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I covered this material in a two-semester graduate course in abstract algebra in 2004-05, rethinking the
material from scratch, ignoring traditional prejudices.

I wrote proofs which are natural outcomes of the viewpoint. A viewpoint is good if taking it up means that
there is less to remember. Robustness, as opposed to fragility, is a desirable feature of an argument. It is
burdensome to be clever. Since it is non-trivial to arrive at a viewpoint that allows proofs to seem easy,
such a viewpoint is revisionist. However, this is a good revisionism, as opposed to much worse, destructive
revisionisms which are nevertheless popular, most notably the misguided impulse to logical perfection [sic].
Logical streamlining is not the same as optimizing for performance.

The worked examples are meant to be model solutions for many of the standard traditional exercises. I no
longer believe that everyone is obliged to redo everything themselves. Hopefully it is possible to learn from
others’ efforts.

Paul Garrett
June, 2007, Minneapolis
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Introduction

Abstract Algebra is not a conceptually well-defined body of material, but a conventional name that refers
roughly to one of the several lists of things that mathematicians need to know to be competent, effective,
and sensible. This material fits a two-semester beginning graduate course in abstract algebra. It is a how-to
manual, not a monument to traditional icons. Rather than an encyclopedic reference, it tells a story, with
plot-lines and character development propelling it forward.

The main novelty is that most of the standard exercises in abstract algebra are given here as worked
examples. Some additional exercises are given, which are variations on the worked examples. The reader
might contemplate the examples before reading the solutions, but this is not mandatory. The examples are
given to assist, not necessarily challenge. The point is not whether or not the reader can do the problems
on their own, since all of these are at least fifty years old, but, rather, whether the viewpoint is assimilated.
In particular, it often happens that a logically correct solution is conceptually regressive, and should not be
considered satisfactory.

I promote an efficient, abstract viewpoint whenever it is purposeful to abstract things, especially when
letting go of appealing but irrelevant details is advantageous. Some things often not mentioned in an algebra
course are included. Some naive set theory, developing ideas about ordinals, is occasionally useful, and the
abstraction of this setting makes the set theory seem less farfetched or baffling than it might in a more
elementary context. Equivalents of the Axiom of Choice are described. Quadratic reciprocity is useful in
understanding quadratic and cyclotomic extensions of the rational numbers, and I give the proof by Gauss’
sums. An economical proof of Dirichlet’s theorem on primes in arithmetic progressions is included, with
discussion of relevant complex analysis, since existence of primes satisfying linear congruence conditions
comes up in practice. Other small enrichment topics are treated briefly at opportune moments in examples
and exercises. Again, algebra is not a unified or linearly ordered body of knowledge, but only a rough naming
convention for an ill-defined and highly variegated landscape of ideas. Further, as with all parts of the basic
graduate mathematics curriculum, many important things are inevitably left out. For algebraic geometry
or algebraic number theory, much more commutative algebra is useful than is presented here. Only vague
hints of representation theory are detectable here.

Far more systematic emphasis is given to finite fields, cyclotomic polynomials (divisors of xn − 1), and
cyclotomic fields than is usual, and less emphasis is given to abstract Galois theory. Ironically, there are
many more explicit Galois theory examples here than in sources that emphasize abstract Galois theory.
After proving Lagrange’s theorem and the Sylow theorem, the pure theory of finite groups is not especially
emphasized. After all, the Sylow theorem is not interesting because it allows classification of groups of small
order, but because its proof illustrates group actions on sets, a ubiquitous mechanism in mathematics. A
strong and recurring theme is the characterization of objects by (universal) mapping properties, rather than
by goofy constructions. Nevertheless, formal category theory does not appear. A greater emphasis is put on
linear and multilinear algebra, while doing little with general commutative algebra apart from Gauss’ lemma
and Eisenstein’s criterion, which are immediately useful.

Students need good role models for writing mathematics. This is a reason for the complete write-ups of
solutions to many examples, since most traditional situations do not provide students with any models for
solutions to the standard problems. This is bad. Even worse, lacking full solutions written by a practiced
hand, inferior and regressive solutions may propagate. I do not always insist that students give solutions in
the style I wish, but it is very desirable to provide beginners with good examples.

The reader is assumed to have some prior acquaintance with introductory abstract algebra and linear algebra,
not to mention other standard courses that are considered preparatory for graduate school. This is not so
much for specific information as for maturity.
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1. The integers

1.1 Unique factorization
1.2 Irrationalities
1.3 Z/m, the integers mod m
1.4 Fermat’s little theorem, Euler’s theorem
1.5 Sun-Ze’s theorem
1.6 Worked examples

1.1 Unique factorization

Let Z denote the integers. Say d divides m, equivalently, that m is a multiple of d, if there exists an
integer q such that m = qd. Write d|m if d divides m.

It is easy to prove, from the definition, that if d|x and d|y then d|(ax + by) for any integers x, y, a, b: let
x = rd and y = sd, and

ax+ by = a(rd) + b(sd) = d · (ar + bs)

1.1.1 Theorem: Given an integer N and a non-zero integer m there are unique integers q and r, with
0 ≤ r < |m| such that

N = q ·m+ r

The integer r is the reduction modulo m of N .

Proof: Let S be the set of all non-negative integers expressible in the form N − sm for some integer s. The
set S is non-empty, so by well-ordering has a least element r = N − qm. Claim that r < |m|. If not, then
still r − |m| ≥ 0, and also

r − |m| = (N − qm)− |m| = N − (q ± 1)m

(with the sign depending on the sign of m) is still in the set S, contradiction. For uniqueness, suppose that
both N = qm+ r and N = q′m+ r′. Subtract to find

r − r′ = m · (q′ − q)
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Thus, r − r′ is a multiple of m. But since −|m| < r − r′ < |m| we have r = r′. And then q = q′. ///

1.1.2 Remark: The conclusion of the theorem is that in Z one can divide and obtain a remainder smaller
than the divisor. That is, Z is Euclidean.

As an example of nearly trivial things that can be proven about divisibility, we have:

A divisor d of n is proper if it is neither ±n nor ±1. A positive integer p is prime if it has no proper
divisors and if p > 1.

1.1.3 Proposition: A positive integer n is prime if and only if it is not divisible by any of the integers
d with 1 < d ≤

√
n.

Proof: Suppose that n has a proper factorization n = d · e, where d ≤ e. Then

d =
n

e
≤ n

d

gives d2 ≤ n, so d ≤
√
n. ///

1.1.4 Remark: The previous proposition suggests that to test an integer n for primality we attempt
to divide n by all integers d = 2, 3, . . . in the range d ≤

√
n. If no such d divides n, then n is prime. This

procedure is trial division.

Two integers are relatively prime or coprime or mutually prime if for every integer d if d|m and d|n
then d = ±1.

An integer d is a common divisor of integers n1, . . . , nm if d divides each ni. An integer N is a common
multiple of integers n1, . . . , nm if N is a multiple of each. The following peculiar characterization of the
greatest common divisor of two integers is fundamental.

1.1.5 Theorem: Let m,n be integers, not both zero. Among all common divisors of m,n there is a
unique d > 0 such that for every other common divisor e of m,n we have e|d. This d is the greatest common
divisor of m,n, denoted gcd(m,n). And

gcd(mn) = least positive integer of the form xm+ yn with x, y ∈ Z

Proof: Let D = xom + yon be the least positive integer expressible in the form xm + yn. First, we show
that any divisor d of both m and n divides D. Let m = m′d and n = n′d with m′, n′ ∈ Z. Then

D = xom+ yon = xo(m′d) + yo(n′d) = (xom′ + yon
′) · d

which presents D as a multiple of d.

On the other hand, let m = qD + r with 0 ≤ r < D. Then

0 ≤ r = m− qD = m− q(xom+ yon) = (1− qxo) ·m+ (−yo) · n

That is, r is expressible as x′m+y′n. Since r < D, and since D is the smallest positive integer so expressible,
r = 0. Therefore, D|m, and similarly D|n. ///

Similarly:

1.1.6 Corollary: Let m,n be integers, not both zero. Among all common multiples of m,n there is a
unique positive one N such that for every other common multiple M we have N |M . This multiple N is the
least common multiple of m,n, denoted lcm(m,n). In particular,

lcm(m,n) =
mn

gcd(m,n)
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Proof: Let
L =

mn

gcd(m,n)

First we show that L is a multiple of m and n. Indeed, let

m = m′ · gcd(m,n) n = n′ · gcd(m,n)

Then
L = m · n′ = m′ · n

expresses L as an integer multiple of m and of n. On the other hand, let M be a multiple of both m and n.
Let gcd(m,n) = am+ bn. Then

1 = a ·m′ + b · n′

Let N = rm and N = sn be expressions of N as integer multiples of m and n. Then

N = 1 ·N = (a ·m′ + b · n′) ·N = a ·m′ · sn+ b · n′ · rm = (as+ br) · L

as claimed. ///

The innocent assertion and perhaps odd-seeming argument of the following are essential for what follows.
Note that the key point is the peculiar characterization of the gcd, which itself comes from the Euclidean
property of Z.

1.1.7 Theorem: A prime p divides a product ab if and only if p|a or p|b.

Proof: If p|a we are done, so suppose p does not divide a. Since p is prime, and since gcd(p, a) 6= p, it must
be that gcd(p, a) = 1. Let r, s be integers such that 1 = rp+ sa, and let ab = kp. Then

b = b · 1 = b(rp+ sa) = p · (rb+ sk)

so b is a multiple of p. ///

Granting the theorem, the proof of unique factorization is nearly an afterthought:

1.1.8 Corollary: (Unique Factorization) Every integer n can be written in an essentially unique way
(up to reordering the factors) as ± a product of primes:

n = ± pe11 pe22 . . . pemm

with positive integer exponents and primes p1 < . . . < pm.

Proof: For existence, suppose n > 1 is the least integer not having a factorization. Then n cannot be prime
itself, or just ‘n = n’ is a factorization. Therefore n has a proper factorization n = xy with x, y > 1. Since
the factorization is proper, both x and y are strictly smaller than n. Thus, x and y both can be factored.
Putting together the two factorizations gives the factorization of n, contradicting the assumption that there
exist integers lacking prime factorizations.

Now uniqueness. Suppose
qe11 . . . qemm = N = pf1

1 . . . pfnn

where q1 < . . . < qm are primes, and p1 < . . . < pn are primes, and the exponents ei and fi are positive
integers. Since q1 divides the left-hand side of the equality, it divides the right-hand side. Therefore, q1 must
divide one of the factors on the right-hand side. So q1 must divide some pi. Since pi is prime, it must be
that q1 = pi.
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If i > 1 then p1 < pi. And p1 divides the left-hand side, so divides one of the qj , so is some qj , but then

p1 = qj ≥ q1 = pi > p1

which is impossible. Therefore, q1 = p1.

Without loss of generality, e1 ≤ f1. Thus, by dividing through by qe11 = pe!1 , we see that the corresponding
exponents e1 and f1 must also be equal. Then do induction. ///

1.1.9 Example: The simplest meaningful (and standard) example of the failure of unique factorization
into primes is in the collection of numbers

Z[
√
−5] = {a+ b

√
−5 : a, b ∈ Z}

The relation
6 = 2 · 3 = (1 +

√
−5)(1−

√
5)

gives two different-looking factorizations of 6. We must verify that 2, 3, 1 +
√
−5, and 1−

√
−5 are primes

in R, in the sense that they cannot be further factored.

To prove this, we use complex conjugation, denoted by a bar over the quantity to be conjugated: for real
numbers a and b,

a+ b
√
−5 = a− b

√
−5

For α, β in R,
α · β = α · β

by direct computation. Introduce the norm

N(α) = α · α

The multiplicative property
N(α · β) = N(α) ·N(β)

follows from the corresponding property of conjugation:

N(α) ·N(β) = ααββ = (αβ) · (αβ)

= (αβ) · (αβ) = N(αβ)

Note that 0 ≤ N(α) ∈ Z for α in R.

Now suppose 2 = αβ with α, β in R. Then

4 = N(2) = N(αβ) = N(α) ·N(β)

By unique factorization in Z, N(α) and N(β) must be 1, 4, or 2, 2, or 4, 1. The middle case is impossible,
since no norm can be 2. In the other two cases, one of α or β is ±1, and the factorization is not proper.
That is, 2 cannot be factored further in Z[

√
−5]. Similarly, 3 cannot be factored further.

If 1 +
√
−5 = αβ with α, β in R, then again

6 = N
(
1 +
√
−5
)

= N(αβ) = N(α) ·N(β)

Again, the integers N(α) and N(β) must either be 1, 6, 2, 3, 3, 2, or 6, 1. Since the norm cannot be 2 or 3,
the middle two cases are impossible. In the remaining two cases, one of α or β is ±1, and the factorization
is not proper. That is, 1 +

√
−5 cannot be factored further in R. Neither can 1−

√
−5. Thus,

6 = 2 · 3 =
(
1 +
√
−5
) (

1−
√

5
)
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is a factorization of 6 in two different ways into primes in Z[
√
−5].

1.1.10 Example: The Gaussian integers

Z[i] = {a+ bi : a, b ∈ Z}

where i2 = −1 do have a Euclidean property, and thus have unique factorization. Use the integer-valued
norm

N(a+ bi) = a2 + b2 = (a+ bi) · (a+ bi)

It is important that the notion of size be integer-valued and respect multiplication. We claim that, given
α, δ ∈ Z[i] there is q ∈ Z[i] such that

N(α− q · δ) < N(δ)

Since N is multiplicative (see above), we can divide through by δ inside

Q(i) = {a+ bi : a, b,∈ Q}

(where Q is the rationals) to see that we are asking for q ∈ Z[i] such that

N(
α

δ
− q) < N(1) = 1

That is, given β = α/δ in Q(i), we must be able to find q ∈ Z[i] such that

N(β − q) < 1

With β = a+ bi with a, b ∈ Q, let
a = r + f1 b = s+ f2

with r, s ∈ Z and f1, f2 rational numbers with

|fi| ≤
1
2

That this is possible is a special case of the fact that any real number is at distance at most 1/2 from some
integer. Then take

q = r + si

Then
β − q = (a+ bi)− (r + si) = f1 + if2

and

N(β − q) = N(f1 + if2) = f2
1 + f2

2 ≤
(

1
2

)2

+
(

1
2

)2

=
1
2
< 1

Thus, indeed Z[i] has the Euclidean property, and, by the same proof as above, has unique factorization.

1.2 Irrationalities

The usual proof that there is no square root of 2 in the rationals Q uses a little bit of unique factorization, in
the notion that it is possible to put a fraction into lowest terms, that is, having relatively prime numerator
and denominator.

That is, given a fraction a/b (with b 6= 0), letting a′ = a/gcd(a, b) and b′ = b/gcd(a, b), one can and should
show that gcd(a′, b′) = 1. That is, a′b/b′ is in lowest terms. And

a′

b′
=
a

b
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1.2.1 Example: Let p be a prime number. We claim that there is no
√
p in the rationals Q. Suppose, to

the contrary, that a/b =
√
p. Without loss of generality, we can assume that gcd(a, b) = 1. Then, squaring

and multiplying out,
a2 = pb2

Thus, p|a2. Since p|cd implies p|c or p|d, necessarily p|a. Let a = pa′. Then

(pa′)2 = pb2

or
pa′2 = b2

Thus, p|b, contradicting the fact that gcd(a, b) = 1. ///

The following example illustrates a possibility that will be subsumed later by Eisenstein’s criterion, which
is itself an application of Newton polygons attached to polynomials.

1.2.2 Example: Let p be a prime number. We claim that there is no rational solution to

x5 + px+ p = 0

Indeed, suppose that a/b were a rational solution, in lowest terms. Then substitute and multiply through
by b5 to obtain

a5 + pab4 + pb5 = 0

From this, p|a5, so, since p is prime, p|a. Let a = pa′. Then

(pa′)5 + p(pa′)b4 + pb5 = 0

or
p4a′5 + p2a′b4 + b5 = 0

From this, p|b5, so p|b since p is prime. This contradicts the lowest-terms hypothesis.

1.3 Z/m, the integers mod m

Recall that a relation R on a set S is a subset of the cartesian product S × S. Write

x R y

if the ordered pair (x, y) lies in the subset R of S × S. An equivalence relation R on a set S is a relation
satisfying
• Reflexivity: x R x for all x ∈ S
• Symmetry: If x R y then y R x
• Transitivity: If x R y and y R z then x R z

A common notation for an equivalence relation is

x ∼ y

that is, with a tilde rather than R.

Let ∼ be an equivalence relation on a set S. For x ∈ S, the ∼ - equivalence class x̄ containing x is the
subset

x̄ = {x′ ∈ S : x′ ∼ x}
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The set of equivalence classes of ∼ on S is denoted by

S/ ∼

(as a quotient). Every element z ∈ S is contained in an equivalence class, namely the equivalence class z̄
of all s ∈ S so that s ∼ z. Given an equivalence class A inside S, an x in the set S such that x̄ = A is a
representative for the equivalence class. That is, any element of the subset A is a representative.

A set S of non-empty subsets of a set S whose union is the whole S, and which are mutually disjoint, is a
partition of S. One can readily check that the equivalence classes of an equivalence relation on a set S form
a partition of S, and, conversely, any partition of S defines an equivalence relation by positing that x ∼ y if
and only if they lie in the same set of the partition. ///

If two integers x, y differ by a multiple of a non-zero integer m, that is, if m|(x − y), then x is congruent
to y modulo m, written

x ≡ y mod m

Such a relation a congruence modulo m, and m is the modulus. When Gauss first used this notion 200
years ago, it was sufficiently novel that it deserved a special notation, but, now that the novelty has worn
off, we will simply write

x = y mod m

and (unless we want special emphasis) simply say that x is equal to y modulo m.

1.3.1 Proposition: (For fixed modulus m) equality modulo m is an equivalence relation. ///

Compatibly with the general usage for equivalence relations, the congruence class (or residue class or
equivalence class) of an integer x modulo m, denoted x̄ (with only implicit reference to m) is the set of
all integers equal to x mod m:

x̄ = {y ∈ Z : y = x mod m}
The integers mod m, denoted Z/m, is the collection of congruence classes of integers modulo m. For some
X ∈ Z/m, a choice of ordinary integer x so that x̄ = X is a representative for the congruence class X.

1.3.2 Remark: A popular but unfortunate notation for Z/m is Zm. We will not use this notation. It
is unfortunate because for primes p the notation Zp is the only notation for the p-adic integers.

1.3.3 Remark: On many occasions, the bar is dropped, so that x-mod-m may be written simply as ‘x’.

1.3.4 Remark: The traditionally popular collection of representatives for the equivalence classes modulo
m, namely

{0̄, 1̄, 2̄, . . .m− 2,m− 1}
is not the only possibility.

The benefit Gauss derived from the explicit notion of congruence was that congruences behave much
like equalities, thus allowing us to benefit from our prior experience with equalities. Further, but not
surprisingly with sufficient hindsight, congruences behave nicely with respect to the basic operations of
addition, subtraction, and multiplication:

1.3.5 Proposition: Fix the modulus m. If x = x′ mod m and y = y′ mod m, then

x+ y = x′ + y′ mod m

xy = x′y′ mod m

Proof: Since m|(x′−x) there is an integer k such that mk = x′−x. Similarly, y′ = y+ `m for some integer
`. Then

x′ + y′ = (x+mk) + (y +m`) = x+ y +m · (k + `)
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Thus, x′ + y′ = x+ y mod m. And

x′ · y′ = (x+mk) · (y +m`) = x · y + xm`+mky +mk ·m` = x · y +m · (k + `+mk`)

Thus, x′y′ = xy mod m. ///

As a corollary, congruences inherit many basic properties from ordinary arithmetic, simply because x = y
implies x = y mod m:
• Distributivity: x(y + z) = xy + xz mod m
• Associativity of addition: (x+ y) + z = x+ (y + z) mod m
• Associativity of multiplication: (xy)z = x(yz) mod m
• Property of 1: 1 · x = x · 1 = x mod m
• Property of 0: 0 + x = x+ 0 = x mod m

In this context, a multiplicative inverse mod m to an integer a is an integer b (if it exists) such that

a · b = 1 mod m

1.3.6 Proposition: An integer a has a multiplicative inverse modulo m if and only if gcd(a,m) = 1.

Proof: If gcd(a,m) = 1 then there are r, s such that ra+ sm = 1, and

ra = 1− sm = 1 mod m

The other implication is easy. ///

In particular, note that if a is invertible mod m then any a′ in the residue class of a mod m is likewise
invertible mod m, and any other element b′ of the residue class of an inverse b is also an inverse. Thus, it
makes sense to refer to elements of Z/m as being invertible or not. Notation:

(Z/m)× = {x̄ ∈ Z/m : gcd(x,m) = 1}

This set (Z/m)× is the multiplicative group or group of units of Z/m.

1.3.7 Remark: It is easy to verify that the set (Z/m)× is closed under multiplication in the sense
that a, b ∈ (Z/m)× implies ab ∈ (Z/m)×, and is closed under inverses in the sense that a ∈ (Z/m)×

implies a−1 ∈ (Z/m)×.

1.3.8 Remark: The superscript is not an ‘x’ but is a ‘times’, making a reference to multiplication and
multiplicative inverses mod m. Some sources write Z/m∗, but the latter notation is inferior, as it is too
readily confused with other standard notation (for duals).

1.4 Fermat’s Little Theorem

1.4.1 Theorem: Let p be a prime number. Then for any integer x

xp = x mod p

Proof: First, by the Binomial Theorem

(x+ y)p =
∑

0≤i≤p

(
p

i

)
xi yp−i
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In particular, the binomial coefficients are integers. Now we can show that the prime p divides the binomial
coefficients (

p

i

)
=

p!
i! (p− i)!

with 1 ≤ i ≤ p− 1. We have (
p

i

)
· i! · (p− i)! = p!

(Since we know that the binomial coefficient is an integer, the following argument makes sense.) The prime
p divides the right-hand side, so divides the left-hand side, but does not divide i! nor (p− i)! (for 0 < i < p)
since these two numbers are products of integers smaller than p and (hence) not divisible by p. Again using
the fact that p|ab implies p|a or p|b, p does not divide i! · (p− i)!, so p must divide the binomial coefficient.

Now we prove Fermat’s Little Theorem for positive integers x by induction on x. Certainly 1p = 1 mod p.
Now suppose that we know that

xp = x mod p

Then

(x+ 1)p =
∑

0≤i≤p

(
p

i

)
xi 1p−i = xp +

∑
0<i<p

(
p

i

)
xi + 1

All the coefficients in the sum in the middle of the last expression are divisible by p, so

(x+ 1)p = xp + 0 + 1 = x+ 1 mod p

This proves the theorem for positive x. ///

1.4.2 Example: Let p be a prime with p = 3 mod 4. Suppose that a is a square modulo p, in the
sense that there exists an integer b such that

b2 = a mod p

Such b is a square root modulo p of a. Then we claim that a(p+1)/4 is a square root of a mod p. Indeed,(
a(p+1)/4

)2

=
(

(b2)(p+1)/4
)2

= bp+1 = bp · b = b · b mod p

by Fermat. Then this is a mod p. ///

1.4.3 Example: Somewhat more generally, let q be a prime, and let p be another prime with p = 1 mod q
but p 6= 1 mod q2.

r = q−1 mod
p− 1
q

Then if a is a qth power modulo p, a qth root of a mod p is given by the formula

qth root of a mod p = ar mod p

If a is not a qth power mod p then this formula does not product a qth root.

1.4.4 Remark: For prime q and prime p 6= 1 mod q there is an even simpler formula for qth roots,
namely let

r = q−1 mod p− 1

and then
qth root of a mod p = ar mod p

Further, as can be seen from the even-easier proof of this formula, everything mod such p is a qth power.



10 The integers

For a positive integer n, the Euler phi-function ϕ(n) is the number of integers b so that 1 ≤ b ≤ n and
gcd(b, n) = 1. Note that

ϕ(n) = cardinality of (Z/n)×

1.4.5 Theorem: (Euler) For x relatively prime to a positive integer n,

xϕ(n) = 1 mod n

1.4.6 Remark: The special case that n is prime is Fermat’s Little Theorem.

Proof: Let G = (Z/m)×, for brevity. First note that the product

P =
∏
g∈G

g = product of all elements of G

is again in G. Thus, P has a multiplicative inverse mod n, although we do not try to identify it. Let x be
an element of G. Then we claim that the map f : G −→ G defined by

f(g) = xg

is a bijection of G to itself. First, check that f really maps G to itself: for x and g both invertible mod n,

(xg)(g−1x−1) = 1 mod n

Next, injectivity: if f(g) = f(h), then xg = xh mod n. Multiply this equality by x−1 mod n to obtain
g = h mod n. Last, surjectivity: given g ∈ G, note that f(x−1g) = g.

Then
P =

∏
g∈G

g =
∏
g∈G

f(g)

since the map f merely permutes the elements of G. Then

P =
∏
g∈G

f(g) =
∏
g∈G

xg = xϕ(n)
∏
g∈G

g = xϕ(n) · P

Since P is invertible mod n, multiply through by P−1 mod n to obtain

1 = xϕ(n) mod n

This proves Euler’s Theorem. ///

1.4.7 Remark: This proof of Euler’s theorem, while subsuming Fermat’s Little Theorem as a special
case, strangely uses fewer specifics. There is no mention of binomial coefficients, for example.

1.4.8 Remark: The argument above is a prototype example for the basic Lagrange’s Theorem in basic
group theory.
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1.5 Sun-Ze’s theorem

The result of this section is sometimes known as the Chinese Remainder Theorem. Indeed, the earliest
results (including and following Sun Ze’s) were obtained in China, but such sloppy attribution is not good.
Sun Ze’s result was obtained before 850, and the statement below was obtained by Chin Chiu Shao about
1250. Such results, with virtually the same proofs, apply much more generally.

1.5.1 Theorem: (Sun-Ze) Let m and n be relatively prime positive integers. Let r and s be integers
such that

rm+ sn = 1

Then the function
f : Z/m× Z/n −→ Z/mn

defined by
f(x, y) = y · rm+ x · sn

is a bijection. The inverse map
f−1 : Z/mn −→ Z/m× Z/n

is
f−1(z) = (x-mod-m, y-mod-n)

Proof: First, the peculiar characterization of gcd(m,n) as the smallest positive integer expressible in the
form rm+ sn assures (since here gcd(m,n) = 1) that integers r and s exist such that rm+ sn = 1. Second,
the function f is well-defined, that is, if x′ = x+ am and y′ = y + bn for integers a and b, then still

f(x′, y′) = f(x, y)

Indeed,
f(x′, y′) = y′rm+ x′sn = (y + an)rm+ (x+ am)sn

= yrm+ xsn+mn(ar + bs) = f(x, y) mod mn

proving the well-definedness.

To prove surjectivity of f , for any integer z, let x = z and y = z. Then

f(x, y) = zrm+ zsn = z(rm+ sn) = z · 1 mod mn

(To prove injectivity, we could use the fact that Z/m× Z/n and Z/mn are finite sets of the same size, so a
surjective function is necessarily injective, but a more direct argument is more instructive.) Suppose

f(x′, y′) = f(x, y)

Then modulo m the yrm and y′rm are 0, so

xsn = x′sn mod m

From rm+ sn = 1 mod mn we obtain sn = 1 mod m, so

x = x′ mod m

Symmetrically,
y = y′ mod n

giving injectivity.
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Finally, by the same reasoning,

f(x, y) = yrm+ xsn = y · 0 + x · 1 mod m = x mod m

and similarly
f(x, y) = yrm+ xsn = y · 1 + x · 0 mod n = y mod n

This completes the argument. ///

1.5.2 Remark: The above result is the simplest prototype for a very general result.

1.6 Worked examples

1.6.1 Example: Let D be an integer that is not the square of an integer. Prove that there is no
√
D in

Q.

Suppose that a, b were integers (b 6= 0) such that (a/b)2 = D. The fact/principle we intend to invoke here
is that fractions can be put in lowest terms, in the sense that the numerator and denominator have greatest
common divisor 1. This follows from existence of the gcd, and from the fact that, if gcd(a, b) > 1, then let
c = a/gcd(a, b) and d = b/gcd(a, b) and we have c/d = a/b. Thus, still c2/d2 = D. One way to proceed
is to prove that c2/d2 is still in lowest terms, and thus cannot be an integer unless d = ±1. Indeed, if
gcd(c2, d2) > 1, this gcd would have a prime factor p. Then p|c2 implies p|c, and p|d2 implies p|d, by the
critical proven property of primes. Thus, gcd(c, d) > 1, contradiction.

1.6.2 Example: Let p be prime, n > 1 an integer. Show (directly) that the equation xn − px + p = 0
has no rational root (where n > 1).

Suppose there were a rational root a/b, without loss of generality in lowest terms. Then, substituting and
multiplying through by bn, one has

an − pbn−1a+ pbn = 0

Then p|an, so p|a by the property of primes. But then p2 divides the first two terms, so must divide pbn, so
p|bn. But then p|b, by the property of primes, contradicting the lowest-common-terms hypothesis.

1.6.3 Example: Let p be prime, b an integer not divisible by p. Show (directly) that the equation
xp − x+ b = 0 has no rational root.

Suppose there were a rational root c/d, without loss of generality in lowest terms. Then, substituting and
multiplying through by dp, one has

cp − dp−1c+ bdp = 0

If d 6= ±1, then some prime q divides d. From the equation, q|cp, and then q|c, contradiction to the
lowest-terms hypothesis. So d = 1, and the equation is

cp − c+ b = 0

By Fermat’s Little Theorem, p|cp − c, so p|b, contradiction.

1.6.4 Example: Let r be a positive integer, and p a prime such that gcd(r, p− 1) = 1. Show that every
b in Z/p has a unique rth root c, given by the formula

c = bs mod p

where rs = 1 mod (p− 1). [Corollary of Fermat’s Little Theorem.]

1.6.5 Example: Show that R = Z[
√
−2] and Z[ 1+

√
−7

2 ] are Euclidean.
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First, we consider R = Z[
√
−D] for D = 1, 2, . . .. Let ω =

√
−D. To prove Euclidean-ness, note that the

Euclidean condition that, given α ∈ Z[ω] and non-zero δ ∈ Z[ω], there exists q ∈ Z[ω] such that

|α− q · δ| < |δ|

is equivalent to
|α/δ − q| < |1| = 1

Thus, it suffices to show that, given a complex number α, there is q ∈ Z[ω] such that

|α− q| < 1

Every complex number α can be written as x + yω with real x and y. The simplest approach to analysis
of this condition is the following. Let m,n be integers such that |x − m| ≤ 1/2 and |y − n| ≤ 1/2. Let
q = m+ nω. Then α− q is of the form r + sω with |r| ≤ 1/2 and |s| ≤ 1/2. And, then,

|α− q|2 = r2 +Ds2 ≤ 1
4

+
D

4
=

1 +D

4

For this to be strictly less than 1, it suffices that 1 + D < 4, or D < 3. This leaves us with Z[
√
−1] and

Z[
√
−2].

In the second case, consider Z[ω] where ω = (1 +
√
−D)/2 and D = 3 mod 4. (The latter condition assures

that Z[x] works the way we hope, namely that everything in it is expressible as a + bω with a, b ∈ Z.) For
D=3 (the Eisenstein integers) the previous approach still works, but fails for D = 7 and for D = 11. Slightly
more cleverly, realize that first, given complex α, integer n can be chosen such that

−
√
D/4 ≤ imaginary part(α− nω) ≤ +

√
D/4

since the imaginary part of ω is
√
D/2. Then choose integer m such that

−1/2 ≤ real part(α− nω −m) ≤ 1/2

Then take q = m + nω. We have chosen q such that α − q is in the rectangular box of complex numbers
r + s

√
−7 with

|r| ≤ 1/2 and |s| ≤ 1/4

Yes, 1/4, not 1/2. Thus, the size of α− q is at most

1/4 +D/16

The condition that this be strictly less than 1 is that 4 +D < 16, or D < 12 (and D = 1 mod 4). This gives
D = 3, 7, 11.

1.6.6 Example: Let f : X −→ Y be a function from a set X to a set Y . Show that f has a left inverse
if and only if it is injective. Show that f has a right inverse if and only if it is surjective. (Note where, if
anywhere, the Axiom of Choice is needed.)

1.6.7 Example: Let h : A −→ B, g : B −→ C, f : C −→ D. Prove the associativity

(f ◦ g) ◦ h = f ◦ (g ◦ h)

Two functions are equal if and only if their values (for the same inputs) are the same. Thus, it suffices to
evaluate the two sides at a ∈ A, using the definition of composite:

((f ◦ g) ◦ h)(a) = (f ◦ g)(h(a)) = f(g((h(a))) = f((g ◦ h)(a)) = (f ◦ (g ◦ h))(a)
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1.6.8 Example: Show that a set is infinite if and only if there is an injection of it to a proper subset of
itself. Do not set this up so as to trivialize the question.

The other definition of finite we’ll take is that a set S is finite if there is a surjection to it from one of the
sets

{}, {1}, {1, 2}, {1, 2, 3}, . . .

And a set is infinite if it has no such surjection.

We find a denumerable subset of an infinite set S, as follows. For infinite S, since S is not empty (or there’d
be a surjection to it from {}), there is an element s1. Define

f1 : {1} −→ S

by f(1) = s1. This cannot be surjective, so there is s2 6= s1. Define

f2 : {1, 2} −→ S

by f(1) = s1, f(2) = s2. By induction, for each natural number n we obtain an injection fn : {1, . . .} −→ S,
and distinct elements s1, 22, . . .. Let S′ be the complement to {s1, s2, . . .} in S. Then define F : S −→ S by

F (si) = si+1 F (s′) = s′ (for s′ ∈ S′)

This is an injection to the proper subset S − {s1}.

On the other hand, we claim that no set {1, . . . , n} admits an injection to a proper subset of itself. If there
were such, by Well-Ordering there would be a least n such that this could happen. Let f be an injection of
S = {1, . . . , n} to a proper subset of itself.

By hypothesis, f restricted to S′ = {1, 2, . . . , n − 1} does not map S′ to a proper subset of itself. The
restriction of an injective function is still injective. Thus, either f(i) = n for some 1 ≤ i < n, or f(S′) is the
whole set S′. In the former case, let j be the least element not in the image f(S). (Since f(i) = n, j 6= n,
but this doesn’t matter.) Replace f by π ◦ f where π is the permutation of {1, . . . , n} that interchanges j
and n and leaves everything else fixed. Since permutations are bijections, this π ◦ f is still an injection of S
to a proper subset. Thus, we have reduced to the second case, that f(S′) = S′. By injectivity, f(n) can’t be
in S′, but then f(n) = n, and the image f(S) is not a proper subset of S after all, contradiction. ///

In a similar vein, one can prove the Pigeon-Hole Principle, namely, that for m < n a function

f : {1, . . . , n} −→ {1, . . . ,m}

cannot be injective. Suppose this is false. Let n be the smallest such that there is m < n with an injective
map as above. The restriction of an injective map is still injective, so f on {1, . . . , n − 1} is still injective.
By the minimality of n, it must be that n − 1 = m, and that f restricted to {1, . . . ,m} is a bijection of
that set to itself. But then there is no possibility for f(n) in {1, . . . ,m} without violating the injectivity.
Contradiction. Thus, there is no such injection to a smaller set.

Exercises

1.1 Let f(x) = xn + an−1x
n−1 + . . .+ a1x+ a0 be a polynomial with integer coefficients ai. Show that if

f(x) = 0 has a root in Q, then this root is an integer dividing a0.

1.2 Show that x2 − y2 = 102 has no solutions in integers

1.3 Show that x3 − y3 = 3 has no solutions in integers.
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1.4 Show that x3 + y3 − z3 = 4 has no solutions in integers.

1.5 Show that x2 + 3y2 + 6z3 − 9w5 = 2 has no solutions in integers.

1.6 The defining property of ordered pair (a, b) is that (a, b) = (a′, b′) if and only if a = a′ and b = b′.
Show that the set-theoretic construction (a, b) = {{a}, {a, b}} succeeds in making an object that behaves as
an ordered pair is intended. (Hint: Beware: if x = y, then {x, y} = {x}.)

1.7 Let p be a prime, and q a positive integer power of p. Show that p divides the binomial coefficients(
q
i

)
= q!/i!(q − i)! for 0 < i < q.

1.8 Show that the greatest common divisor of non-zero integers x, y, z is the smallest positive integer
expressible as ax+ by + cz for integers a, b, c.

1.9 Let m,n be relatively prime integers. Without using factorizations, prove that m|N and n|N implies
mn|N .

1.10 (A warm-up to Hensel’s lemma) Let p > 2 be a prime. Suppose that b is an integer not divisible by
p such that there is a solution y to the equation y2 = b mod p. Show (by induction on n) that for n ≥ 1
there is a unique x mod pn such that x = b mod p and

xp = b mod pn

1.11 (Another warm-up to Hensel’s lemma) Let p > 2 be a prime. Let y be an integer such that
y ≡ 1 mod p. Show (by induction on n) that for n ≥ 1 there is a unique x mod pn so that

xp = y mod pn

1.12 Let ϕ be Euler’s phi-function, equal to the number of integers ` such that 1 ≤ ` < n with ` relatively
prime to n. Show that for a positive integer n

n =
∑

d|n, d>0

ϕ(d)
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2. Groups I

2.1 Groups
2.2 Subgroups, Lagrange’s theorem
2.3 Homomorphisms, kernels, normal subgroups
2.4 Cyclic groups
2.5 Quotient groups
2.6 Groups acting on sets
2.7 The Sylow theorem
2.8 Trying to classify finite groups, part I
2.9 Worked examples

2.1 Groups

The simplest, but not most immediately intuitive, object in abstract algebra is a group. Once introduced,
one can see this structure nearly everywhere in mathematics. [1]

By definition, a group G is a set with an operation g ∗h (formally, a function G×G −→ G), with a special
element e called the identity, and with properties:
• The property of the identity: for all g ∈ G, e ∗ g = g ∗ e = g.
• Existence of inverses: for all g ∈ G there is h ∈ G (the inverse of g) such that h ∗ g = g ∗ h = e.
• Associativity: for all x, y, z ∈ G, x ∗ (y ∗ z) = (x ∗ y) ∗ z.

If the operation g ∗ h is commutative, that is, if

g ∗ h = h ∗ g

then the group is said to be abelian. [2] In that case, often, but not necessarily, the operation is written

[1] Further, the notion of group proves to be more than a mere descriptive apparatus. It provides unification and

synthesis for arguments and concepts which otherwise would need individual development. Even more, abstract

structure theorems for groups provide predictive indications, in the sense that we know something in advance about

groups we’ve not yet seen.

[2] After N.H. Abel, who in his investigation of the solvability by radicals of algebraic equations came to recognize
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as addition. And when the operation is written as addition, the identity is often written as 0 instead of e.

In many cases the group operation is written as multiplication or simply as juxtaposition

g ∗ h = g · h = gh

This does not preclude the operation being abelian, but only denies the presumption that the operation is
abelian. If the group operation is written as multiplication, then often the identity is denoted as 1 rather
than e. Unless written additively, the inverse [3] of an element g in the group is denoted

inverse of g = g−1

If the group operation is written as addition, then the inverse is denoted

inverse of g = −g

Many standard mathematical items with natural operations are groups: The set Z of integers Z with addition
+ is an abelian group. The set nZ of multiples of an integer n, with addition, is an abelian group. The
set Z/m of integers mod m, with addition mod m as the operation is an abelian group. The set Z/m× of
integers mod m relatively prime to m, with multiplication mod m as the operation is an abelian group.

The set Z of integers with operation being multiplication is not a group, because there are no inverses. [4]

The closest we can come is the set {1,−1} with multiplication.

Other things which we’ll define formally only a bit later are groups: vector spaces with vector addition are
abelian groups. The set GL(2,R) of invertible 2-by-2 real matrices, with group law matrix multiplication,
is a non-abelian group. Here the identity is the matrix

12 =
(

1 0
0 1

)
The existence of inverses is part of the definition. The associativity of matrix multiplication is not entirely
obvious from the definition, but can either be checked by hand or inferred from the fact that composition of
functions is associative.

A more abstract example of a group is the set Sn of permutations of a set with n elements (n an integer),
where permutation means bijection to itself. Here the operation is composition (as functions) of permutations.
If there are more than two things in the set, Sn is non-abelian.

Some nearly trivial uniqueness issues should be checked: [5]

• (Uniqueness of identity) If f ∈ G and f ∗ g = g ∗ f = g for all g in G, then f = e.
• (Uniqueness of inverses) For given g ∈ G, if a ∗ g = e and g ∗ b = e, then a = b.

Proof: For the first assertion,

f = f ∗ e (property of e)
= e (assumed property of e)

the significance of commutativity many decades before the notion of group was formalized.

[3] once we prove its uniqueness!

[4] The fact that there are multiplicative inverses in the larger set Q× of non-zero rational numbers is beside the

point, since these inverses are not inside the given set Z.

[5] These are the sort of properties which, if they were not provable from the definition of group, would probably

need to be added to the definition. We are fortunate that the innocent-looking definition does in fact yield these

results.
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which was claimed. For the second, similarly,

a = a ∗ e = a ∗ (g ∗ b) = (a ∗ g) ∗ b = e ∗ b = b

where we use, successively, the property of the identity, the defining property of b, associativity, the defining
property of a, and then the property of the identity again. ///

2.1.1 Remark: These uniqueness properties justify speaking of the inverse and the identity.

2.2 Subgroups

Subgroups are subsets of groups which are groups in their own right, in the following sense. A subset H of
a group G is said to be a subgroup if, with the same operation and identity element as that used in G, it
is a group.

That is, if H contains the identity element e ∈ G, if H contains inverses of all elements in it, and if H
contains products of any two elements in it, then H is a subgroup.

Common terminology is that H is closed under inverses if for h ∈ H the inverse h−1 is in H, and closed
under the group operation if h1, h2 ∈ H implies h1 ∗ h2 is in H. [6]

Note that the associativity of the operation is assured since the operation was assumed associative for G
itself to be a group.)

The subset {e} of a group G is always a subgroup, termed trivial. A subgroup of G other than the trivial
subgroup and the group G itself is proper.

2.2.1 Proposition: The intersection
⋂
H∈S H of any collection of subgroups of a group G is again a

subgroup of G.

Proof: Since the identity e of G lies in each H, it lies in their intersection. If h lies in H for every H ∈ S,
then h−1 lies in H for every H ∈ S, so h−1 is in the intersection. Similarly, if h1, h2 are both in H for every
H ∈ S, so is their product, and then the product is in the intersection. ///

Given a set X of elements in a group G, the subgroup generated by [7] X is defined to be

subgroup generated by X = 〈X〉 =
⋂
H⊃X

H

where H runs over subgroups of G containing X. The previous proposition ensures that this really is a
subgroup. If X = {x1, . . . , xn} we may, by abuse of notation, write also

〈X〉 = 〈x1, . . . , xn〉

and refer to the subgroup generated by x1, . . . , xn rather than by the subset X.

A finite group is a group which (as a set) is finite. The order of a finite group is the number of elements
in it. Sometimes the order of a group G is written as |G| or o(G). The first real theorem in group theory is

[6] In reality, the very notion of operation includes the assertion that the output is again in the set. Nevertheless,

the property is important enough that extra emphasis is worthwhile.

[7] Later we will see a constructive version of this notion. Interestingly, or, perhaps, disappointingly, the more

constructive version is surprisingly complicated. Thus, the present quite non-constructive definition is useful, possibly

essential.



20 Groups I

2.2.2 Theorem: (Lagrange) [8] Let G be a finite group. Let H be a subgroup of G. Then the order of
H divides the order of G.

Proof: For g ∈ G, the left coset of H by g or left translate of H by g is

gH = {gh : h ∈ H}

(Similarly, the right coset of H by g or right translate of H by g is Hg = {hg : h ∈ H}.)

First, we will prove that the collection of all left cosets of H is a partition of G. Certainly x = x · e ∈ xH,
so every element of G lies in a left coset of H. Now suppose that xH ∩ yH 6= φ for x, y ∈ G. Then for some
h1, h2 ∈ H we have xh1 = yh2. Multiply both sides of this equality on the right by h−1

2 to obtain

(xh1)h−1
2 = (yh2)h−1

2 = y

Let z = h1h
−1
2 for brevity. Since H is a subgroup, z ∈ H. Then

yH = {yh : h ∈ H} = {(xz)h : h ∈ H} = {x(zh) : h ∈ H}

Thus, yH ⊂ xH. Since the relationship between x and y is symmetrical, also xH ⊂ yH, and xH = yH.
Thus, the left cosets of H in G partition G.

Next, show that the cardinalities of the left cosets of H are identical, by demonstrating a bijection from H
to xH for any x ∈ G. Define

f(g) = xg

This maps H to yH, and if f(g) = f(g′), then

xg = xg′

from which left multiplication by x−1 gives g = g′. For surjectivity, note that the function f was arranged
so that

f(h) = xh

Thus, all left cosets of H have the same number of elements as H.

So G is the disjoint union of the left cosets of H. From this, |H| divides |G|. ///

The index [G : H] of a subgroup H in a group G is the number of disjoint (left or right) cosets of H in G.
Thus, Lagrange’s theorem says

|G| = [G : H] · |H|

For a single element g of a group G, one can verify that

〈g〉 = {gn : n ∈ Z}

where g0 = e, and

gn =


g ∗ g ∗ . . . ∗ g︸ ︷︷ ︸

n

(0 < n ∈ Z)

g−1 ∗ g−1 ∗ . . . ∗ g−1︸ ︷︷ ︸
|n|

(0 > n ∈ Z)

[8] Since the notion of abstract group did not exist until about 1890, Lagrange, who worked in the late 18th and

early 19th centuries, could not have proven the result as it is stated. However, his work in number theory repeatedly

used results of this sort, as did Gauss’s of about the same time. That is, Lagrange and Gauss recognized the principle

without having a formal framework for it.
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One might do the slightly tedious induction proof of the fact that, for all choices of sign of integers m,n,

gm+n = gm ∗ gn

(gm)n = gmn

That is, the so-called Laws of Exponents are provable properties. And, thus, 〈g〉 really is a subgroup. For
various reasons, a (sub)group which can be generated by a single element is called a cyclic subgroup. Note
that a cyclic group is necessarily abelian.

