
Public-Key Crypto

Basics

Paul Garrett

garrett@math.umn.edu

University of Minnesota

1

Terminology

A symmetric or private-key cipher is
one in which knowledge of the encryption
key is explicitly or implicitly equivalent to
knowing the decryption key.

A asymmetric or public-key cipher is one
in which the encryption key is effectively
public knowledge, without giving any useful
information about the decryption key.

Until 30 years ago all ciphers were private-
key.

The very possibility of public-key crypto
did not exist until the secret work of some
British CESG-at-GCHQ people Ellis-
Cocks-Williamson in the 1960’s, and public-
domain work of Merkle, Diffie-Hellman, and
Rivest-Shamir-Adleman in the 1970’s.

2

Examples of symmetric/private-key
ciphers

Cryptograms (substitution ciphers) [broken:
letter frequencies, small words]

Anagrams (permutation ciphers) [broken:
double anagramming]

Vigenère [broken: Kasiski attack, Friedman
attack]

Enigma, Purple [broken: key distribution
problems, too small keyspace]

DES [broken: too small keyspace]

3DES [slow]

Blowfish [in use], Arcfour [in use], TEA,
IDEA

Serpent, Twofish, RC6, MARS [AES
finalists]

AES (Rijndael)

3

Examples of asymmetric/public-key
ciphers

RSA (Rivest-Shamir-Adlemen)

ElGamal

Elliptic curve cipher
(∼ abstracted ElGamal)

Knapsack ciphers [discredited]

Coding-theory ciphers [out of fashion...]

NTRU

Arithmetica (word-problem ciphers)

4

Basic public-key examples
and background

RSA cipher

Diffie-Hellman key exchange

classical number-theoretic algorithms:
Euclidean algorithm
fast exponentiation

factorization algorithms:
futility of trial division
Pollard’s rho
quadratic sieve
elliptic curve sieve
number field sieve

primality-testing algorithms:
Fermat
Miller-Rabin

primality certificates

further protocols

5

Feasible and infeasible computations

The only cipher provably impervious to
every hostile computation is the One-Time
Pad (sometimes called Vernam cipher).

Otherwise, in both private-key and
public-key ciphers the design goal is
that authorized encryptor and decryptor
should have feasible computations, while
unauthorized decryptors have infeasible
computations.

Feasibility here is meant in the most
practical possible sense.

Traditional complexity theory is not
necessarily relevant.

The P=NP? issue may not be relevant.

Ever-increasing CPU speed is relevant.

Parallelizability is relevant.

Quantum algorithms are relevant

6

(potentially).

7

Archetypical trap-door

It is easy to multiply large integers
(from ∼ 10100 to ∼ 101000 and larger)

Thus, it is easy to verify that n = p · q for
given large primes p, q and n their product.

But it appears to be difficult to factor
n ∼ 10200 into primes.

There is no proof that factorization is
difficult.

There are very few lower-bound results for
the complexity of large-integer computations.
There are exceptions, e.g., some recent work
of Shparlinski.

Others have taken provable security as the
primary criterion for cipher development,
e.g., Goldreich. The practical impact of this
approach is not yet clear.

8

Mandatory review of RSA

One-time preparation: Alice chooses
two large random primes p, q, from 10100 to
10600 depending on the desired security. She
computes the RSA modulus n = p · q. She
chooses decryption exponent e (often e = 3),
and computes the multiplicative inverse d of
e mod (p− 1)(q − 1). She publishes n, e (on
her web page?) and keeps d secret. Primes
p and q are thrown away.

Encryption: Bob wishes to encrypt a
plaintext message x and send it to Alice on
an insecure channel. Suppose 1 < x < n
for simplicity. Bob computes and transmits
y = xe mod n.

Decryption: When Alice receives the
ciphertext y, she computes yd mod n, which
is the plaintext x.

9

Why is this ok?

Why is it feasible for Alice to find two
primes ∼ 10200 or so?

Why is it feasible for Alice to compute
e−1 mod (p− 1)(q − 1)?

Why is it feasible for Bob to compute
xe mod n?

Why is it feasible for Alice to compute
yd mod n?

Why is yd mod n = x?

