 23, a = 2, b = 5, so the
next element of a stream is obtained from
the previous by

Spt1 = (28, +5) %23

With seed s = 1, the stream produced
(including the seed value 1) is

1,7,19,20,22,3,11,4,13,8,21,1,7, 19, 20, . ..

If an earlier value recurs, then the sequence
starts repeating, since each value is
completely determined by the previous.
The period is 11 and (necessarily) not

every element of Z/23 occurs, but only 11
of them.

If we choose a seed not among the states
appearing starting with seed 1, for example

S, = 2, then we get another 11 values mod
23:

2.9.0,5,15,12,6,17,16,14,10,2,9,0.. ..

Thus, with m = 23, a = 2, b = 5, the only
missing value is 18 (mod 23). If we use seed
s, = 18 we get a very unrandom

18,18,18,18, 18,18, 18,18, . ..

That is, 18 is a fixed point of this pRNG,
meaning that (with these constants m,a,b)
if the (external) state is ever 18 then it does
not change.

For any m, b if the constant a is just 1, then
the pRNG is badly degenerate, especially
from the viewpoint of predictability:

Sni1 = (8n, +b0) Tom

For example, with m =23, a =1, b =5, and
seed s, = 1

1,6,11,16,21,3,8,13,18,0,5, 10,15, . . .

The wrap-around effect is not suflicient to
fool anyone.

Another example: m =23, a=3, b =25, so
Sna1 = (3-8, +5) %23
With seed sy = 1, the stream is
1,8,6,0,5,20,19,16,7,3,14, 1,8, ...

The period is 11 and not every element

of Z /23 occurs. With the same constants
m,a,b, try seeds 2,3,4,5,6,7,8,9, 10:

2.11,15,4,17.10,12,18,13.21,22.2. 11, . ..
3.14,1,8,6,0,5,20,19,16,7,3, 14, . ..
4,17,10,12,18,13,21,22.2. 11,15, 4, 17, . ..
5.20.19,16,7.3,14,1.8,6.0,5, 20, . ..
6,0,5,20,19,16,7,3,14,1,8,6,0, ...
7.3,14,1,8,6,0,5,20,19.16,7,3, ...
8,6,0,5,20,19,16,7,3,14,1,8,6, . ..
9,9,9.9.9.9.9,9.9.9.9.9.9 ...
10,12,18,13,21,22,2.11,15,4, 17,10, 12, . . .

We see that 9 is the fixed point for the
LCG.

Every LCG
Sn+1 = (CL *Sp Tt b) %p

with prime modulus p and 2 < a < p has
exactly one fixed point, found by solving

a-r+b=xmodp
(a—1)-x=—bmod p
r=—-b-(a—1)"!modp

where the inverse is modulo p.

In the example above,
Snt1 = (3 5n, +5) %23
has fixed point x where

3-x+4+5=xmod 23
(3—1)-x=—5mod 23
r=-5-(3—1)"! mod 23
r=—5-12=—-60=|9|mod 23

10

As an example mod 23 with longer period
than 11, take

Sni1 = (58, +5) %23

With seed sy = 1, the stream is

1, 10,9, 4, 2, 15, 11, 14, 6, 12, 19, 8, 22, 0,
b, 7,17, 21, 18, 3, 20, 13, 1, 10, The
period is 22. Every value mod 23 except the
fixed point 16 appears before it repeats.

Theorem: For prime modulus p, if a is a

primitive root modulo p, then the period of
the LCG

Sn+1 = (a’sn_l_b)%p

is the maximum possible, namely p — 1,
except when the seed is the single fixed
point. Otherwise the period is a proper
divisor of p — 1. Specifically, except for
the fixed point, the period is the order of
a modulo p, the smallest positive integer /¢
such that a* = 1 mod p.

11

Remarks:

Whichever of the a, b, m, sy are ‘secret’,
it turns out that it is easy to recover all
of them from a small number of values

S1,89,... by linear algebra.