The smallest positive integer n (if it exists) such that

gn = e

is the order or exponent of g, often denoted by |g| or o(g). If there is no such n, say that the order of g is
infinite. [9]

2.2.3 Proposition: Let g be a finite-order element of a group G, with order n. Then the order of g (as
group element) is equal to the order of 〈g〉 (as subgroup). In particular,

〈g〉 = {g0, g1, g2, . . . , gn−1}

and, for arbitrary integers i, j,
gi = gj if and only if i = j mod n

Proof: The last assertion implies the first two. On one hand, if i = j mod n, then write i = j + `n and
compute

gi = gj+`n = gj · (gn)` = gj · e` = gj · e = gj

On the other hand, suppose that gi = gj . Without loss of generality, i ≤ j, and gi = gj implies e = gj−i.
Let

j − i = q · n+ r

where 0 ≤ r < n. Then
e = gj−i = gqn+r = (gn)q · gr = eq · gr = e · gr = gr

Therefore, since n is the least such that gn = e, necessarily r = 0. That is, n|j − i. ///

2.2.4 Corollary: (of Lagrange’s theorem) The order |g| of an element g of a finite group G divides the
order of G. [10]

Proof: We just proved that |g| = |〈g〉|, which, by Lagrange’s theorem, divides |G|. ///

Now we can recover Euler’s theorem as an example of the latter corollary of Lagrange’s theorem:

2.2.5 Corollary: (Euler’s theorem, again) Let n be a positive integer. For x ∈ Z relatively prime to n,

xϕ(n) = 1 mod n

[9] Yes, this use of the term order is in conflict with the use for subgroups, but we immediately prove their

compatibility.

[10] One can also imitate the direct proof of Euler’s theorem, and produce a proof of this corollary at least for finite

abelian groups.
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Proof: The set Z/n× of integers mod n relatively prime to n is a group with ϕ(n) elements. By Lagrange,
the order k of g ∈ Z/n× divides ϕ(n). Therefore, ϕ(n)/k is an integer, and

gϕ(n) = (gk)ϕ(n)/k = eϕ(n)/k = e

as desired. ///

The idea of Euler’s theorem can be abstracted. For a group G, the smallest positive integer ` so that for
every g ∈ G

g` = e

is the exponent of the group G. It is not clear from the definition that there really is such a positive integer
`. Indeed, for infinite groups G there may not be. But for finite groups the mere finiteness allows us to
characterize the exponent:

2.2.6 Corollary: (of Lagrange’s theorem) Let G be a finite group. Then the exponent of G divides the
order |G| of G.

Proof: From the definition, the exponent is the least common multiple of the orders of the elements of G.
From Lagrange’s theorem, each such order is a divisor of |G|. The least common multiple of any collection
of divisors of a fixed number is certainly a divisor of that number. ///

2.3 Homomorphisms, kernels, normal subgroups

Group homomorphisms are the maps of interest among groups.

A function (or map)
f : G −→ H

from one group G to another H is a (group) homomorphism if the group operation is preserved in the
sense that

f(g1g2) = f(g1) f(g2)

for all g1, g2 ∈ G. Let eG be the identity in G and eH the identity in H. The kernel of a homomorphism f
is

kernel of f = ker f = {g ∈ G : f(g) = eH}

The image of f is just like the image of any function:

image of f = imf = {h ∈ H : there is g ∈ G so that f(g) = h}

2.3.1 Theorem: Let f : G −→ H be a group homomorphism. Let eG be the identity in G and let eH
be the identity in H. Then
• Necessarily f carries the identity of G to the identity of H: f(eG) = eH .
• For g ∈ G, f(g−1) = f(g)−1.
• The kernel of f is a subgroup of G.
• The image of f is a subgroup of H.
• Given a subgroup K of H, the pre-image

f−1(K) = {g ∈ G : f(g) ∈ K}

of K under f is a subgroup of G.
• A group homomorphism f : G −→ H is injective if and only if the kernel is trivial (that is, is the trivial
subgroup {eG}).
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Proof: The image f(eG) has the property

f(eG) = f(eG · eG) = f(eG) · f(eG)

Left multiplying by f(eG)−1 (whatever this may be),

f(eG)−1 · f(eG) = f(eG)−1 · (f(eG) · f(eG))

Simplifying,
eH = (f(eG)−1 · f(eG)) · f(eG) = eH · f(eG) = f(eG)

so the identity in G is mapped to the identity in H.

To check that the image of an inverse is the inverse of an image, compute

f(g−1) · f(g) = f(g−1 · g) = f(eG) = eH

using the fact just proven that the identity in G is mapped to the identity in H.

Now prove that the kernel is a subgroup of G. The identity lies in the kernel since, as we just saw, it is
mapped to the identity. If g is in the kernel, then g−1 is also, since, as just showed, f(g−1) = f(g)−1. Finally,
suppose both x, y are in the kernel of f . Then

f(xy) = f(x) · f(y) = eH · eH = eH

Let X be a subgroup of G. Let
f(X) = {f(x) : x ∈ X}

To show that f(X) is a subgroup of H, we must check for presence of the identity, closure under taking
inverses, and closure under products. Again, f(eG) = eH was just proven. Also, we showed that
f(g)−1) = f(g−1), so the image of a subgroup is closed under inverses. And f(xy) = f(x)f(y) by the
defining property of a group homomorphism, so the image is closed under multiplication.

Let K be a subgroup of H. Let x, y be in the pre-image f−1(K). Then

f(xy) = f(x) · f(y) ∈ K ·K = K

f(x−1) = f(x)−1 ∈ K

And already f(eG) = eH , so the pre-image of a subgroup is a group.

Finally, we prove that a homomorphism f : G −→ H is injective if and only if its kernel is trivial. First, if f
is injective, then at most one element can be mapped to eH ∈ H. Since we know that at least eG is mapped
to eH by such a homomorphism, it must be that only eG is mapped to eH . Thus, the kernel is trivial. On
the other hand, suppose that the kernel is trivial. We will suppose that f(x) = f(y), and show that x = y.
Left multiply f(x) = f(y) by f(x)−1 to obtain

eH = f(x)−1 · f(x) = f(x)−1 · f(y)

By the homomorphism property,
eH = f(x)−1 · f(y) = f(x−1y)

Thus, x−1y is in the kernel of f , so (by assumption) x−1y = eG. Left multiplying this equality by x and
simplifying, we get y = x. ///

If a group homomorphism f : G −→ H is surjective, then H is said to be a homomorphic image of G. If
a group homomorphism f : G −→ H has an inverse homomorphism, then f is said to be an isomorphism,
and G and H are said to be isomorphic, written

G ≈ H
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For groups, if a group homomorphism is a bijection, then it has an inverse which is a group homomorphism,
so is an isomorphism.

2.3.2 Remark: Two groups that are isomorphic are considered to be ‘the same’, in the sense that any
intrinsic group-theoretic assertion about one is also true of the other.

A subgroup N of a group G is normal [11] or invariant [12] if, for every g ∈ G,

gNg−1 = N

where the notation is
gNg−1 = {gng−1 : n ∈ N}

This is readily seen to be equivalent to the condition that

gN = Ng

for all g ∈ G. Evidently in an abelian group G every subgroup is normal. It is not hard to check that
intersections of normal subgroups are normal.

2.3.3 Proposition: The kernel of a homomorphism f : G −→ H is a normal subgroup.

Proof: For n ∈ ker f , using things from just above,

f(gng−1) = f(g) f(n) f(g−1) = f(g) eH f(g)−1 = f(g) f(g)−1 = eH

as desired. ///

A group with no proper normal subgroups is simple. Sometimes this usage is restricted to apply only to
groups not of orders which are prime numbers, since (by Lagrange) such groups have no proper subgroups
whatsoever, much less normal ones.

2.4 Cyclic groups

Finite groups generated by a single element are easy to understand. The collections of all subgroups and
of all generators can be completely understood in terms of elementary arithmetic, in light of the first point
below. Recall that the set of integers modulo n is

Z/nZ = Z/n = {cosetsofnZinZ} = {x+ nZ : x ∈ Z}

2.4.1 Proposition: Let G = 〈g〉, of order n. Then G is isomorphic to Z/n with addition, by the map

f(gi) = i+ nZ ∈ Z/n

Proof: The main point is the well-definedness of the map. That is, that gi = gj implies i = j mod n, for
i, j ∈ Z. Suppose, without loss of generality, that i < j. Then gj−i = e. Let

j − i = q · n+ r

[11] This is one of too many uses of this term, but it is irretrievably standard.

[12] The term invariant surely comes closer to suggesting the intent, but is unfortunately archaic.
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with 0 ≤ r < n. Then
e = e · e = gj−i−qn = gr

and by the minimality of n we have r = 0. Thus, n|j−i, proving well-definedness of the map. The surjectivity
and injectivity are then easy. The assertion that f is a homomorphism is just the well-definedness of addition
modulo n together with properties of exponents:

f(gi) + f(gj) = (i+ nZ) + (j + nZ) = (i+ j) + nZ = f(gi+j) = f(gi · gj)

This demonstrates the isomorphism. ///

2.4.2 Corollary: Up to isomorphism, there is only one finite cyclic group of a given order. ///

The following facts are immediate corollaries of the proposition and elementary properties of Z/n.

• The distinct subgroups of G are exactly the subgroups 〈gd〉 for all divisors d of N .
• For d|N the order of the subgroup 〈gd〉 is the order of gd, which is N/d.
• The order of gk with arbitrary integer k 6= 0 is N/gcd(k,N).
• For any integer n we have

〈gn〉 = 〈ggcd(n,N)〉

• The distinct generators of G are the elements gr where 1 ≤ r < N and gcd(r,N) = 1. Thus, there are
ϕ(N) of them, where ϕ is Euler’s phi function.
• The number of elements of order n in a finite cyclic group of order N is 0 unless n|N , in which case it is
N/n.

2.4.3 Proposition: A homomorphic image of a finite cyclic group is finite cyclic.

Proof: The image of a generator is a generator for the image. ///

Using the isomorphism of a cyclic group to some Z/n, it is possible to reach definitive conclusions about the
solvability of the equation xr = y.

2.4.4 Theorem: Let G be a cyclic group of order n with generator g. Fix an integer r, and define

f : G −→ G

by
f(x) = xr

This map f is a group homomorphism of G to itself. If gcd(r, n) = 1, then f is an isomorphism, and in that
case every y ∈ G has a unique rth root. More generally,

order of kernel of f = gcd(r, n)

order of image of f = n/gcd(r, n)

If an element y has an rth root, then it has exactly gcd(r, n) of them. There are exactly n/gcd(r, n) rth

powers in G.

Proof: Since G is abelian the map f is a homomorphism. Use the fact that G is isomorphic to Z/n.
Converting to the additive notation for Z/n-with-addition, f is

f(x) = r · x
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If gcd(r, n) = 1 then there is a multiplicative inverse r−1 to r mod n. Thus, the function

g(x) = r−1 · x

gives an inverse function to f , so f is an isomorphism.

For arbitrary r, consider the equation
r · x = y mod n

for given y. This condition is
n|(rx− y)

Let d = gcd(r, n). Then certainly it is necessary that d|y or this is impossible. On the other hand, suppose
that d|y. Write y = dy′ with integer y′. We want to solve

r · x = dy′ mod n

Dividing through by the common divisor d, this congruence is

r

d
· x = y′ mod

n

d

The removal of the common divisor makes r/d prime to n/d, so there is an inverse (r/d)−1 to r/d mod n/d,
and

x = (r/d)−1 · y′ mod (n/d)

That is, any integer x meeting this condition is a solution to the original congruence. Letting x0 be one such
solution, the integers

x0, x0 +
n

d
, x0 + 2 · n

d
, x0 + 3 · n

d
, . . . x0 + (d− 1) · n

d

are also solutions, and are distinct mod n. That is, we have d distinct solutions mod n.

The kernel of f is the collection of x so that rx = 0 mod n. Taking out the common denominator
d = gcd(r, n), this is (r/d)x = 0 mod n/d, or (n/d)|(r/d)x. Since r/d and n/d have no common factor,
n/d divides x. Thus, mod n, there are d different solutions x. That is, the kernel of f has d elements. ///

2.5 Quotient groups

Let G be a group and H a subgroup. The quotient set G/H of G by H is the set of H-cosets

G/H = {xH : x ∈ G}

in G. In general, there is no natural group structure on this set. [13] But if H is normal, then we define a
group operation ∗ on G/H by

xH ∗ yH = (xy)H

Granting in advance that this works out, the quotient map q : G −→ G/N defined by

q(g) = gN

will be a group homomorphism.

[13] The key word is natural: of course any set can have several group structures put on it, but, reasonably enough,

we are interested in group structures on G/H that have some connection with the original group structure on G.
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Of course, the same symbols can be written for non-normal H, but will not give a well-defined operation.
That is, for well-definedness, one must verify that the operation does not depend upon the choice of coset
representatives x, y in this formula. That is, one must show that if

xH = x′H and yH = y′H

then
(xy)H = (x′y′)H

If H is normal, then xH = Hx for all x ∈ G. Then, literally, as sets,

xH · yH = x ·Hy ·H = x · yH ·H = (xy)H ·H = (xy)H

That is, we can more directly define the group operation ∗ as

xH ∗ yH = xH · yH

2.5.1 Remark: If H is not normal, take x ∈ G such that Hx 6 xH. That is, there is h ∈ H such that
hx 6∈ xH. Then hxH 6= H, and, if the same definition were to work, supposedly

hH ∗ xH = (hx)H 6= xH

But, on the other hand, since hH = eH,

hH ∗ xH = eH ∗ xH = (ex)H = xH

That is, if H is not normal, this apparent definition is in fact not well-defined.

2.5.2 Proposition: (Isomorphism Theorem) Let f : G −→ H be a surjective group homomorphism.
Let K = ker f . Then the map f̄ : G/K −→ H by

f̄(gK) = f(g)

is well-defined and is an isomorphism.

Proof: If g′K = gK, then g′ = gk with k ∈ K, and

f(g′) = f(gk) = f(g) f(k) = f(g) e = f(g)

so the map f̄ is well-defined. It is surjective because f is. For injectivity, if f̄(gK) = f̄(g′K), then
f(g) = f(g′), and

eH = f(g)−1 · f(g′) = f(g−1) · f(g) = f(g−1g′)

Thus, g−1g′ ∈ K, so g′ ∈ gK, and g′K = gK. ///

In summary, the normal subgroups of a group are exactly the kernels of surjective homomorphisms.

As an instance of a counting principle, we have

2.5.3 Corollary: Let f : G −→ H be a surjective homomorphism of finite groups. Let Y be a subgroup
of H. Let

X = f−1(Y ) = {x ∈ G : f(x) ∈ Y }

be the inverse image of Y in G. Then
|X| = | ker f | · |Y |
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Proof: By the isomorphism theorem, without loss of generality Y = G/N where N = ker f is a normal
subgroup in G. The quotient group is the set of cosets gN . Thus,

f−1(Y ) = {xN : f(x) ∈ Y }

That is, the inverse image is a disjoint union of cosets of N , and the number of cosets in the inverse image
is |Y |. We proved earlier that X is a subgroup of G. ///

A variant of the previous corollary gives

2.5.4 Corollary: Given a normal subgroup N of a group G, and given any other subgroup H of G, let
q : G −→ G/N be the quotient map. Then

H ·N = {hn : h ∈ H,n ∈ N} = q−1(q(H))

is a subgroup of G. If G is finite, the order of this group is

|H ·N | = |H| · |N |
|H ∩N |

Further,
q(H) ≈ H/(H ∩N)

Proof: By definition the inverse image q−1(q(H)) is

{g ∈ G : q(g) ∈ q(H)} = {g ∈ G : gN = hN for some h ∈ H}

= {g ∈ G : g ∈ hN for some h ∈ H} = {g ∈ G : g ∈ H ·N} = H ·N

The previous corollary already showed that the inverse image of a subgroup is a subgroup. And if hN = h′N ,
then N = h−1h′N , and h−1h′ ∈ N . Yet certainly h−1h′ ∈ H, so h−1h′ ∈ H ∩N . And, on the other hand,
if h−1h′ ∈ H ∩N then hN = h′N . Since q(h) = hN , this proves the isomorphism. From above, the inverse
image H ·N = q−1(q(H)) has cardinality

cardH ·N = | ker q| · |q(H)| = |N | · |H/(H ∩N)| = |N | · |H|
|H ∩N |

giving the counting assertion. ///

2.6 Groups acting on sets

Let G be a group and S a set. A map G× S −→ S, denoted by juxaposition

g × s −→ gs

is an action of the group on the set if
• es = s for all s ∈ S
• (Associativity) (gh)s = g(hs) for all g, h ∈ G and s ∈ S.

These conditions assure that, for example, gs = t for s, t ∈ S and g ∈ G implies that g−1t = s. Indeed,

g−1t = g−1(gs) = (g−1g)s = es = s

Sometimes a set with an action of a group G on it is called a G-set.



Garrett: Abstract Algebra 29

The action of G on a set is transitive if, for all s, t ∈ S, there is g ∈ G such that gs = t. This definition
admits obvious equivalent variants: for example, the seemingly weaker condition that there is so ∈ S such
that for every t ∈ S there is g ∈ G such that gso = t implies transitivity. Indeed, given s, t ∈ S, let gsso = s
and gtso = t. Then

(gtg−1
s )s = gt(g−1

s s) = gt(so) = t

For G acting on a set S, a subset T of S such that g(T ) ⊂ T is G-stable.

2.6.1 Proposition: For a group G acting on a set S, and for a G-stable subset T of S, in fact g(T ) = T
for all g ∈ G.

Proof: We have
T = eT = (gg−1)T = g(g−1(T )) ⊂ g(T ) ⊂ T

Thus, all the inclusions must be equalities. ///

A single element so ∈ S such that gso = so for all g ∈ G is G-fixed. Given an element so ∈ S, the stabilizer
of so in G, often denoted Gso , is

Gso = {g ∈ G : gso = so}

More generally, for a subset T of S, the stabilizer of T in G is

stabilizer of T in G = {g ∈ G : g(T ) = T}

The point-wise fixer or istropy subgroup of a subset T is

isotropy subgroup of T = point-wise fixer of T in G = {g ∈ G : gt = t for all t ∈ T}

For a subgroup H of G, the fixed points SH of H on S are the elements of the set

fixed point set of H = {s ∈ S : hs = s for all h ∈ H}

2.6.2 Remark: In contrast to the situation of the previous proposition, if we attempt to define the
stabilizer of a subset by the weaker condition g(T ) ⊂ T , the following proposition can fail (for infinite sets
S).

2.6.3 Proposition: Let G act on a set S, and let T be a subset of S. Then both the stabilizer and
point-wise fixer of T in G are subgroups of G.

Proof: We only prove that the stabilizer of T is stable under inverses. Suppose gT = T . Then

g−1T = g−1(g(T )) = (g−1g)(T ) = e(T ) = T

since g(T ) = T . ///

With an action of G on the set S, a G-orbit in S is a non-empty G-stable subset of S, on which G is
transitive.

2.6.4 Proposition: Let G act on a set S. For any element so in an orbit O of G on S,

O = G · so = {gso : g ∈ G}

Conversely, for any so ∈ S, the set G · so is a G-orbit on S.
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Proof: Since an orbit O is required to be non-empty, O contains an element so. Since O is G-stable,
certainly gso ∈ S for all g ∈ G. Since G is transitive on O, the collection of all images gso of so by elements
g ∈ G must be the whole orbit O. On the other hand, any set

Gso = {gso : g ∈ G}

is G-stable, since h(gso) = (hg)so. And certainly G is transitive on such a set. ///

Now we come to some consequences for counting problems. [14]

2.6.5 Proposition: Let G act transitively on a (non-empty) set S, and fix s ∈ S. Then S is in bijection
with the set G/Gs of cosets gGs of the isotropy group Gs of s in G, by

gs←→ gGs

Thus,
cardS = [G : Gs]

Proof: If hGs = gGs, then there is x ∈ Gs such that h = gx, and hs = gxs = gs. On the other hand, if
hs = gs, then g−1hs = s, so g−1h ∈ Gs, and then h ∈ gGs. ///

2.6.6 Corollary: (Counting formula) Let G be a finite group acting on a finite set S. Let X be the set
of G-orbits in S. For O ∈ X let sO ∈ O. And

cardS =
∑
O∈X

cardO =
∑
O∈X

[G : GsO ]

Proof: The set S is a disjoint union of the G-orbits in it, so the cardinality of S is the sum of the cardinalities
of the orbits. The cardinality of each orbit is the index of the isotropy group of a chosen element in it, by
the previous proposition. ///

Two fundamental examples of natural group actions are the following.

2.6.7 Example: A group G acts on itself (as a set) by conjugation: [15] for g, x ∈ G,

conjugate of x by g = gxg−1

It is easy to verify that for fixed g ∈ G, the map

x −→ gxg−1

is an isomorphism of G to itself. For x and y elements of G in the same G-orbit under this action, say that
x and y are conjugate. The orbits of G on itself with the conjugation action are conjugacy classes (of
elements). The center of a group G is the set of elements z whose orbit under conjugation is just {z}. That
is,

center of G = {z ∈ G : gz = zg for all g ∈ G}

Either directly or from general principles (above), the center Z of a group G is a subgroup of G. Further, it
is normal:

gZg−1 = {gzg−1 : z ∈ Z} = {z : z ∈ Z} = Z

[14] Yes, these look boring and innocent, in this abstraction.

[15] It is obviously not wise to use the notation gh for ghg−1.
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And of course the center is itself an abelian group.

2.6.8 Example: For a subgroup H of G and for g ∈ G, the conjugate subgroup gHg−1 is

gHg−1 = {ghg−1 : h ∈ H}

Thus, G acts on the set of its own subgroups by conjugation. [16] As with the element-wise conjugation
action, for H and K subgroups of G in the same G-orbit under this action, say that H and K are conjugate.
The orbits of G on its subgroups with the conjugation action are conjugacy classes (of subgroups). The
fixed points of G under the conjugation action on subgroups are just the normal subgroups. On the other
hand, for a given subgroup H, the isotropy subgroup in G for the conjugation action is called the normalizer
of H in G:

normalizer of H in G = {g ∈ G : gHg−1 = H}

Either directly or from more general principles (above), the normalizer of H in G is a subgroup of G
(containing H).

2.7 The Sylow theorem

There is not much that one can say about the subgroups of an arbitrary finite group. Lagrange’s theorem
is the simplest very general assertion. Sylow’s theorem is perhaps the strongest and most useful relatively
elementary result limiting the possibilities for subgroups and, therefore, for finite groups.

Let p be a prime. A p-group is a finite group whose order is a power of the prime p. Let G be a finite group.
Let pe be the largest power of p dividing the order of G. A p-Sylow subgroup (if it exists) is a subgroup of
G of order pe.

2.7.1 Remark: By Lagrange’s theorem, no larger power of p can divide the order of any subgroup of G.

2.7.2 Theorem: Let p be a prime. Let G be a finite group. Let pe be the largest power of p dividing
the order of G. Then
• G has p-Sylow subgroups.
• Every subgroup of G with order a power of p lies inside a p-Sylow subgroup of G.
• The number np of p-Sylow subgroups satisfies

np|order(G) np = 1 mod p

• Any two p-Sylow subgroups P and Q are conjugate. [17]

• A group of order pn has a non-trivial center.

It is convenient to prove a much weaker and simpler result first, which also illustrates a style of induction
via subgroups and quotients:

2.7.3 Lemma: Let A be a finite abelian group, and let p be a prime dividing the order of A. Then there
is an element a of A of order exactly p. Thus, there exists a subgroup of A of order p.

Proof: (of lemma) Use induction on the order of A. If the order is p exactly, then any non-identity element
is of order p. Since a prime divides its order, A is not the trivial group, so we can choose a non-identity

[16] And, again, it is manifestly unwise to write gH for gH−1.

[17] This property is the sharpest and most surprising assertion here.
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element g of A. By Lagrange, the order n of g divides the order of A. If p divides n, then gn/p is of order
exactly p and we’re done. So suppose that p does not divide the order of g. Then consider the quotient

q(A) = B = A/〈g〉

of A by the cyclic subgroup generated by g. The order of B is still divisible by p (since | < 〈g〉| is not), so
by induction on order there is an element y in B of order exactly p. Let x be any element in A which maps
to y under the quotient map q : A −→ B. Let N be the order of x. The prime p divides N , or else write
N = `p+ r with 0 < r < p, and

eB = q(eA) = q(xN ) = yN = y`p+r = yr 6= eB

contradiction. Then xN/p has order exactly p, and the cyclic subgroup generated by xN/p has order p.
///

Proof: Now prove the theorem. First, we prove existence of p-Sylow subgroups by induction on the exponent
e of the power pe of p dividing the order of G. (Really, the induction uses subgroups and quotient groups of
G.) If e = 0 the p-Sylow subgroup is the trivial subgroup, and there is nothing to prove. For fixed e > 1,
do induction on the order of the group G. If any proper subgroup H of G has order divisible by pe, then
invoke the theorem for H, and a p-Sylow subgroup of H is one for G. So suppose that no proper subgroup
of G has order divisible by pe. Then for any subgroup H of G the prime p divides [G : H]. By the counting
formula above, using the conjugation action of G on itself,

cardG =
∑
x

[G : Gx]

where x is summed over (irredundant) representatives for conjugacy classes. Let Z be the center of G. Then
Z consists of G-orbits each with a single element. We rewrite the counting formula as

cardG = cardZ +
non−central∑

x

[G : Gx]

where now x is summed over representatives not in the center. For non-central x the isotropy group Gx is a
proper subgroup, so by assumption, p divides [G : Gx] for all x. Since p divides the order of G, we conclude
from the counting formula that p divides the order of the center Z (but pe does not divide the order of Z).
Using the lemma above, let A be a subgroup of Z of order p. Since A is inside the center it is still normal.
Consider the quotient group H = G/A, with quotient map q : A −→ B. The power of p dividing the order
of H is pe−1, strictly smaller than pe. By induction, let Q be a p-Sylow subgroup of H, and let P = q−1(Q)
be the inverse image of Q under the quotient map q. Then

|P | = |q−1(Q)| = | ker q| · |Q| = p · pe−1 = pe

from the counting corollary of the isomorphism theorem (above). Thus, G does have a p-Sylow theorem
after all.

If it happens that |G| = pe, looking at that same formula

cardG = cardZ +
non−central∑

x

[G : Gx]

the left-hand side is pe, and all the summands corresponding to non-central conjugacy classes are divisible
by p, so the order of the center is divisible by p. That is, p-power-order groups have non-trivial centers.
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Let X be any G-conjugation stable set of p-Sylow subgroups. Fix a p-power-order subgroup Q not necessarily
in X, and let Q act on the set X by conjugation. The counting formula gives

cardX =
∑
x

[Q : Qx]

where x runs over representatives for Q-conjugacy classes in X. If Q normalized a p-Sylow subgroup x not
containing Q, then

H = Q · x

would be a subgroup of order

|Q · x| = |Q| · |x|
|Q ∩ x|

> |x|

and would be a power of p, contradicting the maximality of x. Thus, the only p-Sylow subgroups normalized
by any p-power-order subgroup Q are those containing Q. Thus, except for x containing Q, all the indices
[Q : Qx] are divisible by p. Thus,

|X| = |{x ∈ X : Q ⊂ x}|+
Q6⊂x∑
x

[Q : Qx]

In the case that Q itself is a p-Sylow subgroup, and X is all p-Sylow subgroups in G,

|{x ∈ X : Q ⊂ x}| = |{Q}| = 1

so the number of all p-Sylow subgroups is 1 mod p.

Next, let X consist of a single G-conjugacy class of p-Sylow subgroups. Fix x ∈ X. Since X is a single orbit,

|X| = [G : Gx]

and the latter index is not divisible by p, since the normalizer Gx of x contains x. Let a p-power-subgroup
Q act by conjugation on X. In the counting formula

|X| = |{x ∈ X : Q ⊂ x}|+
Q6⊂x∑
x

[Q : Qx]

all the indices [Q : Qx] are divisible by p, but |X| is not, so

|{x ∈ X : Q ⊂ x}| 6= 0

That is, given a p-power-order subgroup Q, every G-conjugacy class of p-Sylow subgroups contains an x
containing Q. This is only possible if there is a unique G-conjugacy class of p-Sylow subgroups. That is, the
conjugation action of G is transitive on p-Sylow subgroups.

Further, since Q was not necessarily maximal in this last discussion, we have shown that every p-power-order
subgroup of G lies inside at least one p-Sylow subgroup.

And, fixing a single p-Sylow subgroup x, using the transitivity, the number of all p-Sylow subgroups is

number p-Sylow subgroups = [G : Gx] = |G|/|Gx|

This proves the divisibility property. ///
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2.7.4 Remark: For general integers d dividing the order of a finite group G, it is seldom the case that
there is a subgroup of G of order d. By contrast, if G is cyclic there is a unique subgroup for every divisor
of its order. If G is abelian there is at least one subgroup for every divisor of its order.

2.7.5 Remark: About the proof of the Sylow theorem: once one knows that the proof uses the
conjugation action on elements and on subgroups, there are not so many possible directions the proof could
go. Knowing these limitations on the proof methodology, one could hit on a correct proof after a relatively
small amount of trial and error.

2.8 Trying to classify finite groups, part I

Lagrange’s theorem and the Sylow theorem allow us to make non-trivial progress on the project of classifying
finite groups whose orders have relatively few prime factors. That is, we can prove that there are not many
non-isomorphic groups of such orders, sometimes a single isomorphism class for a given order. This sort of
result, proving that an abstraction miraculously allows fewer instances than one might have imagined, is
often a happy and useful result.

Groups of prime order: Let p be a prime, and suppose that G is a group with |G| = p. Then by Lagrange’s
theorem there are no proper subgroups of G. Thus, picking any element g of G other than the identity, the
(cyclic) subgroup 〈g〉 generated by g is necessarily the whole group G. That is, for such groups G, choice of
a non-identity element g yields

G = 〈g〉 ≈ Z/p

Groups of order pq, part I: Let p < q be primes, and suppose that G is a group with |G| = pq. Sylow’s
theorem assures that there exist subgroups P and Q of orders p and q, respectively. By Lagrange, the order
of P ∩Q divides both p and q, so is necessarily 1. Thus,

P ∩Q = {e}

Further, the number nq of q-Sylow subgroups must be 1 mod q and also divide the order pq of the group.
Since q = 0 mod q, the only possibilities (since p is prime) are that either nq = p or nq = 1. But p < q
precludes the possibility that nq = p, so nq = 1. That is, with p < q, the q-Sylow subgroup is necessarily
normal.

The same argument, apart from the final conclusion invoking p < q, shows that the number np of p-Sylow
subgroups is either np = 1 or np = q, and (by Sylow) is np = 1 mod p. But now p < q does not yield np = 1.
There are two cases, q = 1 mod p and otherwise.

If q 6= 1 mod p, then we can reach the conclusion that np = 1, that is, that the p-Sylow subgroup is also
normal. Thus, for p < q and q 6= 1 mod p, we have a normal p-Sylow group P and a normal q-Sylow subgroup
Q. Again, P ∩Q = {e} from Lagrange.

How to reconstruct G from such facts about its subgroups?

We need to enrich our vocabulary: given two groups G and H, the (direct) product group G ×H is the
cartesian product with the operation

(g, h) · (g′, h′) = (gg′, hh′)

(It is easy to verify the group properties.) For G and H abelian, with group operations written as addition,
often the direct product is written instead as a (direct) sum [18]

G⊕H
[18] Eventually we will make some important distinctions between direct sums and direct products, but there is no

need to do so just now.
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2.8.1 Proposition: Let A and B be normal [19] subgroups of a group G, such that A∩B = {e}. Then

f : A×B −→ A ·B = {ab : a ∈ A, b ∈ B}

by
f(a, b) = ab

is an isomorphism. The subgroup A · B ≈ A × B is a normal subgroup of G. In particular, ab = ba for all
a ∈ A and b ∈ B.

Proof: The trick is to consider commutator expressions

aba−1b−1 = aba−1 · b−1 = a · ba−1b−1

for a ∈ A and b ∈ B. Since B is normal, the second expression is in B. Since A is normal, the third
expression is in A. Thus, the commutator aba−1b−1 is in A ∩B, which is {e}. [20] Thus, right multiplying
by b

aba−1 = b

or, right multiplying further by a,
ab = ba

The fact that ab = ba for all a ∈ A and all i
¯
nB allows one to easily show that f is a group homomorphism.

Its kernel is trivial, since ab = e implies

a = b−1 ∈ A ∩B = {e}

Thus, the map is injective, from earlier discussions. Now |A×B| = pq, and the map is injective, so f(A×B)
is a subgroup of G with order pq. Thus, the image is all of G. That is, f is an isomorphism. ///

2.8.2 Proposition: Let A and B by cyclic groups of relatively prime orders m and n. Then A× B is
cyclic of order mn. In particular, for a a generator for A and b a generator for B, (a, b) is a generator for
the product.

Proof: Let N be the least positive integer such that N(a, b) = (eA, eB). Then Na = eA, so |a| divides
N . Similarly, |b| divides N . Since |a| and |b| are relatively prime, this implies that their product divides N .

///

2.8.3 Corollary: For |G| = pq with p < q and q 6= 1 mod p, G is cyclic of order pq. Hence, in particular,
there is only one isomorphism class of groups of such orders pq. ///

2.8.4 Remark: Even without the condition q 6= 1 mod p, we do have the cyclic group Z/pq of order pq,
but without that condition we cannot prove that there are no other groups of order pq. [21] We’ll delay
treatment of |G| = pq with primes p < q and q = 1 mod p till after some simpler examples are treated.

2.8.5 Example: Groups of order 15 = 3 · 5, or order 35 = 5 · 7, of order 65 = 5 · 13, etc., are necessarily
cyclic of that order. By contrast, we reach no such conclusion about groups of order 6 = 2 · 4, 21 = 3 · 7,
55 = 5 · 11, etc. [22]

[19] Unless at least one of the subgroups is normal, the set A ·B may not even be a subgroup, much less normal.

[20] By Lagrange, again. Very soon we will tire of explicit invocation of Lagrange’s theorem, and let it go without

saying.

[21] And, indeed, there are non-cyclic groups of those orders.

[22] And, again, there are non-cyclic groups of such orders.
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Groups G of order pqr with distinct primes p, q, r: By Sylow, there is a p-Sylow subgroup P , a q-Sylow
subgroup Q, and an r-Sylow subgroup R. Without any further assumptions, we cannot conclude anything
about the normality of any of these Sylow subgroups, by contrast to the case where the order was pq, wherein
the Sylow subgroup for the larger of the two primes was invariably normal.

One set of hypotheses which allows a simple conclusion is

q 6= 1 mod p r 6= 1 mod p qr 6= 1 mod p
p 6= 1 mod q r 6= 1 mod q pr 6= 1 mod q
p 6= 1 mod r q 6= 1 mod r pq 6= 1 mod r

These conditions would suffice to prove that all of P , Q, and R are normal. Then the little propositions
above prove that P ·Q is a normal cyclic subgroup of order pq, and then (since still pq and r are relatively
prime) that (PQ) · R is a cyclic subgroup of order pqr, so must be the whole group G. That is, G is cyclic
of order pqr.

Groups of order pq, part II: Let p < q be primes, and now treat the case that q = 1 mod p, so that a
group G of order pq need not be cyclic. Still, we know that the q-Sylow subgroup Q is normal. Thus, for
each x in a fixed p-Sylow subgroup P , we have a map ax : Q −→ Q defined by

ax(y) = xyx−1

Once the normality of Q assures that this really does map back to Q, it is visibly an isomorphism of Q to
itself. This introduces:

An isomorphism of a group to itself is an automorphism. [23] The group of automorphisms of a group
G is

Aut(G) = AutG = {isomorphisms G −→ G}

It is easy to check that Aut(G) is indeed a group, with operation being the composition of maps, and identity
being the identity map 1G defined by [24]

1G(g) = g (for any g in G)

In general it is a non-trivial matter to determine in tangible terms the automorphism group of a given group,
but we have a simple case:

2.8.6 Proposition:
Aut(Z/n) ≈ (Z/n)×

by defining, for each z ∈ (Z/n)×, and for x ∈ Z/n,

fz(x) = zx

On the other hand, given an automorphism f , taking z = f(1) gives fz = f .

Proof: For z multiplicatively invertible mod n, since the addition and multiplication in Z/n enjoy a
distributive property, fz is an automorphism of Z/n to itself. On the other hand, given an automorphism f
of Z/n, let z = f(1). Then, indeed, identifying x in Z/n with an ordinary integer,

f(x) = f(x · 1) = f(1 + . . .+ 1︸ ︷︷ ︸
x

) = f(1) + . . .+ f(1)︸ ︷︷ ︸
x

= z + . . .+ z︸ ︷︷ ︸
x

= zx

[23] A homomorphism that is not necessarily an isomorphism of a group to itself is an endomorphism.

[24] This should be expected.
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That is, every automorphism is of this form. ///

Given two groups H and N , with a group homomorphism

f : H −→ Aut(N) denoted h −→ fh

the semi-direct product group
H ×f N

is the set H ×N with group operation intending to express the idea that

hnh−1 = fh(n)

But since H and N are not literally subgroups of anything yet, we must say, instead, that we want

(h, eN )(eH , n)(h−1, eN ) = (eH , fh(n))

After some experimentation, one might decide upon the definition of the operation

(h, n) · (h′, n′) = (hh′, fh′−1(n)n′)

Of course, when f is the trivial homomorphism (sending everything to the identity) the semi-direct product
is simply the direct product of the two groups.

2.8.7 Proposition: With a group homomorphism f : H −→ Aut(N), the semi-direct product H ×f N
is a group. The maps h −→ (h, eN ) and n −→ (eH , n) inject H and N , respectively, and the image of N is
normal.

Proof: [25] The most annoying part of the argument would be proof of associativity. On one hand,

((h, n)(h′, n′)) (h′′, n′′) = (hh′, fh′−1(n)n′) (h′′, n′′) = (hh′h′′, fh′′−1 (fh′−1(n)n′)n′′)

The H-component is uninteresting, so we only look at the N -component:

fh′′−1 (fh′−1(n)n′)n′′ = fh′′−1 ◦ fh′−1(n) · fh′′−1(n′) · n′′ = f(h′h′′)−1(n) · fh′′−1(n′) · n′′

which is the N -component which would arise from

(h, n) ((h′, n′)(h′′, n′′))

This proves the associativity. The other assertions are simpler. ///

Thus, in the |G| = pq situation, because Q is normal, we have a group homomorphism

Z/p ≈ P −→ Aut(Q) ≈ (Z/q)×

The latter is of order q− 1, so unless p|(q− 1) this homomorphism must have trivial image, that is, P and Q
commute, giving yet another approach to the case that q 6= 1 mod p. But for p|(q − 1) there is at least one
non-trivial homomorphism to the automorphism group: (Z/q)× is an abelian group of order divisible by p,
so there exists [26] an element z of order p. Then take f : Z/p −→ Aut(Z/q) by

f(x)(y) = zx · y ∈ Z/q

[25] There is nothing surprising in this argument. It amounts to checking what must be checked, and there is no

obstacle other than bookkeeping. It is surely best to go through it oneself rather than watch someone else do it, but

we write it out here just to prove that it is possible to force oneself to carry out some of the details.

[26] Existence follows with or without use of the fact that there are primitive roots modulo primes. For small numerical

examples this cyclicness can be verified directly, without necessarily appealing to any theorem that guarantees it.
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This gives a semi-direct product of Z/p and Z/q which cannot be abelian, since elements of the copy P of
Z/p and the copy Q of Z/q do not all commute with each other. That is, there is at least one non-abelian
[27] group of order pq if q = 1 mod p.

How many different semi-direct products are there? [28] Now we must use the non-trivial fact that
(Z/q)× is cyclic for q prime. [29] That is, granting this cyclicness, there are exactly p−1 elements in (Z/q)×

of order p. Thus, given a fixed element z of order p in (Z/q)×, any other element of order p is a power of z.

Luckily, this means that, given a choice of isomorphism i : Z/p ≈ P to the p-Sylow group P , and given
non-trivial f : P −→ Aut(Q), whatever the image f(i(1)) may be, we can alter the choice of i to achieve the
effect that

f(i(1)) = z

Specifically, if at the outset
f(i(1)) = z′

with some other element z′ of order p, use the cyclicness to find an integer ` (in the range 1, 2, . . . , p − 1)
such that

z′ = z`

Since ` is prime to p, it has an inverse modulo k mod p. Then

f(i(k)) = f(k · i(1)) = f(i(1))k = (z′)k = (z`)k = z

since `k = 1 mod p and z has order p.

In summary, with primes q = 1 mod p, up to isomorphism there is a unique non-abelian group of order pq,
and it is a semi-direct product of Z/p and Z/q. [30]

Groups of order p2, with prime p: A different aspect of the argument of the Sylow theorem is that a
p-power-order group G necessarily has a non-trivial center Z. If Z = G we have proven that G is abelian.
Suppose Z is proper. Then [31] it is of order p, thus [32] necessarily cyclic, with generator z. Let x be any
other group element not in Z. It cannot be that the order of x is p2, or else G = 〈x〉 and G = Z, contrary
to hypothesis. Thus, [33] the order of x is p, and [34]

〈x〉 ∩ 〈z〉 = {e}

Abstracting the situation just slightly:

2.8.8 Proposition: [35] Let G be a finite group with center Z and a subgroup A of Z. Let B be
another abelian subgroup of G, such that A ∩B = {e} and A ·B = G. Then the map

f : A×B −→ A ·B
[27] So surely non-cyclic.

[28] As usual in this context, different means non-isomorphic.

[29] This is the existence of primitive roots modulo primes.

[30] The argument that showed that seemingly different choices yield isomorphic groups is an ad hoc example of a

wider problem, of classification up to isomorphism of group extensions.

[31] Lagrange

[32] Lagrange

[33] Lagrange

[34] Lagrange

[35] This is yet another of an endless stream of variations on a theme.
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by
a× b −→ ab

is an isomorphism, and A ·B is abelian.

Proof: If a× b were in the kernel of f , then ab = e, and

a = b−1 ∈ A ∩B = {e}

And
f((a, b) · (a′, b′)) = f(aa′, bb′) = aa′bb′

while
f(a, b) · f(a′, b′) = ab · a′b′ = aa′bb′

because ba′ = a′b, because elements of A commute with everything. That is, f is a homomorphism. Since
both A and B are abelian, certainly the product is. ///

That is, any group G of order p2 (with p prime) is abelian. So our supposition that the center of such G is
of order only p is false.

Starting over, but knowing that G of order p2 is abelian, if there is no element of order p2 in G (so G is not
cyclic), then in any case there is an element z of order p. [36] And take x not in 〈z〉. Necessarily x is of
order p. By the same clichéd sort of argument as in the last proposition, 〈x〉 ∩ 〈z〉 = {e} and

Z/p× Z/p ≈ 〈x〉 × 〈z〉 ≈ 〈x〉 · 〈z〉 = G

That is, non-cyclic groups of order p2 are isomorphic to Z/p× Z/p.

Automorphisms of groups of order q2: Anticipating that we’ll look at groups of order pq2 with normal
subgroups of order q2, to understand semi-direct products P ×f Q with P of order p and Q of order q2 we
must have some understanding of the automorphism groups of groups of order q2, since f : P −→ AutQ
determines the group structure. For the moment we will focus on merely the order of these automorphism
groups. [37]

For Q cyclic of order q2, we know that Q ≈ Z/q2, and from above

AutQ ≈ Aut(Z/q2) ≈ (Z/q2)×

In particular, the order is [38]

|AutQ| = card(Z/q2)× = ϕ(q2) = q(q − 1)

This is easy.

For Q non-cyclic of order q2, we saw that

Q ≈ Z/q ⊕ Z/q

[36] For example, this follows from the lemma preparatory to the Sylow theorem.

[37] After some further preparation concerning finite fields and linear algebra we can say more definitive structural

things.

[38] Using Euler’s totient function ϕ.
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where we write direct sum to emphasize the abelian-ness of Q. [39] For the moment we only aim to count
these automorphisms. Observe that [40]

(x̄, ȳ) = x · (1̄, 0̄) + y · (0̄, 1̄)

for any x, y ∈ Z, where for the moment the bars denotes residue classes modulo q. Thus, for any
automorphism α of Q

α(x̄, ȳ) = x · α(1̄, 0̄) + y · α(0̄, 1̄)

where multiplication by an integer is repeated addition. Thus, the images of (1̄, 0̄) and (0̄, 1̄) determine α
completely. And, similarly, any choice of the two images gives a group homomorphism of Q to itself. The
only issue is to avoid having a proper kernel. To achieve this, α(1̄, 0̄) certainly must not be e ∈ Q, so there
remain q2 − 1 possible choices for the image of (1̄, 0̄). Slightly more subtly, α(0̄, 1̄) must not lie in the cyclic
subgroup generated by α(1̄, 0̄), which excludes exactly q possibilities, leaving q2 − q possibilities for α(0̄, 1̄)
for each choice of α(1̄, 0̄). Thus, altogether,

card Aut(Z/q ⊕ Z/q) = (q2 − 1)(q2 − q)

We will pursue this later.

Groups of order pq2: As in the simpler examples, the game is to find some mild hypotheses that combine
with the Sylow theorem to limit the possibilities for the arrangement of Sylow subgroups, and then to look
at direct product or semi-direct product structures that can arise. Let G be a group of order pq2 with p, q
distinct primes.

As a preliminary remark, if G is assumed abelian, then G is necessarily the direct product of a p-Sylow
subgroup and a q-Sylow subgroup (both of which are necessarily norml), and by the classification of order
q2 groups this gives possibilities

G = P ·Q ≈ P ×Q ≈ Z/p×Q ≈
{

Z/p⊕ Z/q2 ≈ Z/pq2

Z/p⊕ Z/q ⊕ Z/q ≈ Z/q ⊕ Z/pq

in the two cases for Q, writing direct sums to emphasize the abelian-ness. So now we consider non-abelian
possibilities, and/or hypotheses which force a return to the abelian situation.

The first and simplest case is that neither p = 1 mod q nor q2 = 1 mod p. Then, by Sylow, there is a unique
q-Sylow subgroup Q and a unique p-Sylow subgroup P , both necessarily normal. We just saw that the group
Q of order q2 is necessarily [41] abelian. Since both subgroups are normal, elements of Q commute with
elements of P . [42] This returns us to the abelian case, above.

A second case is that p|(q − 1). This implies that p < q. The number nq of q-Sylow subgroups is 1 mod q
and divides pq2, so is either 1 or p, but p < q, so necessarily nq = 1. That is, the q-Sylow subgroup Q is
normal. But this does not follow for the p-Sylow subgroup, since now p|(q − 1). The Sylow theorem would
seemingly allow the number np of p-Sylow subgroups to be 1, q, or q2. Thus, we should consider the possible
semi-direct products

Z/p×f Q

[39] Thus, in fact, Q is a two-dimensional vector space over the finite field Z/q. We will more systematically pursue

this viewpoint shortly.