Why is it not feasible for Eve (the
eavesdropper) to compute d from n and e?

Why is it not feasible for Eve to compute x
from xe mod n?

How do we get a good supply of random
numbers?

10

Minor qualifications about RSA

Want p and q congruent to 3 mod 4.

In fact, maybe want p and q to be strong
primes, namely so that p − 1 and q − 1
are not exclusively composed of small prime
factors.

Want to be sure that e is relatively prime to
(p − 1)(q − 1): if we want e = 3 or some
other pre-specified number, must tweak p
and q. Otherwise, tweak e.

Very unlikely that gcd(x, n) > 1, so ignore
this.

Need good-quality randomization
for choice of p and q. Else potential for
catastrophic failure. (Related recent
examples in software implementations of
various security protocols.)

11

Diffie-Hellman Key Exchange

Alice and Bob have never met, and can only
communicate across an insecure channel on
which Eve is eavesdropping.

Eve has considerably greater computational
power than Alice and Bob, and hears
everything they say to each other.

Yet Alice and Bob can establish a shared
secret which Eve cannot also acquire
(assuming the difficulty of computing
discrete logs).

The shared secret is then typically used as
a key for a symmetric/private-key cipher to
encrypt a subsequent conversation.

12

Alice and Bob agree on a large random
prime p (∼ 10130 or larger) and a random
base g in the range 1 < g < p. Alice secretly
chooses a random a in the range 1 < a < p
and computes A = ga mod p. Similarly, Bob
secretly chooses a random b in the range
1 < b < p and computes B = gb mod p.
Alice sends A over the channel, and Bob
sends B over the channel.

So Alice knows p, g, a, A,B, Bob knows
p, g, A, b,B, and Eve knows p, g, A,B.

Alice computes
KA = Ba mod p

and Bob computes
KB = Ab mod p

Since
KA = KB mod p

Alice and Bob now have a shared secret
which it is infeasible for Eve to obtain.

13

Ingredient:
Fast exponentiation algorithm

To compute bn mod n, with n ∼ 10100 or
larger, do not multiply 10100 times.

Rather, note that repeated squaring
reduces the number of operations:

b69 = b2
6+22+20

= (((((b2)2)2)2)2)2 · (b2)2 · b

To compute xe mod n

initialize (X,E, Y) = (x, e, 1)
while E > 0

if E is even
replace X by X2 mod n
replace E by E/2

elsif E is odd
replace Y by X · Y mod n
replace E by E − 1

The final value of Y is xe mod n.

14

Ingredient: Euclidean Algorithm

To compute gcd’s, and to compute
e−1 mod m, use the familiar Euclidean
algorithm. To compute gcd(x, y) takes at
most 2 log2 y steps, if x ≥ y.

To compute gcd(x, y):
Initialize X = x, Y = y, R = X mod Y
while R > 0

replace X by Y
replace Y by R
replace R by X mod Y

When R = 0, Y = gcd(x, y)

This gives the familiar pattern: for example
to compute gcd(1477, 721):

1477− 2 · 721 = 35
721− 20 · 35 = 21
35− 1 · 21 = 14
21− 1 · 14 = 7
14− 2 · 7 = 0

And 7 is the gcd.

15

Multiplicative inverses via Euclid

To compute e−1 mod x with gcd(e, x) = 1,
minimizing memory use, rewrite each of the
steps in the previous as(

0 1
1 0

)(
1 −q
0 1

)(
X
Y

)
=
(

new X
new Y

)
where R = X − qY with |R| < Y .

Thus, we obtain an integral matrix
(
a b
c d

)
with determinant ±1 such that(

a b
c d

)(
x
e

)
=
(

gcd(x, e)
0

)
When gcd(x, e) = 1, we have

ax+ be = 1

and thus
b = e−1 mod x

16

Ingredient: Euler’s Theorem

Let ϕ(n) be Euler’s totient function, which
counts the integers ` in the range 1 ≤ ` ≤ n
which are relatively prime to n.

Theorem: For gcd(x,m)=1, xϕ(n)=1modn.

(This is an immediate corollary of
Lagrange’s theorem, applied to the group
Z/n×.)