Having a large keyspace is necessary, but
definitely not sufficient, for security. An
example is Vigenere.

Especially in the context of trying to use

a pRNG to make a key for a OTP, we
have an obvious important question: how
long before the sequence repeats? How
long is the period? If the period is shorter
than the message, the cipher is a Vigenere,
which is vulnerable to Friedman’s index-of-
coincidence attack.

. no matter how apparently random the
actual values are before they repeat!

12

Proof: (of theorem on LCGs) Consider the
LCG
Si+1 — (CL - S; + b) %p

with 2 < a < p. In terms of two-by-two

matrices
Sn+1 _ a b Sn
1 - \0 1 1

[terating

k
Sn+k _ a b Sn
()= 1) (7)
To understand the matrix

(5 1)

we use its eigenvalues and eigenvectors,
numbers A (eigenvalues) and 2-by-1
matrices (eigenvectors) v such that

Lv=M\-v

13

That is, we look for vectors on which the
action is as simple as possible, as though it
were scalar multiplication.

For example, the effect of iteration of L is
clear:

L"v=Lo...oLv=)\" v

N -
"V

n

A corresponding benefit of expressing a
general vector as a sum of eigenvectors is
seeing the effect of iteration

u=7v-+w

where
Lv=X-v Lw=pu -w

then
L'"v=\" v+ u" - -w

14

The Cayley—Hamilton theorem tells how
to find eigenvalues of an n-by-n matrix M.
Let I be the n-by-n identity matrix (that

is, with 1’s down the upper-left to lower-
right diagonal, 0’s off this diagonal). Let

x be an indeterminate, and compute the
determinant

Py (x) = det(xzl — M)

This polynomial is the characteristic
polynomial of M. The Cayley-Hamilton
theorem says that the eigenvalues are the
roots of the characteristic equation

Recall the easy formula for the determinant
of a two-by-two matrix:

A B
det(C D)—AD—BC’

15

Here let I be the 2-by-2 identity matrix and
compute

Pua) = (g)= (5 1)
- det(wEQ a:_—bl)

= (z—a)(z—-1)

This does not depend on b. The
characteristic equation is

(x —a)(x—1)=0

which has roots a,1. Some fooling around
gives eigenvectors

1 : :
(O) = eigenvector for eigenvalue a

(—(a —11)—1b

) = e.vector for e.value 1

16

That is, abbreviating v = —(a — 1)~ 10,

<3>(> (o)
(G 9) ()=

We want to express (10) as a sum of

eigenvectors. Since

(1)-()=6)

whatever the value * may be, the left-hand

side is an a-eigenvector for <g 11)) Thus,
So\ So\ [V LY
1) 1 1 1

S :
expresses < 10> as a sum of a-eigenvector

and an 1-eigenvector.

17

That is, for any n

(7)= (1) (%)

That is we have a formula for the
nt® output, given s, and a, b, p with
v=—(a—1)"1b modp

Sn=0"(So —v)+v modp|or

sSp=a"-8,+ (" —1)(a—1)"'b modp

Thus, the periodicity of a LCG is the same
as the periodicity of powers of a, except for
fixed point s, = v. ///

Remark: Fermat’s Little Theorem and/or

fast modular exponentiation further simplify
the computation.

18

For example, for the LCG
Spa1 = (3-s,+1)%23

suppose the seed is s, = 1 and we want
s1000- 1he formula says that for p prime

and 2 < a < p the LCG
Snt1 = (a- s, +b)%p
with seed s, has n'® state
Sp=0a" 5o+ (a" —1)(a—1)"'b modp

By brute force or Euclid, the inverse of
a—1=3—-—1=2mod 23 is 12. Thus

Spn=38" 8,4+ (3" —1)-12-1 mod 23

By Fermat, 3*~! = 1 mod 23, and then
1000 = 45 - 22 + 10 gives

31000 — 345-22—|—1O — (322)45] 310

— 1% .30 = 310 — 8 mod 23

using fast modular exponentiation.