[40] Yes, this is linear algebra.

[41] As a different sort of corollary of Sylow.

[42] The earlier argument is worth repeating: for a in one and b in another of two normal subgroups with trivial

intersection, (aba−1)b−1 = a(ba−1)b−1 must lie in both, so is e. Then ab = ba.
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for
f : Z/p −→ AutQ

If f is the trivial homomorphism, then we obtain a direct product, returning to the abelian case. For
Q ≈ Z/q2 its automorphism group has order q(q− 1), which is divisible by p (by hypothesis), so [43] has an
element of order p. That is, there does exist a non-trivial homomorphism

f : P ≈ Z/p −→ AutZ/q2

That is, there do exist non-abelian semi-direct products

Z/p×f Z/q2

Distinguishing the isomorphism classes among these is similar to the case of groups of order pq with p|(q−1),
and we would find just a single non-abelian isomorphism class. For Q ≈ Z/q ⊕ Z/q, we saw above that

|Aut(Z/q ⊕ Z/q)| = (q2 − 1)(q2 − q) = (q − 1)2 q (q + 1)

Thus, there is at least one non-abelian semi-direct product

Z/p×f (Z/q ⊕ Z/q)

Attempting to count the isomorphism classes would require that we have more information on the
automorphism group, which we’ll obtain a little later.

A third case is that p|(q + 1). This again implies that p < q, except in the case that q = 2 and p = 3, which
we’ll ignore for the moment. The number nq of q-Sylow subgroups is 1 mod q and divides pq2, so is either 1
or p, but p < q, so necessarily nq = 1. That is, the q-Sylow subgroup Q is normal. But this does not follow
for the p-Sylow subgroup, since now p|(q + 1). The Sylow theorem would seemingly allow the number np of
p-Sylow subgroups to be 1 or q2. Thus, we should consider the possible semi-direct products

Z/p×f Q

for
f : Z/p −→ AutQ

If f is the trivial homomorphism, then we obtain a direct product, returning to the abelian case. For
Q ≈ Z/q2 its automorphism group has order q(q − 1), which is not divisible by p, since p|(q + 1). That is,
for Q ≈ Z/q2 and p|(q + 1) and q > 2, there is no non-trivial homomorphism

f : P ≈ Z/p −→ AutZ/q2

That is, in this case there is no non-abelian semi-direct product

Z/p×f Z/q2

For Q ≈ Z/q ⊕ Z/q, we saw above that

|Aut(Z/q ⊕ Z/q)| = (q2 − 1)(q2 − q) = (q − 1)2 q (q + 1)

Thus, there is at least one non-abelian semi-direct product

Z/p×f (Z/q ⊕ Z/q)

[43] By the lemma preceding the Sylow theorem, for example. In fact, all primes q the group (Z/q2)× is cyclic, so

will have exactly one subgroup of order p.
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Again, attempting to count the isomorphism classes would require that we have more information on the
automorphism group.

A fourth case is that q|(p− 1). Thus, by the same arguments as above, the p-Sylow subgroup P is normal,
but the q-Sylow subgroup Q might not be. There are non-trivial homomorphisms in both cases

f :
{

Z/p⊕ Z/q2 ≈ Z/pq2

Z/p⊕ Z/q ⊕ Z/q ≈ Z/q ⊕ Z/pq −→ AutZ/p ≈ (Z/p)×

so either type of q-Sylow subgroup Q of order q2 can give non-trivial automorphisms of the normal p-Sylow
group P . Again, determining isomorphism classes in the first case is not hard, but in the second requires
more information about the structure of Aut(Z/q ⊕ Z/q).

2.8.9 Remark: The above discussion is fast approaching the limit of what we can deduce about finite
groups based only on the prime factorization of their order. The cases of prime order and order pq with
distinct primes are frequently genuinely useful, the others less so.

2.9 Worked examples

2.9.1 Example: Let G,H be finite groups with relatively prime orders. Show that any group
homomorphism f : G −→ H is necessarily trivial (that is, sends every element of G to the identity in
H.)

The isomorphism theorem implies that

|G| = | ker f | · |f(G)|

In particular, |f(G)| divides |G|. Since f(G) is a subgroup of H, its order must also divide |H|. These two
orders are relatively prime, so |f(G)| = 1.

2.9.2 Example: Let m and n be integers. Give a formula for an isomorphism of abelian groups

Z

m
⊕ Z
n
−→ Z

gcd(m,n)
⊕ Z

lcm(m,n)

Let r, s be integers such that rm + sn = gcd(m,n). Let m′ = m/gcd(m,n) and n′ = n/gcd(m,n). Then
rm′ + sn′ = 1. We claim that

f(a+mZ, b+ nZ) = ((a− b) + gcd(m,n)Z, (b · rm′ + a · sn′) + lcm(m,n)Z)

is such an isomorphism. To see that it is well-defined, observe that

(a+mZ)− (b+ nZ) = (a− b) + gcd(m,n)Z

since
mZ+ nZ = gcd(m,n)Z

which itself follows from the facts that

gcd(m,n) = rm+ sn ∈ mZ+ nZ

and (by definition) mZ ⊂ gcd(m,n)Z and nZ ⊂ gcd(m,n)Z. And, similarly

sn′ ·mZ+ rm′ · nZ = lcm(m,n)Z
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so the second component of the map is also well-defined.

Now since these things are finite, it suffices to show that the kernel is trivial. That is, suppose b =
a+ kgcd(m,n) for some integer k, and consider

b · rm′ + a · sn′

The latter is
(a+ kgcd(m,n))rm′ + a · sn′ = a · rm′ + a · sn′ = a mod m

since gcd(m,n)m′ = m and rm′ + sn′ = 1. Symmetrically, it is b mod n. Thus, if it is 0 mod lcm(m,n),
a = 0 mod m and b = 0 mod n. This proves that the kernel is trivial, so the map is injective, and, because
of finiteness, surjective as well.

2.9.3 Remark: I leave you the fun of guessing where the a− b expression (above) comes from.

2.9.4 Example: Show that every group of order 5 · 13 is cyclic.

Invoke the Sylow theorem: the number of 5-Sylow subgroups is 1 mod 5 and also divides the order 5 · 13,
so must be 1 (since 13 is not 1 mod 5). Thus, the 5-Sylow subgroup is normal. Similarly, even more easily,
the 13-Sylow subgroup is normal. The intersection of the two is trivial, by Lagrange. Thus, we have two
normal subgroups with trivial intersection and the product of whose orders is the order of the whole group,
and conclude that the whole group is isomorphic to the (direct) product of the two, namely Z/5 ⊕ Z/13.
Further, this is isomorphic to Z/65.

2.9.5 Example: Show that every group of order 5 · 72 is abelian.

From the classification of groups of prime-squared order, we know that there are only two (isomorphism
classes of) groups of order 72, Z/49 and Z/7⊕ Z/7. From the Sylow theorem, since the number of 7-Sylow
subgroups is 1 mod 7 and also divides the group order, the 7-Sylow subgroup is normal. For the same reason
the 5-Sylow subgroup is normal. The intersection of the two is trivial (Lagrange). Thus, again, we have two
normal subgroups with trivial intersection the product of whose orders is the group order, so the group is
the direct product. Since the factor groups are abelian, so is the whole.

2.9.6 Example: Exhibit a non-abelian group of order 3 · 7.

We can construct this as a semi-direct product, since there exists a non-trivial homomorphism of Z/3 to
Aut(Z/7), since the latter automorphism group is isomorphic to (Z/7)×, of order 6. Note that we are assured
of the existence of a subgroup of order 3 of the latter, whether or not we demonstrate an explicit element.

2.9.7 Example: Exhibit a non-abelian group of order 5 · 192.

We can construct this as a semi-direct product, since there exists a non-trivial homomorphism of Z/5 to
Aut(Z/19 ⊕ Z/19), since the latter automorphism group has order (192 − 1)(192 − 19), which is divisible
by 5. Note that we are assured of the existence of a subgroup of order 5 of the latter, whether or not we
demonstrate an explicit element.

2.9.8 Example: Show that every group of order 3 · 5 · 17 is cyclic.

Again, the usual divisibility trick from the Sylow theorem proves that the 17-group is normal. Further, since
neither 3 nor 5 divides 17 − 1 = |Aut(Z/17)|, the 17-group is central. But, since 3 · 17 = 1 mod 5, and
5 · 17 = 1 mod 3, we cannot immediately reach the same sort of conclusion about the 3-group and 5-group.
But if both the 3-group and 5-group were not normal, then we’d have at least

1 + (17− 1) + (5− 1) · 3 · 17 + (3− 1) · 5 · 17 = 391 > 3 · 5 · 17 = 255

elements in the group. So at least one of the two is normal. If the 5-group is normal, then the 3-group
acts trivially on it by automorphisms, since 3 does not divide 5− 1 = |Aut(Z/5)|. Then we’d have a central
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subgroup of order 5 · 17 group, and the whole group is abelian, so is cyclic by the type of arguments given
earlier. Or, if the 3-group is normal, then for the same reason it is is central, so we have a central (cyclic)
group of order 3 · 17, and again the whole group is cyclic.

2.9.9 Example: Do there exist 4 primes p, q, r, s such that every group of order pqrs is necessarily
abelian?

We want to arrange that all of the p, q, r, s Sylow subgroups P,Q,R, S are normal. Then, because the primes
are distinct, still

P ∩Q = {e}

P ·Q ∩R = {e}

P ·Q ·R ∩ S = {e}

(and all other combinations) so these subgroups commute with each other. And then, as usual, the whole
group is the direct product of these Sylow subgroups.

One way to arrange that all the Sylow subgroups are normal is that, mod p, none of q, r, s, qr, qs, rs, qrs is
1, and symmetrically for the other primes. Further, with none of q, r, s dividing p− 1 the p-group is central.
For example, after some trial and error, plausible p < q < r < s has p = 17. Take q, r, s mod 11 = 2, 3, 5
respectively. Take q = 13, so p = −2 mod 13, and require r, s = 2, 5 mod q. Then r = 3 mod 11 and
r = 2 mod 13 is 80 mod 143, and 223 is the first prime in this class. With s = 5 mod 223, none of the 7
quantities is 1 mod r.. Then s = 5 mod 11 · 13 · 223 and the first prime of this form is

s = 5 + 6 · 11 · 13 · 223 = 191339

By this point, we know that the p, q, and r-sylow groups are central, so the whole thing is cyclic.

Exercises

2.1 Classify groups of order 7 or less, up to isomorphism.

2.2 Find two different non-abelian groups of order 8.

2.3 Classify groups of order 9 and 10.

2.4 Classify groups of order 12.

2.5 Classify groups of order 21.

2.6 Classify groups of order 27.

2.7 Classify groups of order 30.

2.8 Classify groups of order 77.

2.9 Let G be a group with just two subgroups, G and {e}. Prove that either G = {e} or G is cyclic of
prime order.

2.10 Let N be a normal subgroup of a group G, and let H be a subgroup of G such that G = H ·N , that
is, such that the collection of all products h · n with h ∈ H and n ∈ N is the whole group G. Show that
G/N ≈ H/(H ∩N).

2.11 (Cayley’s theorem) Show that every finite group is isomorphic to a subgroup of a permutation group.
(Hint: let G act on the set G by left multiplication.)
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2.12 Let G be a group in which g2 = 1 for every g ∈ G. Show that G is abelian.

2.13 Let H be a subgroup of index 2 in a finite group G. Show that H is normal.

2.14 Let p be the smallest prime dividing the order of a finite group G. Let H be a subgroup of index p
in G. Show that H is normal.

2.15 Let H be a subgroup of finite index in a (not necessarily finite) group G. Show that there is a normal
subgroup N of G such that N ⊂ H and N is of finite index in G.

2.16 Find the automorphism group AutZ/n of the additive group Z/n.
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3. The players: rings, fields, etc.

3.1 Rings, fields
3.2 Ring homomorphisms
3.3 Vector spaces, modules, algebras
3.4 Polynomial rings I

Here we introduce some basic terminology, and give a sample of a modern construction of a universal object,
namely a polynomial ring in one variable.

3.1 Rings, fields

The idea of ring generalizes the idea of collection of numbers, among other things, so maybe it is a little
more intuitive than the idea of group. A ring R is a set with two operations, + and ·, and with a special
element 0 (additive identity) with most of the usual properties we expect or demand of addition and
multiplication:
• R with its addition and with 0 is an abelian group. [44]

• The multiplication is associative: a(bc) = (ab)c for all a, b, c ∈ R.
• The multiplication and addition have left and right distributive properties: a(b + c) = ab + ac and
(b+ c)a = ba+ ca for all a, b, c ∈ R.

Often the multiplication is written just as juxtaposition

ab = a · b

Very often, a particular ring has some additional special features or properties:

[44] This is a compressed way to say that 0 behaves as an additive identity, that there are additive inverses, and that

addition is associative.
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• If there is an element 1 in a ring with 1 · a = a · 1 for all a ∈ R, then 1 is said to be the (multiplicative)
identity or the unit [45] in the ring, and the ring is said to have an identity or have a unit or be a
ring with unit. [46]

• If ab = ba for all a, b in a ring R, then the ring is a commutative ring. That is, a ring is called
commutative if and only if the multiplication is commutative.

• In a ring R with 1, for a given element a ∈ R, if there is a−1 ∈ R so that a · a−1 = 1 and a−1 · a = 1, then
a−1 is said to be a multiplicative inverse for a. If a ∈ R has a multiplicative inverse, then a is called a
unit [47] in R. The collection of all units in a ring R is denoted R× and is called the group of units in
R. [48]

• A commutative ring in which every nonzero element is a unit is a field.

• A not-necessarily commutative ring in which every nonzero element is a unit is a division ring.

• In a ring R an element r so that r · s = 0 or s · r = 0 for some nonzero s ∈ R is called a zero divisor. [49]

A commutative ring without nonzero zero-divisors is an integral domain.

• A commutative ring R has the cancellation property if, for any r 6= 0 in R, if rx = ry for x, y ∈ R, then
x = y.

If we take a ring R with 0 and with its addition, forgetting the multiplication in R, then we get an abelian
group, called the additive group of R. And the group of units R× is a (possibly non-abelian) group.

3.1.1 Example: The integers Z with usual addition and multiplication form a ring. This ring is certainly
commutative and has a multiplicative identity 1. The group of units Z× is just {±1}. This ring is an integral
domain. The even integers 2Z with the usual addition and multiplication form a commutative ring without
unit. Just as this example suggests, sometimes the lack of a unit in a ring is somewhat artificial, because
there is a larger ring it sits inside which does have a unit. There are no units in 2Z.

3.1.2 Example: The integers mod m, denoted Z/m, form a commutative ring with identity. It is not
hard to verify that addition and multiplication are well-defined. As the notation suggests, the group of units
is Z/m×. [50]

[45] Sometimes the word unity is used in place of unit for the special element 1, but this cannot be relied upon, and

in any case does not fully succeed in disambiguating the terminology.

[46] We also demand that 1 6= 0 in a ring, if there is a 1.

[47] Yes, this usage is partly in conflict with the terminology for a special element 1.

[48] It is almost immediate that R× truly is a group.

[49] The question of whether or not 0 should by convention be counted as a zero divisor has no clear answer.

[50] Yes, we used the group-of-units notation in this case before we had introduced the terminology.
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3.1.3 Example: The ring Z/p of integers mod p is a field for p prime, since all non-zero residue classes
have multiplicative inverses. [51] The group of units is (Z/p)×. For n non-prime, Z/n is definitely not a
field, because a proper factorization n = ab exhibits non-zero zero divisors.

3.1.4 Example: Generally, a finite field with q elements is denoted Fq. We will see later that, up to
isomorphism, there is at most one finite field with a given number of elements, and, in fact, none unless that
number is the power of a prime.

3.1.5 Example: The collection of n-by-n matrices (for fixed n) with entries in a ring R is a ring, with
the usual matrix addition and multiplication. [52] Except for the silly case n = 1, rings of matrices over
commutative rings R are non-commutative. The group of units, meaning matrices with an inverse of the
same form, is the group GL(n,R), the general linear group of size n over R.

3.1.6 Example: The rational numbers Q, the real numbers R, and the complex numbers C are all
examples of fields, because all their nonzero elements have multiplicative inverses. The integers Z do not
form a field.

There are some things about the behavior of rings which we might accidentally take for granted.

Let R be a ring.
• Uniqueness of 0 additive identity: From the analogous discussion at the beginning of group theory, we
know that there is exactly one element z = 0 with the property that r + z = r for all r in R. And there is
exactly one additive inverse to any r ∈ R. And for r ∈ R, we have −(−r) = r. Similarly, if R has a unit 1,
then, using the group R×, we deduce uniqueness of 1, and uniqueness of multiplicative inverses.

The following items are slightly subtler than the things above, involving the interaction of the multiplication
and addition. Still, there are no surprises. [53]

Let R be a ring.
• For any r ∈ R, 0 · r = r · 0 = 0. [54]

• Suppose that there is a 1 in R. Let −1 be the additive inverse of 1. Then for any r ∈ R we have
(−1) · r = r · (−1) = −r, where as usual −r denotes the additive inverse of r.
• Let −x,−y be the additive inverses of x, y ∈ R. Then (−x) · (−y) = xy.

Proof: Let r ∈ R. Then
0 · r = (0 + 0) · r (since 0 + 0 = 0)

= 0 · r + 0 · r (distributivity)

Then, adding −(0 · r) to both sides, we have

0 = 0 · r − 0 · r = 0 · r + 0 · r − 0 · r = 0 · r + 0 = 0 · r

That is, 0 · r. The proof that r · 0 = 0 is identical.

To show that (−1)r is the additive inverse of r, which by now we know is unique, we check that

r + (−1)r = 0

We have
r + (−1)r = 1 · r + (−1) · r = (1− 1) · r = 0 · r = 0

[51] Again, for a residue class represented by x relatively prime to p, there are integers r, s such that rx + yp =

gcd(x, p) = 1, and then the residue class of r is a multiplicative inverse to the residue class of x.

[52] Verification of the ring axioms is not terrifically interesting, but is worth doing once.

[53] No surprises except perhaps that these things do follow from the innocent-seeming ring axioms.

[54] One can easily take the viewpoint that this universal assertion has very little semantic content.
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using the result we just 0 · r = 0.

To show that (−x)(−y) = xy, prove that (−x)(−y) = −(−(xy)), since −(−r) = r. We claim that
−(xy) = (−x)y: this follows from

(−x)y + xy = (−x+ x)y = 0 · y = 0

Thus, we want to show
(−x)(−y) + (−x)y = 0

Indeed,
(−x)(−y) + (−x)y = (−x)(−y + y) = (−x) · 0 = 0

using r · 0 = 0 verified above. Thus, (−x)(−y) = xy. ///

An idempotent element of a ring R is an element e such that

e2 = e

A nilpotent element is an element z such that for some positive integer n

zn = 0R

3.2 Ring homomorphisms

Ring homomorphisms are maps from one ring to another which respect the ring structures.

Precisely, a ring homomorphism f : R→ S from one ring R to another ring S is a map such that for all
r, r′ in R

f(r + r′) = f(r) + f(r′)
f(rr′) = f(r) f(r′)

That is, f preserves or respects both addition and multiplication. [55] A ring homomorphism which has
a two-sided inverse homomorphism is an isomorphism. If a ring homomorphism is a bijection, it is an
isomorphism. [56]

The kernel of a ring homomorphism f : R→ S is

ker f = {r ∈ R : f(r) = 0}

3.2.1 Example: The most basic worthwhile example of a ring homomorphism is

f : Z −→ Z/n

[55] We do not make an attempt to use different notations for the addition and multiplication in the two different rings

R and S in this definition, or in subsequent discussions. Context should suffice to distinguish the two operations.

[56] Since a bijective ring homomorphism has an inverse map which is a ring homomorphism, one could define an

isomorphism to be a bijective homomorphism. However, in some other scenarios bijectivity of certain types of

homomorphisms is not sufficient to assure that there is an inverse map of the same sort. The easiest example of such

failure may be among continuous maps among topological spaces. For example, let X = {0, 1} with the indiscrete

topology, in which only the whole set and the empty set are open. Let Y = {0, 1} with the discrete topology, in which

all subsets are open. Then the identity map X −→ Y is continuous, but its inverse is not. That is, the map is a

continuous bijection, but its inverse is not continuous.
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given by
f(x) = x+ nZ

The assertion that this f is a ring homomorphism is the combination of the two assertions

(x+ nZ) + (y + nZ) = (x+ y) + nZ

and
(x+ nZ) · (y + nZ) + nZ = (x · y) + nZ

Even though it is slightly misleading, this homomorphism is called the reduction mod m homomorphism.

3.2.2 Proposition: Let f : R → S be a ring homomorphism. Let 0R, 0S be the additive identities in
R,S, respectively. Then f(0R) = 0S .

Proof: This is a corollary of the analogous result for groups. ///

3.2.3 Proposition: Let f : R −→ S be a surjective ring homomorphism. Suppose that R has a
multiplicative identity 1R. Then S has a multiplicative identity 1S and

f(1R) = 1S

3.2.4 Remark: Notice that, unlike the discussion about the additive identity, now we need the further
hypothesis of surjectivity.

Proof: Given s ∈ S, let r ∈ R be such that f(r) = s. Then

f(1R) · s = f(1R) · f(r) = f(1R · r) = f(r) = s

Thus, f(1R) behaves like a unit in S. By the uniqueness of units, f(1R) = 1S . ///

3.2.5 Example: The image of a multiplicative identity 1R under a ring homomorphism f : R → S is
not necessarily the multiplicative identity 1S of S. For example, define a ring homomorphism

f : Q→ S

from the rational numbers Q to the ring S of 2-by-2 rational matrices by

f(x) =
(
x 0
0 0

)
Then the image of 1 is (

1 0
0 0

)
which is not the the multiplicative identity (

1 0
0 1

)
in S. As another example, let R = Z/3 and S = Z/6, and define f : R −→ S by

f(r mod 3) = 4r mod 6

(This is well-defined, and is a homomorphism.) The essential feature is that

4 · 4 = 4 mod 6
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Then
f(x · y) = 4(x · y) = (4 · 4)(x · y) = (4x) · (4y) = f(x) · f(y)

But f(1) = 4 6= 1 mod 6.

3.3 Vector spaces, modules, algebras

Let k be a field. A k-vectorspace V is an abelian group V (with operation written additively, referred to
as vector addition) and a scalar multiplication

k × V −→ V

written
α× v −→ α · v = αv

such that, for α, β ∈ k and v, v′ ∈ V ,

(Distributivity) α · (v + v′) = α · v + α · v′
(Distributivity) (α+ β) · v = α · v + β · v
(Associativity) (α · β) · v = α · (β · v)

1 · v = v

3.3.1 Remark: The requirement that 1 · v = v does not follow from the other requirements. [57] By
contrast, the zero element 0 in a field does reliably annihilate any vectorspace element v:

0V = −(0 · v) + 0 · v = −(0 · v) + (0 + 0) · v = −(0 · v) + 0 · v + 0 · v = 0 · v

A k-vector subspace W of a k-vectorspace V is an additive subgroup closed under scalar multiplication.

A k-linear combination of vectors v1, . . . , vn in a k-vectorspace V is any vector of the form

α1v1 + . . .+ αnvn

with αi ∈ k and vi ∈ V . Vectors v1, . . . , vn are linearly dependent if there is a linear combination of them
which is 0, yet not all coefficients are 0. They are linearly independent if they are not linearly dependent.
[58]

The pedestrian example of a vector space is, for fixed natural number n, the collection kn of ordered n-tuples
of elements of k with component-wise vector addition and component-wise scalar multiplication.

A k-linear map T : V −→W from one k-vectorspace V to another W is a homomorphism of abelian groups
T : V −→W

T (v + v′) = Tv + Tv′

also respecting the scalar multiplication: for α ∈ k

T (α · v) = α · Tv

[57] Sometimes the requirement that 1 · v = v is given an unfortunate name, such as unitary property (in conflict with

other usage), or unital property, which conjures up no clear image. The point is that the terminology is unpredictable.

[58] We will certainly continue this discussion of elementary linear algebra shortly, discussing the usual standard

notions.
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The collection of all k-linear maps from V to W is denoted

Homk(V,W ) = { all k-linear maps from V to W}

When V = W , write
Endk(V, V ) = Endk(V )

This is the ring of k-linear endomorphisms of V .

The kernel kerT of a k-linear map T : V −→W is

kerT = {v ∈ V : Tv = 0}

Let R be a ring. An R-module [59] M is an abelian group M (with operation written additively) and a
multiplication

R×M −→M

written
r ×m −→ r ·m = rm

such that, for r, r′ ∈ R and m,m′ ∈M

(Distributivity) r · (m+m′) = r ·m+ e ·m′
(Distributivity) (r + r′) ·m = r ·m+ r′ ·m
(Associativity) (r · r′) ·m = r · (r′ ·m)

The notion of module-over-ring obviously subsumes the notion of vectorspace-over-field.

A R-linear combination of elements m1, . . . ,mn in a R module M is any module element of the form

r1m1 + . . .+ rnmn

with ri ∈ R and mi ∈M . [60]

We specifically do not universally require that 1R ·m = m for all m in an R-module M when the ring R
contains a unit 1R. Nevertheless, on many occasions we do require this, but, therefore, must say so explicitly
to be clear.

An R submodule N of an R-module M is an additive subgroup which is closed under scalar multiplication.

An R-linear map T : M −→ N from one T -module M to another N is a homomorphism of abelian groups
T : M −→ N

T (m+m′) = Tm+ Tm′

also respecting the scalar multiplication: for r ∈ R

T (r ·m) = r · Tm

The collection of all R-linear maps from M to N is denoted

HomR(M,N) = { all R-linear maps from M to N}

[59] In some older sources the word was modul, which is now obsolete. And, in some older sources, module was used

for what we now call the multiplicative identity 1, as well as other things whose present names are otherwise.

[60] While one should think of linear algebra over fields as a prototype for some of the phenomena concerning modules

more generally, one should at the same time be prepared for deviation from the simpler reasonable expectations.
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When M = N , write
EndR(M,M) = EndR(M)

This is the ring of R-linear endomorphisms of M .

The kernel kerT of an R-linear map T : M −→ N is

kerT = {m ∈M : Tm = 0}

3.3.2 Example: Abelian groups are Z-modules: for a ∈ A in an abelian group A, define the scalar
multiplication by integers by

n · a =


0A (for n = 0)

a+ . . .+ a︸ ︷︷ ︸
n

(for n > 0)

−(a+ . . .+ a︸ ︷︷ ︸
|n|

) (for n < 0)

Observe that a homomorphism of abelian groups is inevitably Z-linear.

3.3.3 Example: A (left) ideal I in a ring R is an additive subgroup I of R which is also closed under
left multiplication by R: for i ∈ I and r ∈ R, r · i ∈ I. It is immediate that the collection of left ideals in R
is identical to the collection of R-submodules of R (with left multiplication).

Let R be a commutative ring. [61] Let A be a not-necessarily commutative ring which is a left R-module.
If, in addition to the requirements of a module, we have the associativity

r · (a · b) = (r · a) · b

for r ∈ R and a, b ∈ A, then say A is an R-algebra. Often additional requirements are imposed. [62]

A ring homomorphism f : A −→ B of R-algebras is an R-algebra homomorphism if it is also an R-module
homomorphism.

3.4 Polynomial rings I

We should not be content to speak of indeterminate x or variable x to construct polynomial rings. Instead,
we describe in precise terms the fundamental property that a polynomial ring is meant to have, namely, in
colloquial terms, the indeterminate can be replaced by any value, or that any value can be substituted for
the indeterminate.

Fix a commutative ring R, and let A be a commutative R-algebra with a distinguished element ao. Say that
A, or, more properly, the pair (A, ao), is a free (commutative) algebra on one generator ao if, for every
commutative R-algebra B and chosen element bo ∈ B there is a unique R-algebra homomorphism

fB,bo : A −→ B

such that
f(ao) = bo

[61] The requirement that R be commutative is not at all necessary to give a definition of R-algebra, but without that

hypothesis it is much less clear what is best to offer as a first and supposedly general definition.

[62] One might require the commutativity (ra)b = a(rb), for example. One might require that R have a unit 1 and

that 1 · a = a for all a ∈ A. However, not all useful examples meet these additional requirements.
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This condition is an example of a universal mapping property, and the polynomial ring (once we show
that it is this object) is thus a universal object with respect to this property.

3.4.1 Remark: In different words, ao can be mapped anywhere, and specifying the image of ao completely
determines the homomorphism.

3.4.2 Remark: We are to imagine that A = R[x], ao = x, and that the R-algebra homomorphism is the
substitution of bo for x.

The following uniqueness result is typical of what can be said when an object is characterized by universal
mapping properties.

3.4.3 Proposition: Up to isomorphism, there is at most one free commutative R-algebra on one
generator. That is, given two such things (A, ao) and (A′, a′o), there is a unique isomorphism

i : A −→ A′

sending ao to a′o and such that, given a commutative R-algebra B with distinguished element bo, the
corresponding maps (as above)

fB,bo : A −→ B

f ′B,bo : A′ −→ B

satisfy
f = f ′ ◦ i

3.4.4 Remark: Despite the possible unpalatableness of the definition and the proposition, this setup does
what we want, and the proposition asserts the essential uniqueness of what will turn out to be recognizable
as the polynomial ring R[x].

Proof: This proof is typical of proving that there is at most one thing characterized by a universal property.
First, take B = A and bo = ao. Then there is a unique R-algebra homomorphism A −→ A taking ao
to ao. Since the identity map on A does this, apparently only the identity has this property among all
endomorphisms of A.

Next, let B = A′ and b = a′o, and

fA′,a′o : A −→ A′ (with ao −→ a′o)

the unique R-algebra homomorphism postulated. Reversing the roles of A and A′, we have another unique

f ′A,ao : A′ −→ A (with a′o −→ ao)

Consider g = f ′ ◦f ′. It sends ao to ao, so, by our first observation, must be the identity map on A. Similarly,
f ◦ f ′ is the identity map on A′. Thus, f and f ′ are mutual inverses, and A and A′ are isomorphic, by a
unique isomorphism, [63] and ao is mapped to a′o by this map. ///

This slick uniqueness argument does not prove existence. Indeed, there seems to be no comparably magical
way to prove existence, but the uniqueness result assures us that, whatever pathetic ad hoc device we do hit
upon to construct the free algebra, the thing we make is inevitably isomorphic (and by a unique isomorphism)

[63] The virtues of there being a unique isomorphism may not be apparent at the moment, but already played a role

in the uniqueness proof, and do play significant roles later.
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to what any other construction might yield. That is, the uniqueness result shows that particular choice of
construction does not matter. [64]

How to construct the thing? On one hand, since the possible images f(ao) can be anything in another
R-algebra B, ao ought not satisfy any relations such as a3

o = ao since a homomorphism would carry such a
relation forward into the R-algebra B, and we have no reason to believe that b3o = bo for every element bo
of every R-algebra B. [65] On the other hand, since the image of ao under an R-algebra homomorphism
is intended to determine the homomorphism completely, the free algebra A should not contain more than
R-linear combinations of powers of ao.

For fixed commutative ring R with identity 1, let S be the set [66] of R-valued functions P on the set
{0, 1, 2, . . .} such that, for each P , there is an index n such that for i > n we have P (i) = 0. [67] Introduce
an addition which is simply componentwise: for P,Q ∈ S,

(P +Q)(i) = P (i) +Q(i)

And there is the value-wise R-module structure with scalar multiplication

(r · P )(i) = r · P (i)

All this is obligatory, simply to have an R-module. We take the distinguished element to be

ao = the function P1 such that P1(1) = 1 and P1(i) = 0 for i 6= 1

A misleadingly glib way of attempting to define the multiplication is [68] as

(P ·Q)(i) =
∑
j+k=i

P (j)Q(k)

using the idea that a function is completely described by its values. Thus, since R is commutative,

P ·Q = Q · P

For P,Q, T in S, associativity
(P ·Q) · T = P · (Q · T )

[64] An elementary example of a construction whose internals are eventually ignored in favor of operational properties

is ordered pair: in elementary set theory, the ordered pair (a, b) is defined as {{a}, {a, b}}, and the expected properties

are verified. After that, this set-theoretic definition is forgotten. And, indeed, one should probably not consider this

to be correct in any sense of providing further information about what an ordered pair truly is. Rather, it is an ad

hoc construction which thereafter entitles us to do certain things.

[65] While it is certainly true that we should doubt that this ao satisfies any relations, in other situations specification

of universal objects can entail unexpected relations. In others, the fact that there are no relations apart from obvious

ones may be non-trivial to prove. An example of this is the Poincaré-Birkhoff-Witt theorem concerning universal

enveloping algebras. We may give this as an example later.

[66] This construction presumes that sets and functions are legitimate primitive objects. Thus, we tolerate possibly

artificial-seeming constructions for their validation, while clinging to the uniqueness result above to rest assured that

any peculiarities of a construction do not harm the object we create.

[67] We would say that P is eventually zero. The intent here is that P (i) is the coefficient of xi in a polynomial.

[68] If one is prepared to describe polynomial multiplication by telling the coefficients of the product then perhaps this

is not surprising. But traditional informal discussions of polynomials often to treat them more as strings of symbols,

expressions, rather than giving them set-theoretic substance.
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follows from rewriting the left-hand side into a symmetrical form

((P ·Q) · T )(i) =
∑
j+k=i

(P ·Q)(j)T (k)

=
∑
j+k=i

∑
m+n=j

P (m)Q(n)T (k) =
∑

m+n+k=i

P (m)Q(n)T (k)

Distributivity of the addition and multiplication in S follows from that in R:

(P · (Q+ T ))(i) =
∑
j+k=i

P (j) · (Q+ T )(k) =
∑
j+k=i

(P (j)Q(k) + P (j)T (k))

=
∑
j+k=i

P (j)Q(k) +
∑
j+k=i

P (j)T (k) = (P ·Q)(i) + (P · T )(i)

The associativity
r · (P ·Q) = (rP ) ·Q

is easy. Note that, by an easy induction

P i1(j) =
{

1 (if j = i)
0 (if j 6= i)

So far, we have managed to make a commutative R-algebra S with a distinguished element P1. With the
above-defined multiplication, we claim that ∑

i

ri P
i
1

(with coefficients ri in R) is 0 (that is, the zero function in S) if and only if all coefficients are 0. Indeed,
the value of this function at j is rj . Thus, as a consequence, if∑

i

ri P
i
1 =

∑
j

r′j P
j
1

then subtract one side from the other, so see that ri = r′i for all indices i. That is, there is only one way to
express an element of S in this form.

Given another R-algebra B and element bo ∈ B, we would like to define

f(
∑
i

riP
i
1) =

∑
i

rib
i
o

At least this is well-defined, since there is only one expression for elements of S as R-linear combinations of
powers of P i1. The R-linearity of this f is easy. The fact that it respects the multiplication of S is perhaps
less obvious, but not difficult: [69]

f((
∑
i

riP
i
1) · (

∑
j

r′jP
j
1 )) = f(

∑
i,j

rir
′
jP

i+j
1 ) =

∑
i,j

rir
′
jb
i+j
o = (

∑
i

rib
i
o) · (

∑
j

r′jb
j
o))

Thus, this f is an R-algebra homomorphism which sends ao = P1 to bo.

[69] The formulas for multiplication of these finite sums with many summands could be proven by induction if deemed

necessary.
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Finally, there is no other R-algebra homomorphism of S to B sending ao = P1 to bo, since every element of
S is expressible as

∑
riP

i
1, and the R-algebra homomorphism property yields

f(
∑

riP
i
1) =

∑
i

f(riP i1) =
∑
i

ri f(P i1) =
∑
i

ri f(P1)i

There is no further choice possible. [70]

3.4.5 Remark: This tedious construction (or something equivalent to it) is necessary. The uniqueness
result assures us that no matter which of the several choices we make for (this tiresome) construction, the
resulting thing is the same.

Exercises

3.1 Let r be nilpotent in a commutative ring. Show that 1 + r is a unit.

3.2 Give an example of an integer n such that Z/n has at least 4 different idempotent elements.

3.3 Give an example of an integer n such that Z/n has at least 4 different idempotent elements.

3.4 Let f ∈ k[x] for a field k. For indeterminates x, y, show that we have a Taylor-Maclaurin series
expansion of the form

f(x+ y) = f(x) +
n∑
i=1

fi(x) yi

for some polynomials fi(x). For k of characteristic 0, show that

fi(x) =
(
∂

∂x

)i
f(x)/i!

3.5 Show that a local ring R (that is, a ring having a unique maximal proper ideal) has no idempotent
elements other than 0 and 1.

3.6 Let p > 2 be a prime. Show that for ` ≥ 1 ≥ p
p−1 the power of p dividing (p`)n is larger than or equal

to the power of p dividing n!.

3.7 The exponential map modulo pn: Let p > 2 be prime. Make sense of the map

E : pZ/pn → 1 + pZ mod pn

defined by the dubious formula

E(px) = 1 +
px

1!
+

(px)2

2!
+

(px)3

3!
+ . . .

(Hint: cancel powers of p before trying to make sense of the fractions. And only finitely-many of the
summands are non-zero mod pn, so this is a finite sum.)

3.8 With the exponential map of the previous exercise, show that E(px + py) = E(px) · E(py) modulo
pn, for x, y ∈ Z/pn−1. That is, prove that E is a group homomorphism from pZ/pnZ to the subgroup of
(Z/pn)× consisting of a = 1 mod p.

[70] One may paraphrase this by saying that if g were another such map, then f − g evaluated on any such element

of S is 0.
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3.9 Prove that (Z/pn)× is cyclic for p > 2 prime.

3.10 Figure out the correct analogue of the exponential map for p = 2.

3.11 Figure out the correct analogue of the exponential maps modulo primes for the Gaussian integers
Z[i].

3.12 For which ideals I of Z[i] is the multiplicative group Z[i]/I× of the quotient ring Z[i]/I cyclic?

3.13 Show that there are no proper two-sided ideals in the ring R of 2-by-2 rational matrices.

3.14 (Hamiltonian quaternions) Define the quaternions H to be an R-algebra generated by 1 ∈ R and by
elements i, j, k such that i2 = j2 = k2 = −1, ij = k, jk = i, and ki = j. Define the quaternion conjugation
α −→ α∗ by

(a+ bi+ cj + dk)∗ = a− bi− cj − dk

Show that ∗ is an anti-automorphism, meaning that

(α · β)∗ = β∗ · α∗

for quaternions α, β. Show that H is a division ring.

3.15 Provide a construction of the quaternions, by showing that

a+ bi+ cj + dk −→
(
a+ bi c+ di
c− di a− bi

)
is a ring homomorphism from the quaternions to a subring of the 2-by-2 complex matrices.
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4. Commutative rings I

4.1 Divisibility and ideals
4.2 Polynomials in one variable over a field
4.3 Ideals
4.4 Ideals and quotient rings
4.5 Maximal ideals and fields
4.6 Prime ideals and integral domains
4.7 Fermat-Euler on sums of two squares
4.8 Worked examples

Throughout this section the rings in question will be commutative, and will have a unit 1.

4.1 Divisibility and ideals

Many of the primitive ideas about divisibility we bring from the ordinary integers Z, though few of the
conclusions are as simple in any generality.

Let R be a commutative [71] ring with unit [72] 1. Let R× be the group of units in R.

Say d divides m, equivalently, that m is a multiple of d, if there exists a q ∈ R such that m = qd. Write
d|m if d divides m. It is easy to prove, from the definition, that if d|x and d|y then d|(ax + by) for any
x, y, a, b ∈ R: let x = rd and y = sd, and

ax+ by = a(rd) + b(sd) = d · (ar + bs)

A ring element d is a common divisor of ring elements n1, . . . , nm if d divides each ni. A ring element N
is a common multiple of ring elements n1, . . . , nm if N is a multiple of each.

[71] Divisibility and ideals can certainly be discussed without the assumption of commutativity, but the peripheral

complications obscure simpler issues.

[72] And, certainly, one can contemplate divisibility in rings without units, but this leads to needlessly counterintuitive

situations.
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A divisor d of n is proper if it is not a unit multiple of n and is not a unit itself. A ring element is
irreducible if it has no proper factors. A ring element p is prime if p|ab implies p|a or p|b and p is not
a unit and is not 0. [73] If two prime elements p and p′ are related by p = up′ with a unit u, say that p
and p′ are associate. We view associate primes as being essentially identical. [74] Recall that an integral
domain [75] is a commutative ring in which cd = 0 implies either c or d is 0. [76]

4.1.1 Proposition: Prime elements of an integral domain R (with 1) are irreducible. [77]

Proof: Let p be a prime element of R, and suppose that p = ab. Then p|ab, so p|a or p|b. Suppose a = a′p.
Then p = p ·a′b, and p · (1−a′b) = 0. Since the ring is an integral domain, either p = 0 or a′b = 1, but p 6= 0.
Thus, a′b = 1, and b is a unit. This proves that any factorization of the prime p is non-proper. ///

An integral domain R with 1 is a unique factorization domain (UFD) if every element r ∈ R has a
unique (up to ordering of factors and changing primes by units) expression

r = up1 . . . p`

with unit u and primes pi.

4.1.2 Remark: The ordinary integers are the primary example of a UFD. The second important example
is the ring of polynomials in one variable over a field, treated in the next section.

4.2 Polynomials in one variable over a field

We will prove that the ring k[x] of polynomials in one variable with coefficients in a field k is Euclidean, and
thus has unique factorization. This example is comparable in importance to Z and its elementary properties.

As usual, the degree of a polynomial
∑
i cix

i is the highest index i such that ci 6= 0.

4.2.1 Proposition: For polynomials P,Q with coefficients in a field [78] k, the degree of the product
is the sum of the degrees:

deg(P ·Q) = degP + degQ

4.2.2 Remark: To make this correct even when one of the two polynomials is the 0 polynomial, the 0
polynomial is by convention given degree −∞.

[73] Yes, the definition of prime rewrites what was a theorem for the ordinary integers as the definition in general,

while demoting the lack of proper factors to a slightly more obscure classification, of irreducibility.

[74] In the case of the ordinary integers, ±p are associate, for prime p. We naturally distinguish the positive one of

the two. But in more general situations there is not a reliable special choice among associates.

[75] Some sources have attempted to popularize the term entire for a ring with no proper zero divisors, but this has

not caught on.

[76] If one insisted, one could say that an integral domain is a commutative ring in which 0 is prime, but for practical

reasons we want our convention not to include 0 when we speak of prime elements. Likewise by convention we do

not want units to be included when we speak of primes.

[77] The converse is not generally true.

[78] The proof only uses the fact that a product of non-zero elements is necessarily non-zero. Thus, the same conclusion

can be reached if the coefficients of the polynomials are merely in an integral domain.
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Proof: The result is clear if either polynomial is the zero polynomial, so suppose that both are non-zero.
Let

P (x) = amx
m + am−1x

m−1 + . . .+ a2x
2 + a1x+ a0

Q(x) = bnx
n + bn−1x

n−1 + . . .+ b2x
2 + b1x+ b0

where the (apparent) highest-degree coefficients am and bn non-zero. Then in P ·Q the highest-degree term
is ambnxm+n. Since the product of non-zero elements of a field is non-zero, [79] the coefficient of xm+n is
non-zero. ///

4.2.3 Corollary: (Cancellation property) For polynomials in k[x], with a field k, let A · P = B · P for a
non-zero polynomial P . Then A = B.

Proof: The equality AP = BP gives (A − B)P = 0. Because the degree of the product is the sum of the
degrees of the factors,

deg(A−B) + degP = deg 0 = −∞

Since P is non-zero, degP ≥ 0. Then deg(A−B) = −∞, so A−B = 0, and A = B. ///

4.2.4 Corollary: The group of units k[x]× in the polynomial ring in one variable over a field k is just
the group of units k× in k. [80]

Proof: Suppose that P ·Q = 1. Then degP + degQ = 0, so both degrees are 0, that is, P and Q are in k.
///

A polynomial is monic if its highest degree coefficient is 1. Since elements of k× are units in k[x], any
polynomial can be multiplied by a unit to make it monic.

4.2.5 Proposition: (Euclidean property) Let k be a field and M a non-zero polynomial in k[x]. Let H be
any other polynomial in k[x]. Then there are unique polynomials Q and R in k[x] such that degR < degM
and

H = Q ·M +R

Proof: [81] Let X be the set of polynomials expressible in the form H − S ·M for some polynomial S.
Let R = H −Q ·M be an element of X of minimal degree. Claim that degR < degM . If not, let a be the
highest-degree coefficient of R, let b be the highest-degree coefficient of M , and define

G = (ab−1) · xdegR−degM

Then
R−G ·M

removes the highest-degree term of R, and

deg(R−G ·M) < degR

But R−GM is still in X, since

R−G ·M = (H −Q ·M)−G ·M = H − (Q+G) ·M

[79] In case this is not clear: let a, b be elements of a field k with ab = 0 and a 6= 0. Since non-zero elements have

inverses, there is a−1, and a−1ab = a−1 · 0 = 0, but also a−1ab = b. Thus, b = 0.

[80] We identify the scalars with degree-zero polynomials, as usual. If one is a bit worried about the legitimacy of

this, the free-algebra definition of the polynomial ring can be invoked to prove this more formally.

[81] This argument is identical to that for the ordinary integers, as are many of the other proofs here.
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By choice of R this is impossible, so, in fact, degR < degM . For uniqueness, suppose

H = Q ·M +R = Q′ ·M +R′

Subtract to obtain
R−R′ = (Q′ −Q) ·M

Since the degree of a product is the sum of the degrees, and since the degrees of R,R′ are less than the
degree of M , this is impossible unless Q′ −Q = 0, in which case R−R′ = 0. ///

Compatibly with general terminology, a non-zero polynomial is irreducible if it has no proper divisors.

The greatest common divisor of two polynomials A,B is the monic polynomial g of highest degree
dividing both A and B.

4.2.6 Theorem: For polynomials f, g in k[x], the monic polynomial of the form sf + tg (for s, t ∈ k[x])
of smallest degree is the gcd of f, g. In particular, greatest common divisors exist.

Proof: Among the non-negative integer values deg(sf + tg) there is at least one which is minimal. Let
h = sf + tg be such, and multiply through by the inverse of the highest-degree coefficient to make h monic.
First, show that h|f and h|g. We have

f = q(sf + tg) + r

with deg r < deg(sf + tg). Rearranging,

r = (1− qs)f + (−qt)g

So r itself is s′f + t′g with s′, t′ ∈ k[x]. Since sf + tg had the smallest non-negative degree of any such
expression, and deg r < deg(sf + tg), it must be that r = 0. So sf + tg divides f . Similarly, sf + tg divides
g, so sf + tg is a divisor of both f and g. On the other hand, if d|f and d|g, then certainly d|sf + tg.
///

4.2.7 Corollary: Let P be an irreducible polynomial. For two other polynomials A,B, if P |AB then
P |A or P |B. Generally, if an irreducible P divides a product A1 . . . An of polynomials then P must divide
one of the factors Ai.