This proves that RSA decryption works,
using ϕ(pq) = (p − 1)(q − 1): with
y = xe mod n, letting ed = 1 + M ·ϕ(n),
all equalities modulo n,

yd = (xe)d = x1+M ·ϕ(n)

= x · (xϕ(n))M = x · 1M = x mod n

17

Ingredient:
Infeasibility of factoring n

Nothing like a proof exists to support the
claim that factoring is hard, but there is
much practical evidence.

Several decades of new insights into
factoring have yielded very clever
factorization algorithms, which are sub-
exponential, but still super-polynomial.

If large quantum computers ever become
feasible, Peter Shor’s quantum factoring
algorithm will factor large numbers very
nicely, and RSA will be broken. Some of the
more-sophisticated public-key systems (e.g.,
lattice-based ciphers such as NTRU) are not
known to have fast quantum algorithms to
break them. (Apparently Shor’s discrete log
algorithm may also apply to more abstract
discrete log computations.)

With quantum computers, Grover’s
√
n-

18

time quantum search of n unordered things
would require increased key size for nearly
all ciphers.

19

Ingredient:
Infeasibility of taking eth roots mod n

Based on pragmatic experience, it appears
to be roughly as difficult to compute roots
modulo n as to factor n.

Computing roots via discrete logarithms
appears to have the same degree of
difficulty, despite existence of several clever
algorithms to compute discrete logarithms.

If large quantum computers ever become
feasible, Peter Shor’s quantum discrete
logarithm algorithm will compute discrete
logs nicely, and the Diffie-Hellman key
exchange will be broken, as will the classical
ElGamal cipher will be broken.

We will focus on the issue of factorization
rather than discrete logarithm computation.

20

Square-root oracles yield
fast factorization

As evidence that square-root taking is as
hard as factoring: if we have a magic box
(oracle) that takes square roots modulo
n = pq, we can factor n:

Suppose for simplicity that n = p · q with p
and q distinct primes. Pick random x mod
n and give the oracle x2 mod n. The oracle
returns y such that y2 = x2 mod n.

There are 4 square roots of x2 mod n,
namely the 4 solutions z of

z = ±x mod p z = ±x mod q

Since x was random, regardless of the
oracle’s choices of square roots, the
probability is 1/2 that

1 < gcd(x− y, n) < n

Repeat as necessary...

21

Unauthorized computation of
RSA decryption exponent?

For an eavesdropper to compute the RSA
decryption exponent

d = e−1 mod (p− 1)(q − 1)

it would suffice (since the Euclid algorithm
computes inverses quickly) to know the
quantity m = (p− 1)(q − 1).

But observe that knowledge of the RSA
modulus n = pq and of m = (p − 1)(q − 1)
would amount to knowing the factors p, q,
since the roots of the polynomial equation

X2 + (m− n+ 2)X + n = 0

are p, q.

Presumably factoring is hard, so this is
evidence (?) that an eavesdropper will not
find a trick whereby to obtain (p − 1)(q −
1), from which to obtain the decryption
exponent.

22

Ingredient: big primes?

To acquire 200-digit prime numbers,
trial division would not succeed in the
lifetime of the universe using all the
computational power of the internet.

Trial division confirms that a number is
prime by failing to factor it.

It turns out that primality testing is
much easier than factoring.

Factoring big numbers is hard, despite
striking (and wacky) modern factorization
techniques much better than trial division.

Even more surprising are fast modern
probabilistic primality tests.

(And, one can construct large primes with
accompanying certificates of primality
indicating how to reprove their primality
upon demand.)

23

Failure of trial division:

Trial division attempts to divide a given
number N by integers from 2 up through√
N . Either we find a proper factor of N ,

or N is prime. (If N has a proper factor `
larger than

√
N , then N/` ≤

√
N .) The

extreme case takes roughly
√
N steps, or at

least
√
N/ lnN .

If N ∼ 10200 is prime, or if it is the product
of two primes each ∼ 10100, then it will take
about 10100 trial divisions to discover this.
Even if we’re clever, it will take more than
1098 trial divisions.

If we could do 1012 trials per second, and if
there were a 1012 hosts on the internet, with
< 108 seconds per year, a massively parallel
trial division would take ...