19

In summary, for the LCG
Spa1 = (3-8, +1) %23
with seed s, = 1 we have
s1000 = 3799 14+ (31999~ 1).12.1 mod 23

=8 -1+ (8—1)-12-1 =92 =0 mod 23

Remark: The linear algebra idea of using
eigenvectors to break down the effect of a
matrix into simpler pieces is very important
throughout mathematics.

20

Example:

A linear congruential generator which meets
many statistical, but not cryptographic
criteria, from Comm. of ACM, vol. 31,
1988, pp. 1192-1201. Take

Sni1 = (16807 - s,,) % 2147483647

(Here ‘b’ is 0.) The modulus p is prime, and
16807 = 7° is a primitive root. In fact, the
modulus is the Mersenne prime

2147483647 = 231 — 1

The smallest primitive root is 7, and the
exponent 5 does not divide p — 1, so 7° is
still a primitive root modulo p. The period

1s 2147483646.

And 7° is close to /P which might suggest
that multiplication by it will mix well.

21

Linear feedback shift registers

Linear feedback shift registers (LFSRs)
are not adequate for secret ciphers but are
useful for other things.

For size N, modulus m (often m = 2),
coefficients ¢ = (¢p,...,cn_1), and seed
or initial state s = (sg, s1,52,83,...,SN_1)
define forn+1 > N

Sn+l1 —

(Co Sp +C1 Sp—1+ -+ CN=-1 Sn—N+1) o m
For example, with lengths N =2 and N =3

Sni1 = (CoSp + €1 8n_1) %0 m

Sp+1 = (CoSn +C1Sp—1 +C25p_2)% M
As with any pRNG, a basic question is to
find the period, that is, how soon does it
repeat?

The state S N+1,---8n—2,Sn—1,Sn 18
external. There is nothing hidden except the
constants.

22

As with LCGs, these recursive definitions
can be written in terms of matrices. For
simplicity take N = 4. With coeflicients
¢ = (cg,c1,Co,c3) the recursion relation is
(mod m)

Sn+1 Ch €1 C2 C3 Sn
Sn |1 0 0 O Sn—1

sme1 | L0 1 0 0] | sho

Sn—2 0 0 1 0 Sn—3

Letting C' be that matrix, the effect of
moving forward £ times in the pRNG’s
stream 1s

Sn+4 Sn
Sntl—1 | _ ot | Sn—1
Sn+40—2 Sn—2
Sn40—3 Sn—3

and starting from the initial state

Sn+43 S3
Sn+2 _ Cn . S92
Sn+1 S1

Sn So

23

For example, suppose that the modulus
ism = 2 and the coefficients are
(co,c1,c2,c3) = (1,0,0,1). Then the output
stream is produced by

Co*S;+TCl"S—-11TC 8 _2+C3-8;_3
1°Si—|—0'87j_1‘|‘0'37j—2‘|‘1'8i_3
Si + Si—3

Si+1

With seed (sq, s1,52,83) = (1,1,0,0), the
whole stream produced (including the initial
(1,1,0,0)) is

1,1,0,0,1,0,0,0,1,1,1,1,0,1,0,1,1.,0,0, . ..

With length 4, if an earlier-occuring pattern
of 4 consecutive bits recurs, then the stream
will repeat itself, since four consecutive
values completely determine the next one.
(The state is external.) Here the initial
(1,1,0,0) recurred after 15 steps.

24

That is, the successive states of the LESR

Si+1 — S; + S;—3 are
1100
1001
0010
0100
1000
0001
0011
0111
1111
1110
1101
1010
0101
1011
0110
1100

This vertical display shows how the bits
move from right to left in the state, with
a new right-most bit being computed
according to the coefficients.