Proof: It suffices to prove that if P |AB and P 6 |A then P |B. Since P 6 |A, and since P is irreducible, the
gcd of P and A is just 1. Therefore, there are s, t ∈ k[x] so that

1 = sA+ tP

Then
B = B · 1 = B · (sA+ tP ) = s(AB) + (Bt)P

Since P |AB, surely P divides the right-hand side. Therefore, P |B, as claimed.

4.2.8 Corollary: Irreducible polynomials P in k[x] are prime, in the sense that P |AB implies P |A or
P |B for polynomials A and B.

Proof: Let AB = M · P , and suppose that P does not divide A. Since P is irreducible, any proper
factor is a unit, hence a non-zero constant. Thus, gcd(P,A) = 1, and there are polynomials R,S such that
RP + SA = 1. Then

B = B · 1 = B · (RP + SA) = P ·BR+ S ·AB = P ·BR+ S ·M · P = P · (BR+ SM)

so B is a multiple of P . ///
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4.2.9 Corollary: Any polynomial M in k[x] has a unique factorization (up to ordering of factors) as

M = u · P e11 . . . P e``

where u ∈ k× is a unit in k[x], the Pi are distinct primes, and the exponents are positive integers.

Proof: [82] First prove existence by induction on degree. [83] Suppose some polynomial F admitted no
such factorization. Then F is not irreducible (or the non-factorization is the factorization), so R = A · B
with both of A,B of lower degree but not degree 0. By induction, both A and B have factorizations into
primes.

Uniqueness is a sharper result, proven via the property that P |AB implies P |A or P |B for prime P . As in
the case of integers, given two alleged prime factorizations, any prime in one of them must be equal to a
prime in the other, and by cancelling we do an induction to prove that all the primes are the same. ///

4.2.10 Proposition: (Testing for linear factors) A polynomial f(x) with coefficients in a field k has a
linear factor x− a (with a ∈ k) if and only if F (a) = 0.

Proof: If x − a is a factor, clearly f(a) = 0. On the other hand, suppose that f(a) = 0. Use the division
algorithm to write

f(x) = Q(x) · (x− a) +R

Since degR < deg(x− a) = 1, R is a constant. Evaluate both sides at a to obtain

0 = f(a) = Q(a) · (a− a) +R = Q(a) · 0 +R = R

Therefore, R = 0 and x− a divides f(x). ///

4.2.11 Corollary: For polynomial P in k[x], the equation P (a) = 0 has no more roots a than the degree
of P .

Proof: By the proposition, a root gives a monic linear factor, and by unique factorization there cannot be
more of these than the degree. ///

4.2.12 Example: With coefficients not in a field, the intuition that a polynomial equation has no more
roots than its degree is inaccurate. For example, with coefficients in Z/15, the equation

a2 − 1 = 0

has the obvious roots ±1, but also the roots 6 and 10. And there are two different factorizations in (Z/15)[x]

x2 − 1 = (x− 1)(x+ 1) = (x− 6)(x− 10)

4.3 Ideals

Let R be a commutative ring with unit 1. An ideal in R is an additive subgroup I of R such that R · I ⊂ I.
That is, I is an R-submodule of R with (left) multiplication.

[82] It bears emphasizing that the argument here proves unique factorization from the propery of primes that p|ab
implies p|a or p|b, which comes from the Euclidean property. There are many examples in which a unique factorization

result does hold without Euclidean-ness, such as polynomial rings k[x1, . . . , xn] in several variables over a field, but

the argument is more difficult. See Gauss’ Lemma.

[83] An induction on size completely analogous to the induction on size for the ordinary integers.
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4.3.1 Example: One archetype is the following. In the ring Z, for any fixed n, the set n ·Z of multiples
of n is an ideal.

4.3.2 Example: Let R = k[x] be the ring of polynomials in one variable x with coefficients in a field k.
Fix a polynomial P (x), and let I ⊂ R be the set of polynomial multiples M(x) · P (x) of P (x).

4.3.3 Example: Abstracting the previous two examples: fix n ∈ R. The set I = n ·R = {rn : r ∈ R} of
multiples of m is an ideal, the principal ideal generated by n. A convenient lighter notation is to write

〈n〉 = R · n = principal ideal generated by n

4.3.4 Example: In any ring, the trivial ideal is I = {0}. An ideal is proper if it is neither the trivial
ideal {0} nor the whole ring R (which is also an ideal).

4.3.5 Example: If an ideal I contains a unit u in R, then I = R. Indeed, for any r ∈ R,

r = r · 1 = r · (u−1 · u) ∈ r · u−1 · I ⊂ I

For two subsets X, Y of a ring R, write

X + Y = {x+ y : x ∈ X, y ∈ Y }

and [84]

X · Y = {finite sums
∑
i

xi yi : xi ∈ X, yi ∈ Y }

In this notation, for an ideal I in a commutative ring R with 1 we have R · I = I.

An integral domain in which every ideal is principal is a principal ideal domain. [85]

4.3.6 Corollary: [86] Every ideal I in Z is principal, that is, of the form I = n ·Z. In particular, unless
I = {0}, the integer n is the least positive element of I.

Proof: Suppose I is non-zero. Since I is closed under additive inverses, if I contains x < 0 then it also
contains −x > 0. Let n be the least element of I. Let x ∈ I, take q, r ∈ Z with 0 ≤ r < n such that

x = q · n+ r

Certainly qn is in I, and −qn ∈ I also. Since r = x − qn, r ∈ I. Since n was the smallest positive element
of I, r = 0. Thus, x = qn ∈ n · Z, as desired. ///

4.3.7 Corollary: [87] Let k be a field. Let R = k[x] be the ring of polynomials in one variable x
with coefficients in k. Then every ideal I in R is principal, that is, is of the form I = k[x] · P (x) for some
polynomial P . In particular, P (x) is the monic polynomial of smallest degree in I, unless I = {0}, in which
case P (x) = 0.

[84] Note that here the notation X · Y has a different meaning than it does in group theory, since in the present

context it is implied that we take all finite sums of products, not just products.

[85] If we do not assume that the ring is a domain, then we certainly may form the notion of principal ideal ring.

However, the presence of zero divisors is a distraction.

[86] This is a corollary of the Euclidean-ness of Z.

[87] This is a corollary of the Euclidean-ness of Z.
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Proof: If I = {0}, then certainly I = k[x] · 0, and we’re done. So suppose I is non-zero. Suppose that
Q(x) = anx

n + . . .+ a0 lies in I with an 6= 0. Since k is a field, there is an inverse a−1
n . Then, since I is an

ideal, the polynomial
P (x) = a−1

n ·Q(x) = xn + a−1
n an−1x

n−1 + . . .+ a−1
n a0

also lies in I. That is, there is indeed a monic polynomial of lowest degree of any element of the ideal. Let
x ∈ I, and use the Division Algorithm to get Q,R ∈ k[x] with degR < degP and

x = Q · P +R

Certainly Q · P is still in I, and then −Q · P ∈ I also. Since R = x−Q · P , we conclude that R ∈ I. Since
P was the monic polynomial in I of smallest degree, it must be that R = 0. Thus, x = Q · P ∈ n · k[x], as
desired. ///

4.3.8 Remark: The proofs of these two propositions can be abstracted to prove that every ideal in a
Euclidean ring is principal.

4.3.9 Example: Let R be a commutative ring with unit 1, and fix two elements x, y ∈ R. Then

I = R · x+R · y = {rx+ sy : r, s ∈ R}

is an ideal in R. The two elements x, y are the generators of I.

4.3.10 Example: Similarly, for fixed elements x1, . . . , xn of a commutative ring R, we can form an ideal

I = R · x1 + . . .+R · xn

4.3.11 Example: To construct new, larger ideals from old, smaller ideals proceed as follows. Let I be
an ideal in a commutative ring R. Let x be an element of R. Then let

J = R · x+ I = {rx+ i : r ∈ R, i ∈ I}

Let’s check that J is an ideal. First
0 = 0 · x+ 0

so 0 lies in J . Second,
−(rx+ i) = (−r)x+ (−i)

so J is closed under inverses. Third, for two elements rx + i and r′x + i′ in J (with r, r′ ∈ R and i, i′ ∈ I)
we have

(rx+ i) + (r′x+ i′) = (r + r′)x+ (i+ i′)

so J is closed under addition. Finally, for rx+ i ∈ J with r ∈ R, i ∈ I, and for r′ ∈ R,

r′ · (rx+ i) = (r′r)x+ (r′i)

so R · J ⊂ J as required. Thus, this type of set J is indeed an ideal.

4.3.12 Remark: In the case of rings such as Z, where we know that every ideal is principal, the previous
construction does not yield any more general type of ideal.

4.3.13 Example: In some rings R, not every ideal is principal. We return to an example used earlier
to illustrate a failure of unique factorization. Let

R = {a+ b
√
−5 : a, b ∈ Z}
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Let
I = {x · 2 + y · (1 +

√
−5) : x, y ∈ R}

These phenomena are not of immediate relevance, but did provide considerable motivation in the historical
development of algebraic number theory.

4.4 Ideals and quotient rings

Here is a construction of new rings from old in a manner that includes as a special case the construction of
Z/n from Z.

Let R be a commutative ring with unit 1. Let I be an ideal in R. The quotient ring R/I is the set of
cosets

r + I = {r + i : i ∈ I}

with operations of addition and multiplication on R/I by

(r + I) + (s+ I) = (r + s) + I

(r + I) · (s+ I) = (r · s) + I

The zero in the quotient is 0R/I = 0 + I, and the unit is 1R/I = 1 + I.

4.4.1 Example: The basic example is that Z/n is the quotient ring Z/I where I = n · Z.

4.4.2 Remark: It’s tedious, but someone should check that the operations of addition and multiplication
in Z/n are well-defined: we want the alleged addition and multiplication operations not to depend on the
way the coset is named, but only on what it is. So suppose r + I = r′ + I and s + I = s′ + I. We need to
check that

(r + s) + I = (r′ + s′) + I

and to prove well-definedness of multiplication check that

(r · s) + I = (r′ · s′) + I

Since r′ + I = r + I, in particular r′ = r′ + 0 ∈ r + I, so r′ can be written as r′ = r + i for some i ∈ I.
Likewise, s′ = s+ j for some j ∈ I. Then

(r′ + s′) + I = (r + i+ s+ j) + I = (r + s) + (i+ j + I)

The sum k = i+ j is an element of I. We claim that for any k ∈ I we have k + I = I. Certainly since I is
closed under addition, k + I ⊂ I. On the other hand, for any x ∈ I we can write

x = k + (x− k)

with x− k ∈ I, so also k + I ⊃ I. Thus, indeed, k + I = I. Thus,

(r′ + s′) + I = (r + s) + I

which proves the well-definedness of addition in the quotient ring. Likewise, looking at multiplication:

(r′ · s′) + I = (r + i) · (s+ j) + I = (r · s) + (rj + si+ I)

Since I is an ideal, rj and si are again in I, and then rj+si ∈ I. Therefore, as just observed in the discussion
of addition, rj + si+ I = I. Thus,

(r′ · s′) + I = (r · s) + I
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and multiplication is well-defined. The proofs that 0 + I is the zero and 1 + I is the unit are similar.

The quotient homomorphism
q : R −→ R/I

is the natural map
q(r) = r + I

The definition and discussion above proves

4.4.3 Proposition: For a commutative ring R and ideal I, the quotient map R −→ R/I is a (surjective)
ring homomorphism. ///

4.5 Maximal ideals and fields

Now we see how to make fields by taking quotients of commutative rings by maximal ideals (defined just
below). This is a fundamental construction.

Let R be a commutative ring with unit 1. [88] An ideal M in R is maximal if M 6= R and if for any other
ideal I with I ⊃M it must be that I = R. That is, M is a maximal ideal if there is no ideal strictly larger
than M (containing M) except R itself.

4.5.1 Proposition: For a commutative ring R with unit, and for an ideal I, the quotient ring R/I is a
field if and only if I is a maximal ideal.

Proof: Let x + I be a non-zero element of R/I. Then x + I 6= I, so x 6∈ I. Note that the ideal Rx + I is
therefore strictly larger than I. Since I was already maximal, it must be that Rx+ I = R. Therefore, there
are r ∈ R and i ∈ I so that rx+ i = 1. Looking at this last equation modulo I, we have rx ≡ 1 mod I. That
is, r + I is the multiplicative inverse to x+ I. Thus, R/I is a field.

On the other hand, suppose that R/I is a field. Let x ∈ R but x 6∈ I. Then x+ I 6= 0 + I in R/I. Therefore,
x+ I has a multiplicative inverse r + I in R/I. That is,

(r + I) · (x+ I) = 1 + I

From the definition of the multiplication in the quotient, this is rx+ I = 1 + I, or 1 ∈ rx+ I, which implies
that the ideal Rx+ I is R. But Rx+ I is the smallest ideal containing I and x. Thus, there cannot be any
proper ideal strictly larger than I, so I is maximal. ///

4.6 Prime ideals and integral domains

Let R be a commutative ring with unit 1. An ideal P in R is prime if ab ∈ P implies either a ∈ P or b ∈ P .
[89]

4.6.1 Proposition: For a commutative ring R with unit, and for an ideal I, the quotient ring R/I is
an integral domain [90] if and only if I is a prime ideal.

[88] The commutativity allows us to avoid several technical worries which are not the current point, and the presence

of 1 likewise skirts some less-than-primary problems. The applications we have in mind of the results of this section

do not demand that we worry about those possibilities.

[89] Yes, by this point the property proven for prime numbers is taken to be the definition.

[90] Again, an integral domain has no zero divisors.
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Proof: Let I be prime. Suppose that

(x+ I) · (y + I) = 0 + I

Recall that the product in the quotient is not defined exactly as the set of products of elements from the
factors, but, rather, in effect,

(x+ I) · (y + I) = xy + I

Then (x + I)(y + I) = 0 + I implies that xy ∈ I. By the prime-ness of I, either x or y is in I, so either
x+ I = 0 + I or y + I = 0 + I.

On the other hand, suppose that R/I is an integral domain. Suppose that xy ∈ I. The definition
(x + I)(y + I) = xy + I then says that (x + I)(y + I) = 0 + I. Since R/I is an integral domain, either
x+ I = I or y + I = I. That is, either x ∈ I or y ∈ I, and I is prime. ///

4.6.2 Corollary: Maximal ideals are prime. [91]

Proof: If I is a maximal ideal in a ring R, then R/I is a field, from above. Fields are certainly integral
domains, so I is prime, from above. ///

4.6.3 Remark: Not all prime ideals are maximal.

4.6.4 Example: Let R = Z[x] be the polynomial ring in one variable with integer coefficients. Consider
the ideal I = Z[x] · x generated by x. We claim that this ideal is prime, but not maximal. Indeed,

R/I = Z[x]/xZ[x] ≈ Z

via the homomorphism
P (x) + I −→ P (0)

(One might verify that this map is indeed well-defined, and is a homomorphism.) [92] Since Z ≈ Z[x]/I is
an integral domain, I is prime, but since Z is not a field, I is not maximal.

4.6.5 Example: Let R = Z[x] again and let I = Z[x] · p be the ideal generated by a prime number p.
Then

R/I = Z[x]/pZ[x] ≈ (Z/p)[x]

via the map
P (x) −→ (P with coefficients reduced mod p)(x)

The ring (Z/p)[x] is an integral domain [93] but not a field, so the ideal is prime but not maximal.

4.6.6 Example: [94] Let k be a field, and consider the polynomial ring R = k[x, y] in two variables.
Let I = k[x, y] · x be the ideal generated by x. We claim that this ideal I is prime but not maximal. Indeed,

[91] ... in commutative rings with identity, at least.

[92] This can be verified in different styles. One style is the following. The universality of the polynomial ring assures

us that there is a unique Z-algebra homomorphism e : Z[x] −→ Z which sends x −→ 0. Implicit in the Z-algebra

homomorphism property is that n −→ n for n ∈ Z, so no non-zero integers lie in the kernel of this evaluation

homomorphism e. Thus, this homomorphism is a surjection to Z.

[93] Since p is prime, Z/p is a field, so this is a polynomial ring in one variable over a field, which we know is an

integral domain.

[94] While the conclusion of this example is correct, the most natural full proof that such things are what they seem

requires results we do not yet have in hand, such as Gauss’ Lemma.
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the quotient R/I is [95] (naturally isomorphic to) k[y] under the evaluation map

P (x, y) −→ P (0, y)

Since k[xy] is an integral domain but not a field, we reach the conclusion, in light of the results just above.

4.7 Fermat-Euler on sums of two squares

4.7.1 Theorem: [96] A prime integer p is expressible as

p = a2 + b2

if and only if p = 1 mod 4 (or p = 2).

Proof: Parts of this are very easy. Certainly 2 = 12 + 12. Also, if an odd [97] prime is expressible as
p = a2 + b2, then, since the squares modulo 4 are just 0 and 1, it must be that one of a, b is odd and one is
even, and the sum of the squares is 1 modulo 4.

On the other hand, suppose that p = 1 mod 4. If p were expressible as p = a2 + b2 then

p = (a+ bi)(a− bi)

where i =
√
−1 in C. That is, p is expressible as a sum of two squares, if and only if p factors in a particular

manner in Z[i]. One might have at some point already observed that the only units in Z[i] are ±1 and ±i,
so if neither of a, b is 0, then neither of a ± bi is a unit. We need to analyze the possible factorization of p
in Z[i] a little more closely to understand the close connection to the present issue.

Let N(a + bi) = a2 + b2 be the usual (square-of) norm. One can check that the only elements of Z[i] with
norm 1 are the 4 units, and norm 0 occurs only for 0. If p = α · β is a proper factorization, then by the
multiplicative property of N

p2 = N(p) = N(α) ·N(β)

Thus, since neither α nor β is a unit, it must be that

N(α) = p = N(β)

Similarly, α and β must both be irreducibles in Z[i], since applying N to any proper factorization would give
a contradiction. Also, since p is its own complex conjugate,

p = α · β

[95] Certainly if we have a polynomial of the form xf(x, y), replacing x by 0 gives the 0 polynomial in y. On the

other hand, it is less clear that f(0, y) = 0 implies that f is of the form f(x, y) = xg(x, y) for some polynomial g.

The conceptual proof of results of this sort would use the unique factorization property of k[x, y], which follows from

the one-variable case via Gauss’ lemma. For the present case, with the special factor x (rather than a more general

polynomial), a direct approach is still easy. Let f(x, y) = xg(x, y)+h(x) where h(y) is the collection of all monomials

in f(x, y) in which x does not appear. Then f(0, y) = h(y). If this is the 0 polynomial in y, then f(x, y) = xg(x, y).

[96] Fermat stated in correspondence that he knew this, roughly around 1650, but there was no recorded argument.

About 100 years later Euler reconsidered this and many other unsupported statements of Fermat’s, and gave a proof

that was publicly available. In this and other cases, it is not clear that Fermat was sufficiently aware of all the things

that might go wrong to enable us to be sure that he had a complete proof. It is plausible, but not clear.

[97] The phrase odd prime is a standard if slightly peculiar way to refer to prime integers other than 2. Sometimes

the import of this is that the prime is larger than 2, and sometimes it really is that the prime is odd.
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implies
p = p = α · β

Since we know that the Gaussian integers Z[i] are Euclidean and, hence, have unique factorization, it must
be that these two prime factors are the same up to units. [98]

Thus, either α = ±α and β = ±β (with matching signs), or α = ±iα and β = ∓iβ, or α = uβ with u among
±1,±i. If α = ±α, then α is either purely imaginary or is real, and in either case its norm is a square,
but no square divides p. If α = ±iα, then α is of the form t ± it for t ∈ Z, and then N(α) ∈ 2Z, which is
impossible.

Thus, α = uβ for some unit u, and p = uN(β). Since p > 0, it must be that u = 1. Letting α = a+ bi, we
have recovered an expression as (proper) sum of two squares

p = a2 + b2

Thus, a prime integer p is a (proper) sum of two squares if and only if it is not prime in Z[i]. From above,
this is equivalent to

Z[i]/pZ[x] is not an integral domain

We grant that for p = 1 mod 4 there is an integer α such that α2 = −1 mod p. [99] That is, (the image of)
the polynomial x2 + 1 factors in Z/p[x].

Note that we can rewrite Z[i] as
Z[x]/(x2 + 1)Z[x]

We’ll come back to this at the end of this discussion. Then [100]

Z[i]/〈p〉 ≈
(
Z[x]/〈x2 + 1〉

)
/〈p〉

≈ (Z[x]/〈p〉) /〈x2 + 1〉 ≈ (Z/p)[x]/〈x2 + 1〉

and the latter is not an integral domain, since

x2 + 1 = (x− α)(x+ α)

is not irreducible in (Z/p)[x]. That is, Z[i]/〈p〉 is not an integral domain when p is a prime with p = 1 mod 4.
That is, p is not irreducible in Z[i], so factors properly in Z[i], thus, as observed above, p is a sum of two
squares. ///

4.7.2 Remark: Let’s follow up on the isomorphism

Z[x]/〈x2 + 1〉 ≈ Z[i]

[98] This up to units issue is nearly trivial in Z, since positivity and negativity give us a convenient handle. But in

Z[i] and other rings with more units, greater alertness is required.

[99] If we grant that there are primitive roots modulo primes, that is, that (Z/p)× is cyclic, then this assertion follows

from basic and general properties of cyclic groups. Even without knowledge of primitive roots, we can still give a

special argument in this limited case, as follows. Let G = (Z/p)×. This group is abelian, and has order divisible by

at least 22. Thus, for example by Sylow theorems, there is a 2-power-order subgroup A of order at least 4. By unique

factorization in polynomial rings, the equation x2 − 1 = 0 has only the solutions ±1. Thus, there is only a single

element in A of order 2, and the identity 1 of order 1. Other elements in A must have order a larger power of 2, and

then one can arrange elements of order 4. Such things would be 4th roots of 1.

[100] A scrupulous reader should verify that the change in order of quotient-taking is legitimate. It is certainly a good

trick, assuming that it works properly.
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Since Z[x] is the free Z-algebra on the generator x, there is a unique Z-algebra homomorphism Z[x] −→ Z[i]
taking x to i. We claim that the kernel is identifiable as the principal ideal generated by x2 + 1, after which
the obvious isomorphism theorem for rings would yield the desired isomorphism.

That is, we claim that if a polynomial P (x) in Z[x] has the property that P (i) = 0, then P is a multiple (in
Z[x]) of x2 + 1. This is less trivial than in the case of polynomials in one variable over a field, but the fact
that x2 +1 is monic saves us. That is, we can claim that for a monic poly M(x), given any other polynomial
P (x) ∈ Z[x], there are Q(x) and R(x) in Z[x] with degR < degM , such that

P = Q ·M +R

Indeed, suppose not. Let
P (x) = anx

n + . . .+ a0

be the polynomial of least degree n which we cannot divide by M and obtain a smaller remainder. Let
m = degM . Necessarily n ≥ m or P is itself already of lower degree than M . And, for n ≥ m,

P − an · xn−m ·M

is of strictly lower degree than P , so is expressible as QM +R. Then

P = (Q+ anx
n−m) ·M +R

Since the degree of R was of degree at most n−1, which is strictly less than n, this contradicts the supposition
that P had no such expression.

4.8 Worked examples

4.8.1 Example: Let R = Z/13 and S = Z/221. Show that the map

f : R −→ S

defined by f(n) = 170 · n is well-defined and is a ring homomorphism. (Observe that it does not map 1 ∈ R
to 1 ∈ S.)

The point is that 170 = 1 mod 13 and 170 = 17 · 10 = 0 mod 17, and 221 = 13 · 17. Thus, for n′ = n+ 13`,

170 · n′ = 17 · 10 · n+ 10 · 17 · 13 = 17 · 10 · n mod 13 · 17

so the map is well-defined. Certainly the map respects addition, since

170(n+ n′) = 170n+ 170n′

That it respects multiplication is slightly subtler, but we verify this separately modulo 13 and modulo 17,
using unique factorization to know that if 13|N and 17|N then (13 · 17)|N . Thus, since 170 = 1 mod 13,

170(nn′) = 1 · (nn′) = nn′ = (170n) · (170n′) mod 13

And, since 17 = 0 mod 17,

170(nn′) = 0 · (nn′) = 0 = (170n) · (170n′) mod 17

Putting these together gives the multiplicativity.
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4.8.2 Example: Let p and q be distinct prime numbers. Show directly that there is no field with pq
elements.

There are several possible approaches. One is to suppose there exists such a field k, and first invoke Sylow
(or even more elementary results) to know that there exist (non-zero!) elements x, y in k with (additive)
orders p, q, respectively. That is, p · x = 0 (where left multiplication by an ordinary integer means repeated
addition). Then claim that xy = 0, contradicting the fact that a field (or even integral domain) has no
proper zero divisors. Indeed, since p and q are distinct primes, gcd(p, q) = 1, so there are integers r, s such
that rp+ sq = 1. Then

xy = 1 · xy = (rp+ sq) · xy = ry · px+ sx · qy = ry · 0 + sx · 0 = 0

4.8.3 Example: Find all the idempotent elements in Z/n.

The idempotent condition r2 = r becomes r(r − 1) = 0. For each prime p dividing n, let pe be the exact
power of p dividing n. For the image in Z/n of an ordinary integer b to be idempotent, it is necessary and
sufficient that pe|b(b− 1) for each prime p. Note that p cannot divide both b and b− 1, since b− (b− 1) = 1.
Thus, the condition is pe|b or pe|b − 1, for each prime p dividing n. Sun-Ze’s theorem assures that we can
choose either of these two conditions for each p as p various over primes dividing n, and be able to find a
simultaneous solution for the resulting family of congruences. That is, let p1, . . . , pt be the distinct primes
dividing n, and let peii be the exact power of pi dividing n. For each pi choose εi ∈ {0, 1}. Given a sequence
ε = (ε1, . . . , εt) of 0s and 1s, consider the collection of congruences peii |(b − εi), for i = 1, . . . , t. Sun-Ze
guarantees that there is a solution, and that it is unique mod n. Thus, each of the 2t choices of sequences
of 0s and 1s gives an idempotent.

4.8.4 Example: Find all the nilpotent elements in Z/n.

For each prime p dividing n, let pe be the exact power of p dividing n. For the image in Z/n of an ordinary
integer b to be nilpotent, it is necessary and sufficient that for some n sufficiently large pe|bn for each prime
p. Then surely p|bn, and since p is prime p|b. And, indeed, if every prime dividing n divides b, then a
sufficiently large power of b will be 0 modulo pe, hence (by unique factorization, etc.) modulo n. That is,
for b to be nilpotent it is necessary and sufficient that every prime dividing n divides b.

4.8.5 Example: Let R = Q[x]/(x2 − 1). Find e and f in R, neither one 0, such that

e2 = e f2 = f ef = 0 e+ f = 1

(Such e and f are orthogonal idempotents.) Show that the maps pe(r) = re and pf (r) = rf are ring
homomorphisms of R to itself.

Let ξ be the image of x in the quotient. Then (ξ − 1)(ξ + 1) = 0. Also note that

(ξ − 1)2 = ξ2 − 2ξ + 1 = (ξ2 − 1)− 2ξ + 2 = −2ξ + 2

so (
ξ − 1

2

)2

=
ξ2 − 2ξ + 1

4
=

(ξ2 − 1)− 2ξ + 2
4

=
−ξ + 1

2

Similarly, (
ξ + 1

2

)2

=
ξ2 + 2ξ + 1

4
=

(ξ2 − 1) + 2ξ + 2
4

=
ξ + 1

2

Thus, e = (−ξ + 1)/2 and f = (ξ + 1)/2 are the desired orthogonal idempotents.

4.8.6 Example: Prove that in (Z/p)[x] we have the factorization

xp − x =
∏

a∈Z/p

(x− a)
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By Fermat’s Little Theorem, the left-hand side is 0 when x is replaced by any of 0, 1, 2, . . . , p− 1. Thus, by
unique factorization in k[x] for k a field (which applies to Z/p since p is prime), all the factors x− 0, x− 1,
x − 2, . . ., x − (p − 1) divide the left-hand side, and (because these are mutually relatively prime) so does
their product. Their product is the right-hand side, which thus at least divides the left-hand side. Since
degrees add in products, we see that the right-hand side and left-hand side could differ at most by a unit (a
polynomial of degree 0), but both are monic, so they are identical, as claimed.

4.8.7 Example: Let ω = (−1 +
√
−3)/2. Prove that

Z[ω]/pZ[ω] ≈ (Z/p)[x]/(x2 + x+ 1)(Z/p)[x]

and, as a consequence, that a prime p in Z is expressible as x2 + xy + y2 with integers x, y if and only if
p = 1 mod 3 (apart from the single anomalous case p = 3).

If a prime is expressible as p = a2 + ab + b2, then, modulo 3, the possibilities for p modulo 3 can be
enumerated by considering a = 0,±1 and b = 0,±1 mod 3. Noting the symmetry that (a, b) −→ (−a,−b)
does not change the output (nor does (a, b) −→ (b, a)) we reduce from 3 · 3 = 9 cases to a smaller number:

p = a2 + ab+ b2 =

 02 + 0 · 0 + 02 = 1 mod 3
12 + 1 · 1 + 12 = 0 mod 3

12 + 1 · (−1) + (−1)2 = 1 mod 3

Thus, any prime p expressible as p = a2 + ab+ b2 is either 3 or is 1 mod 3.

On the other hand, suppose that p = 1 mod 3. If p were expressible as p = a2 + ab+ b2 then

p = (a+ bω)(a+ bω)

where ω = (−1 +
√
−3)/2. That is, p is expressible as a2 + ab + b2 if and only if p factors in a particular

manner in Z[ω].

Let N(a + bω) = a2 + ab + b2 be the usual (square-of) norm. To determine the units in Z[ω], note that
α · β = 1 implies that

1 = N(α) ·N(β)

and these norms from Z[ω] are integers, so units have norm 1. By looking at the equation a2 + ab+ b2 = 1
with integers a, b, a little fooling around shows that the only units in Z[ω] are ±1, ±ω and ±ω2. And norm
0 occurs only for 0.

If p = α · β is a proper factorization, then by the multiplicative property of N

p2 = N(p) = N(α) ·N(β)

Thus, since neither α nor β is a unit, it must be that

N(α) = p = N(β)

Similarly, α and β must both be irreducibles in Z[ω], since applying N to any proper factorization would
give a contradiction. Also, since p is its own complex conjugate,

p = α · β

implies
p = p = α · β

Since we know that the (Eisenstein) integers Z[ω] are Euclidean and, hence, have unique factorization, it
must be that these two prime factors are the same up to units.
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Thus, either α = ±α and β = ±β (with matching signs), or α = ±ωα and β = ±ω2β, or α = ±ω2α and
β = ±ωβ, or α = uβ with u among ±1,±ω,±ω2. If α = ±α, then α is either in Z or of the form t ·

√
−3

with t ∈ Z. In the former case its norm is a square, and in the latter its norm is divisible by 3, neither of
which can occur. If α = ωα, then α = t ·ω for some t ∈ Z, and its norm is a square, contradiction. Similarly
for α = ±ω2α.

Thus, α = uβ for some unit u, and p = uN(β). Since p > 0, it must be that u = 1. Letting α = a+ bω, we
have recovered an expression

p = a2 + ab+ b2

with neither a nor b zero.

Thus, a prime integer p > 3 is expressible (properly) as a2 + ab + b2 of two squares if and only if it is not
prime in Z[ω]. From above, this is equivalent to

Z[ω]/〈p〉 is not an integral domain

We grant that for p = 1 mod 3 there is an integer α such that α2 + alf + 1 = 0 mod p. [101] That is, (the
image of) the polynomial x2 + x+ 1 factors in (Z/p)[x].

Note that we can rewrite Z[ω] as
Z[x]/〈x2 + x+ 1〉

Then
Z[ω]/〈p〉 ≈

(
Z[x]/〈x2 + 1〉

)
/〈p〉 ≈ (Z[x]/〈p〉) /〈x2 + 1〉 ≈ (Z/p)[x]/〈x2 + 1〉

and the latter is not an integral domain, since

x2 + x+ 1 = (x− α)(x− α2)

is not irreducible in (Z/p)[x]. That is, Z[ω]/〈p〉 is not an integral domain when p is a prime with p = 1 mod 3.
That is, p is not irreducible in Z[ω], so factors properly in Z[ω], thus, as observed above, p is expressible as
a2 + ab+ b2. ///

Exercises

4.1 Show that in a commutative ring the set of nilpotent elements is an ideal (the nilradical of R). Give
an example to show that the set of nilpotent elements may fail to be an ideal in a non-commutative ring.

4.2 Let R be a commutative ring with unit, such that for every r ∈ R there is an integer n > 1 (possibly
depending upon r) such that rn = r. Show that every prime ideal in R is maximal.

4.3 Let k be a field. Let P,Q be two polynomials in k[x]. Let K be an extension field of k. Show that, if
P divides Q in K[x], then P divides Q in k[x].

4.4 Let R be a commutative ring with unit. Show that the set of prime ideals in R has minimal elements
under the ordering by inclusion. (Hint: You may want to use Zorn’s lemma or some other equivalent of the
Axiom of Choice.)

[101] If we grant that there are primitive roots modulo primes, that is, that (Z/p)× is cyclic, then this assertion follows

from basic and general properties of cyclic groups. Even without knowledge of primitive roots, we can still give a

special argument in this limited case, as follows. Let G = (Z/p)×. This group is abelian, and has order divisible by

3. Thus, for example by Sylow theorems, there is a 3-power-order subgroup A, and, thus, at least one element of

order exactly 3.
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4.5 The radical of an ideal I in a commutative ring R with unit is

rad I = {r ∈ R : rn ∈ I for some n}

Show that a proper ideal I of a ring is equal to its own radical if and only if it is an intersection of prime
ideals.

4.6 Let R be a commutative ring with unit. Check that the nilradical N of R, defined to be the set of
all nilpotent elements, is

nilradR = rad {0}

Show that R has a unique prime ideal if and only if every element of R is either nilpotent or a unit, if and
only if R/N is a field.

4.7 Show that a prime p in Z is expressible as p = m2 + 2n2 with integers m,n if and only if −2 is a
square mod p.

4.8 Let R be a commutative ring with unit. Suppose R contains an idempotent element r other than 0 or
1. (That is, r2 = r.) Show that every prime ideal in R contains an idempotent other than 0 or 1.
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5. Linear Algebra I: Dimension

5.1 Some simple results
5.2 Bases and dimension
5.3 Homomorphisms and dimension

5.1 Some simple results

Several observations should be made. Once stated explicitly, the proofs are easy. [102]

• The intersection of a (non-empty) set of subspaces of a vector space V is a subspace.

Proof: Let {Wi : i ∈ I} be a set of subspaces of V . For w in every Wi, the additive inverse −w is in Wi.
Thus, −w lies in the intersection. The same argument proves the other properties of subspaces. ///

The subspace spanned by a set X of vectors in a vector space V is the intersection of all subspaces
containing X. From above, this intersection is a subspace.

• The subspace spanned by a set X in a vector space V is the collection of all linear combinations of vectors
from X.

Proof: Certainly every linear combination of vectors taken from X is in any subspace containing X. On
the other hand, we must show that any vector in the intersection of subspaces containing X is a linear
combination of vectors in X. Now it is not hard to check that the collection of such linear combinations
is itself a subspace of V , and contains X. Therefore, the intersection is no larger than this set of linear
combinations. ///

[102] At the beginning of the abstract form of this and other topics, there are several results which have little

informational content, but, rather, only serve to assure us that the definitions/axioms have not included phenomena

too violently in opposition to our expectations. This is not surprising, considering that the definitions have endured

several decades of revision exactly to address foundational and other potential problems.
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A linearly independent set of vectors spanning a subspace W of V is a basis for W .

5.1.1 Proposition: Given a basis e1, . . . , en for a vector space V , there is exactly one expression for an
arbitrary vector v ∈ V as a linear combination of e1, . . . , en.

Proof: That there is at least one expression follows from the spanning property. On the other hand, if∑
i

aiei = v =
∑
i

biei

are two expressions for v, then subtract to obtain∑
i

(ai − bi)ei = 0

Since the ei are linearly independent, ai = bi for all indices i. ///

5.2 Bases and dimension

The argument in the proof of the following fundamental theorem is the Lagrange replacement principle. This
is the first non-trivial result in linear algebra.

5.2.1 Theorem: Let v1, . . . , vm be a linearly independent set of vectors in a vector space V , and let
w1, . . . , wn be a basis for V . Then m ≤ n, and (renumbering the vectors wi if necessary) the vectors

v1, . . . , vm, wm+1, wm+2, . . . , wn

are a basis for V .

Proof: Since the wi’s are a basis, we may express v1 as a linear combination

v1 = c1w1 + . . .+ cnwn

Not all coefficients can be 0, since v1 is not 0. Renumbering the wi’s if necessary, we can assume that c1 6= 0.
Since the scalars k are a field, we can express w1 in terms of v1 and w2, . . . , wn

w1 = c−1
1 v1 + (−c−1

1 c2)w2 + . . .+ (−c−1
1 c2)wn

Replacing w1 by v1, the vectors v1, w2, w3, . . . , wn span V . They are still linearly independent, since if v1

were a linear combination of w2, . . . , wn then the expression for w1 in terms of v1, w2, . . . , wn would show
that w1 was a linear combination of w2, . . . , wn, contradicting the linear independence of w1, . . . , wn.

Suppose inductively that v1, . . . , vi, wi+1, . . . , wn are a basis for V , with i < n. Express vi+1 as a linear
combination

vi+1 = a1v1 + . . .+ aivi + bi+1wi+1 + . . .+ bnwn

Some bj is non-zero, or else vi is a linear combination of v1, . . . , vi, contradicting the linear independence
of the vj ’s. By renumbering the wj ’s if necessary, assume that bi+1 6= 0. Rewrite this to express wi+1 as a
linear combination of v1, . . . , vi, wi+1, . . . , wn

wi+1 = (−b−1
i+1a1)v1 + . . .+ (−b−1

i+1ai)vi + (b−1
i+1)vi+1

+ (−b−1
i+1bi+2)wi+2 + . . .+ (−b−1

i+1bn)wn
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Thus, v1, . . . , vi+1, wi+2, . . . , wn span V . Claim that these vectors are linearly independent: if for some
coefficients aj , bj

a1v1 + . . .+ ai+1vi+1 + bi+2wi+2 + . . .+ bnwn = 0

then some ai+1 is non-zero, because of the linear independence of v1, . . . , vi, wi+1, . . . , wn. Thus,
rearrange to express vi+1 as a linear combination of v1, . . . , vi, wi+2, . . . , wn. The expression for wi+1

in terms of v1, . . . , vi, vi+1, wi+2, . . . , wn becomes an expression for wi+1 as a linear combination of
v1, . . . , vi, wi+2, . . . , wn. But this would contradict the (inductively assumed) linear independence of
v1, . . . , vi, wi+1, wi+2, . . . , wn.

Consider the possibility that m > n. Then, by the previous argument, v1, . . . , vn is a basis for V . Thus,
vn+1 is a linear combination of v1, . . . , vn, contradicting their linear independence. Thus, m ≤ n, and
v1, . . . , vm, wm+1, . . . , wn is a basis for V , as claimed. ///

Now define the (k-)dimension [103] of a vector space (over field k) as the number of elements in a (k-)basis.
The theorem says that this number is well-defined. Write

dimV = dimension of V

A vector space is finite-dimensional if it has a finite basis. [104]

5.2.2 Corollary: A linearly independent set of vectors in a finite-dimensional vector space can be
augmented to be a basis.

Proof: Let v1, . . . , vm be as linearly independent set of vectors, let w1, . . . , wn be a basis, and apply the
theorem. ///

5.2.3 Corollary: The dimension of a proper subspace of a finite-dimensional vector space is strictly less
than the dimension of the whole space.

Proof: Let w1, . . . , wm be a basis for the subspace. By the theorem, it can be extended to a basis
w1, . . . , wm, vm+1, . . . , vn of the whole space. It must be that n > m, or else the subspace is the whole
space. ///

5.2.4 Corollary: The dimension of kn is n. The vectors

e1 = (1, 0, 0, . . . , 0, 0)
e2 = (0, 1, 0, . . . , 0, 0)
e3 = (0, 0, 1, . . . , 0, 0)

. . .
en = (0, 0, 0, . . . , 0, 1)

are a basis (the standard basis).

Proof: Those vectors span kn, since

(c1, . . . , cn) = c1e1 + . . .+ cnen

[103] This is an instance of terminology that is nearly too suggestive. That is, a naive person might all too easily

accidentally assume that there is a connection to the colloquial sense of the word dimension, or that there is an

appeal to physical or visual intuition. Or one might assume that it is somehow obvious that dimension is a well-

defined invariant.

[104] We proved only the finite-dimensional case of the well-definedness of dimension. The infinite-dimensional case

needs transfinite induction or an equivalent.
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On the other hand, a linear dependence relation

0 = c1e1 + . . .+ cnen

gives
(c1, . . . , cn) = (0, . . . , 0)

from which each ci is 0. Thus, these vectors are a basis for kn. ///

5.3 Homomorphisms and dimension

Now we see how dimension behaves under homomorphisms.

Again, a vector space homomorphism [105] f : V −→ W from a vector space V over a field k to a vector
space W over the same field k is a function f such that

f(v1 + v2) = f(v1) + f(v2) (for all v1, v2 ∈ V )
f(α · v) = α · f(v) (for all α ∈ k, v ∈ V )

The kernel of f is
ker f = {v ∈ V : f(v) = 0}

and the image of f is
Imf = {f(v) : v ∈ V }

A homomorphism is an isomorphism if it has a two-sided inverse homomorphism. For vector spaces, a
homomorphism that is a bijection is an isomorphism. [106]

• A vector space homomorphism f : V −→ W sends 0 (in V ) to 0 (in W , and, for v ∈ V , f(−v) = −f(v).
[107]

5.3.1 Proposition: The kernel and image of a vector space homomorphism f : V −→ W are vector
subspaces of V and W , respectively.

Proof: Regarding the kernel, the previous proposition shows that it contains 0. The last bulleted point was
that additive inverses of elements in the kernel are again in the kernel. For x, y ∈ ker f

f(x+ y) = f(x) + f(y) = 0 + 0 = 0

so ker f is closed under addition. For α ∈ k and v ∈ V

f(α · v) = α · f(v) = α · 0 = 0

so ker f is closed under scalar multiplication. Thus, the kernel is a vector subspace.

Similarly, f(0) = 0 shows that 0 is in the image of f . For w = f(v) in the image of f and α ∈ k

α · w = α · f(v) = f(αv) ∈ Imf

[105] Or linear map or linear operator.

[106] In most of the situations we will encounter, bijectivity of various sorts of homomorphisms is sufficient (and certainly

necessary) to assure that there is an inverse map of the same sort, justifying this description of isomorphism.

[107] This follows from the analogous result for groups, since V with its additive structure is an abelian group.
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For x = f(u) and y = f(v) both in the image of f ,

x+ y = f(u) + f(v) = f(u+ v) ∈ Imf

And from above
f(−v) = −f(v)

so the image is a vector subspace. ///

5.3.2 Corollary: A linear map f : V −→ W is injective if and only if its kernel is the trivial subspace
{0}.

Proof: This follows from the analogous assertion for groups. ///

5.3.3 Corollary: Let f : V −→W be a vector space homomorphism, with V finite-dimensional. Then

dim ker f + dim Imf = dimV

Proof: Let v1, . . . , vm be a basis for ker f , and, invoking the theorem, let wm+1, . . . , wn be vectors in V
such that v1, . . . , vm, wm+1, . . . , wn form a basis for V . We claim that the images f(wm+1), . . . , f(wn) are a
basis for Imf . First, show that these vectors span. For f(v) = w, express v as a linear combination

v = a1v1 + . . .+ amvm + bm+1wm+1 + . . .+ bnwn

and apply f
w = a1f(v1) + . . .+ amf(vm) + bm+1f(wm+1) + . . .+ bnf(wn)

= a1 · 0 + . . .+ am · 0(vm) + bm+1f(wm+1) + . . .+ bnf(wn)

= bm+1f(wm+1) + . . .+ bnf(wn)

since the vis are in the kernel. Thus, the f(wj)’s span the image. For linear independence, suppose

0 = bm+1f(wm+1) + . . .+ bnf(wn)

Then
0 = f(bm+1wm+1 + . . .+ bnwn)

Then, bm+1wm+1 + . . . + bnwn would be in the kernel of f , so would be a linear combination of the vi’s,
contradicting the fact that v1, . . . , vm, wm+1, . . . , wn is a basis, unless all the bj ’s were 0. Thus, the f(wj)
are linearly independent, so are a basis for Imf . ///

Exercises

5.1 For subspaces V,W of a vector space over a field k, show that

dimk V + dimkW = dimk(V +W ) + dimk(V ∩W )

5.2 Given two bases e1, . . . , en and f1, . . . , fn for a vector space V over a field k, show that there is a
unique k-linear map T : V −→ V such that T (ei) = fi.

5.3 Given a basis e1, . . . , en of a k-vectorspace V , and given arbitrary vectors w1, . . . , wn in a k-vectorspace
W , show that there is a unique k-linear map T : V −→W such that Tei = wi for all indices i.
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5.4 The space Homk(V,W ) of k-linear maps from one k-vectorspace V to another, W , is a k-vectorspace
under the operation

(αṪ )(v) = α · (T (v))

for α ∈ k and T ∈ Homk(V,W ). Show that

dimk Homk(V,W ) = dimk V · dimkW

5.5 A flag V1 ⊂ . . . ⊂ V` of subspaces of a k-vectorspace V is simply a collection of subspaces satisfying
the indicated inclusions. The type of the flag is the list of dimensions of the subspaces Vi. Let W be a
k-vectorspace, with a flag W1 ⊂ . . . ⊂W` of the same type as the flag in V . Show that there exists a k-linear
map T : V −→W such that T restricted to Vi is an isomorphism Vi −→Wi.