1066
years

24

Examples of trial division

What are the practical limitations of trial
division? On a 2.5 Gigahertz machine, code
in C++ using GMP

1002904102901 has factor 1001401
(‘instantaneous’)

100001220001957 has factor 10000019
(3 seconds)

10000013000000861 has factor 100000007
(27 seconds)

1000000110000000721 has factor 1000000007
(4 minutes)

Nowhere near 10200 ...

25

Facts about primes

The number π(N) of primes less than N is

π(N) ∼ N

logN
This is the Prime Number Theorem
(Hadamard and de la Vallée Poussin, 1896).

Riemann observed (1858-9) that if all
the complex zeros of the zeta function
ζ(s) =

∑
n−s lay on the line Re(s) = 1

2
then (as refined...)

π(N) =
∫ N

2

dt

log t
+O(

√
N logN)

The conjecture on the location of the zeros
is the Riemann Hypothesis.

No result approaching this is known: there
is no known zero-free region Re(s) ≥ σ for
σ < 1.

The Prime Number Theorem uses the non-
vanishing of ζ(s) on Re(s) = 1.

26

Special Primes

As of January 2000, the largest prime
known was the 38th Mersenne prime

26972593 − 1

Theorem (Lucas-Lehmer) Define Lo = 4,
Ln = L2

n−1− 2. Let p be an odd prime. The
Mersenne number 2p − 1 is prime if and
only if

Lp−2 = 0 mod 2p − 1

Theorem (Proth) The Fermat number
Fn = 22n

+ 1 is prime if and only if

3(Fn−1)/2 = −1 mod Fn

27

Hunting for primes

Nevertheless, when developing expectations
for hunting for primes, we pretend that
primes are distributed as evenly as possible.

Note: it is not true that primes are
distributed evenly, even under the Riemann
Hypothesis.

But if primes were evenly distributed, then
near x primes would be about lnx apart.

Thus, in hunting for primes near x expect
to examine 1

2 lnx candidates:

For x ∼ 1020 we have 1
2 lnx ∼ 23

For x ∼ 10100 we have 1
2 lnx ∼ 115

For x ∼ 10500 we have 1
2 lnx ∼ 575

28

The Birthday Paradox [sic]

For n + 1 things chosen (with replacement)
from N the probability that they’re all
different is

p = (1− 1
N

)(1− 2
N

) · · · (1− n

N
)

Then from ln(1 − x) > −x for small x one
has

ln p > −
n∑

`=1

`

N
∼ −

1
2n

2

N

Thus, to be sure that p ≥ 1
2 it suffices to

take n such that

n >
√
N ·
√

2 ln 2 ∼ 1.1774 ·
√
N

Thus, with 23 people in a room the
probability is greater than 1

2 that two will
have the same birthday.

29

Pollard’s rho method (circa 1976)

We’ll try to beat the
√
N steps trial division

needs to factor N .

First try: Suppose that N = p ·M with p
prime and p <

√
N . If we choose somewhat

more than
√
p integers xi at random, then

the probability is > 1
2 that for some i 6= j

we’ll have
xi = xj mod p

The probability is roughly 1√
N/p
∼ 0 that

xi =xj mod N , so most likely for some pair

gcd(xi − xj , N) = proper factor of N

But we might have to compare
√
p · √p = p ∼

√
N

pairs, no better than trial division.

(In any case, we compute gcd’s quickly by
the Euclidean algorithm.)

30

Second try at Pollard’s rho

Since we would have had trouble making
a large number of truly random choices
anyway, let’s stipulate that we choose
the xi’s in a more structure way, in
a sort of random walk in Z/N . Let
f : Z/N → Z/N be a deterministic
‘random’ function, fix xo, and define

xi+1 = f(xi)

Since f is deterministic

f(xi) = xj =⇒

f(xi+1) = f(f(xi)) = f(xj) = xj+1

So if the walk enters a cycle it stays there.
We use Floyd’s cycle-detection trick:

31

Floyd’s cycle-detection trick:

Fix xo, define yo = xo, and define

xi+1 = f(xi) yi+1 = f(f(yi))

so the yi’s take the same walk but twice as
fast.

Once the cycle is entered, the y’s walk
one unit faster than the x’s, so in fewer
additional steps than the cycle length,
xj = yj mod p.