25

With initial state 0000001 some states of
the length-7 LFSR s;11 = s; + s;_¢, Where
the new bit is the sum of the first and last
bits of the previous state, are

0000001

0000011

0000111

0001111

0011111

0111111

1111111

1111110

1111101

1111010

1110101

1101010

1010101

0101010

1010100

0101001

1010011

(period is 127 = 27 — 1)

26

Remark: Period length can depend
both on the coefficients and the seed.
For example, for the length-8 LFSR with
coefficients

(co,c1,--.,c7) =00011111

there are different periods depending upon
input:

input period
11111111 1
00001111 3-7
00000011 2-3-7
00000001 2 -2
00000101 3
00001001 2 -
2
3

10000000 2 -
10001000
10010010
10010001 2 -
10011001 22

27

An explicit computation for one of the
inputs to that LEFSR with coefficients
00011111, which computes the new bit by
adding the oldest 5 bits of the current state
(mod 2), and shifts the state to the left
(forgetting the oldest bit). After 14 steps
the initial state re-appears.

0" 00001001
15t 00010011
ond 00100111
34 01001111
4%h 10011110
5th 00111101
6th 01111011
7th 11110110
8th 11101100
9th 11011000
10" 10110000
11*%* 01100001
12th 11000010
13" 10000100
14** 00001001

28

Theorem: For a length N binary
(modulus 2) LFSR, the best possible
(longest) period is 2 — 1. This best
possible is obtained exactly when the
characteristic polynomial
P(lr) =cy_1+cn_ox+ ...+ cor™ L 2
is primitive, and then the initial state
does not matter (as long as it’s not the zero
vector).

Definition: A polynomial P of degree n
with coefficients in Z/p is primitive if P(x)
divides ™ — 1 but does not divide z* — 1 for
any 0 <t <n. (More discussion later.)

The possibility of expressing the computation
of the output stream in terms of linear
algebra (matrices) is convenient both

for computations and as an exploitable
vulnerability for cryptanalytic attacks.

29

Blum-Blum-Shub

The BBS pRNG has a secret internal
state from which a pseudo-random bit is
computed.

In sharp contrast to LCGs and LFSRs,
BBS is provably secure (assuming it’s hard
to factor): if an adversary can succeed in
guessing the next bit more than half the
time, they can factor a large n = p - q.

Choose two large primes p, g equal to 3 mod
4, and compute n = p - q. The modulus n
is public and can be reused. For given seed
so compute the sequence of internal states

$1,89,83,... by
Siv1 =52 %n
Then compute the i** pseudo-random bit by
b, = s; %2
With luck, period ~ lem(p — 1,q — 1) /2.

30

Tiniest example of BBS: Take p = 3,
q="7,s0n=21. Take s, = 2. Then

s1=52%21=4
sy =51 %21 =16
s3=55%21 =4
s4=55%21 =16
s5 = 82%21 =4

Once the internal state returns to any
previous value, it is in a loop. The sequence
of bits produced is b; = s; % 2, but in this
example they’re all just O.

Failure due to too-small a situation. Try
again...

31

Second-to tiniest example of BBS: Take
p=7,q=11,s0n ="77. Take s, = 2. Then

81282%77:4
82:8%%77:16
83283%77225
84283%77:9
85282%77:4
8528421%77:16

so the internal state repeats with a loop of
length 4 << lem(7 — 1,11 — 1). The sequence
of bits produced is b; = s; % 2, in this case

b, =5,%2 =0

b =51 %2=4%2=0
bo =50 %2=16%2 =0
b3=83%2=25%2=1
by =54 %2=9%2=1
bs = s5 %02=4%2=0

The loop of bits 0,0,1,1,0,0,1,1,0,0,... is
not impressively random.

32

Third-to tiniest example of BBS: Take
p =11, q9q = 19, so n = 209. Take s, = 2.
The sequence of internal states (starting
with s1) generated by s;11 = s? %n is

4,16,47,119, 158,93, 80,130, 180, 5, 25,207, 4

so the internal state repeats with a loop of

length 12. (Don’t count the 4 twice.) The

loop of pseudo-random bits produced by

b; = s; % 2 (starting with by) is
0,0,1,1,0,1,0,0,0,1,1,1

Somewhat more random-looking.