5.6 Let V1 ⊂ V` be a flag of subspace inside a finite-dimensional k-vectorspace V , and W1 ⊂ . . . ⊂ W` a
flag inside another finite-dimensional k-vectorspace W . We do not suppose that the two flags are of the same
type. Compute the dimension of the space of k-linear homomorphisms T : V −→W such that TVi ⊂Wi.
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6. Fields I

6.1 Adjoining things
6.2 Fields of fractions, fields of rational functions
6.3 Characteristics, finite fields
6.4 Algebraic field extensions
6.5 Algebraic closures

6.1 Adjoining things

The general intention of the notion of adjoining a new element α to a field k is arguably clear. That is, k
itself does not contain a root of an equation, for example, and we want to enlarge k so that it does include
such a root. On the face of it, the possibility or legitimacy of doing so depends upon one’s philosophical
outlook. It is useful to see that the situation is more robust than that. [108]

Let k be a field. Let k ⊂ K where K is a bigger field. For α ∈ K, define the field extension (in K) over
k generated by α [109]

k(α) =
⋂

fields E⊂K, E⊃k, α∈E

E

It is easy to check that the intersection of subfields of a common field is a field, so this intersection is a field.
Rather than a single element, one could as well adjoin any subset of the over-field K. [110]

Before studying k(α) in more detail, consider a different procedure of adjoining something: for a commutative

[108] In the 19th century there was widespread confusion or at least concern over issues of existence of quantities having

various properties. Widespread belief in the legitimacy of the complex numbers was not in place until well into that

century, and ironically was abetted by pictorial emphasis on complex numbers as two-dimensional things. The advent

of the Hamiltonian quaternions in mid-century made the complex numbers seem innocent by comparison.

[109] The notation here is uncomfortably fragile: exchanging the parentheses for any other delimiters alters the meaning.

[110] This definition does not give a good computational handle on such field extensions. On the other hand, it is

unambiguous and well-defined.
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ring R with 1 which is a subring of an R-algebra A, for α ∈ A, one might attempt to define [111]

R[α] = { polynomials in α}

One probably understands the intent, that this is

R[α] = {c0 + c1α+ . . .+ cnα
n : ci ∈ R}

More precisely, a proper definition would be

R[α] = the image in A of the unique R-algebra homomorphism sending x to α

where we invoke the universal mapping property of R[x].

Specialize R again to be a field k, and let A be a (not necessarily commutative) k-algebra, α ∈ A. Then the
natural homomorphism

ϕ : k[x] −→ k[α] (by x −→ α)

has a kernel which is a principal ideal 〈f〉. [112] By the usual Isomorphism Theorem the map ϕ descends
to the quotient by the kernel, giving an isomorphism

ϕ : k[x]/〈f〉 ≈ k[α]

If f = 0, that is, if the kernel is trivial, then k[α] of course inherits properties of the polynomial ring. [113]

At this point we need to begin using the fact that a k-algebra A is a k-vectorspace. [114] The degree of A
over k is

[A : k] = degree of A over k = dimension of A as k-vectorspace

If k[α] ≈ k[x], then, for example, the various powers of α are linearly independent over k, and k[α] is infinite-
dimensional as a k-vectorspace. And there is no polynomial P (x) ∈ k[x] such that P (α) = 0. Especially in
the simple situation that the k-algebra A is a field, such elements α with k[α] ≈ k[x] are transcendental
over k. [115]

On the other hand, a perhaps more interesting situation is that in which the kernel of the natural

k[x] −→ k[α]

has non-zero kernel 〈f〉, with f monic without loss of generality. This f is the minimal polynomial of α
(in A) over k.

Although our immediate concern is field extensions, there is at least one other useful application of this
viewpoint, as follows. Let V be a k-vectorspace, and let A be the k-algebra

A = EndkV

[111] Note again the fragility of the notation: k(α) is generally quite different from k[α], although in some useful cases

(as below) the two can coincide.

[112] ... since k[x] is a principal ideal domain for k a field. For more general commutative rings R the corresponding

discussion is more complicated, though not impossible.

[113] ... to which it is isomorphic by the just-demonstrated isomorphism!

[114] By forgetting the multiplication in A, if one insists.

[115] This is an essentially negative definition: there are no relations.
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of k-linear maps (i.e., endomorphisms) of V to itself. For T : V −→ V a k-linear map, we can consider
the natural k-algebra map

k[x] −→ EndkV (by x −→ T )

We give EndkV a k-vectorspace structure value-wise by

(α · T )(v) = α · (Tv)

for v ∈ V and α ∈ k. If V is finite-dimensional, then EndkV is also finite-dimensional. [116] In particular,
the kernel of the natural map from k[x] cannot be just 0. Let f be the non-zero monic generator for the
kernel. Again, [117] this monic is the minimal polynomial for T . The general construction shows that for
any P (x) ∈ k[x],

P (T ) = 0 ∈ EndkV if and only if f divides P

In particular, if the polynomial equation f(x) = 0 has a root λ in k, then [118] we can prove that T has
eigenvalue λ. That is, there is a non-zero vector v ∈ V (the λ-eigenvector) such that

Tv = λ · v

Indeed, let f(x) = (x − λ) · g(x) for some g(x) ∈ k[x]. Since g is not the minimal polynomial for T , then
there is a vector w ∈ V such that g(T ) · w 6= 0. We claim that v = g(T )w is a λ-eigenvector. Indeed,

0 = f(T ) · w = (T − λ) · g(T )w = (T − λ) · v

and by the previous comment v = g(T )w is not 0. [119]

Returning to field extensions: let K be a field containing a smaller field k, α ∈ K, and let f be the generator
for the kernel of the natural map k[x] −→ k[α]. We do assume that f is non-zero, so we can make f monic,
without loss of generality. Since f is non-zero, we do call it the minimal polynomial of α over k, and,
since α has a minimal polynomial over k, we say that α is algebraic over k. [120] If every element α of a
field extension K of k is algebraic over k, then say that the field extension K itself is algebraic over k.

Once again, given any polynomial P (x), there are unique Q(x) and R(x) with degR < deg f such that

P = Q · f +R

and
P (α) = Q(α) · f(α) +R(α) = Q(α) · 0 +R(α) = R(α)

[116] This is not hard to prove: let e1, . . . , en be a k-basis for V . Then the k-linearity T (
P
i ciei) =

P
i ciT (ei) shows

that T is determined completely by the collection of images Tei. And Tei =
P
j Tijej for some collection of n2

elements Tij of k. Thus, if V is n-dimensional then its endomorphism algebra is n2-dimensional.

[117] This is terminology completely consistent with linear algebra usage.

[118] From the fact that roots correspond perfectly to linear factors, for polynomials in one variable with coefficients

in a field.

[119] Even this brief discussion of minimal polynomials and linear operators should suggest, and correctly so, that use

of determinants and invocation of the Cayley-Hamilton theorem, concerning the characteristic polynomial of a linear

operator, is not exactly to the point.

[120] Again, this situation, where f(α) = 0 with a non-zero polynomial f , is in contrast to the case where α satisfies

no algebraic equation with coefficients in k.
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Letting n = deg f , this implies that 1, α, α2, . . . , αn−1 are a k-basis for k[α]. [121]

6.1.1 Proposition: For α algebraic over k (all inside K), the ring k[α] is a field. [122] That is, for
α algebraic, k(α) = k[α]. The minimal polynomial f of α over k is irreducible in k[x]. And the degree
(dimension) of k(α) over k is

[k(α) : k] = dimk k(α) = deg f

Proof: First, from above,
k[α] ≈ k[x]/〈f〉

To prove irreducibility, suppose we can write f = g · h with g, h ∈ k[x] with proper factors. By minimality
of f , neither g(α) nor h(α) is 0. But f(α) = 0, so g(α and h(α) are zero-divisors, contradiction. [123]

Since k(α) is the smallest field inside the ambient field K containing α and k, certainly k[α] ⊂ k(α). To
prove equality, it would suffice to show that non-zero elements of k[α] have multiplicative inverses in k[α].
For polynomial g(x) ∈ k[x], g(α) 6= 0 if and only if the minimal polynomial f(x) of α over k does not divide
g(x). Since f is irreducible and does not divide g, there are polynomials r, s in k[x] such that

1 = gcd(f, g) = r(x) · f(x) + s(x) · g(x)

so, mapping x to α,

1 = r(α) · f(α) + s(α) · g(α) = r(α) · 0 + s(α) · g(α) = s(α) · g(α)

That is, s(α) is a multiplicative inverse to g(α), and k[α] is a field. The degree is as asserted, since the
polynomials of degree < deg f are irredundant representatives for the equivalence classes of k[x]/〈f〉.
///

6.2 Fields of fractions, fields of rational functions

For k ⊂ K fields and α ∈ K transcendental over k, it is not true that k[α] ≈ k(α), in complete contrast to
the case that α is algebraic, discussed just above. [124]

But from elementary mathematics we have the idea that for indeterminate [sic] x

k(x) = field of rational functions in x = { g(x)
h(x)

: g, h ∈ k[x], h 6= 0}

We can reconcile this primitive idea with our present viewpoint.

Let R be an integral domain (with unit 1) [125] and define the field of fractions Q of R to be the collection
of ordered pairs (r, s) with r, s ∈ R and s 6= 0, modulo the equivalence relation [126]

(r, s) ∼ (r′, s′) if rs′ = sr′

[121] Indeed, the identity P = Qf + R shows that any polynomial in α is expressible as a polynomial of degree < n.

This proves spanning. On the other hand, a linear dependence relation
P
i ciα

i = 0 with coefficient ci in k is nothing

other than a polynomial relation, and our hypothesis is that any such is a (polynomial) multiple of f . Thus, the

monomials of degrees less than deg f are linearly independent.

[122] This should be a little surprising.

[123] Everything is taking place inside the larger field K.

[124] In particular, since k[α] ≈ k[x], k[α] is not a field at all.

[125] A definition can be made for more general commutative rings, but the more general definition has more

complicated features which are not of interest at the moment.

[126] This would be the usual requirement that two fractions r/s and r′/s′ be equal.
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The addition is suggested by the usual addition of fractions, namely that

(r, s) + (r′, s′) = (rs′ + r′s, ss′)

and the multiplication is the more obvious

(r, s) · (r′, s′) = (rr′, ss′)

One should verify that these operations are well-defined on the quotient Q by that equivalence relation, that
Q is a commutative ring with unit (the equivalence class of)(1, 1), that r −→ (r, 1) injects R to Q. This
constructs the field of fractions.

The latter construction is internal, in the sense that it constructs a concrete thing in set-theoretic terms,
given the original ring R. On the other hand, we can characterize the field of fractions externally, by
properties of its mappings to other rings or fields. In particular, we have

6.2.1 Proposition: For an integral domain R with unit 1, its field of fractions Q, with the natural
inclusion i : R −→ Q, is the unique field (and inclusion of R into it) such that, for any injective ring
homomorphism ϕ : R −→ K with a field K, there is a unique ϕ̃ : Q −→ K such that

ϕ ◦ i = ϕ̃

Specifically, ϕ̃(r, s) = ϕ(r)/ϕ(s). [127]

Proof: Indeed, try to define [128]

ϕ̃(r, s) = ϕ(r)/ϕ(s)

where the quotient on the right-hand side is in the field K, and the injectivity of ϕ assure that s 6= 0 implies
that ϕ(s) 6= 0. This is certainly compatible with ϕ on R, since

ϕ̃(r, 1) = ϕ(r)/ϕ(1) = ϕ(r)

and the smallest subfield of K containing R certainly must contain all such quotients. The main thing to
check is that this definition really is well-defined, namely that if (r, s) ∼ (r′, s′), then

ϕ̃(r, s) = ϕ̃(r′, s′)

Do this as follows. The equivalence relation is that rs′ = r′s. Applying ϕ on R gives

ϕ(r)ϕ(s′) = ϕ(r′)ϕ(s)

Since ϕ is injective, for s, s′ nonzero in R their images are nonzero in K, so we can divide, to obtain

ϕ(r)/ϕ(s) = ϕ(r′)/ϕ(s′)

This proves the well-definedness. That multiplication is preserved is easy, and that addition is preserved is
straightforward. ///

To practice categorical arguments, we can also prove, without using formulas or explicit constructions:

[127] Implicitly we must claim that this is well-defined.

[128] What else could it be?
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6.2.2 Proposition: Let Q′ be a field with inclusion i′ : R −→ Q′ such that, for every injective
homomorphism ϕ : R −→ K with a field K, there is a unique ϕ̃ : Q′ −→ K such that

ϕ ◦ i′ = ϕ̃

Then there is a unique isomorphism j : Q −→ Q′ of the field of fractions Q of R (with inclusion i : R −→ Q)
to Q′ such that

i′ = j ◦ i

That is, up to unique isomorphism, there is only one field of fractions of an integral domain.

Proof: First prove that any field map f : Q −→ Q such that f ◦ i = i must be the identity on Q. Indeed,
taking K = Q and f = i : R −→ K in the defining property, we see that the identity map idQ on Q has the
property idK ◦ i = i. The uniqueness property assures that any other f with this property must be idK .

Then let Q′ and i′ : R −→ Q′ be another pair satisfying the universal mapping condition. Taking
ϕ = i′ : R −→ Q′ yields ϕ̃ : Q −→ Q′ with ϕ = ϕ̃ ◦ i. Reversing the roles, taking ϕ′ = i : R −→ Q
yields ϕ̃′ : Q′ −→ Q with ϕ′ = ϕ̃′ ◦ i′. Then (by the previous paragraph) ϕ̃ ◦ ϕ̃′ : Q −→ Q must be the
identity on Q, and, similarly, ϕ̃′ ◦ ϕ̃ : Q′ −→ Q; must be the identity on Q′. Thus, ϕ̃ and ϕ̃′ are mutual
inverses. This proves the isomorphism of the two objects. [129] ///

Thus, without having a larger field in which the polynomial ring k[x] sits, we simply form the field of fractions
of this integral domain, and denote it [130]

k(x) = field of fractions of k[x] = rational functions in x

Despite having this construction available, it still may be true that for fields k ⊂ K, there is α in K
transcendental over k, in the sense (above) that α satisfies no polynomial relation with coefficients in k. [131]

In that case, we have the more general definition of k(α) as the intersection of all subfields of K containing
k and containing α.

For notational consistency, we should check that k(α) is isomorphic to the field of fractions of k[α]. And,
indeed, since k[x] injects to k[α] (taking x to α), by the mapping property characterization the field of
fractions k(x) of k[x] has a unique injection j to the field k(α) extending the given map. Certainly
k(α) ⊂ j(k(x)), since k(α) is the intersection of all subfields of K containin k and α. Thus, the image
of the injective map j is exactly k(α), and j is an isomorphism of k(x) to k(α).

6.3 Characteristics, finite fields

The linear algebra viewpoint is decisive in understanding many elementary features of fields, for example,
the result below on possible cardinalities of finite fields.

[129] The uniqueness of the isomorphism also follows from discussion, since if there were two isomorphisms h and h′

from Q to Q′, then h′ ◦ h−1 : Q −→ Q would be a non-identity map with the desired property, but only the identity

on Q has the universal mapping property.

[130] To say that these are rational functions is a bit of a misnomer, but no worse than to refer to polynomial functions,

which is also misleading but popular.

[131] Again, more precisely, the condition that α be transcendental is that the natural map k[x] −→ k[α] by x −→ α

has trivial kernel.
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First, observe that any ring R is a Z-algebra in a canonical [132] manner, with the action

n · r =


r + . . .+ r︸ ︷︷ ︸

n

(n > 0)

0R (n = 0)
−(r + . . .+ r︸ ︷︷ ︸

|n|

) (n < 0)

An easy but tedious induction proves that this Z-algebra structure deserves the name. [133] As evidence
for the naturality of this Z-structure, notice that if f : R −→ S is any ring homomorphism, then f is a
Z-algebra homomorphism when the above Z-algebra structures are put on R and S.

When a ring R has an identity 1R, there is a canonical Z-algebra homomorphism i : Z −→ R by

i : n −→ n · 1R

Granting that the Z-algebra structure on R works as claimed, the proof that this is a homomorphism is
nearly trivial:

i(m+ n) = (m+ n) · 1R = m · 1R + n · 1R = i(m) + i(n)

i(m · n) = (m · n) · 1R = m · (n · 1R) = m · (1R · (n · 1R)) = (m · 1R) · (n · 1R) = i(m) · i(n)

Now consider the canonical Z-algebra homomorphism i : Z −→ k for a field k. [134] If i is injective, then
it extends to an injection of the field of fractions Q of Z into k. In this case, say k is of characteristic
zero, and this canonical copy of Q inside k is the prime field inside k. If i is not injective, its kernel is a
principal ideal in Z, say pZ with p > 0. Since the image i(Z) is inside a field, it is an integral domain, so
pZ is a (non-zero) prime ideal, which implies that p is prime. This integer p is the characteristic of k. We
know that Z/〈p〉 is a field. Then we see that (by the Isomorphism Theorem for rings) the homomorphism
i : Z −→ k with kernel pZ induces an isomorphism

Z/p ≈ i(Z) ⊂ k

This canonical copy of Z/p inside k is the prime field inside k.

A finite field with q elements is often denoted Fq or GF (q). [135]

6.3.1 Theorem: A finite field K has pn elements for some prime p and integer n. [136] In particular,
let n = [K : Fp] be the degree of K over its prime field Fp ≈ Z/p with prime p. Then

|K| = pn

[132] This sort of use of canonical is meant for the moment to insinuate that there is no whimsical choice involved. A

more precise formulation of what canonical could mean would require a category-theoretical set-up. We may do this

later.

[133] The arguments to prove this are of the same genre as those proving the so-called Laws of Exponents. Here, one

must show that (m+ n)r = mr + nr and (mn)r = m(nr) for m,n ∈ Z and r ∈ R, and m(rs) = (mr)s for s ∈ R.

[134] It is no coincidence that we begin our study of fields by considering homomorphisms of the two simplest interesting

rings, k[x] for a field k, and Z, into rings and fields.

[135] This notation begs the question of uniqueness (up to isomorphism) of a finite field once its cardinality is specified.

We address this shortly.

[136] We will prove existence and uniqueness results for finite fields a bit later.
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Proof: Let Fp be the prime field in K. Let e1, . . . , en be a Fp-basis for the Fp-vectorspace K. Then there
are pn choices of coefficients ci ∈ Fp to form linear combinations

α =
n∑
i=1

ci ei ∈ K

so K has pn elements. ///

6.4 Algebraic field extensions

The first of the following two examples is amenable to ad hoc manipulation, but the second is designed to
frustrate naive explicit computation.

6.4.1 Example: Let γ be a root (in some field k of characteristic 0, thus containing the prime field Q)
of the equation

x2 −
√

2x+
√

3 = 0

Is γ a root of a polynomial equation with rational coefficients?

In the same spirit as completing the square, we can manipulate the equation x2 −
√

2x +
√

3 = 0 to make
the square roots disappear, as follows. Move the x2 to the opposite side and square both sides, to obtain

2x2 − 2
√

6x+ 3 = x4

Then move everything but the remaining square root to the right-hand side

−2
√

6x = x4 − 2x2 − 3

and square again
24x2 = x8 − 4x6 − 2x4 + 6x2 + 9

and then we find that γ is a root of

0 = x8 − 4x6 − 2x4 − 18x2 + 9

It is not so obvious that the original [137]

γ =
√

2±
√

2− 4
√

3
2

are roots. [138]

6.4.2 Example: Let α be a root of the equation

x5 − x+ 1 = 0

[137] Solving the original quadratic equation directly, by completing the square, for example.

[138] For that matter, it appears that the original equation has exactly two roots, while a degree 8 equation might have

8. Thus, we seem to have introduced 6 spurious roots in this process. Of course, an explanation for this is that there

are two different square roots of 2 and two different square roots of 3 in k, so really 2 · 2 = 4 versions of the original

quadratic equation, each with perhaps 2 roots in k.
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and let β be a root of the equation
x7 − x+ 1 = 0

Then let γ be a root of the equation
x6 − αx+ β = 0

Is γ a root of a polynomial equation with rational coefficients?

In this second example manipulations at the level of the first example fail. [139] But one might speculate
that in answering an existential question it might be possible to avoid explicit computations entirely, as in
the proofs of the following results.

6.4.3 Proposition: Let k ⊂ K ⊂ L be fields, with [K : k] <∞ and [L : K] <∞. Then

[L : k] = [L : K] · [K : k] <∞

In particular, for a K-basis {Ei} of L, and for a k-basis ej of K, the set {Eiej} is a k-basis for L. [140]

Proof: On one hand, any linear relation ∑
ij

Aij Eiej = 0

with Aij ∈ k gives ∑
i

(
∑
j

Aij ej)Ei = 0

so for each i we have
∑
j Aij ej = 0, by the linear independence of the Ei. And by the linear independence

of the ej we find that Aij = 0 for all indices. On the other hand, given

β =
∑
i

biEi ∈ L

with bi ∈ K, write bi =
∑
j aijej with aij ∈ k, and then

β =
∑
i

(
∑
j

aijej)Ei =
∑
ij

aij Eiej

which proves the spanning property. Thus, the elements Eiej are a k-basis for L. ///

A field extension K of a field k is finite if the degree [K : k] is finite. Finite field extensions can be built up
by adjoining elements. To economize on parentheses and brackets, [141] write

k(α1, . . . , αn) for k(α1)(α2) . . . (αn)

and
k[α1, . . . , αn] for k[α1][α2] . . . [αn]

[139] The provable limitations of familiar algebraic operations are packaged up in Galois theory, a bit later.

[140] The first assertion is merely a qualitative version of the last. Note that this proposition does not mention field

elements explicitly, but rather emphasizes the vector space structures.

[141] On might worry that this notation glosses over potential issues. But, for example, one can prove that a polynomial

ring in two variables really is naturally isomorphic to a polynomial ring in one variable over a polynomial ring in one

variable.
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6.4.4 Proposition: Let K be a field containing k, and suppose that [K : k] <∞. Then any element α
in K is algebraic over k, and there are finitely-many α1, . . . , αn such that

K = k(α1, . . . , αn) = k[α1, . . . , αn]

In particular, finite extensions K are necessarily algebraic. [142]

Proof: Given α ∈ K, the countably many powers 1, α, α2, . . . cannot be linearly independent over k, since
the whole K is finite-dimensional over k. A linear dependence relation among these powers is a polynomial
equation satisfied by α. [143] If K is strictly larger than k, take α1 ∈ K but not in k. Then [k(α1) : k] > 1,
and the multiplicativity

[K : k] = [K : k(α1)] · [k(α1) : k]

with [K : k] <∞ implies that
[K : k(α1)] < [K : k]

If K is still larger than k(α1), take α2 in K not in k(α1). Again,

[K : k(α1, α2)] < [K : k(α1)] < [K : k]

These degrees are positive integers, so a decreasing sequence must reach 1 in finitely-many steps (by Well-
Ordering). The fact [144] that k(α) = k[α] for α algebraic over k was proven earlier. ///

Let K and L be subfields of a larger field E. The compositum K · L of K and L is the smallest subfield
of E containing both K and L. [145]

6.4.5 Proposition: Let k ⊂ E be fields. Let K,L be subfields of K containing k. Suppose that
[K : k] <∞ and [L : k] <∞. Then

[K · L : k] ≤ [K : k] · [L : k] <∞

In particular, if
K = k(α1, . . . , αm) = k[α1, . . . , αm]

L = k(β1, . . . , βn) = k[β1, . . . , βn]

then
K · L = k(α1, . . . , αm, β1, . . . , βn) = k[α1, . . . , αm, β1, . . . , βn]

Proof: From the previous proposition, there do exist the αi and βj expressing K and L as k with finitely
many elements adjoined as in the statement of the proposition. Recall that these mean that

K = intersection of subfields of E containing k and all αi

L = intersection of subfields of E containing k and all βi

[142] The converse is not true. That is, some fields k admit extensions K with the property that every element in K is

algebraic over k, but K is infinite-dimensional over k. The rational numbers Q can be proven to have this property,

as do the p-adic numbers Qp discussed later. It is not completely trivial to prove this.

[143] A more elegant argument is to map k[x] to K by x −→ α, and note that the kernel must be non-zero, since

otherwise the image would be infinite-dimensional over k.

[144] Potentially disorienting and quite substantial.

[145] As with many of these constructions, the notion of compositum does not make sense, or at least is not well-defined,

unless the two fields lie in a common larger field.
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On one hand, K · L contains all the αi and βj . On the other hand, since these elements are algebraic over
k, we do have

k(α1, . . . , αm, β1, . . . , βn) = k[α1, . . . , αm, β1, . . . , βn]

The left-hand side is a field, by definition, namely the smallest subfield [146] of E containing all the αi and
βj . Thus, it contains K, and contains L. Thus, we have equality. ///

6.4.6 Proposition: Let k ⊂ E be fields, and K,L fields between k and E. Let α ∈ L be algebraic over
k. Then

[k(α) : k] ≥ [K(α) : K]

Proof: Since α is algebraic over k, k(α) = k[α], and the degree [k(α) : k] is the degree of the minimal
polynomial of α over k. This degree cannot increase when we replace k by the larger field K, and we obtain
the indicated inequality. ///

6.4.7 Proposition: Let k be a field, K a field algebraic over k, and L a field containing K. Let β ∈ L
be algebraic over K. Then β is algebraic over k.

Proof: Let M(x) be the monic irreducible in K[x] which is the minimal polynomial for β over K. Let
{α0, . . . , αn−1} be the finite set (inside K) of coefficients of M(x). Each field k(αi) is of finite degree over
k, so by the previous proposition their compositum k(α1, . . . , αn) is finite over k. The polynomial M(x) is
in k(α1, . . . , αn)[x], so β is algebraic over k(α1, . . . , αn). From above, the degree of k(α1, . . . , αn)(β) over k
is the product

[k(α1, . . . , αn)(β) : k] = [k(α1, . . . , αn)(β) : k(α1, . . . , αn)] · [k(α1, . . . , αn) : k] <∞

Thus, k(α1, . . . , αn)(β) is finite over k, and in particular β is algebraic over k.

///

6.4.8 Corollary: Let k ⊂ K ⊂ L be fields, with K algebraic over k and L algebraic over K. Then L is
algebraic over k.

Proof: This is an element-wise assertion, and for each β in L the previous proposition proves the algebraicity.
///

6.4.9 Remark: An arrangement of fields of the form k ⊂ K ⊂ L is sometimes called a tower of fields,
with a corresponding picture

L
|
K
|
k

[146] This discussion would appear to depend perhaps too much upon the larger ambient field E. In one sense, this is

true, in that some larger ambient field is necessary. On the other hand, if K and L are both contained in a smaller

subfield E′ of E, we can replace E by E′ for this discussion. One may reflect upon the degree to which the outcome

genuinely depends upon any difference between E′ and E, and how to avoid this concern.
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The situation that K and L are intermediate fields between k and E, with compositum KL, is depicted as

E
|

KL
/ \
K L
\ /
k

6.5 Algebraic closures

A field K is algebraically closed if every non-constant polynomial f(x) ∈ k[x] has at least one root α ∈ k,
that is,

f(α) = 0

Upon division, this algebraic closure property implies that any polynomial in K[x] factors into linear factors
in K[x].

Given a field k, a larger field K which is algebraically closed [147] and such that every element of K is
algebraic over k, is an algebraic closure of k. [148]

6.5.1 Theorem: Any field k has an algebraic closure k, unique up to isomorphism. Any algebraic field
extension E of k has at least one injection to k (which restricts to the identity on k).

Proof: (Artin) Let S be the set of monic irreducibles in k[x], for each s ∈ S let xs be an indeterminate,
and consider the polynomial ring

R = k[. . . , xs, . . .] (s ∈ S)

in S-many variables. [149] We claim that there is at least one maximal proper ideal M in R containing
every f(xf ) for f ∈ S. First, one must be sure that the ideal F generated by all f(xf ) is proper in R. If F
were not proper, there would be elements ri ∈ R and irreducibles fi such that (a finite sum)

n∑
i=1

ri fi(xfi) = 1

Make a finite field extension E of k such that all the finitely-many fi have roots αi in E, inductively, as
follows. First, let k1 = k[x]/〈f1〉. Then let F2 be an irreducible factor of f2 in k1, and let k2 = k1[x]/〈F2〉.

[147] Note that not only polynomials with coefficients in k must have roots in K, but polynomials with coefficients

in K. Thus, one can perhaps imagine a different universe in which one makes a large enough field K such that all

polynomials with coefficients in k have roots, but polynomials with coefficients in K need a larger field for their roots.

That this does not happen, and that the process of constructing algebraic closures terminates, is the content of the

theorem below.

[148] The second requirement is desirable, since we do not want to have algebraic closures be needlessly large. That is,

an algebraic closure of k should not contain elements transcendental over k.

[149] This ostentatiously extravagant construction would not have been taken seriously prior to Bourbaki’s influence

on mathematics. It turns out that once one sacrifices a little finiteness, one may as well fill things out symmetrically

and accept a lot of non-finiteness. Such extravagance will reappear in our modern treatment of tensor products, for

example.



Garrett: Abstract Algebra 97

And so on, obtaining E = kn. Using the universal mapping property of polynomial rings, we can send xfi
to αi ∈ E, thus sending fi(xfi) to 0. [150] Then the relation becomes

0 = 1

Thus, there is no such relation, and the ideal F is proper.

Next, we claim that F lies in a maximal proper ideal M in R. This needs an equivalent of the Axiom of
Choice, such as Hausdorff Maximality or Zorn’s Lemma. In particular, among all chains of proper ideals
containing F

F ⊂ . . . ⊂ I ⊂ . . .
there exists a maximal chain. [151] The union of an ascending chain of proper ideals cannot contain 1, or
else one of the ideals in the chain would contain 1, and would not be proper. Thus, the union of the ideals in
a maximal chain is still proper. If it were not a maximal proper ideal then there would be a further (proper)
ideal that could be added to the chain, contrary to assumption. Thus, we have a maximal ideal M in R.
Thus, K = R/M is a field.

By construction, for monic irreducible (non-constant) f the equation f(Y ) = 0 has a root in K, namely the
image of xf under the quotient map, since f(xf ) ∈M for all irreducibles f . This proves that all non-constant
polynomials in k[x] have roots in K.

Now we prove that every element in k is algebraic over k. Let αf be the image of xf in kbar. Since
αf is a zero of f it is algebraic over k. An element β of k is a polynomial in finitely-many of the αf s, say
αf1 , . . . , αfn. That is, β ∈ k[α1, . . . , αn], which is a field since each αi is algebraic over k. Since (for example)
the compositum (inside k) of the algebraic extensions k(αfi) = k[αfi ] is algebraic, β is algebraic over k.

Next, we prove that non-constant F (x) ∈ k[x] has a zero in k (hence, it has all zeros in k). The coefficients
of F involve some finite list αf1 , . . . , αfn out of all αf , and F (x) has a zero in k(αf1 , . . . , αfn)[x]/〈F 〉. Thus,
since β is algebraic over an algebraic extension of k, it is algebraic over k, and, thus, is a root of a polynomial
in k[x].

Now consider an algebraic extension E of k, and show that it admits an imbedding into k. First, if α ∈ E,
let f be the minimal polynomial of α over k, and let β be a zero of f in k. Map k[x] −→ k by sending
x −→ β. The kernel is exactly the ideal generated by f , so (by an isomorphism theorem) the homomorphism
k[x] −→ k descends to an injection k[α] −→ k. This argument can be repeated to extend the inclusion k ⊂ k
to any extension E = k(α1, . . . , αn) with αi algebraic over k. We use an equivalent of the Axiom of Choice
to complete the argument: consider the collection of ascending chains of fields Ei (containing k) inside E
admitting families of injections ψi : Ei −→ k with the compatibility condition that

ψj |Ei | = ψi for Ei ⊂ Ej

We can conclude that there is a maximal chain. Let E′ be the union of the fields in this maximal chain.
The field E′ imbeds in k by ψi on Ei, and the compatibility condition assures us that this is well-defined.
We claim that E′ = E. Indeed, if not, there is α ∈ E that is not in E′. But then the first argument shows
that E′(α) does admit an imbedding to k extending the given one of E′, contradiction. Thus, E′ = E and
we have, in fact, imbedded the whole algebraic extension E to k.

Last, we prove that any other algebraic closure K of k is isomorphic to k. [152] Indeed, since K and k
are algebraic over k, we have at least one injection K −→ k, and at least one injection k −→ K, but there

[150] No, we have no idea what happens to the ri, but we don’t care.

[151] Maximal in the sense that there is no other proper ideal J containing F that either contains or is contained in

every element of the (maximal) chain.

[152] Note that we do not claim uniqueness of the isomorphism. Indeed, typically there are many different maps of a

given algebraic closure k to itself that fix the underlying field k.
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is no reason to think that our capricious construction assures that these are mutual inverses. A different
mechanism comes into play. Consider K imbedded into k. Our claim is that K is necessarily all of k. Indeed,
any element of k is algebraic over k, so is the zero of a polynomial f in k[x], say of degree n, which has all
n roots in the subfield K of k because K is algebraically closed. That is, every element of the overfield k is
actually in the subfield K, so the two are equal. ///

Exercises

6.1 Let γ be a root of the equation x2 +
√

5x +
√

2 = 0 in an algebraic closure of Q. Find an equation
with rational coefficients having root γ.

6.2 Let γ be a root of the equation x2 +
√

5x + 3
√

2 = 0 in an algebraic closure of Q. Find an equation
with rational coefficients having root γ.

6.3 Find a polynomial with rational coefficients having a root
√

2 +
√

3.

6.4 Find a polynomial with rational coefficients having a root
√

2 + 3
√

5.

6.5 Let γ be a root of x5 − x + 1 = 0 in an algebraic closure of Q. Find a polynomial with rational
coefficients of which γ +

√
2 is a root.

6.6 Show that the field obtained by adjoining
√

2, 4
√

2, 8
√

2, 16
√

2, . . ., 2n
√

2, . . ., to Q is not of finite degree
over Q.
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7. Some Irreducible Polynomials

7.1 Irreducibles over a finite field
7.2 Worked examples

Linear factors x − α of a polynomial P (x) with coefficients in a field k correspond precisely to roots α ∈ k
of the equation P (x) = 0. This follows from unique factorization in k[x]. [153] Here we also look at
some special higher-degree polynomials, over finite fields, where we useful structural interpretation of the
polynomials. [154]

Here we take for granted the existence of an algebraic closure k of a given field, as a fixed universe in which
to consider roots of polynomial equations.

7.1 Irreducibles over a finite field

7.1.1 Proposition: Let (non-constant) M(x) be an irreducible in k[x], with field k. Let I be the ideal
generated in k[x] by M(x). Let α be the image of x in the field K = k[x]/I. Then α is a root of the equation
M(x) = 0. [155]

Proof: The salient aspects of the ring structure in the quotient can be summarized by the point that the
quotient map k[x] −→ k[x]/I is a ring homomorphism, in fact, a k-algebra homomorphism. Thus, for any
polynomial f ,

f(x) + I = f(x+ I)

In particular,
M(x+ I) = M(x) + I = I = 0 + I

[153] And this unique factorization follows from the Euclidean-ness of the polynomial ring.

[154] All these are cyclotomic polynomials, that is, divisors of xn − 1 for some n. A systematic investigation of these

polynomials is best done with a little more preparation. But they do provide accessible examples immediately.

[155] This is immediate, when one looks at the proof, but deserves complete explicitness.
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which shows that x+ I is a root of the equations. ///

7.1.2 Proposition: [156] Let P (x) be a polynomial in k[x] for a field k. The equation P (x) = 0 has
a root α generating [157] a degree d extension K of k if and only if P (x) has a degree d irreducible factor
f(x) in k[x].

Proof: Let α be a root of P (x) = 0 generating a degree d extension [158] k(α) = k[α] over k. Let M(x) be
the minimal polynomial for α over k. Let

P = Q ·M +R

in k[x] with degR < degM . Then, evaluating these polynomials at α, R(α) = 0, but the minimality of the
degree of M with this property assures that R = 0. That is, M divides P .

On the other hand, for an irreducible (monic, without loss of generality) M(x) dividing P (x), the quotient
K = k[x]/〈M(x)〉 is a field containing (a canonical copy of) k, and the image α of x in that extension is a
root of M(x) = 0. Letting P = Q ·M ,

P (α) = Q(α) ·M(α) = Q(α) · 0 = 0

showing that P (x) = 0 has root α. ///

The first two examples use only the correspondence between linear factors and roots in the ground field.

7.1.3 Example: x2 + 1 is irreducible over k = Z/p for any prime p = 3 mod 4.

Indeed, if x2 + 1 had a linear factor then the equation x2 + 1 = 0 would have a root α in k. This alleged
root would have the property that α2 = −1. Thus, α 6= 1, α 6= −1, but α4 = 1. That is, the order of α in
k× is 4. But the order of (Z/p)× is p − 1. The hypothesis p = 3 mod 4 was exactly designed to deny the
existence of an element of order 4 in (Z/p)×. Thus, x2 + 1 is irreducible in such k[x].

7.1.4 Example: x2 + x+ 1 is irreducible over k = Z/p for any prime p = 2 mod 3.

If x2 + x+ 1 had a linear factor then x2 + x+ 1 = 0 would have a root α in k, and, since

x3 − 1 = (x− 1)(x2 + x+ 1)

α3 = 1 but α 6= 1 since 1 + 1 + 1 6= 0 in k. That is, the order of α in k× is 3. But the order of (Z/p)× is
p− 1, and the hypothesis p = 2 mod 3 exactly precludes any element of order 3 in (Z/p)×. Thus, x2 + x+ 1
is irreducible in such k[x].

7.1.5 Example: P (x) = x4 + x3 + x2 + x+ 1 is irreducible over k = Z/p for prime p 6= ±1 mod 5 and
p 6= 5. Note that

x5 − 1 = (x− 1)(x4 + x3 + x2 + x+ 1)

Thus, any root of P (x) = 0 has order [159] 5 or 1 (in whatever field it lies). The only element of order 1
is the identity element 1. If P (x) had a linear factor in k[x], then P (x) = 0 would have a root in k. Since

[156] This assertion should not be surprising, when one looks at the technique of the proof, which is nearly identical

to the proof that linear factors correspond to roots in the base field.

[157] As earlier, the field extension k(α) generated by α makes sense only inside a fixed larger field. Throughout the

present discussion we fix an algebraic closure of any ground field k and consider extensions inside that algebraic

closure.

[158] Since the degree of the extension is finite, it is equal to polynomials in α over k, as we saw earlier.

[159] By Lagrange.
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1 + 1 + 1 + 1 + 1 6= 0 in k, 1 is not a root, so any possible root must have order 5. [160] But the order of
k× = (Z/p)× is p− 1, which is not divisible by 5, so there is no root in the base field k.

If P (x) had an irreducible quadratic factor q(x) in k[x], then P (x) = 0 would have a root in a quadratic
extension K of k. Since [K : k] = 2, the field K has p2 elements, and

K× = p2 − 1 = (p− 1)(p+ 1)

By Lagrange, the order of any element of K× is a divisor of p2 − 1, but 5 does not divide p2 − 1, so there is
no element in K of order 5. That is, there is no quadratic irreducible factor.

By additivity of degrees in products, lack of factors up to half the degree of a polynomial assures that the
polynomial is irreducible. Thus, since the quartic x4 + x3 + x2 + x+ 1 has no linear or quadratic factors, it
is irreducible.

7.1.6 Example: P (x) = x6 +x5 +x4 +x3 +x2 +x+ 1 is irreducible over k = Z/p for prime p = 3 mod 7
or p = 5 mod 7.

Note that
x7 − 1 = (x− 1)(x6 + x5 + x4 + x3 + x2 + x+ 1)

Thus, any root of P (x) = 0 has order 7 or 1 (in whatever field it lies). The only element of order 1 is
the identity element 1. If P (x) had a linear factor in k[x], then P (x) = 0 would have a root in k. Since
1 + 1 + 1 + 1 + 1 + 1 + 1 6= 0 in k, 1 is not a root, so any possible root must have order 7. But the order of
k× = (Z/p)× is p− 1, which is not divisible by 7, so there is no root in the base field k.

If P (x) had an irreducible quadratic factor q(x) in k[x], then P (x) = 0 would have a root in a quadratic
extension K of k. Since [K : k] = 2, the field K has p2 elements, and

|K×| = p2 − 1 = (p− 1)(p+ 1)

By Lagrange, the order of any element of K× is a divisor of p2−1, but 7 divides neither 32−1 = 8 = 1 mod 7
nor 52 − 1 = 24 = 3 mod 7, so there is no element in K of order 7. That is, there is no quadratic irreducible
factor.

If P (x) had an irreducible cubic factor q(x) in k[x], then P (x) = 0 would have a root in a cubic extension K
of k. Since [K : k] = 3, the field K has p3 elements, and

|K×| = p3 − 1

By Lagrange, the order of any element of K× is a divisor of p3−1, but 7 divides neither 33−1 = 26 = 5 mod 7
nor 53 − 1 = −8 = −1 mod 7, so there is no element in K of order 7. That is, there is no cubic irreducible
factor.

By additivity of degrees in products, lack of factors up to half the degree of a polynomial assures that the
polynomial is irreducible. Thus, since the sextic x6 + x5 + x4 + x3 + x2 + x+ 1 has no linear, quadratic, or
cubic factors, it is irreducible.

7.1.7 Example: P (x) = (x11 − 1)/(x − 1) is irreducible over k = Z/p for prime p of order 10
(multiplicatively) mod 11. That is, modulo p = 2, 6, 7, 8 mod 11 this polynomial is irreducible. [161]

[160] The only other positive divisor of 5, thinking of Lagrange.

[161] By this point, one might have guessed that the irreducibility will be assured by taking primes p such that pd 6= 1

for d < 10. The fact that there are such primes can be verified in an ad hoc fashion by simply looking for them, and

Dirichlet’s theorem on primes in arithmetic progressions assures that there are infinitely many such. The presence of

primitive roots 2, 6, 7, 8 (that is, generators for the cyclic group (Z/11)×) modulo 11 is yet another issue, when we

replace 11 by a different prime.
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Again, any root of P (x) = 0 has order 11 or 1 (in whatever field it lies). The only element of order 1 is the
identity element 1. If P (x) had a linear factor in k[x], then P (x) = 0 would have a root in k. Since 11 6= 0
in k, 1 is not a root, so any possible root must have order 11. But the order of k× = (Z/p)× is p− 1, which
is not divisible by 11, so there is no root in the base field k.

If P (x) had an irreducible degree d factor q(x) in k[x], then P (x) = 0 would have a root in a degree d
extension K of k. The field K has pd elements, so

|K×| = pd − 1

By Lagrange, the order of any element of K× is a divisor of pd − 1, but 11 divides none of p − 1, p2 − 1,
p3 − 1, p4 − 1, . . ., p9 − 1, by design.

7.2 Worked examples

7.2.1 Example: (Lagrange interpolation) Let α1, . . . , αn be distinct elements in a field k, and let
β1, . . . , βn be any elements of k. Prove that there is a unique polynomial P (x) of degree < n in k[x] such
that, for all indices i,

P (αi) = βi

Indeed, letting

Q(x) =
n∏
i=1

(x− αi)

show that

P (x) =
n∑
i=1

Q(x)
(x− αi) ·Q′(αi)

· βi

Since the αi are distinct,
Q′(αi) =

∏
j 6=i

(αi − αj) 6= 0

(One could say more about purely algebraic notions of derivative, but maybe not just now.) Evaluating
P (x) at x −→ αi,

Q(x)
(x− αj)

evaluated at x −→ αi =
{

1 (for j = i)
0 (for j = i)

Thus, all terms but the ith vanish in the sum, and the ith one, by design, gives βi. For uniqueness, suppose
R(x) were another polynomial of degree < n taking the same values at n distinct points αi as does Q(x).
Then Q−R is of degree < n and vanishes at n points. A non-zero degree ` polynomial has at most ` zeros,
so it must be that Q−R is the 0 polynomial.

7.2.2 Example: (Simple case of partial fractions) Let α1, . . . , αn be distinct elements in a field k. Let
R(x) be any polynomial in k[x] of degree < n. Show that there exist unique constants ci ∈ k such that in
the field of rational functions k(x)

R(x)
(x− α1) . . . (x− αn)

=
c1

x− α1
+ . . .+

cn
x− αn

In particular, let

Q(x) =
n∏
i=1

(x− αi)
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and show that

ci =
R(αi)
Q′(αi)

We might emphasize that the field of rational functions k(x) is most precisely the field of fractions of the
polynomial ring k[x]. Thus, in particular, equality r/s = r′/s′ is exactly equivalent to the equality rs′ = r′s
(as in elementary school). Thus, to test whether or not the indicated expression performs as claimed, we
test whether or not

R(x) =
∑
i

(
R(αi)
Q′(αi)

· Q(x)
x− αi

)
One might notice that this is the previous problem, in case βi = R(αi), so its correctness is just a special
case of that, as is the uniqueness (since degR < n).

7.2.3 Example: Show that the ideal I generated in Z[x] by x2 + 1 and 5 is not maximal.

We will show that the quotient is not a field, which implies (by the standard result proven above) that the
ideal is not maximal (proper).

First, let us make absolutely clear that the quotient of a ring R by an ideal I = Rx+Ry generated by two
elements can be expressed as a two-step quotient, namely

(R/〈x〉)/〈ȳ〉 ≈ R/(Rx+Ry)

where the 〈ȳ〉 is the principal ideal generated by the image ȳ of y in the quotient R/〈x〉. The principal ideal
generated by y in the quotient R/〈x〉 is the set of cosets

〈ȳ〉 = {(r +Rx) · (y +Rx) : r ∈ R} = {ry +Rx : r ∈ R}

noting that the multiplication of cosets in the quotient ring is not just the element-wise multiplication of the
cosets. With this explication, the natural map is

r + 〈x〉 = r + 〈x〉 −→ r + 〈x〉+ 〈y〉′ = r + (Rx+Rx)

which is visibly the same as taking the quotient in a single step.

Thus, first
Z[x]/〈5〉 ≈ (Z/5)[x]

by the map which reduces the coefficients of a polynomial modulo 5. In (Z/5)[x], the polynomial x2 + 1 does
factor, as

x2 + 1 = (x− 2)(x+ 2)

(where these 2s are in Z/5, not in Z). Thus, the quotient (Z/5)[x]/〈x2 + 1〉 has proper zero divisors x̄ − 2
and x̄ + 2, where x̄ is the image of x in the quotient. Thus, it’s not even an integral domain, much less a
field.

7.2.4 Example: Show that the ideal I generated in Z[x] by x2 + x+ 1 and 7 is not maximal.

As in the previous problem, we compute the quotient in two steps. First,

Z[x]/〈7〉 ≈ (Z/7)[x]

by the map which reduces the coefficients of a polynomial modulo 7. In (Z/7)[x], the polynomial x2 + x+ 1
does factor, as

x2 + x+ 1 = (x− 2)(x− 4)
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(where 2 and 4 are in Z/7). Thus, the quotient (Z/7)[x]/〈x2 + x + 1〉 has proper zero divisors x̄ − 2 and
x̄− 4, where x̄ is the image of x in the quotient. Thus, it’s not even an integral domain, so certainly not a
field.