In summary: the initial walk plus cycle
takes

√
p ≤ N1/4 steps, and another

√
p

for the y’s to catch the x’s modulo p, so

2
√
p ≤ 2N1/4 steps

to find the factor p of N .

32

Examples of Pollard’s rho factorization

Take xo = 2 and f(x) = x2 + 2 mod N
(this is random...?). In less than 10 seconds
total,

2661 steps to find factor

10000103 of 100001220001957

14073 steps to find factor

100000007 of 10000013000000861

9630 steps to find factor

1000000103 of 1000000110000000721

(Even larger...) 129665 steps for factor

10000000019 of 100000001220000001957

162944 steps for factor

100000000103 of 10000000010600000000309

33

Yet larger...

89074 steps for

1000000000039 of
1000000000160000000004719

12 seconds, 584003 steps for

10000000000037 of
100000000001660000000004773

2 minutes, 5751662 steps for

100000000000031 of
10000000000016400000000004123

But still this is slowing down, and we’re
nowhere near factoring a 200-digit number...

34

Modern factorization methods

Since the 1970’s, better methods have been
found (but not polynomial-time):

quadratic sieve: the most elementary of
modern factorization methods, and still
very good by comparison to other methods.
Descended from Dixon’s algorithm.

elliptic curve sieve: to factor n, this
replaces the group Z/n× with an elliptic
curve E defined over Z/n. In effect, the
difference between Z/n× and Z/n − {0} is
what indicates that n is composite, and an
analogous discrepancy in the case of elliptic
curves can be similarly exploited.

number field sieve: Descended from
several sources, including Adleman,
Pomerance, and Rumely (1983), which
made novel use of exponential sums (hence,
of irrational algebraic numbers)

35

Bargain-basement Primality Test:
Fermat pseudoprimes

Fermat’s Little Theorem asserts that for p
prime, bp = b mod p.

Proven by induction on b, using

(b+ 1)p = bp +
(
p
1

)
bp−1 + . . .+

(
p

p−1

)
b+ 1

= bp + 1 mod p

The binomial coefficients are integers, and
on the other hand, they are divisible by p,
since (

p

i

)
=

p!
i! (p− i)!

and the denominator has no factor of p.
(Unique Factorization...)

Thus, if n is an integer and bn 6= b mod n
for some b, then n is composite.

The converse is false, but not very false...

36

The only non-prime n < 5000 with
2n = 2 mod n are 341 561 645 1105 1387
1729 1905 2047 2465 2701 2821 3277 4033
4369 4371 4681

Requiring also 3n = 3 mod n leaves 561
1105 1729 2465 2701 2821

Requiring also 5n = 5 mod n leaves 561
1105 1729 2465 2821

Compared with 669 primes under 5000, this
is a false positive failure rate of less than
1%.

n is a Fermat pseudoprime base b if
bn = b mod n.

37

Terminology

Usage is not consistent.

My usage is that a number that has passed
a primality test (Fermat, Miller-Rabin, etc.)
is a pseudoprime.

Sometimes a pseudoprime is meant to be a
non-prime which has nevertheless passed a
primality test such as Fermat. But for large
numbers which have passed pseudoprimality
tests we may never know for sure whether
or not they’re prime or composite ...

Another usage is to call a number that has
passed a test a probable prime.

But this is dangerously close to provable
prime, which is sometimes used to describe
primes with accompanying certificates of
their primality.

38

There are only 172 non-prime Fermat
pseudoprimes base 2 under 500,000 versus
41,538 primes, a false positive rate of less
than 0.41%

There are only 49 non-prime Fermat
pseudoprimes base 2 and 3 under 500,000,
a false positive rate of less than 0.118%

There are only 32 non-prime Fermat
pseudoprimes base 2, 3, 5 under 500,000

There are still 32 non-prime Fermat
pseudoprimes base 2, 3, 5, 7, 11, 13, 17
under 500,000

561 1105 1729 2465 2821 6601 8911 10585
15841 29341 41041 46657 52633 62745 63973
75361 101101 115921 126217 162401 172081
188461 252601 278545 294409 314821
334153 340561 399001 410041 449065
488881

39

Adding more such requirements does not
shrink these lists further.

n is a Carmichael number if it is a
non-prime Fermat pseudoprime to every
base b.