33

Fourth-to tiniest example of BBS: Take
p =19, g = 23, son = 437. Take s, = 2.
The sequence of internal states (starting
with s1) generated by s;11 = s? %n is

4,16,256, 423,196, 397, 289, 54, 294. 347,234,
131,118, 377, 104, 328, 82, 169, 156, 301, 142,
62,348, 55, 403,282, 427, 100, 386, 416

so the internal state repeats with a loop of
length 30. The loop of pseudo-random bits
produced by b; = s; % 2 (starting with by) is

0707071707 17 707071707
0,0,0,1,0,1,0,0,0,1,1

1 1707 Y
Y) Y Y) 707 Y Y) 7071

1
,0,0,0

Somewhat more random.

34

Remark: Security of BBS:

Since p = 3 mod 4, for z a square mod p

computes the principal square root of z.
Thus, the squaring map is a permutation
of the set of squares mod p. The same is
true for ¢, so (by Sun Ze’s theorem) the
squaring map is a permutation of the set
of squares mod n.

A careful analysis (see Stinson’s book, for
example) can show that (in rough terms)
if a sequence of bits produced by a BBS
generator modulo n can be distinguished
from a sequence of random bits, then there
is a fast probabilistic algorithm to find
square roots modulo n,

. and a square root oracle gives a fast
probabilistic algorithm to factor n into its
factors n = p - ¢ as we saw earlier.

35

Critical obstacle:

Ironically, we need a very good random
number generator to set up BBS in the first
place!

The primes p and ¢ and the seed s, must
themselves already be random of high
quality, or an adversary will simply search
the space of ‘easy’ choices for such primes
and seed.

That is, without high quality random
materials, the outputs are not high-quality
random.

For high quality random materials,
hardware devices are necessary.

For example, /dev/random and
/dev/urandom on Linux.

36

Reminder about RSA key sizes, etc.:

Not only have CPUs generally gotten faster
on a regular basis, roughly doubling every
year plus-or-minus, but also:

In mid-1999 Adi Shamir, the ‘S’ in RSA,
designed a specialized part-analogue part-
digital computer ‘T'winkle’ that can run
factorization attacks from 100 to 1000 times
faster than previously, making 512-bit RSA
moduli much less secure than before, since
an adversary with suflicient resources can
now factor your 512-bit RSA modulus in a
few hours, rather than 10 years.)

37

Naor-Reingold pRNG

The Naor—Reingold pRNG is relatively
new. It is provably secure assuming the
infeasibility of factoring.

Fix a size n, and choose two random n-bit

primes p and ¢, and let N = pqg. Choose a
random integer g which is a square mod .
Let

a = (CLLO, a’l,17 CLQ’O, a’2,17 ce 7a’n,07 a’n,l)
be random 2n values in {1,2,...,N}. Let
r = (ry,...,r,) be random 0’s and 1’s. For

an integer ¢t of at most 2n bits, let bs, () be
the binary-expansion ‘digits’ of ¢, padding
on the left to have length 2n.

For two binary vectors
v=(V1,...,V,), W= (Wi,..., W)

with v;’s and w;’s all 0’s or 1’s, define a dot
product mod 2

38

Veow = (V1,...,0n) (W1,..., W)
= (Z v,w;) % 2
1<:<n

For an n-tuple ¢ = (x1,...,x,) of 0’s and
1’s define a {0, 1}-valued function

f(ZU) — fN,g,a,’r(w)

= 7r. b(ga’l,wl ‘|‘a2,az2 +a3,w3+"’+an,wn % N)

Theorem: Assuming that it is infeasible
to factor N, the output of the function

I = JN.g.ar 1s indistinguishable from
random bits, meaning that the sequence

F(1), £(2), f(3),..., f(2)

with £ much smaller than N, is

indistinguishable from a sequence of random
bits.

Remark: The proof is easier than for BBS
but still non-trivial.

39