Exercises

7.1 Show that x2 + x+ 1 is irreducible in F5[x], and in F29[x].

7.2 Show that x3 − a is irreducible in F7[x] unless a = 0 or ±1.

7.3 Determine how x5 + 1 factors into irreducibles in F2[x].

7.4 Exhibit an irreducible quintic in F11[x].

7.5 Show that the ideal generated by x2 − x+ 1 and 13 in Z[x] is not maximal.

7.6 Show that the ideal generated by x2 − x+ 1 and 17 in Z[x] is maximal.

7.7 Let α1, . . . , αn be distinct elements of a field k not of characteristic 2. Show that there are elements
a1, b1, . . . , an, bn in k such that

1
(x− α1)2 . . . (x− αn)2

=
a1

x− α1
+

b1
(x− α1)2

+ . . .+
an

x− αn
+

bn
(x− αn)2
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8. Cyclotomic polynomials

8.1 Multiple factors in polynomials
8.2 Cyclotomic polynomials
8.3 Examples
8.4 Finite subgroups of fields
8.5 Infinitude of primes p = 1 mod n
8.6 Worked examples

8.1 Multiple factors in polynomials

There is a simple device to detect repeated occurrence of a factor in a polynomial with coefficients in a field.

Let k be a field. For a polynomial
f(x) = cnx

n + . . .+ c1x+ c0

with coefficients ci in k, define the (algebraic) derivative [162] Df(x) of f(x) by

Df(x) = ncnx
n−1 + (n− 1)cn−1x

n−2 + . . .+ 3c3x2 + 2c2x+ c1

Better said, D is by definition a k-linear map

D : k[x] −→ k[x]

defined on the k-basis {xn} by
D(xn) = nxn−1

8.1.1 Lemma: For f, g in k[x],
D(fg) = Df · g + f ·Dg

[162] Just as in the calculus of polynomials and rational functions one is able to evaluate all limits algebraically, one

can readily prove (without reference to any limit-taking processes) that the notion of derivative given by this formula

has the usual properties.
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8.1.2 Remark: Any k-linear map T of a k-algebra R to itself, with the property that

T (rs) = T (r) · s+ r · T (s)

is a k-linear derivation on R.

Proof: Granting the k-linearity of T , to prove the derivation property of D is suffices to consider basis
elements xm, xn of k[x]. On one hand,

D(xm · xn) = Dxm+n = (m+ n)xm+n−1

On the other hand,

Df · g + f ·Dg = mxm−1 · xn + xm · nxn−1 = (m+ n)xm+n−1

yielding the product rule for monomials. ///

A field k is perfect if either the characteristic of k is 0 [163] or if, in characteristic p > 0, there is a pth root
a1/p in k for every a ∈ k. [164]

8.1.3 Proposition: Let f(x) ∈ k[x] with a field k, and P an irreducible polynomial in k[x]. If P e

divides f then P divides gcd(f,Df). If k is perfect and e − 1 6= 0 in k, there is a converse: [165] if P e−1

divides both f and Df then P e divides f .

Proof: On one hand, suppose f = P e · g with ≥ 2. By the product rule,

Df = eP e−1DP · g + P e ·Dg

is a multiple of P e−1. [166] This was the easy half.

On the other hand, for the harder half of the assertion, suppose P e−1 divides both f and Df . Write

f/P e−1 = Q · P +R

with degR < degP . Then f = QP e +RP e−1. Differentiating,

Df = DQP e + eQP e−1DP +DRP e−1 +R(e− 1)P e−2DP

By hypothesis P e−1 divides Df . All terms on the right-hand side except possibly R(e − 1)P e−2DP are
divisible by P e−1, so P divides R(e− 1)P e−2DP . Since P is irreducible, either e− 1 = 0 in k, or P divides
R, or P divides DP . If P divides R, P e divides f , and we’re done.

If P does not divide R then P divides DP . Since degDP < degP , if P divides DP then DP = 0. This
would require that all the exponents of x occurring with non-zero coefficient are divisible by the characteristic
p, which must be positive. So P is of the form

P (x) = apmx
pm + ap(m−1)x

p(m−1) + ap(m−2)x
p(m−2) + . . .+ a2px

2p + apx
p + a0

[163] as for Q, R, and C

[164] As is the case for finite fields such as Z/p, by Fermat’s Little Theorem.

[165] In particular, this converse holds if the characteristic of k is 0.

[166] This half does not need the irreducibility of P .
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Using the perfect-ness of the field k, each ai has a pth root bi in k. Because the characteristic is p > 0,

(A+B)p = Ap +Bp

Thus, P (x) is the pth power of

bpmx
n + bp(m−1)x

(m−1) + bp(m−2)x
(m−2) + . . .+ b2px

2 + bpx+ b0

If P is a pth power it is not irreducible. Therefore, for P irreducible DP is not the zero polynomial. Therefore,
R = 0, which is to say that P e divides f , as claimed. ///

8.2 Cyclotomic polynomials

For b 6= 0 in a field k, the exponent of b is the smallest positive integer n (if it exists) such that bn = 1.
That is, b is a root of xn − 1 but not of xd − 1 for any smaller d. We construct polynomials Φn(x) ∈ Z[x]
such that

Φn(b) = 0 if and only if b is of exponent n

These polynomials Φn are cyclotomic polynomials.

8.2.1 Corollary: The polynomial xn − 1 has no repeated factors in k[x] if the field k has characteristic
not dividing n.

Proof: It suffices to check that xn − 1 and its derivative nxn−1 have no common factor. Since the
characteristic of the field does not to divide n, n · 1k 6= 0 in k, so has a multiplicative inverse t in k,
and

(xn − 1)− (tx) · (nxn−1) = −1

and gcd(xn − 1, nxn−1) = 1. ///

Define the nth cyclotomic polynomial Φn(x) by

Φ1(x) = x− 1

and for n > 1, inductively,

Φn(x) =
xn − 1

lcm of all xd − 1 with 0 < d < n, d dividing n

with the least common multiple monic.

8.2.2 Theorem:
• Φn is a monic polynomial with integer coefficients. [167]

• For α in the field k, Φn(α) = 0 if and only if αn = 1 and αt 6= 1 for all 0 < t < n.
• gcd(Φm(x),Φn(x)) = 1 for m < n with neither m nor n divisible by the characteristic of the field k.
• The degree of Φn(x) is ϕ(n) (Euler’s phi-function)
• Another description of Φn(x):

Φn(x) =
xn − 1∏

1≤d<n,d|n Φd(x)

[167] More properly, if the ambient field k is of characteristic 0, then the coefficients lie in the copy of Z inside the

prime field Q inside k. If the ambient field is of positive characteristic, then the coefficients lie inside the prime field

(which is the natural image of Z in k). It would have been more elegant to consider the cyclotomic polynomials as

polynomials in Z[x], but this would have required that we wait longer.
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• xn − 1 factors as
xn − 1 =

∏
1≤d≤n,d|n

Φd(x)

Proof: We know that d|n (and d > 0) implies that xd−1 divides xn−1. Therefore, by unique factorization,
the least common multiple of a collection of things each dividing xn − 1 also divides xn − 1. Thus, the
indicated lcm does divide xn − 1.

For α in k, x − α divides Φn(x) if and only if Φn(α) = 0. And αt = 1 if and only if x − α divides xt − 1.
The definition

Φn(x) =
xn − 1

lcm of all xd − 1 with 0 < d < n, d dividing n

shows first that Φn(α) = 0 implies αn = 1. Second, if αt = 1 for any proper divisor t of n then x−α divides
xt − 1, and thus x− α divides the denominator. But xn − 1 has no repeated factors, so x− α dividing the
denominator would prevent x − α dividing Φn(x), contradiction. That is, Φn(α) = 0 if and only if α is of
order n.

To determine the gcd of Φm and Φn for neither m nor n divisible by the characteristic of k, note that Φm
divides xm − 1 and Φn divides xn − 1, so

gcd(Φm,Φn) divides gcd(xm − 1, xn − 1)

We claim that for m, n two integers (divisible by the characteristic or not)

gcd(xm − 1, xn − 1) = xgcd(m,n) − 1

Prove this claim by induction on the maximum of m and n. Reduce to the case m > n, wherein

xm − 1− xm−n · (xn − 1) = xm−n − 1

For g a polynomial dividing both xm − 1 and xn − 1, g divides xm−n − 1. By induction,

gcd(xm−n − 1, xn − 1) = xgcd(m−n,n) − 1

But
gcd(m,n) = gcd(m− n, n)

and
xm − 1 = xm−n · (xn − 1) + xm−n − 1

so
gcd(xm − 1, xn − 1) = gcd(xm−n − 1, xn − 1)

and induction works. Thus,
gcd(xm − 1, xn − 1) = xgcd(m,n) − 1

Since
d ≤ m < n

d is a proper divisor of n. Thus, from

Φn(x) =
xn − 1

lcm of all xd − 1 with 0 < d < n, d dividing n

we see that Φn(x) divides (xn − 1)/(xd − 1). Since xn − 1 has no repeated factors, Φn(x) has no factors in
common with xd − 1. Thus, gcd(Φm,Φn) = 1.
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Next, use induction to prove that
xn − 1 =

∏
1≤d≤n, d|n

Φd(x)

For n = 1 the assertion is true. From the definition of Φn,

xn − 1 = Φn(x) · lcm{xd − 1 : d|n, 0 < d < n}

By induction, for d < n

xd − 1 =
∏

0<e≤d,e|d

Φe(x)

Since for m < n the gcd of Φm and Φn is 1,

lcm{xd − 1 : d|n, 0 < d < n} =
∏

d|n,d<n

Φd(x)

Thus,
xn − 1 = Φn(x) ·

∏
d|n,d<n

Φd(x)

as claimed.

Inductively, since all lower-index cyclotomic polynomials have integer coefficients [168] and are monic, and
xn − 1 is monic with integer coefficients, the quotient of xn − 1 by the product of the lower ones is monic
with integer coefficients.

The assertion about the degree of Φn follows from the identity (see below) for Euler’s phi-function∑
d|n,d>0

ϕ(d) = n

This completes the proof of the theorem. ///

8.2.3 Proposition: Let ϕ(x) be Euler’s phi-function

ϕ(x) =
∑

1≤`≤x;gcd(`,x)=1

1

Then for m and n relatively prime

ϕ(mn) = ϕ(m) · ϕ(n) (weak multiplicativity)

For p prime and ` a positive integer
ϕ(p`) = (p− 1) · p`−1

And ∑
d|n,d>0

ϕ(d) = n

Proof: By unique factorization, for gcd(m,n) = 1,

gcd(t,mn) = gcd(t,m) · gcd(t, n)

[168] Or, more properly, coefficients in the canonical image of Z in the field k.
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so, t is prime to mn if and only if t is prime to both m and n. The gcd of m and n is the smallest positive
integer of the form rm+ sn. By Sun-Ze,

f : Z/m⊕ Z/n −→ Z/mn

by
f : (x, y) −→ rmy + snx

is a bijection, since m and n are coprime. From rm + yn = 1, rm = 1 mod n so rm is prime to n, and
sn = 1 mod m so sn is prime to m. Thus, rmy + snx has a common factor with m if and only if x does,
and rmy + snx has a common factor with n if and only if y does. Thus, f gives a bijection

{x : 1 ≤ x < m, gcd(x,m) = 1)} × {y : 1 ≤ y < n, gcd(y, n) = 1)}

−→ {z : 1 ≤ z < mn, gcd(z,mn) = 1)}

and ϕ(mn) = ϕ(m) · ϕ(n). This reduces calculation of ϕ() to calculation for prime powers pe. An integer x
in 1 ≤ x < pe is prime to pe if and only if it is not divisible by p, so there are

ϕ(pe) = pe − pe−1 = (p− 1)pe−1

such x, as claimed.

To prove ∑
d|n,d>0

ϕ(d) = n

start with n a prime power pe, in which case∑
d|pe

ϕ(d) =
∑

0≤k≤e

ϕ(pk) = 1 +
∑

1≤k≤e

(p− 1)pk−1 = 1 + (p− 1)(pe − 1)/(p− 1) = pe

Let n = pe11 . . . pett with distinct primes pi. Then

∑
d|n

ϕ(d) =
∏

i=1,...,t

∑
d|peii

ϕ(d)

 =
∏

i=1,...,t

ϕ(peii ) = ϕ(
∏
i

peii ) = ϕ(n)

This proves the desired identity for ϕ. ///

8.3 Examples

For prime p, the factorization of xp − 1 into cyclotomic polynomials is boring

Φp(x) =
xp − 1
x− 1

= xp−1 + xp−2 + . . .+ x2 + x+ 1

For n = 2p with odd prime p

Φ2p(x) =
x2p − 1

Φ1(x) Φ2(x) Φp(x)
=

x2p − 1
Φ2(x) (xp − 1)

=
xp + 1
x+ 1

= xp−1 − xp−2 + xp−3 − . . .+ x2 − x+ 1
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For n = p2 with p prime,

Φp2(x) =
xp

2 − 1
Φ1(x) Φp(x)

=
xp

2 − 1
xp − 1

= xp(p−1) + xp(p−2) + . . .+ xp + 1

Generally, one observes that for n = pe a prime power

Φpe(x) = Φp(xp
e−1

) = xp
e−1(p−1) + xp

e−1(p−2) + . . .+ x2pe−1
+ x2pe−1

+ 1

For n = 2 ·m (with odd m > 1) we claim that

\Phi2m(x) = Φm(−x)

Note that, anomalously, Φ2(−x) = −x+ 1 = −Φ1(x). Prove this by induction:

Φ2m(x) =
x2m − 1∏

d|m Φd(x) ·
∏
d|m, d<m Φ2d(x)

=
x2m − 1

(xm − 1)
∏
d|m, d<m Φd(−x)

=
xm + 1∏

d|m, d<m Φd(−x)
=

(xm + 1) Φm(−x)
((−x)m − 1) · (−1)

= Φm(−x)

by induction, where the extra −1 in the denominator was for Φ2(−x) = −Φ1(x), and (−1)m = −1 because
m is odd.

Thus,

Φ3(x) =
x3 − 1
x− 1

= x2 + x+ 1

Φ9(x) = Φ3(x3) = x6 + x3 + 1

Φ18(x) = Φ9(−x) = x6 − x3 + 1

For n = pq with distinct primes p, q some unfamiliar examples appear.

Φ15(x) =
x15 − 1

Φ1(x)Φ3(x)Φ5(x)
=

x15 − 1
Φ1(x)Φ3(x)Φ5(x)

=
x15 − 1

Φ3(x)(x5 − 1)

=
x10 + x5 + 1
x2 + x+ 1

= x8 − x7 + x5 − x4 + x3 − x+ 1

by direct division [169] at the last step. And then

Φ30(x) = Φ15(−x) = x8 + x7 − x5 − x4 − x3 + x+ 1

8.3.1 Remark: Based on a few hand calculations, one might speculate that all coefficients of all
cyclotomic polynomials are either +1, −1, or 0, but this is not true. It is true for n prime, and for n
having at most 2 distinct prime factors, but not generally. The smallest n where Φn(x) has an exotic
coefficient seems to be n = 105 = 3 · 5 · 7.

Φ105(x) =
x105 − 1

Φ1(x)Φ3(x)Φ5(x)Φ7(x)Φ15(x)Φ21(x)Φ35(x)

[169] Only mildly painful. Any lesson to be learned here?
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=
x105 − 1

Φ3(x)Φ15(x)Φ21(x)(x35 − 1)
=

x70 + x35 + 1
Φ3(x)Φ15(x)Φ21(x)

=
(x70 + x35 + 1)(x7 − 1)

Φ15(x)(x21 − 1)

=
(x70 + x35 + 1)(x7 − 1)Φ1(x)Φ3(x)Φ5(x)

(x15 − 1)(x21 − 1)

=
(x70 + x35 + 1)(x7 − 1)(x5 − 1)Φ3(x)

(x15 − 1)(x21 − 1)

Instead of direct polynomial computations, we do power series [170] computations, imagining that |x| < 1,
for example. Thus,

−1
x21 − 1

=
1

1− x21
= 1 + x21 + x42 + x63 + . . .

We anticipate that the degree of Φ105(x) is (3− 1)(5− 1)(7− 1) = 48. We also observe that the coefficients
of all cyclotomic polynomials are the same back-to-front as front-to-back (why?). Thus, we’ll use power
series in x and ignore terms of degree above 24. Thus,

Φ105(x) =
(x70 + x35 + 1)(x7 − 1)(x5 − 1)(x2 + x+ 1)

(x15 − 1)(x21 − 1)

= (1 + x+ x2)(1− x7)(1− x5)(1 + x15)(1 + x21)

= (1 + x+ x2)× (1− x5 − x7 + x12 + x15 − x20 + x21 − x22)

= 1 + x+ x2 − x5 − x6 − x7 − x7 − x8 − x9 + x12 + x13 + x14 + x15 + x16 + x17

−x20 − x21 − x22 + x21 + x22 + x23 − x22 − x23 − x24

= 1 + x+ x2 − x5 − x6 − 2x7 − x8 − x9 + x12 + x13 + x14

+x15 + x16 + x17 − x20 − x22 − x24

Looking closely, we have a −2x7.

Less well known are Lucas-Aurifeullian-LeLasseur factorizations such as

x4 + 4 = (x4 + 4x2 + 4)− (2x)2 = (x2 + 2x+ 2)(x2 − 2x+ 2)

More exotic are
x6 + 27
x2 + 3

= (x2 + 3x+ 3)(x2 − 3x+ 3)

x10 − 55

x2 − 5
= (x4 + 5x3 + 15x2 + 25x+ 25)× (x4 − 5x3 + 15x2 − 25x+ 25)

and
x12 + 66

x4 + 36
= (x4 + 6x3 + 18x+ 36x+ 36)× (x4 − 6x3 + 18x− 36x+ 36)

and further
x14 + 77

x2 + 7
= (x6 + 7x5 + 21x4 + 49x3 + 147x2 + 343x+ 343)

× (x6 − 7x5 + 21x4 − 49x3 + 147x2 − 343x+ 343)

[170] In fact, one is not obliged to worry about convergence, since one can do computations in a formal power series ring.

Just as polynomials can be precisely defined by their finite sequences of coefficients, with the obvious addition and

multiplication mirroring our intent, formal power series are not-necessarily-finite sequences with the same addition

and multiplication, noting that the multiplication does not require any infinite sums. The formal adjective here

merely indicates that convergence is irrelevant.
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The possibility and nature of these factorizations are best explained by Galois theory.

8.4 Finite subgroups of fields

Now we can prove that the multiplicative group k× of a finite field k is a cyclic group. When k is finite, a
generator of k× is a primitive root for k.

8.4.1 Theorem: Let G be a finite subgroup of k× for a field k. Then G is cyclic.

8.4.2 Corollary: For a finite field k, the multiplicative group k× is cyclic. ///

Proof: Let n be the order of G. Then [171] any element of G is a root of the polynomial f(x) = xn − 1.
We know that a polynomial with coefficients in a field k has at most as many roots (in k) as its degree, so
this polynomial has at most n roots in k. Therefore, it has exactly n roots in k, namely the elements of the
subgroup G.

The characteristic p of k cannot divide n, since if it did then the derivative of f(x) = xn − 1 would be zero,
and gcd(f, f ′) = f and f would have multiple roots. Thus,

xn − 1 =
∏
d|n

Φd(x)

Since xn − 1 has n roots in k, and since the Φd’s here are relatively prime to each other, each Φd with d|n
must have a number of roots (in k) equal to its degree. Thus, Φd for d|q− 1 has ϕ(d) > 0 roots in k (Euler’s
phi-function).

The roots of Φn(x) are b ∈ k× such that bn = 1 and no smaller positive power than n has this property.

Any root of Φn(x) = 0 in k× would be a generator of the (therefore cyclic) group G. The cyclotomic
polynomial Φn has ϕ(n) > 0 zeros, so G has a generator, and is cyclic. ///

8.5 Infinitude of primes p = 1 mod n

This is a very special case of Dirichlet’s theorem that, given a modulus n and a fixed integer a relatively
prime to n, there are infinitely-many primes p = a mod n. We only treat the case a = 1.

8.5.1 Corollary: Fix 1 < n ∈ Z. There are infinitely many primes p = 1 mod n.

Proof: Recall that the nth cyclotomic polynomial Φn(x) is monic (by definition), has integer coefficients,
and has constant coefficient ±1. [172] And Φn(x) is not constant. Suppose there were only finitely-many
primes p1, . . . , pt equal to 1 mod n. Then for large-enough positive integer `,

N = Φn(` · np1 . . . pt) > 1

and N is an integer. Since Φn(x) has integer coefficients and has constant term ±1, for each pi we have
N = ±1 mod pi, so in particular no pi divides N . But since N > 1 it does have some prime factor p. Further,
since the constant term is ±1, N = ±1 mod n, so p is relatively prime to n. Then

Φn(` · np1 . . . pt) = N = 0 mod p

[171] Lagrange, again.

[172] The assertion about the constant coefficient follows from the fact that Φn(x) is monic, together with the fact that

Φ(x−1) = ±Φ(x), which is readily proven by induction.
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Thus, ` · np1 . . . pt has order n in F×p . By Lagrange, n divides |F×p | = p− 1, so p = 1 mod n. Contradiction
to the finiteness assumption, [173] so there are infinitely-many primes p = 1 mod n. ///

8.6 Worked examples

8.6.1 Example: Gracefully verify that the octic x8 +x7 +x6 +x5 +x4 +x3 +x2 +x+ 1 factors properly
in Q[x].

This octic is
x9 − 1
x− 1

=
x3 − 1)(x6 + x3 + 1)

x− 1
= (x2 + x+ 1) (x6 + x3 + 1)

for example. We might anticipate this reducibility by realizing that

x9 − 1 = Φ1(x) Φ3(x) Φ9(x)

where Φn is the nth cyclotomic polynomial, and the given octic is just (x9−1)/Φ1(x), so what is left at least
factors as Φ3(x) Φ9(x).

8.6.2 Example: Gracefully verify that the quartic x4 + x3 + x2 + x+ 1 is irreducible in F2[x].

Use the recursive definition of cyclotomic polynomials

Φn(x) =
xn − 1∏

d|n, d<n Φd(x)

Thus, the given quartic is Φ5(x). And use the fact that for the characteristic of the field k not dividing n,
Φn(α) = 0 if and only if α is of order n in k×. If it had a linear factor x− α with α ∈ F2, then Φ4(α) = 0,
and α would be of order 5 in F×2 . But F×2 is of order 1, so has no elements of order 5 (by Lagrange). (We
saw earlier that) existence of an irreducible quadratic factor of Φ4(x) in F2[x] is equivalent to existence of
an element α of order 5 in F×22 , but |F×22 | = 22 − 1 = 3, which is not divisible by 5, so (Lagrange) has no
element of order 5. The same sort of argument would show that there is no irreducible cubic factor, but we
already know this since if there were any proper factorization then there would be a proper factor of at most
half the degree of the quartic. But there is no linear or quadratic factor, so the quartic is irreducible.

8.6.3 Example: Gracefully verify that the sextic x6 + x5 + x4 + x3 + x2 + x+ 1 is irreducible in F3[x].

Use the recursive definition of cyclotomic polynomials

Φn(x) =
xn − 1∏

d|n, d<n Φd(x)

Thus, the given sextic is Φ7(x). And use the fact that for the characteristic of the field k not dividing n,
Φn(α) = 0 if and only if α is of order n in k×. If it had a linear factor x− α with α ∈ F3, then Φ7(α) = 0,
and α would be of order 7 in F×2 . But F×3 is of order 2, so has no elements of order 7 (Lagrange). Existence
of an (irreducible) quadratic factor of Φ7(x) in F3[x] is equivalent to existence of an element α of order 7 in
F×32 , but |F×32 | = 32 − 1 = 8, which is not divisible by 7, so (Lagrange) has no element of order 5. Similarly,
if there were an (irreducible) cubic factor, then there would be a root in a cubic extension F33 of F3, but
F×33 has order 33 − 1 = 26 which is not divisible by 7, so there is no such element. If there were any proper

[173] Mildly ironic that we have a contradiction, considering that we seem to have just succeeded in proving that there

is one more prime of the type that we want. Perhaps this suggests that it is needlessly inefficient to couch this

argument as proof by contradiction.
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factorization then there would be a proper factor of at most half the degree of the sextic. But there is no
linear, quadratic, or cubic factor, so the sextic is irreducible.

8.6.4 Example: Gracefully verify that the quartic x4 + x3 + x2 + x + 1 in factors into two irreducible
quadratics in F19[x].

As above, we see that the quartic is the 5th cyclotomic polynomial. If it had a linear factor in F19[x] then
(since the characteristic 19 does not divide the index 5) there would be an element of order 5 in F×19, but the
latter group has order 19− 1 not divisible by 5, so (Lagrange) there is no such element. But the quadratic
extension F192 of F19 has multiplicative group with order 192 − 1 = 360 which is divisible by 5, so there is
an element α of order 5 there.

Since α ∈ F192 −F19, the minimal polynomial M(x) of α over F19 is quadratic. We have shown that in this
circumstance the polynomial M divides the quartic. (Again, the proof is as follows: Let

x4 + x3 + x2 + x+ 1 = Q(x) ·M(x) +R(x)

with Q,R ∈ F19[x] and degR < degM . Evaluating at α gives R(α) = 0, which (by minimality of M) implies
R is the 0 polynomial. Thus, M divides the quartic.) The quotient of the quartic by M is quadratic, and
(as we’ve already seen) has no linear factor in F19[x], so is irreducible.

8.6.5 Example: Let f(x) = x6 − x3 + 1. Find primes p with each of the following behaviors: f is
irreducible in Fp[x], f factors into irreducible quadratic factors in Fp[x], f factors into irreducible cubic
factors in Fp[x], f factors into linear factors in Fp[x].

By the recursive definition and properties of cyclotomic polynomials, we recognize f(x) as the 18th cyclotomic
polynomial Φ18(x). For a prime p not dividing 18, zeros of Φ18 are exactly elements of order 18. Thus, if
pd − 1 = 0 mod 18 but no smaller exponent than d achieves this effect, then F×

pd
(proven cyclic by now) has

an element of order 18, whose minimal polynomial divides Φ18(x).

We might observe that (Z/18)× is itself cyclic, of order ϕ(18) = ϕ(2)ϕ(32) = (3− 1)3 = 6, so has elements
of all possible orders, namely 1, 2, 3, 6.

For p = 1 mod 18, for example p = 19, already p− 1 = 0 mod 18, so f(x) has a linear factor in F19[x]. This
is the case of order 1 element in (Z/18)×.

A moment’s thought might allow a person to realize that 17 = −1 is an element (and the only element) of
order 2 in (Z/18)×. So any prime p = 17 mod 18 (for example p = 17 itself, by coincidence prime) will have
the property that F×p2 has elements of order 18. Indeed, by properties of cyclic groups, it will have ϕ(18) = 6
elements of order 18 there, each of whose minimal polynomial is quadratic. Thus (since a quadratic has at
most two zeros) there are at least 3 irreducible quadratics dividing the sextic Φ18(x) in Fp[x]. Thus, since
degrees add in products, these three quadratics are all the factors of the sextic.

After a bit of trial and error, one will find an element of order 3 in (Z/18)×, such as 7. Thus, for p = 7 mod 18
(such as 7 itself, which by coincidence is prime), there is no element of order 18 in Fp or in Fp2 , but there is
one in Fp3 , whose minimal polynomial over Fp is therefore cubic and divides Φ18. Again, by properties of
cyclic groups, there are exactly ϕ(18) = 6 such elements in Fp3 , with cubic minimal polynomials, so there
are at least (and, thus, exactly) two different irreducible cubics in Fp[x] dividing Φ18(x) for such p.

After a bit more trial and error, one finds an element of order 6 in (Z/18)×, such as 5. (The other is 11.)
Thus, for p = 5 mod 18 (such as 5 itself, which by coincidence is prime), there is no element of order 18 in
Fp or in Fp2 , or Fp3 , but there is one in Fp6 . (By Lagrange, the only possible orders of p in (Z/18)× are
1, 2, 3, 6, so we need not worry about p4 or p5). The minimal polynomial of such an element is Φ18(x), which
is (thus, necessarily) irreducible in Fp[x].

8.6.6 Example: Explain why x4 + 1 properly factors in Fp[x] for any prime p.

As in the previous problems, we observe that x4 + 1 is the 8th cyclotomic polynomial. If p|8, namely p = 2,
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then this factors as (x − 1)4. For odd p, if p = 1 mod 8 then F×p , which we now know to be cyclic, has an
element of order 8, so x4 + 1 has a linear factor. If p 6= 1 mod 8, write p = 2m+ 1, and note that

p2 − 1 = (2m+ 1)2 − 1 = 4m2 + 4m = m(m+ 1) · 4

so, if m is odd, m+ 1 is even and p2− 1 = 0 mod 8, and if m is even, the same conclusion holds. That is, for
odd p, p2− 1 is invariably divisible by 8. That is, (using the cyclicness of any finite field) there is an element
of order 8 in Fp2 . The minimal polynomial of this element, which is quadratic, divides x4 + 1 (as proven in
class, with argument recalled above in another example).

8.6.7 Example: Explain why x8 − x7 + x5 − x4 + x3 − x+ 1 properly factors in Fp[x] for any prime p.
(Hint: It factors either into linear factors, irreducible quadratics, or irreducible quartics.)

The well-read person will recognize this octic as Φ15(x), the fifteenth cyclotomic polynomial. For a prime
p not dividing 15, zeros of Φ15 in a field Fpd are elements of order 15, which happens if and only if
pd − 1 = 0 mod 15, since we have shown that F×

pd
is cyclic. The smallest d such that pd = 1 mod 15 is the

order of p in (Z/15)×. After some experimentation, one may realize that (Z/15)× is not cyclic. In particular,
every element is of order 1, 2, or 4. (How to see this?) Granting this, for any p other than 3 or 5, the minimal
polynomial of an order 15 element is linear, quadratic, or quartic, and divides Φ15.

For p = 3, there is some degeneration, namely x3 − 1 = (x− 1)3. Thus, in the (universal) expression

Φ15(x) =
x15 − 1

Φ1(x) Φ3(x) Φ5(x)

we actually have

Φ15(x) =
(x5 − 1)3

(x− 1)2 (x5 − 1)
=

(x5 − 1)2

(x− 1)2
= (x4 + x3 + x2 + 1)2

For p = 5, similarly, x5 − 1 = (x− 1)5, and

Φ15(x) =
x15 − 1

Φ1(x) Φ3(x) Φ5(x)
=

(x3 − 1)5

(x3 − 1) (x− 1)4
=

(x3 − 1)4

(x− 1)4
= (x2 + x+ 1)4

8.6.8 Example: Why is x4 − 2 irreducible in F5[x]?

A zero of this polynomial would be a fourth root of 2. In F×5 , one verifies by brute force that 2 is of order
4, so is a generator for that (cyclic) group, so is not a square in F×5 , much less a fourth power. Thus, there
is no linear factor of x4 − 2 in F5[x].

The group F×52 is cyclic of order 24. If 2 were a fourth power in F52 , then 2 = α4, and 24 = 1 gives α16 = 1.
Also, α24 = 1 (Lagrange). Claim that α8 = 1: let r, s ∈ Z be such that r · 16 + s · 24 = 8, since 8 is the
greatest common divisor. Then

α8 = α16r+24s = (α16)r · (α24)s = 1

This would imply
22 = (α4)2 = α8 = 1

which is false. Thus, 2 is not a fourth power in F52 , so the polynomial x4 − 2 has no quadratic factors.

A quartic with no linear or quadratic factors is irreducible (since any proper factorization of a polynomial
P must involve a factor of degree at most half the degree of P ). Thus, x4 − 2 is irreducible in F5[x].
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8.6.9 Example: Why is x5 − 2 irreducible in F11[x]?

As usual, to prove irreducibility of a quintic it suffices to show that there are no linear or quadratic factors.
To show the latter it suffices to show that there is no zero in the underlying field (for linear factors) or in a
quadratic extension (for irreducible quadratic factors).

First determine the order of 2 in F11: since |F×11| = 10, it is either 1, 2, 5, or 10. Since 2 6= 1 mod 11, and
22 − 1 = 3 6= 0 mod 11, and 25 − 1 = 31 6= 0 mod 11, the order is 10. Thus, in F11 it cannot be that 2 is a
fifth power.

The order of F×112 is 112 − 1 = 120. If there were a fifth root α of 2 there, then α5 = 2 and 210 = 1 imply
α50 = 1. Also, (Lagrange) α120 = 1. Thus, (as in the previous problem) α has order dividing the gcd of 50
and 120, namely 10. Thus, if there were such α, then

22 = (α5)2 = α10 = 1

But 22 6= 1, so there is no such α.

Exercises

8.1 Determine the coefficients of the 12th cyclotomic polynomial.

8.2 Gracefully verify that (x15 − 1)/(x5 − 1) factors properly in Q[x].

8.3 Find a prime p such that the 35th cyclotomic polynomial has an irreducible 12th-degree factor in Fp[x].

8.4 Determine the factorization into irreducibles of (x7 − 1)/(x− 1) in F2[x].

8.5 Explain why the 12th cyclotomic polynomial factors properly in Fp[x] for any prime p.

8.6 Explain why the thirty-fifth cyclotomic polynomial factors properly in Fp[x] for any prime p.

8.7 Show that a finite field extension of Q contains only finitely-many roots of unity.

8.8 Let p be a prime and n ≥ 1. Let ϕm be the mth cyclotomic polynomial. Show that

ϕpn(x) =


ϕn(xp) (for p|n)

ϕn(xp)
ϕn(x) (otherwise)

8.9 Let n = 2a pb qc for primes p, q. Show that the coefficients of the cyclotomic polynomial ϕn are in the
set {−1, 0, 1}.

8.10 Suppose n is divisible by p2 for some prime p. Show that the sum of the primitive nth roots of unity
is 0.



118 Cyclotomic polynomials



Garrett: Abstract Algebra 119

9. Finite fields

9.1 Uniqueness
9.2 Frobenius automorphisms
9.3 Counting irreducibles

9.1 Uniqueness

Among other things, the following result justifies speaking of the field with pn elements (for prime p and
integer n), since, we prove, these parameters completely determine the isomorphism class.

9.1.1 Theorem: Given a prime p and an integer n, there is exactly one (up to isomorphism) finite field
Fpn with pn elements. Inside a fixed algebraic closure of Fp, the field Fpm lies inside Fpn if and only if m|n.
In particular, Fpn is the set of solutions of

xp
n

− x = 0

inside an algebraic closure of Fp.

Proof: Let E be an algebraic closure of Fp. Let F (x) = xp
n − x in Fp[x]. The algebraic derivative of F

is −1, so gcd(F, F ′) = 1, and F has no repeated factors. Let K = Fp(α1, . . . , αpn) be the subfield of E
generated over Fp by the roots of F (x) = 0, which we know are exactly the pn distinct αis occuring as linear
factors x− αi in F (x). [174]

Perhaps unsurprisingly, we claim that K is exactly the set of all the roots of F (x) = 0. Naturally we use the
fact [175] that binomial coefficients

(
p
i

)
are 0 in characteristic p, for 0 < i < p. Thus,

(α+ β)p
n

= (. . . ((α+ β)p)p . . .)p = αp
n

+ βp
n

In particular, if αp
n

= α and βp
n

= β, then α+ β has the same property. And even more obviously

(α · β)p
n

= αp
n

· βp
n

= α · β

[174] Later we would say that K is a splitting field for F since F factors into linear factors in K.

[175] As in the most pedestrian proof of Fermat’s Little Theorem.
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Additive inverses of roots of F (x) = 0 are present in the collection of roots, because α + β = 0 implies
αp

n

+βp
n

= 0. Far more simply, certainly non-zero roots have multiplicative inverses among the roots. And
0 is among the roots. Finally, because αp = α for α ∈ Fp, certainly Fp is a subset of the set of roots.

In summary, the smallest subfield K (of some algebraic closure E of Fp) containing the roots of xp
n −x = 0

is exactly the set of all roots, and K contains Fp. Thus, K has exactly pn elements. This proves existence
of a field with pn elements.

For uniqueness (up to isomorphism) of a field with pn elements, it suffices to prove that inside a given
algebraic closure E of Fp there is exactly one such field, since [176] any algebraic extension L of Fp can be
mapped injectively to E (by an injection that is the identity on Fp). For L of degree n over Fp, necessarily
L× is of order pn − 1. That is, the non-zero elements of L× all satisfy xp

n−1 − 1 = 0. [177] Thus, adding a
factor of x, all elements of L are roots of xp

n − x = 0. Thus, with L sitting inside the fixed algebraic closure
E of Fp, since a degree pn equation has at most pn roots in E, the elements of L must be just the field K
constructed earlier. [178] This proves uniqueness (up to isomorphism). [179]

Inside a fixed algebraic closure of Fp, if Fpm ⊂ Fpn then the larger field is a vector space over the smaller.
Given a basis e1, . . . , et, every element of the larger field is uniquely expressible as

∑
i ciei with ci in the

smaller field, so there are (pm)t elements in the larger field. That is, n = mt, so m|n. Conversely, if m|n,
then the roots of xp

m−1 − 1 = 0 are among those of xp
n−1 − 1 = 0. We have identified F×pm as the set of

roots of xp
m−1 − 1 = 0 inside a fixed algebraic closure, and similarly for F×pn , so Fpm ⊂ Fpn . ///

9.2 Frobenius automorphisms

Let q be a power of a prime p, and let E be an algebraic closure of Fq. [180] For α ∈ E, the Frobenius
automorphism (depending on q) is

F (α) = αq

9.2.1 Proposition: For fixed prime power q and algebraic closure E of finite field Fq, the Frobenius
map F : α −→ αq is the identity map on Fq, and stabilizes any overfield K of Fq inside E. Further, if β ∈ E
has the property that Fβ = β, then β ∈ Fq. Generally, the fixed points of α −→ αq

n

make up the field Fqn
inside E.

Proof: Certainly F (αβ) = F (α)F (β). Since the characteristic is P , also (α + β)p = αp + βp, and F truly
is a field homomorphism of E to itself.

Since any subfield K of E is stable under taking powers, certainly F maps K to itself.

By now we know that F×qn is cyclic, and consists exactly of the roots of xq
n−1 − 1 = 0 in E. That is, Fqn is

exactly the roots of xq
n − x = 0. That is, the fixed points of Fn are exactly Fqn , as claimed. ///

[176] By part of the main theorem on algebraic closures.

[177] By Lagrange. In fact, we know that the multiplicative group is cyclic, but this is not used.

[178] For non-finite fields, we will not be able to so simply or completely identify all the extensions of the prime field.

[179] Note that we do not at all assert any uniqueness of the isomorphism between any two such fields. To the contrary,

there will be several different isomorphisms. This is clarified just below, in discussion of the Frobenius automorphisms.

[180] We take the liberty of considering not only Fp but any finite field Fq to be at the bottom of whatever towers of

fields we consider. This is a simple case of Galois theory, which studies automorphisms of general fields.
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9.2.2 Proposition: Let f(x) be a polynomial with coefficients in Fq. Let α ∈ K be a root (in a fixed
algebraic closure E of Fq) of the equation f(x) = 0. Then F (α) = αq, F 2(α) = F (F (α)) = αq

2
, . . . are also

roots of the equation.

Proof: Let f have coefficients

f(x) = cnx
n + cn−1x

n−1 + . . .+ c2x
2 + c1x+ c0

with all the ci’s in Fq. Apply the Frobenius map to both sides of the equation

0 = cnα
n + cn−1α

n−1 + . . .+ c2α
2 + c1α+ c0

to obtain

F (0) = F (cn)F (α)n + F (cn−1)F (α)n−1 + . . .+ F (c2)F (α)2 + F (c1)F (α) + F (c0)

since F is a field homomorphism. The coefficients ci are in Fq, as is the 0 on the left-hand side, so F does
not change them. Thus,

0 = cnF (α)n + cn−1F (α)n−1 + . . .+ c2F (α)2 + c1F (α) + c0

That is,
0 = f(F (α))

and F (α) is a root of P (x) = 0 if α is. ///

9.2.3 Proposition: Let
A = {α1, . . . , αt}

be a set of (t distinct) elements of and algebraic closure E of Fq, with the property that for any α in A,
F (α) is again in A. Then the polynomial

(x− α1)(x− α2) . . . (x− αt)

(when multiplied out) has coefficients in k.

Proof: For a polynomial

f(x) = cnx
n + cn−1x

n−1 + . . .+ c2x
2 + c1x+ c0

with coefficients in E, define a new polynomial F (f) by letting the Frobenius F act on the coefficients

F (f)(x) = F (cn)xn + F (cn−1)xn−1 + . . .+ F (c2)x2 + F (c1)x+ F (c0)

This action gives a Fq-algebra homomorphism Fq[x] −→ Fq[x]. Applying F to the product

(x− α1)(x− α2) . . . (x− αt)

merely permutes the factors, by the hypothesis that F permutes the elements of A. Thus,

cnx
n + cn−1x

n−1 + . . .+ c1x+ c0 = (x− α1)(x− α2) . . . (x− αt)

= (x− Fα1)(x− Fα2) . . . (x− Fαt) = F (cn)xn + F (cn−1)xn−1 + . . .+ F (c1)x+ F (c0)

Equality of polynomials is coefficient-wise equality, so F (ci) = ci for all indices i. ///
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9.2.4 Corollary: Let α be an element of an algebraic closure E of Fq. Suppose that [Fq(α) : Fq] = n.
Then the minimal polynomial M(x) of α is

M(x) = (x− α)(x− F (α))(x− F 2(α)) . . . (x− Fn−1(α))

Proof: By definition of the minimal polynomial, M is the unique monic polynomial in Fq[x] such that any
other polynomial in Fq[x] of which α is a zero is a polynomial multiple of M . Since α generates a degree n
extension of Fq, from above Fnα = α. Thus, the set α, Fα, F 2α, . . ., Fn−1α is F -stable, and the right-hand
side product (when multiplied out) has coefficients in Fq. Thus, it is a polynomial multiple of M . Since it
is monic and has degree n (as does M), it must be M itself. ///

Given ground field Fq and α in an algebraic extension E of Fq, the images

α, αq, αq
2
, . . .

of α under the Frobenius are the (Galois) conjugates of α over Fq. Indeed, the notion of Frobenius
automorphism is relative to the ground field Fq. Two elements α, β in an algebraic extension E of Fq are
conjugate if

β = αq
t

for some power F t of the Frobenius over Fq.

9.2.5 Proposition: Inside a given algebraic extension E of Fq, the property of being conjugate is an
equivalence relation. ///

9.2.6 Corollary: Given α in an algebraic field extension E of Fq, the number of distinct conjugates of
α over Fq is equal to the degree [Fq(α) : Fq]. ///

9.2.7 Corollary: Let f(x) ∈ Fq[x] be irreducible, of degree n. Then f(x) factors into linear factors in
Fqn , (up to isomorphism) the unique extension of Fq of degree n. ///

Fix a prime power q, and an integer n. The set

= AutFq Fqn = { automorphisms h : Fqn −→ Fqn trivial on Fq}

is a group, with operation composition. [181]

9.2.8 Theorem: The group G = AutFq Fqn of automorphisms of Fqn trivial on Fq is cyclic of order n,
generated by the Frobenius element F (α) = αq.

Proof: First, we check that the Frobenius map is a field automorphism. It certainly preserves multiplication.
Let p be the prime of which q is a power. Then p divides all the inner binomial coefficients

(
q
i

)
with 0 < i < q,

essentially because p divides all the inner binomial coefficients
(
p
i

)
with 0 < i < p. Thus, for α, β ∈ Fqn , by

the binomial expansion,

(α+ β)q = αq +
∑

0<i<q

(
q

i

)
αi βq−i + βq = αq + βq

[181] As usual, an automorphism of a thing is an isomorphism of it to itself, of whatever sort is currently under

discussion. Here, we are concerned with field isomorphisms of Fqn to itself which fix Fq pointwise. In general,

with some further hypotheses to avoid various problems, roughly speaking the automorphism group of one field over

another is a Galois group.
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We should show that Frobenious does fix Fq pointwise. Since F×q has order q − 1, every element has order
dividing q − 1, by Lagrange. Thus, for β ∈ Fq,

βq = βq−1 · β = 1 · β = β

Certainly 0 is mapped to itself by Frobenius, so Frobenius fixes Fq pointwise, and, therefore, is a field
automorphism of Fqn over Fq. Last, note that Fn fixes Fqn pointwise, by the same argument that just
showed that F fixes Fq pointwise. That is, Fn is the identity automorphism of Fqn . We note that F is
invertible on Fqn , for any one of several reasons. One argument is that Fn is the identity.

The powers of the Frobenius element clearly form a subgroup of the automorphism group G, so the question
is whether every automorphism is a power of Frobenius. There are many ways to approach this, but one
straightforward way is as follows. We have seen that the multiplicative group F×qn is cyclic. Let α be a
generator. Any field automorphism σ of F×qn is completely determined by σα, since a field map preserves
multiplication, and, therefore,

σ(αn) =
(
σ(α)

)n
And we know that the only possible images of σα are the other roots in Fqn of the monic irreducible f(x)
of α in Fq[x], which is of degree n, since we know that

Fqn ≈ Fq[x]/f

That is, there are at most n possible images σα of α, including α itself. Let’s count the number of distinct
images of α under powers of Frobenious. First, for i < j, using the invertibility of F , F iα = F jα is equivalent
to α = F j−iα. Thus, it suffices to determine the smallest positive exponent j such that F jα = α. In fact,
being the generator of the cyclic group F×qn , α has order exactly qn − 1. Thus, the positive powers of α of
orders less than qn − 1 are distinct. Thus, αq

`

= α implies αq
`−1 = 1, and then

qn − 1 divides q` − 1

Thus, it must be that ` = n. This shows that α, Fα, F 2α, . . ., Fn−1α are distinct, and therefore are all
the possible images of α by automorphisms. We noted that the image of α by an automorphism determines
that automorphism completely, so 1, F, F 2, . . . , Fn−1 are all the automorphisms of Fqn over Fq. ///

9.3 Counting irreducibles

By now we might anticipate that counting irreducible polynomials f(x) ∈ Fq[x] of degree n is intimately
connected with elements α [182] such that [Fq(α) : Fq] = n, by taking roots α of f(x) = 0.