In 1994 Alford, Granville, and Pomerance
showed that there are infinitely-many
Carmichael numbers.

And it appears that among large numbers
Carmichael numbers become more common.

Nevertheless, the Fermat test is a very fast
way to test for compositeness, and is so
easy and cheap that it is still the best first
approximation to primality.

It is cheap because bn mod n can be
computed in ∼ log n steps, not n...

40

Better primality test: Miller-Rabin
(1978)

If n = r · s is composite (with gcd(r, s) = 1)
then by Sun-Ze’s theorem there are at least
4 solutions to

x2 = 1 mod n

namely the 4 choices of sign in

x = ±1 mod r x = ±1 mod s

Thus, if we find b 6= ±1 mod n such that
b2 = 1 mod n, n is definitely not composite.

Roughly, the Miller-Rabin test looks
for such extra square roots of 1 modulo n
(details below).

[0.0.1] Theorem: (Miller-Rabin) For
composite n, at least 3/4 of b in the range
1 < b < n will detect the compositeness (via
the Miller-Rabin test)

41

Pseudo-corollary If n passes the Miller-
Rabin test with k random bases b, then
(exercise: explain the fallacy)

probability(n is prime) ≥ 1−
(

1
4

)k

Miller-Rabin test base b:
factor n− 1 = 2s ·m with m odd
replace b by bm mod n

if b = ±1 mod n stop: n is 3/4 prime
else continue

set r = 0
while r < s

replace b by b2 mod n
if b = −1 mod n stop: n is 3/4 prime
elsif b = +1 mod n stop: n is composite
else continue
replace r by r + 1

if we fall out of the loop, n is composite.

If n passes this test it is a
strong pseudoprime base b.

42

Failure rate of Miller-Rabin?

The fraction of b’s which detect composite-
ness is apparently much greater than 3/4.
For n = 21311 the detection rate is 0.9976.
For 64777 the detection rate is 0.99972. For
1112927 the detection rate is 0.9999973

For n < 50, 000 there are only 9 non-prime
strong pseudoprimes base 2, namely 2047
3277 4033 4681 8321 15841 29341 42799
49141

For n < 500, 000 there are only 33 non-
prime strong pseudoprimes base 2.

For n < 500, 000 there are no non-prime
strong pseudoprimes base 2 and 3

For 100, 000, 000 < n < 101, 000, 000 there
are 3 strong pseudoprimes base 2 whose
compositeness is detected base 3, namely
100463443 100618933 100943201

43

Some big strong pseudoprimes
Primality testing Fermat base 2, Miller-
Rabin base 2, 3, 5, to find next prime
after...

(’instantaneous’)
First prime after 1021 is 1021 + 117

(’instantaneous’)
First prime after 1050 is 1050 + 151

(’hint of time taken’)
First prime after 10100 is 10100 + 267

(3 seconds)
First prime after 10200 is 10200 + 357

(8 seconds)
First prime after 10300 is 10300 + 331

(97 seconds)
First prime after 101000 is 101000 + 453

44

Primality Certificates

With origins in work of Eduard Lucas in
1876 and 1891, a very simple form of the
Pocklington-Lehmer theorem asserts
that N is prime if we have

a factorization N − 1 = p · U
where p is prime
where p >

√
N

b with bN−1 = 1 mod N
but gcd(bU − 1, N) = 1

The factorization N − 1 = p · U and the b
is the simplest instance of a certificate of
primality for N .

This requires recursive certification of the
prime p.

(The Lucas-Lehmer and Proth criteria are
cousins of this idea.)

45

Lemma (Fermat, Euler) For a positive in-
teger N , let b be such that bN−1 =1modN
but gcd(b(N−1)/p−1, N)=1. Then a prime
divisor q of N satisfies q=1 mod p

Proof of lemma: As b · bN−2 = 1 mod N it
must be that b is prime to N , so b is prime
to q. Let t be the order of b in Z/q×. By
Fermat’s Little Theorem bq−1 = 1 mod q, so
t|q − 1. But the gcd condition implies that

b(N−1)/p 6= 1 mod q

Thus, t does not divide (N − 1)/p. Yet,
t|N − 1. Thus, p|t. From t|q − 1 and p|t we
get p|q − 1, or q = 1 mod p. ///

46

Proof of theorem

(Note that if N is prime then Z/N has a
primitive root b which fulfills the condition
of the theorem.)

If the conditions of the theorem are met,
then all divisors of N are 1 modulo p. If
N were not prime, it would have a prime
divisor q in the range 1 < q ≤

√
N . But

q = 1 mod p and p >
√
N make this

impossible. Thus, N is prime. ///

47

Example

By trial division, p = 1000003 is prime.

The first strong pseudoprime above 1000 · p
of the form p · U + 1 is

N = 1032003097 = 1032 · p+ 1

By luck, with b = 2

2N−1 = 1 mod N

while

gcd(2(N−1)/p− 1, N) = gcd(21032− 1, N) = 1

Therefore, N is certified prime.

48

Continued Example

Let p be the certified prime 1032003097.

The first strong pseudoprime above 109 · p of
the form p · U + 1 is
N = 1032003247672452163 which is

N = p · (109 + 146) + 1

By luck, with b = 2

2N−1 = 1 mod N

while
gcd(2(N−1)/p − 1, N) = 1

Therefore, N is certified prime.

49

Continued

Let p be the certified prime
1032003247672452163

The first strong pseudoprime N above
1017 · p of the form p · U + 1 is

p · (1017 + 24) + 1

= 103200324767245241068077944138851913

By luck, with b = 2

2N−1 = 1 mod N

while
gcd(2(N−1)/p − 1, N) = 1

Therefore, N is certified prime.

50

Continued

Let p be the certified prime
103200324767245241068077944138851913

The first strong pseudoprime N above
1034 · p of the form p · U + 1 is

p · (1034 + 224) + 1

= 103200324767245241068077944138
854224687274786293399924945948
7102828513

By luck, with b = 2

2N−1 = 1 mod N

while
gcd(2(N−1)/p − 1, N) = 1

Therefore, N is certified prime.

51

Continued

Let p be the certified prime

10320032476724524106807794413885422
46872747862933999249459487102828513

The first strong pseudoprime N above
1060 · p of the form p · U + 1 is (computing
for about 5 seconds)

p · (1060 + 1362) + 1

= 10320032476724524106807794413
88542246872747862933999249460
89269125184288018334722159917
11945402406825893161069777638
21434052434707

By luck, b = 2 works again and N is
certified prime.

52

Continued

Let p be the certified prime

10320032476724524106807794413
88542246872747862933999249460
89269125184288018334722159917
11945402406825893161069777638
21434052434707

The first strong pseudoprime N above
10120 · p of the form p · U + 1 is (computing
a few seconds)

p · (10120 + 796) + 1 =

1032003247672452410680779441388542
2468727478629339992494608926912518
4288018334722159917119454024068258
9316106977763822255527019854272118
9019004353452796285107072988954634
0257087058223646693262594438839294
0270854031583341095621154300001861
505738026773

b = 2 works again and N is certified prime.

53

Fast deterministic test for primality

In 2002, Agarwal, Kayal, and Saxena
announced a fast (i.e., polynomial time)
deterministic algorithm for primality
testing.

Their algorithm has been checked by a
number of experts, including Pomerance.

Still, their algorithm is much slower than
the probabilistic Miller-Rabin test.

And there has been recent progress in
fast deterministic construction of random
certifiable primes by Peter Smith, improving
Maurer’s probabilistic method, and
approaching the speed of Miller-Rabin.

54

Basic Reading List

History, Context
David Kahn The Codebreakers
Bruce Schneier Secrets and Lies

Technical
Bruce Schneier Applied Cryptography
Menezes, van Oorshot, Vanstone

Handbook of Applied Cryptography
D. Stinson

Cryptography: Theory and Practice
Bach, Shallit Algorithmic Number Theory

Introductory
N. Koblitz A Course in Number Theory

and Cryptography
A. Salomaa Public-Key Crypto
P. Garrett Making, Breaking Codes:

an Introduction to Cryptology

55