9.3.1 Proposition: The collection of monic irreducible polynomials f(x) of degree n in Fq[x] is in
bijection with sets of n mutually conjugate generators of Fqn over Fq, by

α, αq, . . . , αq
n−1

←→ (x− α)(x− αq) . . . (x− αq
n−1

)

Proof: On one hand, a degree n monic irreducible f has a root α in Fq[x]/〈f〉, which is a degree n field
extension of Fq. In particular, Fq(α) = Fq[α] is of degree n over Fq. And (from just above)

f(x) = (x− α)(x− αq)(x− αq
2
) . . . (x− αq

n−1
)

[182] In a fixed algebraic closure of Fq, for example.
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We have noted that the n distinct images αq
i

are an equivalence class under the equivalence relation of being
conjugate, and any one of these roots generates the same degree n extension as does α.

On the other hand, let α generate the unique degree n extension of Fq inside a fixed algebraic closure. That
is, Fq(α) = Fq[α] is of degree n over Fq, which implies that the minimal polynomial f of α over Fq is of
degree n. From above, the other roots of f(x) = 0 are exactly the conjugates of α over Fq. ///

Let µ(n) be the Möbius function

µ(n) =
{

0 (if the square of any prime divides n)
(−1)t (otherwise, where distinct primes divide n, but no square does)

9.3.2 Corollary: The number of irreducible degree n polynomials in Fq[x] is

number irreducibles degree n =
1
n
·

∑
d|n

µ(d) qn/d


Proof: We want to remove from Fqn elements which generate (over Fq) proper subfields of Fqn , and then
divide by n, the number of conjugates of a given generator of Fqn over Fq. Above we showed that Fqm ⊂ Fqn
if and only if m|n. Thus, the maximal proper subfields of Fqn are fields Fqn/r with prime r dividing n. The
attempted count qn −

∑
r|n q

n/r over-counts the intersections of subfields Fqn/r1 and Fqn/r2 , for primes
r1 6= r2. Thus, typically, we put back qn/r1r2 , but we have put back too much, and must subtract the
common triple intersections, and so on. Then divide by n to count equivalence classes of mutually conjugate
generators of the degree n extension, rather than the individual generators. ///

Exercises

9.1 Show that any root α of x3 + x + 1 = 0 in an algebraic closure of the finite field F2 with 2 elements
is a generator for the multiplicative group F×23 .

9.2 Find the irreducible quartic equation in F2[x] whose zero is a generator for the cyclic group F×24 .

9.3 Let f be an irreducible polynomial of degree n in Fq[x], where Fq is a field with q elements. Show
that f(x) divides xq

n − x if and only if deg f divides n.

9.4 Show that the general linear group GLn(Fq) of invertible matrices with entries in the finite field Fq
has an element of order qn − 1.

9.5 Let k be a finite field. Show that k[x] contains irreducibles of every positive integer degree.

9.6 For a power q of a prime p, find a p-Sylow subgroup of GLn(Fq).

9.7 For q a power of an odd prime p, find a 2-Sylow subgroup of GL2(Fq).

9.8 For q a power of an odd prime p, find a 2-Sylow subgroup of GL3(Fq).

9.9 Find a 3-Sylow subgroup of GL3(F7).

9.10 (Artin-Schreier polynomials) Let q be a power of a prime p. Take a 6= 0 in Fq. Show that if α is a
root of xp − x+ a = 0 then so is α+ i for i = 1, 2, . . . , p− 1.

9.11 Show that Artin-Schreier polynomials are irreducible in Fq[x].
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10. Modules over PIDs

10.1 The structure theorem
10.2 Variations
10.3 Finitely generated abelian groups
10.4 Jordan canonical form
10.5 Conjugacy versus k[x]-module isomorphism
10.6 Worked examples

The structure theorem for finitely-generated abelian groups and Jordan canonical form for endomorphisms
of finite-dimensional vector spaces are example corollaries of a common idea.

10.1 The structure theorem

Let R be a principal ideal domain, that is, a commutative ring with identity such that every ideal I in R
is principal, that is, the ideal can be expressed as

I = R · x = {r · x : r ∈ R}

for some x ∈ R. An R-module M is finitely-generated if there are finitely-many m1, . . . ,mn in M such
that every element m in M is expressible in at least one way as

m = r1 ·m1 + . . .+ rn ·mn

with ri ∈ R.

A basic construction of new R-modules from old is as direct sums: given R-modules M1, . . . ,Mn, the direct
sum R-module

M1 ⊕ . . .⊕Mn

is the collection of n-tuples (m1, . . . ,mn) with mi ∈Mi, with component-wise operation [183]

(m1, . . . ,mn) + (m′1, . . . ,m
′
n) = (m1 +m′1, . . . ,mn +m′n)

[183] This certainly is the obvious generalization, to modules, of vector addition in vector spaces written as ordered

n-tuples.
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and the multiplication [184] by elements r ∈ R by

r · (m1, . . . ,mn) = (rm1, . . . , rmn)

10.1.1 Theorem: Let M be a finitely-generated module over a PID R. Then there are uniquely
determined ideals

I1 ⊃ I2 ⊃ . . . ⊃ It

such that
M ≈ R/I1 ⊕R/I2 ⊕ . . .⊕R/It

The ideals Ii are the elementary divisors of M , and this expression is the elementary divisor form of
M . [185]

Proof: (next chapter) ///

10.2 Variations

The following proposition (which holds in more general circumstances) suggests variations on the form of
the structure theorem above.

10.2.1 Proposition: [186] Let I and J be ideals of a commutative ring R with identity 1 such that

I + J = R

Take r ∈ I and s ∈ J such that r + s = 1. Then

R/I ⊕R/J ≈ R/IJ

by [187]

(x+ I, y + J) −→ sx+ ry + IJ

Proof: First, prove well-definedness. Note that r + s = 1 implies that 1 − r = s ∈ J , and, similarly,
1− s = r ∈ I. If x− x′ ∈ I and y − y′ ∈ I, then

(sx+ ry)− (sx′ + ry′) = s(x− x′) + r(y − y′) ∈ JI + IJ = IJ

This proves well-definedness. [188] Next, show that the kernel is trivial. Indeed, if sx + ry ∈ IJ , then
(1 − r)x = sx ∈ I. Thus, as rx ∈ I, x ∈ I. Similarly y ∈ J , and we have injectivity. For surjectivity, take
any z ∈ R, and compute that

(z + I, z + J) −→ sz + rz + IJ = (r + s)z + IJ = z + IJ

[184] Obviously generalizing the scalar multiplication in vector spaces.

[185] Other sources call the Ii’s the invariant factors of the module.

[186] Yes, this is simply an abstracted form of Sun-Ze’s theorem. The proof is exactly the same.

[187] Yes, the element s ∈ J is the coefficient of x, and the element r ∈ I is the coefficient of y.

[188] Keep in mind that in this context IJ is not merely the collection of product xy with x ∈ I and y ∈ J , but is the

set of finite sums
P
i xiyi with xi ∈ I, yi ∈ J .
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since r + s = 1. ///

Returning to the situation that R is a PID, let I = R · x. Factor the generator x into prime element powers
peii and a unit u in R

x = u · pe11 . . . pett

Then, iterating the result of the previous proposition,

R/I = R/〈x〉 = R/〈pe11 〉 ⊕ . . .⊕R/〈p
et
t 〉

10.2.2 Remark: Depending on the circumstances, it may be interesting that the left-hand side is
expressible as the right-hand side, or, at other moments, that the right-hand side is expressible as the
left-hand side.

Now if we have a direct sum
R/I1 ⊕ . . .⊕R/In

we can do the same further prime-wise decomposition, if we want. That is, let

Ii = 〈pei11 . . . peitt 〉

(with a common set of primes pj in R), with non-negative integer exponents, [189] the divisibility condition
is

e1j ≤ e2j ≤ . . . ≤ enj
and

R/I1 ⊕ . . .⊕R/In ≈ (R/〈pe11
1 〉 ⊕ . . .⊕R/〈p

en1
1 〉)⊕ . . .⊕ (R/〈pe1tt 〉 ⊕ . . .⊕R/〈p

ent
t 〉)

That is, for each prime pi, we can extract a summand in elementary divisor form whose elementary divisor
ideals are generated simply by powers of pi. (If some eij = 0, then R/〈peijj 〉 = {0}.)

Conversely, a direct sum of direct sums corresponding to distinct (non-associate) primes in R can be
reassembled in a unique manner to fit the conclusion of the structure theorem.

As an example of the re-assembly into canonical form, taking R = Z, let

M =
(
Z/2⊕ Z/4⊕ Z/8

)
⊕
(
Z/9⊕ Z/27

)
It is important to realize that there is unique choice of how to put the summands together in the form of
the conclusion of the Structure Theorem, here

M ≈ Z/2⊕ Z/36⊕ Z/216

It is true that this is also isomorphic (for example) to

Z/18⊕ Z/4⊕ Z/216

but this is not in canonical form, and mere permutation of the summands is insufficient to put it into
canonical form.

10.2.3 Remark: Even without the condition

e1 ≤ . . . ≤ en
[189] Allowing non-negative integer exponents keeps the notation from becoming even more ridiculous than it is, though,

at the same time, it creates some potential for confusion.
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for prime p in R any direct sum
R/〈pe1〉 ⊕ . . .⊕R/〈pet〉

involving just the prime p at worst needs merely a permutation of its factors to be put into elementary
divisor form.

10.3 Finitely-generated abelian groups

Surely a very popular choice of PID is the ring of integers Z. Finitely-generated Z-modules are exactly
abelian groups, since any abelian group is a Z-module with structure given as usual by

n ·m =


m+ . . .+m︸ ︷︷ ︸

n

(n ≥ 0)

−(m+ . . .+m︸ ︷︷ ︸
|n|

) (n ≤ 0)

Any ideal I in Z has a unique non-negative generator. Thus, the Structure Theorem becomes

10.3.1 Corollary: Let M be a finitely-generated Z-module (that is, a finitely-generated abelian group).
Then there are uniquely determined non-negative integers d1, . . . , dn such that [190]

d1|d2| . . . |dn

and
M ≈ Z/d1 ⊕ Z/d2 ⊕ . . .⊕ Z/dn

10.3.2 Corollary: Let n = pe11 . . . pett with p1, . . ., pt distinct primes in Z. Then every abelian group of
order n is uniquely expressible as a direct sum

Ape11
⊕ . . .⊕Apett

of abelian groups Apeii of orders peii .

Proof: This second corollary comes from the observations on variations of the Structure Theorem that we
can obtain by thinking in terms of Sun-Ze’s theorem. ///

10.3.3 Corollary: The finite abelian groups of order pn for prime p are

Z/pe1 ⊕ . . .⊕ Z/pet

for all sets of positive integers e1, . . . , et (for varying t) with

e1 ≤ . . . ≤ et

and
e1 + . . .+ et = n

Proof: The inequalities on the exponents are the conditions organizing the elementary divisors, and the
last equality reflects the condition that the order of the whole group be as required. ///

[190] Keep in mind that any integer divides 0, so it may happen that some of the di are 0. Of course, if di = 0, then

dj = 0 for j ≥ i.
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10.3.4 Example: Count the number of abelian groups of order 1000.

A finite abelian group is certainly finitely generated. Since 100000 = 25 · 55 (and 2 and 5 are distinct primes
in Z), by observations above, every abelian group of order 100000 is uniquely expressible as a direct sum
of an abelian group of order 25 and an abelian group of order 55. From the last corollary, the number of
abelian groups of order p5 for any prime p is the number of sums of non-decreasing sequences of positive
integers which sum to the exponent, here 5. [191] For 5 the possibilities are

1 + 1 + 1 + 1 + 1 = 5
1 + 1 + 1 + 2 = 5

1 + 2 + 2 = 5
1 + 1 + 3 = 5

2 + 3 = 5
1 + 4 = 5

5 = 5

That is, the abelian groups of order p5 for prime p are

Z/p⊕ Z/p⊕ Z/p⊕ Z/p⊕ Z/p

Z/p⊕ Z/p⊕ Z/p⊕ Z/p2

Z/p⊕ Z/p2 ⊕ Z/p2

Z/p⊕ Z/p⊕ Z/p3

Z/p2 ⊕ Z/p3

Z/p⊕ Z/p4

Z/p5

Thus, there are 7 abelian groups of order 25, and 7 of order 55, and 7 · 7 = 49 abelian groups of order
25 · 55 = 100000.

A useful and commonly occurring manner of describing a finitely-generated Z-module is as a quotient of

M = Zt = Z⊕ . . .⊕ Z︸ ︷︷ ︸
t

by a submodule N , which itself can be described as the image of some Zr. The standard basis of Zt is the
set of generators given by

ei = (0, . . . , 0, 1, 0, . . . , 0) (1 at ith place)

In the following chapter we will prove a result giving as a special case

10.3.5 Corollary: Let M be a Z-module generated by m1, . . . ,mt. Then there is a unique Z-module
homomorphism f : Zt −→ M such that f(ei) = mi. The kernel of f is finitely generated on at most t
generators, and in fact is isomorphic to Zr for some r ≤ t. ///

[191] The number of non-decreasing sequences of positive integers summing to n is the number of partitions of n.

This number grows rapidly with n, and seems not to be expressible by any simple computationally useful formula.
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10.4 Jordan canonical form

In this section we make the other popular choice of PID, namely k[x] for a field k.

Let k be a field, V a finite-dimensional vector space over k, and T a k-linear endomorphism of V . Let
k[x] −→ Endk(V ) be the unique k-algebra homomorphism which sends x −→ T . This makes V into a
k[x]-module. To say that V is finite-dimensional is to say that it is finitely-generated as a k-module, so
certainly is finitely-generated as a k[x]-module. Thus, by the Structure Theorem, and by the prime-wise
further decompositions,

10.4.1 Corollary: Given k-vectorspace V and k-linear endomorphism T of V , there is a sequence of
monic polynomials d1, . . . , dt with [192]

d1|d2| . . . |dt
such that, as a k[x]-module,

V ≈ k[x]/〈d1〉 ⊕ . . .⊕ k[x]/〈dt〉

where x acts on V by T , and x acts on the right-hand side by multiplication by x. [193] Further, taking
monic irreducibles f1, . . . , fr and exponents eij such that di =

∏
j f

eij
j , we have

V ≈
(
k[x]/〈fe11

1 〉 ⊕ . . .⊕ k[x]/〈fet11 〉
)
⊕ . . .⊕

(
k[x]/〈fe1rr 〉 ⊕ . . .⊕ k[x]/〈fetrr 〉

)
Though we have not chosen a basis nor written matrices, this k[x]-module decomposition of the original
k-vectorspace with endomorphism T is a Jordan canonical form of V with respect to T . [194] The monic
polynomials di that occur are the elementary divisors of T on V . [195]

Breaking V up into k[x]-module summands of the form

N = k[x]/〈fe〉 (f irreducible monic in k[x])

is the finest reasonable decomposition to expect. Each such N is a k-vectorspace of dimension deg f . [196]

10.4.2 Example: Let
V = k[x]/〈(x− λ)e〉

be a k-vectorspace with with operator T given by multiplication by x (on the quotient), with λ ∈ k. Then

x · (x− λ)e−1 = (x− λ)(x− λ)e−1 + λ(x− λ)e−1 = λ · (x− λ)e−1 mod (x− λ)e

That is, (x− λ)e−1 modulo (x− λ)e is a λ-eigenvector with eigenvalue λ for the operator T . [197]

[192] One must remember that divisibility of elements and inclusion of the corresponding principal ideals run in opposite

directions, namely, a|b if and only if Ra ⊃ Rb.

[193] What else could the action be on a sum of k[x]-modules of the form k[x]/I?

[194] It is only a canonical form because there are typically many different k[x]-isomorphisms of V to such a direct

sum.

[195] It is not hard to see that the minimal polynomial of T (that is, the monic generator for the kernel of the map

k[x] −→ Endk(V ) that sends x −→ T ) is the largest dt of the elementary divisors di of T .

[196] If the exponent e is strictly larger than 1, then there are yet smaller k[x] submodules, but they will not appear

in a direct sum decomposition. This is clarified in examples below.

[197] As usual, for a k-linear endomorphism T of a k-vectorspace V , a non-zero vector v ∈ V is a T -eigenvector

with eigenvalue λ ∈ k if Tv = λv. In some sources these are called proper values rather than eigenvalues, but this

terminology seems to be no longer in use.
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10.4.3 Example: A k[x]-module of the form

V = k[x]/〈F 〉

with (not necessarily irreducible) monic

F (x) = xn + an−1x
n−1 + an−2x

n−2 + . . .+ xa2x
2 + a1x+ a0

in k[x] of degree n is called a cyclic module for k[x], since it can be generated by a single element, as we
shall see here. A reasonable choice of k-basis is

1, x, x2, . . . , xn−1

Then the endomorphism T on V given by multiplication by x is, with respect to this basis,

T · xi =
{

xi+1 (i < n− 1)
−(a0 + a1x+ . . .+ an−1x

n−1) (i = n− 1)

That is, with respect to this basis, T has the matrix

0 0 0 0 0 . . . −a0

1 0 0 0 0 −a1

0 1 0 0 0 −a2
...

. . . . . .
...

1 0 −an−3

0 1 0 −an−2

0 . . . 0 1 −an−1


This is the rational canonical form of T . [198]

10.4.4 Remark: If we want to make a matrix T (viewed as an endomorphism of kn, viewed as column
vectors) such that with the k[x]-module structure on kn created by k[x] −→ Endkkn given by x −→ T ,

kn ≈ k[x]/〈F 〉

as k[x]-modules, we simply take the matrix T as above, namely with sub-diagonal 1s and the coefficients of
the desired polynomial arranged in the right column. [199]

10.4.5 Example: To make a 3-by-3 matrix T so that the associated k[x]-structure on k3 gives a module
isomorphic to

k[x]/〈x3 + 2x2 + 5x+ 7〉

we take

T =

 0 0 −7
1 0 −5
0 1 −2


[198] Note that only on a cyclic k[x]-module (where x acts by a k-linear endomorphism T ) is there such a rational

canonical form of the endomorphism T . And, yes, the question of whether or not a k-vectorspace with distinguished

endomorphism T is cyclic or not certainly does depend on the endomorphism T . If there is a vector such that

v, Tv, T 2v, . . . form a basis, the module is cyclic, and v is a cyclic vector.

[199] No, this sort of construction does not give any idea about eigenvalues or eigenvectors. But, on some occasions,

this is not the issue.



132 Modules over PIDs

If k happens to be algebraically closed, then a monic irreducible is of the form x− λ for some λ ∈ k. Thus,
the simplest k[x]-modules we’re looking at in the context of the Structure Theorem are k-vectorspaces V of
the form

V = k[x]/〈(x− λ)e〉
The endomorphism T of V is multiplication by x. [200] At this point we can choose k-bases with respect to
which the matrix of T (multiplication by x) is of various simple sorts. One obvious choice [201] is to take
k-basis consisting of (the images of, in the quotient)

1, x, x2, . . . , xe−1

We have

T · xi =
{

xi+1 (for i < e− 1)
xe − (x− λ)e (for i = e− 1)

The slightly peculiar expression in the case i = e− 1 is designed to be a polynomial of degree < e, hence, a
linear combination of the specified basis elements 1, x, . . . , xe−1. [202] The other obvious choice is

1, x− λ, (x− λ)2, . . . , (x− λ)e−1

In this case, since
x(x− λ)i = (x− λ)i+1 + λ(x− λ)i

we have

T · (x− λ)i =
{
λ(x− λ)i + (x− λ)i+1 (for i < e− 1)

λ(x− λ)i (for i = e− 1)

The latter choice shows that (the image in the quotient of)

(x− λ)e−1 = λ− eigenvalue of T

Indeed, the matrix for T with respect to the latter basis is the Jordan block

λ 0 0 0 0 . . . 0
1 λ 0 0 0
0 1 λ 0 0
...

. . .
...

1 λ 0 0
0 1 λ 0

0 . . . 0 1 λ


Thus, concerning matrices, the Structure Theorem says

10.4.6 Corollary: For algebraically closed fields k, given an endomorphism T of a finite-dimensional
k-vectorspace, there is a choice of basis such that the associated matrix is of the form

B1

B2

. . .
Bt


where each Bi on the diagonal is a Jordan block, and all other entries are 0. ///

[200] Now that we’ve forgotten the original T above, having replaced it by multiplication by x on a quotient of k[x]!

[201] Which might have the appeal of not depending upon λ.

[202] The matrix arising from this choice of basis is, in some circumstances, for example as just above, called the

rational canonical form, though one should not depend upon this.



Garrett: Abstract Algebra 133

10.4.7 Example: When k is not necessarily algebraically closed, there may be irreducibles in k[x] of
higher degree. For monic irreducible f in k[x] consider the k[x]-module

V = k[x]/〈fe〉

with endomorphism T being multiplication by x (on the quotient). Choice of k-basis that illuminates the
action of T is more ambiguous now. Still, there are not very many plausible natural choices. Let d = deg f .
Then take k-basis consisting of (the images in the quotient of)

1, x, x2, . . . , xd−1, f, f · x, f · x2 . . . , f · xd−1, . . . , fe−1, fe−1x, . . . , fe−1 · xd−1

That is, we choose a basis 1, x, x2, . . . , xd−1 for (images of) polynomials of degrees less than f , and then
multiply those by powers of f below the power fe that is (by definition) 0 in the quotient. [203] The
endomorphism T is still multiplication by x in the quotient. For certain of the basis elements the effect is
easy to describe in terms of the basis: [204]

T · f i · xj = f i · xj+1 (for j < d− 1)

However the other cases are somewhat messier than before. Namely,

T · f i · xd−1 =
{
f i · xd = f i · (xd − f) + f i+1 (i < e− 1)
f i · xd = f i · (xd − f) (i = e− 1)

Note that xd − f is a linear combination of monomials xj with 0 ≤ j ≤ d− 1. This is still called a Jordan
canonical form.

10.4.8 Example: Let k = R, f(x) = x2 + 1, and consider

V = R[x]/〈(x2 + 1)3〉

According to the prescription just given, we take basis

1, x, x2 + 1, (x2 + 1)x, (x2 + 1)2, (x2 + 1)2x

Then the endomorphism T which is multiplication by x is, in terms of this basis,

T · 1 = x
T · x = x2 = −1 + (x2 + 1)
T · x2 + 1 = (x2 + 1)x
T · (x2 + 1)x = (x2 + 1)x2 = −(x2 + 1) + (x2 + 1)2

T · (x2 + 1)2 = (x2 + 1)2x
T · (x2 + 1)2x = (x2 + 1)2x2 = −(x2 + 1)2

since (x2 + 1)3 = 0 in the quotient. That is, with respect to this basis, the matrix is
0 −1 0 0 0 0
1 0 0 0 0 0
0 1 0 −1 0 0
0 0 1 0 0 0
0 0 0 1 0 −1
0 0 0 0 1 0


[203] Note that there is no obvious choice to replace 1, x, x2, . . . , xd−1.

[204] Note that this easy case did not occur at all when the monic irreducible f was linear.
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Notice that there is no eigenvector or eigenvalue in the usual more elementary sense. But we still do have
some understanding of what the endomorphism does.

10.4.9 Remark: Note that the latter more complicated (because k need not be algebraically closed)
version of Jordan canonical form incorporates both the simpler version of Jordan canonical form as well as
the rational canonical form.

10.5 Conjugacy versus k[x]-module isomorphism

First, it is important to realize that conjugation of matrices

A −→ gAg−1

(for invertible g) is exactly changing the basis with respect to which one computes the matrix of the underlying
endomorphism.

Two n-by-n matrices A and B with entries in a field k are conjugate if there is an invertible n-by-n matrix
g with entries in k such that

B = gAg−1

Conjugacy is obviously an equivalence relation. The conjugacy classes of n-by-n matrices with entries in
k are the corresponding equivalence classes with respect to this equivalence relation.

But it is somewhat misguided to fix upon matrices as descriptive apparatus for linear endomorphisms, [205]

since, in effect, a matrix specifies not only the endomorphism but also a basis for the vector space, and a
whimsically or accidentally chosen basis will not illuminate the structure of the endomorphism.

Thus, we will take the viewpoint that, yes, the set V = kn of size n column matrices with entries in k is a
k-vectorspace, and, yes, n-by-n matrices give k-linear endomorphisms [206] of V by matrix multiplication,
but, no, this is only one of several possible descriptions, and admittedly sub-optimal for certain purposes.

Thus, more properly, given two k-linear endomorphisms S and T of a finite-dimensional k-vectorspace V ,
say that S and T are conjugate if there is an automorphism [207] g : V −→ V such that

g ◦ S ◦ g−1 = T

Emphatically, this includes conjugation of matrices if or when we write endomorphisms as matrices.

The following proposition, which is trivial to prove once laid out clearly, illustrates (among other things)
that conjugacy of matrices is a special example of a more meaningful structural property.

[205] Though, certainly, a matrix-oriented version of linear algebra is a reasonable developmental stage, probably

necessary. And writing out a small numerical matrix is a compellingly direct description of an endomorphism,

entirely adequate for many purposes.

[206] At least once in one’s life one should check that matrix multiplication and composition of endomorphisms are

compatible. Given a k-vectorspace V with k-basis e1, . . . , en, define a map ϕ from the ring Endk(V ) of k-linear

endomorphisms to the ring of n-by-n matrices with entries in k, by defining the ijth entry ϕ(T )ij of ϕ(T ) (for

endomorphism T ) by Tej =
P
i ϕ(T )ijei. (Yes, there is another obvious possibility for indexing, but the present

choice is what we want. One should check this, too.) Then ϕ is a ring homomorphism. The main point is

multiplication: On one hand, for two endomorphisms S and T , (S ◦ T )ek =
P
j ϕ(S ◦ T )ikei. On the other hand,

using the linearity of S, S(Tek) = S(
P
k ϕ(T )jkej) =

P
k ϕ(T )jk

P
k ϕ(S)ijei. Since a matrix product has ijth entry

(ϕ(S)ϕ(T ))ij =
P
` ϕ(S)i`ϕ(T )`j , the two expressions are the same thing.

[207] As usual, an automorphism is an endomorphism that is an isomorphism of the thing to itself.
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10.5.1 Proposition: Let V be a finite-dimensional k-vectorspace. Let S and T be two k-linear
endomorphisms of V . Let VS be V with the k[x]-module structure in which x acts on v ∈ V by xv = Sv,
and let VT be V with the k[x]-module structure in which x acts on v ∈ V by xv = Tv. Then S and T are
conjugate if and only if VS ≈ VT as k[x]-modules.

Proof: First, suppose that VS ≈ VT as k[x]-modules. Let g : VS −→ VT be the k-vectorspace isomorphism
that is also a k[x]-module isomorphism. The latter condition means exactly that (in addition to the
vectorspace isomorphism aspect) for all v in V

g(x · v) = x · g(v)

That is, since in VS the action of x is xv = Sv and in VT is xv = Tv

g(Sv) = T g(v)

Since this is true for all v ∈ V , we have an equality of endomorphisms

g ◦ S = T ◦ g

Since g is invertible,
g ◦ S ◦ g−1 = T

as claimed. It is clear that this argument is reversible, giving the opposite inclusion as well. ///

10.5.2 Remark: The uniqueness part of the Structure Theorem says that the elementary divisors
(ideals) I1 ⊃ . . . ⊃ It in an expression

M ≈ R/I1 ⊕ . . .⊕R/It

(with M a finitely-generated module over a PID R) are uniquely determined by the R-module isomorphism
class of M , and, conversely, that choice of such ideals uniquely determines the isomorphism class. Thus,

10.5.3 Corollary: Conjugacy classes of endomorphisms of a finite-dimensional k-vectorspace V are in
bijection with choices of (monic) elementary divisors d1| . . . |dt in an expression

V ≈ k[x]/〈d1〉 ⊕ . . .⊕ k[x]/〈dt〉

as k[x]-module. ///

10.5.4 Remark: Further, using the unique factorization in the PID k[x], one finds that in prime-wise
decompositions (via Sun-Ze)

k[x]/〈fe11 . . . ferr 〉 ≈ k[x]/〈fe11 〉 ⊕ . . .⊕ k[x]/〈ferr 〉

with fis irreducible, the exponents ei are uniquely determined by the isomorphism class, and vice versa.
Combining this uniqueness with the Structure Theorem’s uniqueness gives the corresponding uniqueness for
the general prime-wise expression of a module as a direct sum.

10.5.5 Remark: The extent to which different-appearing Jordan forms of matrices can be conjugate
is (likewise) answered by the uniqueness assertion of the Structure Theorem. For example, in the case of
algebraically closed field, two Jordan forms are conjugate if and only if the collection (counting repeats) of
Jordan blocks of one is equal to that of the other, allowing only permutations among the blocks. That is, in
matrix form, the only mutually conjugate Jordan forms are visually obvious.
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10.5.6 Example: The following two Jordan forms are conjugate
3 0 0 0 0
1 3 0 0 0
0 1 3 0 0
0 0 0 7 0
0 0 0 1 7

 is conjugate to


7 0 0 0 0
1 7 0 0 0
0 0 3 0 0
0 0 1 3 0
0 0 0 1 3


by 

3 0 0 0 0
1 3 0 0 0
0 1 3 0 0
0 0 0 7 0
0 0 0 1 7

 =


0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0




7 0 0 0 0
1 7 0 0 0
0 0 3 0 0
0 0 1 3 0
0 0 0 1 3




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0


−1

10.5.7 Remark: Without further indications from context, it is not clear whether one would want
to parametrize conjugacy classes by the decomposition given immediately by the Structure Theorem,
namely sums of rational canonical forms, or by the further prime-wise decomposition (as in the Jordan
decomposition), which do still involve some sort of rational canonical forms when the underlying field is not
algebraically closed.

Generally, for a commutative ring R with identity 1, let

GL(n,R) = { invertible n-by-n matrices, entries in R }

This is the general linear group of size n over R.

10.5.8 Example: Determine the conjugacy classes in GL(2, k) for a field k. Note that GL(2, k) is the set
(group) of invertible endomorphisms of the two-dimensional k-vectorspace k2. From the Structure Theorem,
and from the observation above that conjugacy classes are in bijection with batches of elementary divisors,
we can immediately say that k[x]-module structures

V ≈ k[x]/〈d1〉 ⊕ . . .⊕ k[x]/〈dt〉

with d1| . . . |dt and
deg d1 + . . .+ deg dt = 2 = dimk V

specify the conjugacy classes. [208] Since the dimension is just 2, there are only two cases

V ≈

 k[x]/〈d1〉 (d1 monic quadratic)

k[x]/〈x− λ〉 ⊕ k[x]/〈x− λ〉 (monic linear case)

Yes, in the second case the linear monic is repeated, due to the divisibility requirement. Using rational
canonical forms in the first case, and (in a degenerate sense) in the second case as well, we have corresponding
irredundant conjugacy class representatives(

0 −a2

1 −a1

)
(a1 ∈ k, a2 ∈ k×)(

λ 0
0 λ

)
(λ ∈ k×)

[208] Again, the endomorphism T representing the conjugacy class is the one given by multiplication by x on the

right-hand side. It is transported back to V via the k-vectorspace isomorphism.
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One might object that in the first of the two cases we have no indication of eigenvalues/eigenvectors. Thus,
we might consider the two cases of quadratic monics, namely, irreducible and not. In the irreducible case
nothing further happens, but with reducible d1(x) = (x− λ)(x− µ) if λ 6= µ we have

k[x]/〈(x− λ)(x− µ)〉 ≈ k[x]/〈x− λ〉 ⊕ k[x]/〈x− µ〉

We still have no real recourse but to use a rational canonical form for the quadratic irreducible case, but the
reducible case with distinct zeros is diagonalized, and the repeated factor (reducible) case gives a non-trivial
Jordan block. The k[x]-module structures are, respectively,

V ≈



k[x]/〈d1〉 (d1 irreducible monic quadratic)

k[x]/〈x− λ〉 ⊕ k[x]/〈x− µ〉 (λ 6= µ, both in k×)

k[x]/〈(x− λ)2〉 (repeated root case, λ ∈ k×)

k[x]/〈x− λ〉 ⊕ k[x]/〈x− λ〉 (monic linear case)

In matrix form, the irredundant representatives are, respectively,(
0 −a0

1 −a1

)
(x2 + a1x+ a0 irreducible)(

λ 0
0 µ

)
(λ 6= µ, both in k×)(

λ 0
1 λ

)
(λ ∈ k×)(

λ 0
0 λ

)
(λ ∈ k×)

10.5.9 Example: Determine the conjugacy classes in GL(3, k) for a field k. From the Structure Theorem
and the fact that conjugacy classes are in bijection with batches of elementary divisors, the k[x]-module
structures

V ≈ k[x]/〈d1〉 ⊕ . . .⊕ k[x]/〈dt〉
with d1| . . . |dt and

deg d1 + . . .+ deg dt = dimk V = 3

specify the conjugacy classes. Since the dimension is 3, there are 3 cases

V ≈


k[x]/〈C〉 (C monic cubic)

k[x]/〈x− λ〉 ⊕ k[x]/〈(x− λ)(x− µ)〉 (λ, µ ∈ k×)

k[x]/〈x− λ〉 ⊕ k[x]/〈x− λ〉 ⊕ k[x]/〈x− λ〉 (λ ∈ k×)

Yes, in the second case the linear monic is repeated, as even more so in the third, by the divisibility
requirement. We can still use a rational canonical form in each of the cases, to write matrix versions of these 0 0 −a0

1 0 −a1

0 1 −a2

 (a0 ∈ k×)λ 0 0
0 0 −λµ
0 1 −λ− µ

 (λ, µ ∈ k×)λ 0 0
0 λ 0
0 0 λ

 (λ ∈ k×)
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In the first two cases the eigenvalues/eigenvectors are not delineated. It breaks up into 3 subcases, namely,
irreducible cubic, linear and irreducible quadratic, and three linear factors. The k[x]-module structures are,
respectively,

V ≈



k[x]/〈C〉 (C irred monic cubic)

k[x]/〈(x− λ)Q(x)〉 (λ ∈ k×, Q irred monic quadratic)

k[x]/〈(x− λ)(x− µ)(x− ν)〉 (λ, µ, ν ∈ k×)

k[x]/〈x− λ〉 ⊕ k[x]/〈(x− λ)(x− µ)〉 (λ, µ ∈ k×)

k[x]/〈x− λ〉 ⊕ k[x]/〈x− λ〉 ⊕ k[x]/〈x− λ〉 (λ ∈ k×)
The third and fourth cases break up into subcases depending upon the confluence (or not) of the parameters.
That is, in the third case there are three subcases, where all the λ, µnu are the same, only two are the same,
or all different. The fourth case has two subcases, λ = µ or not. [209] In the following display, it is assumed
that λ, µ, ν are distinct and non-zero. The last-mentioned subcases are presented on the same line. And Q
is an irreducible monic quadratic, C an irreducible monic cubic.

k[x]
〈C〉

k[x]
〈(x− λ)Q(x)〉

k[x]
〈x− λ〉

⊕ k[x]
〈x− µ〉

⊕ k[x]
〈x− ν〉

k[x]
〈(x− λ)2〉

⊕ k[x]
〈x− µ〉

k[x]
〈(x− λ)3〉

k[x]
〈x− λ〉

⊕ k[x]
〈x− λ〉

⊕ k[x]
〈x− µ〉

k[x]
〈x− λ〉

⊕ k[x]
〈(x− λ)2〉

k[x]
〈x− λ〉

⊕ k[x]
〈x− λ〉

⊕ k[x]
〈x− λ〉

In matrix form, the irredundant representatives are, respectively, (with λ, µ, ν distinct and non-zero) 0 0 −a0

1 0 −a1

0 1 −a2

 (x3 + a2x
2 + a1x+ a2 irreducible)

λ 0 0
0 0 −a0

0 1 −a1

 (x2 + a1x+ a0 irreducible)

λ 0 0
0 µ 1
0 0 ν

 λ 0 0
1 λ 0
0 0 µ

 λ 0 0
1 λ 0
0 1 λ


λ 0 0

0 λ 0
0 0 µ

 λ 0 0
0 λ 0
0 1 λ


λ 0 0

0 λ 0
0 0 λ


[209] If the field k is F2, then non-zero parameters in the ground field cannot be distinct.
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10.5.10 Example: Determine the conjugacy classes in GL(5, k) for field k. Use the Structure Theorem
and the bijection of conjugacy classes with batches of elementary divisors. There are seven different patterns
of degrees of elementary divisors, with λ, µ, ν ∈ k×, and all polynomials monic

(1)
k[x]
〈Q〉

(Q quintic)

(2)
k[x]
〈x− λ〉

⊕ k[x]
〈(x− λ)C(x)〉

(C cubic)

(3)
k[x]
〈x− λ〉

⊕ k[x]
〈x− λ〉

⊕ k[x]
〈(x− λ)Q(x)〉

(Q quadratic)

(4)
k[x]
〈Q(x)〉

⊕ k[x]
〈(x− λ)Q(x)〉

(Q quadratic)

(5)
k[x]
〈x− λ〉

⊕ k[x]
〈x− λ〉

⊕ k[x]
〈x− λ〉

⊕ k[x]
〈(x− λ)(x− µ)〉

(6)
k[x]
〈x− λ〉

⊕ k[x]
〈x− λ〉

⊕ k[x]
〈x− λ〉

⊕ k[x]
〈x− λ〉

⊕ k[x]
〈x− λ〉

There is no obvious graceful way to write rational canonical forms that indicate divisibility. Listing the
divisors to save space, the reducibility subcases are (with λ, µ, ν, σ, τ non-zero)

(1a) Q(x) (Q irred quintic)

(1b) Q(x)C(x) (Q irred quadratic, C irred cubic)

(1c) (x− λ)Q1(x)Q2(2) (Q1, Q2 irred quadratic)

(1d) (x− λ)(x− µ)(x− ν)Q(2) (Q irred quadratic)

(1e) (x− λ)(x− µ)(x− ν)(x− σ)(x− τ)

(2a) (x− λ), (x− λ)C(x) (C irred cubic)

(2b) (x− λ), (x− λ)(x− µ)Q(x) (Q irred quadratic)

(2c) (x− λ), (x− λ)(x− µ)(x− ν)(x− τ)

(3a) (x− λ), (x− λ), (x− λ)Q(x) (Q irred quadratic)

(3b) (x− λ), (x− λ), (x− λ)(x− µ)(x− ν)

(3c) Q(x), (x− λ)Q(x) (Q irred quadratic)

(3d) (x− µ)(x− ν), (x− λ)(x− µ)(x− ν)

(4) (x− λ), (x− λ), (x− λ), (x− λ)(x− µ)

(5) (x− λ), (x− λ), (x− λ), (x− λ), (x− λ)

There still remains the sorting into subcases, depending upon confluence of parameters. The most novel case
is the case denoted 1c above, where there is a single elementary divisor (x− λ)Q1(x)Q2(x), with irreducible
monic quadratics [210] Qi. If Q1 6= Q2, the canonical form is merely a direct sum of previous (smaller) cases.

[210] If the underlying field k is algebraically closed, this and more complicated situations do not arise.
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But if Q1 = Q2, a new thing happens in the direct summand k[x]/〈Q(x)2〉 in

k[x]/〈(x− λ)Q(x)2〉 ≈ k[x]/〈x− λ〉 ⊕ k[x]/〈Q(x)2〉

As earlier, letting Q(x) = x2 + a1x+ a2, we can choose a basis

1, x, Q(x), xQ(x) mod Q(x)2

for k[x]/〈Q(x)2〉. Then the endomorphism given by multiplication by x has matrix
0 −a0 0 0
1 −a1 0 0
0 1 0 −a0

0 0 1 −a1



10.5.11 Example: Determine the matrix canonical form for an endomorphism T of a 6-dimensional
k-vectorspace V , where T has the single elementary divisor C(x)2m where C is an irreducible monic cubic

C(x) = x3 + a2x
2 + a1x+ a0

Take basis
1, x, x2, C(x), xC(x), x2C(x) mod C(x)2

for k[x]/〈C(x)2〉. Then the endomorphism T given by multiplication by x has matrix
0 0 −a0 0 0 0
1 0 −a1 0 0 0
0 1 −a2 0 0 0
0 0 1 0 0 −a0

0 0 0 1 0 −a1

0 0 0 0 1 −a2



10.5.12 Example: If the single elementary divisor were C(x)3 with a monic cubic C(x) = x3 + a2x2 +
a1x+ a0, then the basis

1, x, x2, C(x), xC(x), x2C(x), C(x)@, xC(x)2, x2C(x)2 mod C(x)3

gives matrix 

0 0 −a0 0 0 0 0 0 0
1 0 −a1 0 0 0 0 0 0
0 1 −a2 0 0 0 0 0 0
0 0 1 0 0 −a0 0 0 0
0 0 0 1 0 −a1 0 0 0
0 0 0 0 1 −a2 0 0 0
0 0 0 0 0 1 0 0 −a0

0 0 0 0 0 0 1 0 −a1

0 0 0 0 0 0 0 1 −a2


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10.6 Worked examples

10.6.1 Example: Given a 3-by-3 matrix M with integer entries, find A,B integer 3-by-3 matrices with
determinant ±1 such that AMB is diagonal.

Let’s give an algorithmic, rather than existential, argument this time, saving the existential argument for
later.

First, note that given two integers x, y, not both 0, there are integers r, s such that g = gcd(x, y) is expressible
as g = rx+ sy. That is,

(x y )
(
r ∗
s ∗

)
= ( g ∗ )

What we want, further, is to figure out what other two entries will make the second entry 0, and will make
that 2-by-2 matrix invertible (in GL2(Z)). It’s not hard to guess:

(x y )
(
r −y/g
s x/g

)
= ( g 0 )

Thus, given (x y z), there is an invertible 2-by-2 integer matrix
(
a b
c d

)
such that

( y z )
(
a b
c d

)
= ( gcd(y, z) 0 )

That is,

(x y z )

 1 0 0
0 a b
0 c d

 = (x gcd(y, z) 0 )

Repeat this procedure, now applied to x and gcd(y, z): there is an invertible 2-by-2 integer matrix
(
a′ b′

c′ d′

)
such that

(x gcd(y, z) )
(
a′ b′

c′ d′

)
= ( gcd(x, gcd(y, z)) 0 )

That is,

(x gcd(y, z) 0 )

 a′ b′ 0
c′ d′ 0
0 0 1

 = ( gcd(x, y, z) 0 0 )

since gcds can be computed iteratively. That is,

(x y z )

 1 0 0
0 a b
0 c d

 a′ b′ 0
c′ d′ 0
0 0 1

 = ( gcd(x, y, z) 0 0 )

Given a 3-by-3 matrix M , right-multiply by an element A1 of GL3(Z) to put M into the form

MA1 =

 g1 0 0
∗ ∗ ∗
∗ ∗ ∗


where (necessarily!) g1 is the gcd of the top row. Then left-multiply by an element B2 ∈ GL3(Z) to put MA
into the form

B2 ·MA1 =

 g2 ∗ ∗
0 ∗ ∗
0 ∗ ∗


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where (necessarily!) g2 is the gcd of the left column entries of MA1. Then right multiply by A3 ∈ GL3(Z)
such that

B2MA1 ·A3 =

 g3 0 0
∗ ∗ ∗
∗ ∗ ∗


where g3 is the gcd of the top row of B2MA1. Continue. Since these gcds divide each other successively

. . . |g3|g2|g1 6= 0

and since any such chain must be finite, after finitely-many iterations of this the upper-left entry ceases to
change. That is, for some A,B ∈ GL3(Z) we have

BMA =

 g ∗ ∗
0 x y
0 ∗ ∗


and also g divides the top row. That is,

u =

 1 −x/g −y/g
0 1 0
0 0 1

 ∈ GL3(Z)

Then

BMA · u =

 g 0 0
0 ∗ ∗
0 ∗ ∗


Continue in the same fashion, operating on the lower right 2-by-2 block, to obtain a form g 0 0

0 g2 0
0 0 g3


Note that since the r, s such that gcd(x, y) = rx + sy can be found via Euclid, this whole procedure is
effective. And it certainly applies to larger matrices, not necessarily square.

10.6.2 Example: Given a row vector x = (x1, . . . , xn) of integers whose gcd is 1, prove that there exists
an n-by-n integer matrix M with determinant ±1 such that xM = (0, . . . , 0, 1).

(The iterative/algorithmic idea of the previous solution applies here, moving the gcd to the right end instead
of the left.)

10.6.3 Example: Given a row vector x = (x1, . . . , xn) of integers whose gcd is 1, prove that there exists
an n-by-n integer matrix M with determinant ±1 whose bottom row is x.

This is a corollary of the previous exercise. Given A such that

xA = ( 0 . . . 0 gcd(x1, . . . , xn) ) = ( 0 . . . 0 1 )

note that this is saying 
∗ . . . ∗
...

...
∗ . . . ∗
x1 . . . xn

 ·A =


∗ . . . ∗ ∗
...

...
...

∗ . . . ∗ ∗
0 . . . 0 1


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or 
∗ . . . ∗
...

...
∗ . . . ∗
x1 . . . xn

 =


∗ . . . ∗ ∗
...

...
...

∗ . . . ∗ ∗
0 . . . 0 1

 ·A−1

This says that x is the bottom row of the invertible A−1, as desired.

10.6.4 Example: Show that GL(2,F2) is isomorphic to the permutation group S3 on three letters.

There are exactly 3 non-zero vectors in the space F2
2 of column vectors of size 2 with entries in F2. Left

multiplication by elements of GL2(F2) permutes them, since the invertibility assures that no non-zero vector
is mapped to zero. If g ∈ GL2(F2) is such that gv = v for all non-zero vectors v, then g = 12. Thus, the
map

ϕ : GL2(F2) −→ permutations of the set N of non-zero vectors in F2
2

is injective. It is a group homomorphism because of the associativity of matrix multiplication:

ϕ(gh)(v) = (gh)v = g(hv) = ϕ(g)(ϕ(h)(v))

Last, we can confirm that the injective group homomorphism ϕ is also surjective by showing that the order
of GL2(F2) is the order of S3, namely, 6, as follows. An element of GL2(F2) can send any basis for F2

2

to any other basis, and, conversely, is completely determined by telling what it does to a basis. Thus, for
example, taking the first basis to be the standard basis {e1, e2} (where ei has a 1 at the ith position and 0s
elsewhere), an element g can map e1 to any non-zero vector, for which there are 22 − 1 choices, counting all
less 1 for the zero-vector. The image of e2 under g must be linearly independent of e1 for g to be invertible,
and conversely, so there are 22 − 2 choices for ge2 (all less 1 for 0 and less 1 for ge1). Thus,

|GL2(F2)| = (22 − 1)(22 − 2) = 6

Thus, the map of GL2(F2) to permutations of non-zero vectors gives an isomorphism to S3.

10.6.5 Example: Determine all conjugacy classes in GL(2,F3).

First, GL2(F3) is simply the group of invertible k-linear endomorphisms of the F3-vectorspace F2
3. As

observed earlier, conjugacy classes of endomorphisms are in bijection with F3[x]-module structures on F2
3,

which we know are given by elementary divisors, from the Structure Theorem. That is, all the possible
structures are parametrized by monic polynomials d1| . . . |dt where the sum of the degrees is the dimension
of the vector space F2

3, namely 2. Thus, we have a list of irredundant representatives F3[x]/〈Q〉 Q monic quadratic in F3[x]

F3[x]/〈x− λ〉 ⊕F3[x]/〈x− λ〉 λ ∈ F×3

We can write the first case in a so-called rational canonical form, that is, choosing basis 1, x mod Q, so we
have two families 

(1)
(

0 −b
1 −a

)
b ∈ F3, a ∈ F×3

(2)
(
λ 0
0 λ

)
λF×3

But the first family can be usefully broken into three subcases, namely, depending upon the reducibility of
the quadratic, and whether or not there are repeated roots: there are 3 cases

Q(x) = irreducible
Q(x) = (x− λ)(x− µ) (with λ 6= µ)
Q(x) = (x− λ)2



144 Modules over PIDs

And note that if λ 6= µ then (for a field k)

k[x]/〈(x− λ)(x− µ)〉 ≈ k[x]/〈x− λ〉 ⊕ k[x]/〈x− µ〉

Thus, we have

(1a)
(

0 b
1 a

)
x2 + ax+ b irreducible in F3[x]

(1b)
(
λ 0
0 µ

)
λ 6= µ both nonzero (modulo interchange of λ, µ)

(1b)
(
λ 1
0 λ

)
λ ∈ F2

3

(2)
(
λ 0
0 λ

)
λ ∈ F×3

One might, further, list the irreducible quadratics in F3[x]. By counting, we know there are (32 − 3)/2 = 3
irreducible quadratics, and, thus, the guesses x2−2, x2+x+1, and x2−x+1 (the latter two being cyclotomic,
the first using the fact that 2 is not a square mod 3) are all of them.

10.6.6 Example: Determine all conjugacy classes in GL(3,F2).

Again, GL3(F2) is the group of invertible k-linear endomorphisms of the F2-vectorspace F3
2, and conjugacy

classes of endomorphisms are in bijection with F2[x]-module structures on F3
2, which are given by elementary

divisors. So all possibilities are parametrized by monic polynomials d1| . . . |dt where the sum of the degrees
is the dimension of the vector space F3

2, namely 3. Thus, we have a list of irredundant representatives
(1) F2[x]/〈Q〉 Q monic cubic in F2[x]

(2) F2[x]/〈x− 1〉 ⊕F2[x]/〈(x− 1)2〉

(3) F2[x]/〈x− 1〉 ⊕F2[x]/〈x− 1〉 ⊕F2[x]/〈x− 1〉

since the only non-zero element of F2 is λ = 1. We can write the first case in a so-called rational canonical
form, that is, choosing basis 1, x, x2 mod Q, there are three families

(1)

 0 0 1
1 0 −b
0 1 −a

 x3 + ax2 + bx+ 1 in F2[x]

(2)

 1 0 0
0 1 0
0 1 1


(3)

 1 0 0
0 1 0
0 0 1


It is useful to look in detail at the possible factorizations in case 1, breaking up the single summand into
more summands according to relatively prime factors, giving cases

(1a) F2[x]/〈x3 + x+ 1〉

(1a′) F2[x]/〈x3 + x2 + 1〉

(1b) F2[x]/〈(x− 1)(x2 + x+ 1)〉

(1c) F2[x]/〈(x− 1)3〉
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since there are just two irreducible cubics x3 + x + 1 and x3 + x2 + 1, and a unique irreducible quadratic,
x2 + x + 1. (The counting above tells the number, so, after any sort of guessing provides us with the right
number of verifiable irreducibles, we can stop.) Thus, the 6 conjugacy classes have irredundant matrix
representatives

(1a)

 0 0 1
1 0 1
0 1 0

 (1a′)

 0 0 1
1 0 0
0 1 1

 (1b)

 1 0 0
0 0 1
0 1 1

 (1c)

 1 0 0
1 1 0
0 1 1


(2)

 1 0 0
0 1 0
0 1 1

 (3)

 1 0 0
0 1 0
0 0 1



10.6.7 Example: Determine all conjugacy classes in GL(4,F2).

Again, GL4(F2) is invertible k-linear endomorphisms of F4
2, and conjugacy classes are in bijection with

F2[x]-module structures on F4
2, given by elementary divisors. So all possibilities are parametrized by monic

polynomials d1| . . . |dt where the sum of the degrees is the dimension of the vector space F4
2, namely 4. Thus,

we have a list of irredundant representatives



F2[x]/〈Q〉 Q monic quartic

F2[x]/〈x− 1〉 ⊕F2[x]/〈(x− 1)Q(x)〉 Q monic quadratic

F2[x]/〈x− 1〉 ⊕F2[x]/〈x− 1〉 ⊕F2[x]/〈(x− 1)2〉

F2[x]/〈Q〉 ⊕F2[x]/〈Q〉 Q monic quadratic

F2[x]/〈x− 1〉 ⊕F2[x]/〈x− 1〉 ⊕F2[x]/〈x− 1〉 ⊕F2[x]/〈x− 1〉

since the only non-zero element of F2 is λ = 1. We could write all cases using rational canonical form, but
will not, deferring matrix forms till we’ve further decomposed the modules. Consider possible factorizations
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into irreducibles, giving cases

(1a) F2[x]/〈x4 + x+ 1〉

(1a′) F2[x]/〈x4 + x3 + 1〉

(1a′′) F2[x]/〈x4 + x3 + x2 + x+ 1〉

(1b) F2[x]/〈(x− 1)(x3 + x+ 1)〉

(1b′) F2[x]/〈(x− 1)(x3 + x2 + 1)〉

(1c) F2[x]/〈(x− 1)2(x2 + x+ 1)〉

(1d) F2[x]/〈(x2 + x+ 1)2〉

(1e) F2[x]/〈(x− 1)4〉

(2a) F2[x]/〈x− 1〉 ⊕F2[x]/〈(x− 1)(x2 + x+ 1)〉

(2b) F2[x]/〈x− 1〉 ⊕F2[x]/〈(x− 1)3〉

(3) F2[x]/〈x− 1〉 ⊕F2[x]/〈x− 1〉 ⊕F2[x]/〈(x− 1)2〉

(4a) F2[x]/〈x2 + x+ 1〉 ⊕F2[x]/〈x2 + x+ 1〉

(4b) F2[x]/〈(x− 1)2〉 ⊕F2[x]/〈(x− 1)2〉

(5) F2[x]/〈x− 1〉 ⊕F2[x]/〈x− 1〉 ⊕F2[x]/〈x− 1〉 ⊕F2[x]/〈x− 1〉

since there are exactly three irreducible quartics (as indicated), two irreducible cubics, and a single irreducible
quadratic. Matrices are, respectively, and unilluminatingly,

0 0 0 1
1 0 0 1
0 1 0 0
0 0 1 0




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 1




0 0 0 1
1 0 0 1
0 1 0 1
0 0 1 1




1 0 0 0
0 0 0 1
0 1 0 1
0 0 1 0




1 0 0 0
0 0 0 1
0 1 0 0
0 0 1 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 1




0 1 0 0
1 1 0 0
0 1 0 1
0 0 1 1




1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 1




1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1




0 1 0 0
1 1 0 0
0 0 0 1
0 0 1 1




1 0 0 0
1 1 0 0
0 0 1 0
0 0 1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


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10.6.8 Example: Tell a p-Sylow subgroup in GL(3,Fp).

To compute the order of this group in the first place, observe that an automorphism (invertible
endomorphism) can take any basis to any other. Thus, letting e1, e2, e3 be the standard basis, for an
automorphism g the image ge1 can be any non-zero vector, of which there are p3− 1. The image ge2 can be
anything not in the span of ge1, of which there are p3 = p. The image ge3 can be anything not in the span
of ge1 and ge2, of which, because those first two were already linearly independent, there are p3 − p2. Thus,
the order is

|GL3(Fp)| = (p3 − 1)(p3 − p)(p3 − p2)

The power of p that divides this is p3. Upon reflection, a person might hit upon considering the subgroup
of upper triangular unipotent (eigenvalues all 1) matrices 1 ∗ ∗

0 1 ∗
0 0 1


where the super-diagonal entries are all in Fp. Thus, there would be p3 choices for super-diagonal entries,
the right number. By luck, we are done.

10.6.9 Example: Tell a 3-Sylow subgroup in GL(3,F7).

As earlier, the order of the group is

(73 − 1)(73 − 7)(73 − 72) = 26 · 34 · 73 · 19

Of course, since F×7 is cyclic, for example, it has a subgroup T of order 3. Thus, one might hit upon the
subgroup

H = {

 a 0 0
0 b 0
0 0 c

 : a, b, c ∈ T}

is a subgroup of order 33. Missing a factor of 3. But all the permutation matrices (with exactly one non-zero
entry in each row, and in each column, and that non-zero entry is 1) 1 0 0

0 1 0
0 0 1

 1 0 0
0 0 1
0 1 0

 0 1 0
1 0 0
0 0 1

 0 0 1
0 1 0
1 0 0

 0 0 1
1 0 0
0 1 0

 0 1 0
0 0 1
1 0 0


These normalize all diagonal matrices, and also the subgroup H of diagonal matrices with entries in T .
The group of permutation matrices consisting of the identity and the two 3-cycles is order 3, and putting
it together with H (as a semi-direct product whose structure is already described for us) gives the order 34

subgroup.

10.6.10 Example: Tell a 19-Sylow subgroup in GL(3,F7).

Among the Stucture Theorem canonical forms for endomorphisms of V = F3
7, there are F7[x]-module

structures
V ≈ F7[x]/〈 irreducible cubic C〉

which are invertible because of the irreducibility. Let α be the image of x in F7[x]/〈C〉. Note that
F7[α] = F7[x]/C also has a natural ring structure. Then the action of any P (x) in k[x] on V (via this
isomorphism) is, of course,

P (x) ·Q(α) = P (α) ·Q(α) = (P ·Q)(x) mod C(x)

for any Q(x) ∈ F7[x]. Since C is irreducible, there are no non-trivial zero divisors in the ring F7[α]. Indeed,
it’s a field. Thus, F7[α]× injects to EndF7V . The point of saying this is that, therefore, if we can find an



148 Modules over PIDs

element of F7[α]× of order 19 then we have an endomorphism of order 19, as well. And it is arguably simpler
to hunt around inside F73 = F7[α] than in groups of matrices.

To compute anything explicitly in F73 we need an irreducible cubic. Luckily, 7 = 1 mod 3, so there are
many non-cubes mod 7. In particular, there are only two non-zero cubes mod 7, ±1. Thus, x3 − 2 has no
linear factor in F7[x], so is irreducible. The sparseness (having not so many non-zero coefficients) of this
polynomial will be convenient when computing, subsequently.

Now we must find an element of order 19 in F7[x]/〈x3−2〉. There seems to be no simple algorithm for choosing
such a thing, but there is a reasonable probabilistic approach: since F×73 is cyclic of order 73 − 1 = 19 · 18, if
we pick an element g at random the probability is (19 − 1)/19 that its order will be divisible by 19. Then,
whatever its order is, g18 will have order either 19 or 1. That is, if g18 is not 1, then it is the desired thing.
(Generally, in a cyclic group of order p · m with prime p and p not dividing m, a random element g has
probability (p− 1)/p of having order divisible by p, and in any case gm will be either 1 or will have order p.)

Since elements of the ground field F×7 are all of order 6, these would be bad guesses for the random g. Also,
the image of x has cube which is 2, which has order 6, so x itself has order 18, which is not what we want.
What to guess next? Uh, maybe g = x+ 1? We can only try. Compute

(x+ 1)18 = (((x+ 1)3)2)3 mod x3 − 2

reducing modulo x3 − 2 at intermediate stages to simplify things. So

g3 = x3 + 3x2 + 3x+ 1 = 3x2 + 3x+ 3 mod x3 − 2 = 3 · (x2 + x+ 1)

A minor piece of luck, as far as computational simplicity goes. Then, in F7[x],

g6 = 32 · (x2 + x+ 1)2 = 2 · (x4 + 2x3 + 3x2 + 2x+ 1) = 2 · (2x+ 2 · 2 + 3x2 + 2x+ 1)

= 2 · (3x2 + 4x+ 5) = 6x2 + x+ 3 mod x3 − 2

Finally,
g18 = (g6)3 = (6x2 + x+ 3)3 mod x3 − 2

= 63 ·x6 + (3 · 62 · 1)x5 + (3 · 62 · 3 + 3 · 6 · 12)x4 + (6 · 6 · 1 · 3 + 13)x3 + (3 · 6 · 32 + 3 · 12 · 3)x2 + (3 · 1 · 32)x+ 33

= 6x6 + 3x5 + 6x4 + 4x3 + 3x2 + 6x+ 6 = 6 · 4 + 3 · 2 · x2 + 6 · 2x+ 4 · 2 + 3x2 + 6x+ 6 = 2x2 + 4x+ 3

Thus, if we’ve not made a computational error, the endomorphism given by multiplication by 2x2 + 4x+ 3
in F7[x]/〈x3 − 2〉 is of order 19.

To get a matrix, use (rational canonical form) basis e1 = 1, e2 = x, e3 = x2. Then the matrix of the
endomorphism is

M =

 3 4 1
4 3 4
2 4 3


Pretending to be brave, we check by computing the 19th power of this matrix, modulo 7. Squaring repeatedly,
we have (with determinants computed along the way as a sort of parity-check, which in reality did discover
a computational error on each step, which was corrected before proceeding)

M2 =

 1 0 6
3 1 0
0 3 1

 M4 =

 6 3 2
1 6 3
5 1 6

 M8 =

 0 4 2
1 0 4
2 1 0

 M16 =

 6 5 5
6 6 5
6 6 6


Then

M18 = M2 ·M16 =

 1 0 6
3 1 0
0 3 1

 ·M16 =

 6 5 5
6 6 5
6 6 6

 =

 0 1 1
4 0 1
4 4 0


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M19 = M ·M18 =

 3 4 1
4 3 4
2 4 3

 ·
 0 1 1

4 0 1
4 4 0

 = the identity

Thus, indeed, we have the order 19 element.

Note that, in reality, without some alternative means to verify that we really found an element of order 19,
we could easily be suspicious that the numbers were wrong.

Exercises

10.1 Determine all conjugacy classes in GL2(F5).

10.2 Determine all conjugacy classes in GL2(F4).

10.3 Determine all conjugacy classes in GL5(F2).

10.4 Let k be an algebraically closed field. Determine all conjugacy classes in GL2(k).

10.5 Let k be an algebraically closed field. Determine all conjugacy classes in GL3(k).

10.6 Find a 31-Sylow subgroup of GL3(F5).

10.7 Find a 2-Sylow subgroup of GL2(Q).

10.8 Find a 2-Sylow subgroup of GL2(Q(i)).

10.9 Find a 5-Sylow subgroup of GL4(Q).
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11. Finitely-generated modules

11.1 Free modules
11.2 Finitely-generated modules over domains
11.3 PIDs are UFDs
11.4 Structure theorem, again
11.5 Recovering the earlier structure theorem
11.6 Submodules of free modules

11.1 Free modules

The following definition is an example of defining things by mapping properties, that is, by the way the object
relates to other objects, rather than by internal structure. The first proposition, which says that there is at
most one such thing, is typical, as is its proof.

Let R be a commutative ring with 1. Let S be a set. A free R-module M on generators S is an R-module
M and a set map i : S −→ M such that, for any R-module N and any set map f : S −→ N , there is a
unique R-module homomorphism f̃ : M −→ N such that

f̃ ◦ i = f : S −→ N

The elements of i(S) in M are an R-basis for M .

11.1.1 Proposition: If a free R-moduleM on generators S exists, it is unique up to unique isomorphism.

Proof: First, we claim that the only R-module homomorphism F : M −→ M such that F ◦ i = i is the
identity map. Indeed, by definition, [211] given i : S −→M there is a unique ĩ : M −→M such that ĩ◦ i = i.
The identity map on M certainly meets this requirement, so, by uniqueness, ĩ can only be the identity.

Now let M ′ be another free module on generators S, with i′ : S −→M ′ as in the definition. By the defining
property of (M, i), there is a unique ĩ′ : M −→ M ′ such that ĩ′ ◦ i = i′. Similarly, there is a unique ĩ such

[211] Letting letting i : S −→M take the role of f : S −→ N in the definition.
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that ĩ ◦ i′ = i. Thus,
i = ĩ ◦ i′ = ĩ ◦ ĩ′ ◦ i

Similarly,
i′ = ĩ′ ◦ i = ĩ′ ◦ ĩ ◦ i′

From the first remark of this proof, this shows that

ĩ ◦ ĩ′ = identity map on M

ĩ′ ◦ ĩ = identity map on M ′

So ĩ′ and ĩ are mutual inverses. That is, M and M ′ are isomorphic, and in a fashion that respects the maps
i and i′. Further, by uniqueness, there is no other map between them that respects i and i′, so we have a
unique isomorphism. ///

Existence of a free module remains to be demonstrated. We should be relieved that the uniqueness result
above assures that any successful construction will invariably yield the same object. Before proving existence,
and, thus, before being burdened with irrelevant internal details that arise as artifacts of the construction,
we prove the basic facts about free modules.

11.1.2 Proposition: A free R-module M on generators i : S −→ M is generated by i(S), in the sense
that the only R-submodule of M containing the image i(S) is M itself.

Proof: Let N be the submodule generated by i(S), that is, the intersection of all submodules of M
containing i(S). Consider the quotient M/N , and the map f : S −→ M/N by f(s) = 0 for all s ∈ S. Let
ζ : M −→ M/N be the 0 map. Certainly ζ ◦ i = f . If M/N 6= 0, then the quotient map q : M −→ M/N
is not the zero map ζ, and also q ◦ i = f . But this would contradict the uniqueness in the definition of M .

///

For a set X of elements of an R-module M , if a relation∑
x∈X

rx x = 0

with rx ∈ R and x ∈ M (with all but finitely-many coefficients rx being 0) implies that all coefficients rx
are 0, say that the elements of X are linearly independent (over R).

11.1.3 Proposition: Let M be a free R-module on generators i : S −→ M . Then any relation (with
finitely-many non-zero coefficients rs ∈ R) ∑

s∈S
rs i(s) = 0

must be trivial, that is, all coefficients rs are 0. That is, the elements of i(S) are linearly independent.

Proof: Suppose
∑
s rs i(s) = 0 in the free module M . To show that every coefficient rs is 0, fix so ∈ S and

map f : S −→ R itself by

f(s) =
{

0 (s 6= so)
1 (s = so)

Let f̃ be the associated R-module homomorphism f̃ : M −→ R. Then

0 = f̃(0) = f̃(
∑
s

rs i(s)) = rso

This holds for each fixed index so, so any such relation is trivial. ///
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11.1.4 Proposition: Let f : B −→ C be a surjection of R-modules, where C is free on generators S
with i : S −→ C. Then there is an injection j : C −→ B such that [212]

f ◦ j = 1C and B = (ker f)⊕ j(C)

11.1.5 Remark: The map j : C −→ B of this proposition is a section of the surjection f : B −→ C.

Proof: Let {bs : s ∈ S} be any set of elements of B such that f(bs) = i(s). Invoking the universal property
of the free module, given the choice of {bx} there is a unique R-module homomorphism j : C −→ B such
that (j ◦ i)(s) = bs. It remains to show that jC ⊕ ker f = B. The intersection jC ∩ ker f is trivial, since for∑
s rs j(s) in the kernel (with all but finitely-many rs just 0)

C 3 0 = f

(∑
s

rs j(s)

)
=
∑
s

rs i(s)

We have seen that any such relation must be trivial, so the intersection f(C) ∩ kerf is trivial.

Given b ∈ B, let f(b) =
∑
s rs i(s) (a finite sum), using the fact that the images i(s) generate the free

module C. Then

f(b− j(f(b))) = f(b−
∑
s

rsbs) == f(b)−
∑
s

rsf(bs) =
∑
s

rsi(s)−
∑
s

rsi(s) = 0

Thus, j(C) + ker f = B. ///

We have one more basic result before giving a construction, and before adding any hypotheses on the ring
R.

The following result uses an interesting trick, reducing the problem of counting generators for a free module
F over a commutative ring R with 1 to counting generators for vector spaces over a field R/M , where M is
a maximal proper ideal in R. We see that the number of generators for a free module over a commutative
ring R with unit 1 has a well-defined cardinality, the R-rank of the free module.

11.1.6 Theorem: Let F be a free R-module on generators i : S −→ F , where R is a commutative ring
with 1. Suppose that F is also a free R-module on generators j : T −→ F . Then |S| = |T |.

Proof: Let M be a maximal proper ideal in R, so k = R/M is a field. Let

E = M · F = collection of finite sums of elements mx, m ∈M,x ∈ F

and consider the quotient
V = F/E

with quotient map q : F −→ V . This quotient has a canonical k-module structure

(r +M) · (x+M · F ) = rx+M · F

We claim that V is a free k-module on generators q◦i : S −→ V , that is, is a vector space on those generators.
Lagrange’s replacement argument shows that the cardinality of the number of generators for a vector space
over a field is well-defined, so a successful comparison of generators for the original module and this vector
space quotient would yield the result.

[212] The property which we are about to prove is enjoyed by free modules is the defining property of projective

modules. Thus, in these terms, we are proving that free modules are projective.
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To show that V is free over k, consider a set map f : S −→W where W is a k-vectorspace. The k-vectorspace
W has a natural R-module structure compatible with the k-vectorspace structure, given by

r · (x+M · F ) = rx+M · F

Let f̃ : F −→ W be the unique R-module homomorphism such that f̃ ◦ i = f . Since m · w = 0 for any
m ∈M and w ∈W , we have

0 = m · f(s) = m · f̃(i(s)) = f̃(m · i(s))

so
ker f̃ ⊃M · F

Thus, f̄ : V −→W defined by
f̄(x+M · F ) = f̃(x)

is well-defined, and f̄ ◦ (q ◦ i) = f . This proves the existence part of the defining property of a free module.

For uniqueness, the previous argument can be reversed, as follows. Given f̄ : V −→W such that f̄◦(q◦i) = f ,
let f̃ = f̄ ◦ q. Since there is a unique f̃ : F −→W with f̃ ◦ i = f , there is at most one f̄ . ///

Finally, we construct free modules, as a proof of existence. [213]

Given a non-empty set S, let M be the set of R-valued functions on S which take value 0 outside a finite
subset of S (which may depend upon the function). Map i : S −→M by letting i(s) be the function which
takes value 1 at s ∈ S and is 0 otherwise. Add functions value-wise, and let R act on M by value-wise
multiplication.

11.1.7 Proposition: The M and i just constructed is a free module on generators S. In particular,
given a set map f : S −→ N for another R-module N , for m ∈M define f̃(m) ∈ N by [214]

f̃(m) =
∑
s∈S

m(s) · f(s)

Proof: We might check that the explicit expression (with only finitely-many summands non-zero) is an
R-module homomorphism: that it respects addition in M is easy. For r ∈ R, we have

f̃(r ·m) =
∑
s∈S

(r ·m(s)) · f(s) = r ·
∑
s∈S

m(s) · f(s) = r · f̃(m)

And there should be no other R-module homomorphism from M to N such that f̃ ◦ i = f . Let F : M −→ N
be another one. Since the elements {i(s) : s ∈ S} generate M as an R-module, for an arbitrary collection
{rs ∈ R : s ∈ S} with all but finitely-many 0,

F

(∑
s∈S

rs · i(s)

)
=
∑
s∈S

rs · F (i(s)) =
∑
s∈S

rs · f(s) = f̃

(∑
s∈S

rs · i(s)

)

so necessarily F = f̃ , as desired. ///

[213] Quite pointedly, the previous results did not use any explicit internal details of what a free module might be, but,

rather, only invoked the external mapping properties.

[214] In this formula, the function m on S is non-zero only at finitely-many s ∈ S, so the sum is finite. And m(s) ∈ R
and f(s) ∈ N , so this expression is a finite sum of R-multiples of elements of N , as required.
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11.1.8 Remark: For finite generator sets often one takes

S = {1, 2, . . . , n}

and then the construction above of the free module on generators S can be identified with the collection Rn

of ordered n-tuples of elements of R, as usual.

11.2 Finitely-generated modules over a domain

In the sequel, the results will mostly require that R be a domain, or, more stringently, a principal ideal
domain. These hypotheses will be carefully noted.

11.2.1 Theorem: Let R be a principal ideal domain. Let M be a free R-module on generators
i : S −→M . Let N be an R-submodule. Then N is a free R-module on at most |S| generators. [215]

Proof: Induction on the cardinality of S. We give the proof for finite sets S. First, for M = R1 = R a free
module on a single generator, an R-submodule is an ideal in R. The hypothesis that R is a PID assures that
every ideal in R needs at most one generator. This starts the induction.

Let M = Rm, and let p : Rm −→ Rm−1 be the map

p(r1, r2, r3, . . . , rm) = (r2, r3, . . . , rm)

The image p(N) is free on ≤ m − 1 generators, by induction. From the previous section, there is always a
section j : p(N) −→ N such that p ◦ j = 1p(N) and

N = ker p|N ⊕ j(p(N))

Since p ◦ j = 1p(N), necessarily j is an injection, so is an isomorphism to its image, and j(p(N)) is free on
≤ m−1 generators. And ker p|N is a submodule of R, so is free on at most 1 generator. We would be done if
we knew that a direct sum M1⊕M2 of free modules M1,M2 on generators i1 : Si −→M1 and i2 : S2 −→M2

is a free module on the disjoint union S = S1 ∪ S2 of the two sets of generators. We excise that argument
to the following proposition. ///

11.2.2 Proposition: A direct sum [216] M = M1 ⊕ M2 of free modules M1,M2 on generators
i1 : Si −→ M1 and i2 : S2 −→ M2 is a free module on the disjoint union S = S1 ∪ S2 of the two sets
of generators. [217]

Proof: Given another module N and a set map f : S −→ N , the restriction fj of f to Sj gives a unique
module homomorphism f̃j : Mj −→M such that f̃j ◦ ij = fj . Then

f̃(m1, m2) = (f1m1, f2m2)

[215] The assertion of the theorem is false without some hypotheses on R. For example, even in the case that M has a

single generator, to know that every submodule needs at most a single generator is exactly to assert that every ideal

in R is principal.

[216] Though we will not use it at this moment, one can give a definition of direct sum in the same mapping-theoretic

style as we have given for free module. That is, the direct sum of a family {Mα : α ∈ A} of modules is a module

M and homomorphisms iα : Mα −→ M such that, for every family of homomorphisms fα : Mα −→ N to another

module N , there is a unique f : M −→ N such that every fα factors through f in the sense that fα = f ◦ iα.

[217] This does not need the assumption that R is a principal ideal domain.
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is a module homomorphism from the direct sum to N with f̃ ◦ i = f . On the other hand, given any map
g : M −→ N such that g ◦ i = f , by the uniqueness on the summands M1 and M2 inside M , if must be that
g ◦ ij = fj for j = 1, 2. Thus, this g is f̃ . ///

For an R-module M , for m ∈M the annihilator AnnR(m) of m in R is

AnnR(m) = {r ∈ R : rm = 0}

It is easy to check that the annihilator is an ideal in R. An element m ∈ M is a torsion element of M if
its annihilator is not the 0 ideal. The torsion submodule M tors of M is

M tors = {m ∈M : AnnR(m) 6= {0}}

A module is torsion free if its torsion submodule is trivial.

11.2.3 Proposition: For a domain R, the torsion submodule M tors of a given R-module M is an
R-submodule of M , and M/M tors is torsion-free.

Proof: For torsion elements m,n in M , let x be a non-zero element of AnnR(m) and y a non-zero element
of Ann(n). Then xy 6= 0, since R is a domain, and

(xy)(m+ n) = y(xm) + x(yn) = y · 0 + x · 0 = 0

And for r ∈ R,
x(rm) = r(xm) = r · 0 = 0

Thus, the torsion submodule is a submodule.

To show that the quotient M/M tors is torsion free, suppose r · (m + M tors) ⊂ M tors for r 6= 0. Then
rm ∈ M tors. Thus, there is s 6= 0 such that s(rm) = 0. Since R is a domain, rs 6= 0, so m itself is torsion,
so m+M tors = M tors, which is 0 in the quotient. ///

An R-module M is finitely generated if there are finitely-many m1, . . . ,mn such that
∑
i Rmi = M . [218]

11.2.4 Proposition: Let R be a domain. [219] Given a finitely-generated [220] R-module M , there is
a (not necessarily unique) maximal free submodule F , and M/F is a torsion module.

Proof: Let X be a set of generators for M , and let S be a maximal subset of X such that (with inclusion
i : S −→ M) the submodule generated by S is free. To be careful, consider why there is such a maximal
subset. First, for φ not to be maximal means that there is x1 ∈ X such that Rx1 ⊂ M is free on generator
{x1}. If {x1} is not maximal with this property, then there is x2 ∈ X such that Rx1 + Rx2 is free on
generators {x1, x2}. Since X is finite, there is no issue of infinite ascending unions of free modules. Given
x ∈ X but not in S, by the maximality of S there are coefficients 0 6= r ∈ R and rs ∈ R such that

rx+
∑
s∈S

rs · i(s) = 0

[218] This is equivalent to saying that the mi generate M in the sense that the intersection of submodules containing

all the mi is just M itself.

[219] The hypothesis that the ring R is a domain assures that if rixi = 0 for i = 1, 2 with 0 6= ri ∈ R and xi in an

R-module, then not only (r1r2)(x1 + x2) = 0 but also r1r2 6= 0. That is, the notion of torsion module has a simple

sense over domains R.

[220] The conclusion is false in general without an assumption of finite generation. For example, the Z-module Q is

the ascending union of the free Z-modules 1
N · Z, but is itself not free.
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so M/F is torsion. ///

11.2.5 Theorem: Over a principal ideal domain R a finitely-generated torsion-free module M is free.

Proof: Let X be a finite set of generators of M . From the previous proposition, let S be a maximal subset
of X such that the submodule F generated by the inclusion i : S −→ M is free. Let x1, . . . , xn be the
elements of X not in S, and since M/F is torsion, for each xi there is 0 6= ri ∈ R be such that rixi ∈ F .
Let r =

∏
i ri. This is a finite product, and is non-zero since R is a domain. Thus, r ·M ⊂ F . Since F is

free, rM is free on at most |S| generators. Since M is torsion-free, the multiplication by r map m −→ rm
has trivial kernel in M , so M ≈ rM . That is, M is free. ///

11.2.6 Corollary: Over a principal ideal domain R a finitely-generated module M is expressible as

M ≈M tors ⊕ F

where F is a free module and M tors is the torsion submodule of M .

Proof: We saw above that M/M tors is torsion-free, so (being still finitely-generated) is free. The quotient
map M −→M/M tors admits a section σ : M/M tors −→M , and thus

M = M tors ⊕ σ(M/M tors) = M tors ⊕ free

as desired. ///

11.2.7 Corollary: Over a principal ideal domain R, a submodule N of a finitely-generated R-module
M is finitely-generated.

Proof: Let F be a finitely-generated free module which surjects to M , for example by choosing generators
S for M and then forming the free module on S. The inverse image of N in F is a submodule of a free
module on finitely-many generators, so (from above) needs at most that many generators. Mapping these
generators forward to N proves the finite-generation of N . ///

11.2.8 Proposition: LetR be a principal ideal domain. Let e1, . . . , ek be elements of a finitely-generated
free R-module M which are linearly independent over R, and such that

M/(Re1 + . . .+Rek) is torsion-free, hence free

Then this collection can be extended to an R-basis for M .

Proof: Let N be the submodule N = Re1 + . . . + Rek generated by the ei. The quotient M/N , being
finitely-generated and torsion-less, is free. Let ek+1, . . . , en be elements of M whose images in M/N are a
basis for M/N . Let q : M −→M/N be the quotient map. Then, as above, q has a section σ : M/N −→M
which takes q(ei) to ei. And, as above,

M = ker q ⊕ σ(M/N) = N ⊕ σ(M/N)

Since ek+1, . . . , en is a basis for M/N , the collection of all e1, . . . , en is a basis for M . ///
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11.3 PIDs are UFDs

We have already observed that Euclidean rings are unique factorization domains and are principal ideal
domains. The two cases of greatest interest are the ordinary integers Z and polynomials k[x] in one variable
over a field k. But, also, we do have

11.3.1 Theorem: A principal ideal domain is a unique factorization domain.

Before proving this, there are relatively elementary remarks that are of independent interest, and useful in
the proof. Before anything else, keep in mind that in a domain R (with identity 1), for x, y ∈ R,

Rx = Ry if and only if x = uy for some unit u ∈ R×

Indeed, x ∈ Ry implies that x = uy, while y ∈ Rx implies y = vx for some v, and then y = uv · y or
(1 − uv)y = 0. Since R is a domain, either y = 0 (in which case this discussion was trivial all along) or
uv = 1, so u and v are units, as claimed.

Next recall that divisibility x|y is inclusion-reversion for the corresponding ideals, that is

Rx ⊃ Ry if and only if x|y

Indeed, y = mx implies y ∈ Rx, so Ry ⊂ Rx. Conversely, Ry ⊂ Rx implies y ∈ Rx, so y = mx for some
m ∈ R.

Next, given x, y in a PID R, we claim that g ∈ R such that

Rg = Rx+Ry

is a greatest common divisor for x and y, in the sense that for any d ∈ R dividing both x and y, also d
divides g (and g itself divides x and y). Indeed, d|x gives Rx ⊂ Rd. Thus, since Rd is closed under addition,
any common divisor d of x and y has

Rx+Ry ⊂ Rd

Thus, g ∈ Rg ⊂ Rd, so g = rd for some r ∈ R. And x ∈ Rg and y ∈ Rg show that this g does divide both x
and y.

Further, note that since a gcd g = gcd(x, y) of two elements x, y in the PID R is a generator for Rx + Ry,
this gcd is expressible as g = rx+ sy for some r, s ∈ R.

In particular, a point that starts to address unique factorization is that an irreducible element p in a PID R
is prime, in the sense that p|ab implies p|a or p|b. Indeed, the proof is the same as for integers, as follows. If
p does not divide a, then the irreducibility of p implies that 1 = gcd(p, a), since (by definition of irreducible)
p has no proper divisors. Let r, s ∈ R be such that 1 = rp+ sa. Let ab = tp. Then

b = b · 1 = b · (rp+ sa) = br · p+ s · ab = p · (br + st)

and, thus, b is a multiple of p.

11.3.2 Corollary: (of proof) Any ascending chain

I1 ⊂ I2 ⊂ . . .

of ideals in a principal ideal domain is finite, in the sense that there is an index i such that

Ii = Ii+1 = Ii+2 = . . .

That is, a PID is Noetherian.
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Proof: First, prove the Noetherian property, that any ascending chain of proper ideals

I1 ⊂ I2 ⊂ . . .

in R must be finite. Indeed, the union I is still a proper ideal, since if it contained 1 some Ii would already
contain 1, which is not so. Further, I = Rx for some x ∈ R, but x must lie in some Ii, so already I = Ii.
That is,

Ii = Ii+1 = Ii+2 = . . .

Let r be a non-unit in R. If r has no proper factorization r = xy (with neither x nor y a unit), then r is
irreducible, and we have factored r. Suppose r has no factorization into irreducibles. Then r itself is not
irreducible, so factors as r = x1y1 with neither x1 nor y1 a unit. Since r has no factorization into irreducibles,
one of x1 or y1, say y1, has no factorization into irreducibles. Thus, y1 = x2y2 with neither x2 nor y2 a unit.
Continuing, we obtain a chain of inclusions

Rr ⊂ Ry1 ⊂ Ry2 ⊂ . . .

with all inclusions strict. This is impossible, by the Noetherian-ness property just proven. [221] That is, all
ring elements have factorizations into irreducibles.

The more serious part of the argument is the uniqueness of the factorization, up to changing irreducibles by
units, and changing the ordering of the factors. Consider

pe11 . . . pemm = (unit) · qf1
1 . . . qfnn

where the pi and qj are irreducibles, and the exponents are positive integers. The fact that p1|ab implies
p1|a or p1|b (from above) shows that p1 must differ only by a unit from one of the qj . Remove this factor
from both sides and continue, by induction. ///

11.4 Structure theorem, again

The form of the following theorem is superficially stronger than our earlier version, and is more useful.

11.4.1 Theorem: Let R be a principal ideal domain, M a finitely-generated free module over R, and
N an R-submodule of M . Then there are elements [222] d1| . . . |dt of R, uniquely determined up to R×, and
an R-module basis m1, . . . ,mt of M , such that d1e1, . . . , dtet is an R-basis of N (or diei = 0).

Proof: From above, the quotient M/N has a well-defined torsion submodule T , and F = (M/N)/T is free.
Let q : M −→ (M/N)/T be the quotient map. Let σ : F −→M be a section of q, such that

M = ker q ⊕ σ(F )

Note that N ⊂ ker q, and (ker q)/N is a torsion module. The submodule ker q of M is canonically defined,
though the free complementary submodule [223] σ(F ) is not. Since σ(F ) can be described as a sum

[221] Yes, this proof actually shows that in any Noetherian commutative ring with 1 every element has a factorization

into irreducibles. This does not accomplish much, however, as the uniqueness is far more serious than existence of

factorization.

[222] Elementary divisors.

[223] Given a submodule A of a module B, a complementary submodule A′ to A in B is another submodule A′ of

B such that B = A⊕A′. In general, submodules do not admit complementary submodules. Vector spaces over fields

are a marked exception to this failure.
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of a uniquely-determined (from above) number of copies R/〈0〉, we see that this free submodule in M
complementary to ker q gives the 0 elementary divisors. It remains to treat the finitely-generated torsion
module (ker q)/N . Thus, without loss of generality, suppose that M/N is torsion (finitely-generated).

For λ in the set of R-linear functionals HomR(M,R) on M , the image λ(M) is an ideal in R, as is the image
λ(N). Let λ be such that λ(N) is maximal among all ideals occurring as λ(N). [224] Let λ(N) = Rx for
some x ∈ R. We claim that x 6= 0. Indeed, express an element n ∈ N as n =

∑
i riei for a basis ei of M

with ri ∈ R, and with respect to this basis define dual functionals µi ∈ HomR(M,R) by

µi(
∑
j

sj ej) = ei (where sj ∈ R)

If n 6= 0 then some coefficient ri is non-zero, and µi(n) = ri. Take n ∈ N such that λ(n) = x.

Claim µ(n) ∈ Rx for any µ ∈ HomR(M,R). Indeed, if not, let r, s ∈ R such that rλ(n) + sµ(n) is the gcd of
the two, and (rλ+ sµ)(N) is a strictly larger ideal than Rx, contradiction.

Thus, in particular, µi(n) ∈ Rx for all dual functionals µi for a given basis ei of M . That is, n = xm for
some m ∈M . Then λ(m) = 1. And

M = Rm⊕ kerλ

since for any m′ ∈M
λ(m′ − λ(m′)m) = λ(m′)− λ(m′) · 1 = 0

Further, for n′ ∈ N we have λ(n′) ∈ Rx. Let λ(n′) = rx. Then

λ(n′ − r · n) = λ(n′)− r · λ(n) = λ(n′)− rx = 0

That is,
N = Rn⊕ kerλ|N

Thus,
M/N ≈ Rm/Rn⊕ (kerλ)/(kerλ|N )

with n = xm. And
Rm/Rn = Rm/Rxn ≈ R/Rx = R/〈x〉

The submodule kerλ is free, being a submodule of a free module over a PID, as is kerλ|N . And the number
of generators is reduced by 1 from the number of generators of M . Thus, by induction, we have a basis
m1, . . . ,mt of M and x1, . . . , xt in R such that ni = ximi is a basis for N , using functional λi whose kernel
is Rmi+1 + . . .+Rmt, and λi(ni) = xi.

We claim that the above procedure makes xi|xi+1. By construction,

ni+1 ∈ kerλi and ni ∈ kerλi+1

Thus, with r, s ∈ R such that rxi + sxi+1 is the greatest common divisor g = gcd(xi, xi+1), we have

(rλi + sλi+1)(ni + ni+1) = r · λi(ni) + r · λi(ni+1) + +s · λi+1(ni) + s · λi+1(ni+1)

= r · xi + 0 + +0 + s · xi+1 = gcd(xi, xi+1)

[224] At this point it is not clear that this maximal ideal is unique, but by the end of the proof we will see that it is.

The fact that any ascending chain of proper ideals in a PID has a maximal element, that is, that a PID is Noetherian,

is proven along with the proof that a PID is a unique factorization domain.
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That is, Rg ⊃ Rxi and Rg ⊃ Rxi+1. The maximality property of Rxi requires that Rxi = Rg. Thus,
Rxi+1 ⊂ Rxi, as claimed.

This proves existence of a decomposition as indicated. Proof of uniqueness is far better treated after
introduction of a further idea, namely, exterior algebra. Thus, for the moment, we will not prove uniqueness,
but will defer this until the later point when we treat exterior algebra.

11.5 Recovering the earlier structure theorem

The above structure theorem on finitely-generated free modules M over PIDs R and submodules N ⊂ M
gives the structure theorem for finitely-generated modules as a corollary, as follows.

Let F be a finitely-generated R-module with generators [225] f1, . . . , fn. Let S = {f1, . . . , fn}, and let M be
the free R-module on generators i : S −→M . Let

q : M −→ F

be the unique R-module homomorphism such that q(i(fk)) = fk for each generator fk. Since q(M) contains
all the generators of F , the map q is surjective. [226]

Let N = ker q, so by a basic isomorphism theorem

F ≈M/N

By the theorem of the last section, M has a basis m1, . . . ,mt and there are uniquely determined [227]

r1|r2| . . . |rt ∈ R such that r1m1, . . . , rtmt is a basis for N . Then

F ≈M/N ≈ (Rm1/Rr1m1)⊕ . . .⊕ (Rmt/Rrmt) ≈ R/〈r1〉 ⊕ . . . R/〈rt〉

since
Rmi/Rrimi ≈ R/〈ri〉

by
rmi +Rrimi −→ r +Rri

This gives an expression for F of the sort desired. ///

11.6 Submodules of free modules

Let R be a principal ideal domain. Let A be a well-ordered set, and M a free module on generators eα for
α ∈ A. Let N be a submodule of M .

For α ∈ A, let
Iα = {r ∈ R : there exist rβ , β < α : r · eα +

∑
β<α

rβ · eβ ∈ N}

[225] It does not matter whether or not this set is minimal, only that it be finite.

[226] We will have no further use for the generators fk of F after having constructed the finitely-generated free module

M which surjects to F .

[227] Uniquely determined up to units.
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Since R is a PID, the ideal Iα has a single generator ρα (which may be 0). Let nα ∈ N be such that

nα = ρα · eα +
∑
β<α

rβ · eβ

for some rβ ∈ R. This defines ρα and nα for all α ∈ A by transfinite induction.

11.6.1 Theorem: N is free on the (non-zero elements among) nα.

Proof: It is clear that Iα is an ideal in R, so at least one element nα exists, though it may be 0. For any
element n ∈ N lying in the span of {eβ : β ≤ α}, for some r ∈ R the difference n − rnα lies in the span of
{eβ : β < α}.

We claim that the nα span N . Suppose not, and let α ∈ A be the first index such that there is n ∈ N not
in that span, with n expressible as n =

∑
β≤α rβeβ . Then rα = r · ρα for some r ∈ R, and for suitable

coefficients sβ ∈ R
n− rnα =

∑
β<α

sβ · eβ

This element must still fail to be in the span of the nγ ’s. Since that sum is finite, the supremum of the
indices with non-zero coefficient is strictly less than α. This gives a contradiction to the minimality of α,
proving that the nα span N .

Now prove that the (non-zero) nα’s are linearly independent. Indeed, if we have a non-trivial (finite) relation

0 =
∑
β

rβ · nβ

let α be the highest index (among finitely-many) with rα 6= 0 and nα 6= 0. Since nα is non-zero, it must be
that ρα 6= 0, and then the expression of nα in terms of the basis {eγ} includes eα with non-zero coefficient
(namely, ρα). But no nβ with β < α needs eα in its expression, so for suitable sβ ∈ R

0 =
∑
β

rβ · nβ = rα ρα · eα +
∑
β<α

sβ · eβ

contradicting the linear independence of the eα’s. Thus, the nβ ’s are linearly independent. ///

Exercises

11.1 Find two integer vectors x = (x1, x2) and y = (y1, y2) such that gcd(x1, x2) = 1 and gcd(y1, y2) = 1,
but Z2/(Zx+ Zy) has non-trivial torsion.

11.2 Show that the Z-module Q is torsion-free, but is not free.

11.3 Let G be the group of positive rational numbers under multiplication. Is G a free Z-module? Torsion-
free? Finitely-generated?

11.4 Let G be the quotient group Q/Z. Is G a free Z-module? Torsion-free? Finitely-generated?

11.5 Let R = Z[
√

5], and let M = R ·2 +R · (1 +
√

5) ⊂ Q(
√

5). Show that M is not free over R, although
it is torsion-free.

11.6 Given an m-by-n matrix M with entries in a PID R, give an existential argument that there are
matrices A (n-by-n) and B (m-by-m) with entries in R and with inverses with entries in R, such that AMB
is diagonal.
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11.7 Describe an algorithm which, given a 2-by-3 integer matrix M , finds integer matrices A, B (with
integer inverses) such that AMB is diagonal.

11.8 Let A be a torsion abelian group, meaning that for every a ∈ A there is 1 ≤ n ∈ Z such that n ·a = 0.
Let A(p) be the subgroup of A consisting of elements a such that p` · a = 0 for some integer power p` of a
prime p. Show that A is the direct sum of its subgroups A(p) over primes p.

11.9 (*) Let A be a subgroup of Rn such that in each ball there are finitely-many elements of A. Show
that A is a free abelian group on at most n generators.
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12. Polynomials over UFDs

12.1 Gauss’ lemma
12.2 Fields of fractions
12.3 Worked examples

The goal here is to give a general result which has as corollary that that rings of polynomials in several
variables

k[x1, . . . , xn]

with coefficients in a field k are unique factorization domains in a sense made precise just below. Similarly,
polynomial rings in several variables

Z[x1, . . . , xn]

with coefficients in Z form a unique factorization domain. [228]

12.1 Gauss’ lemma

A factorization of an element r into irreducibles in an integral domain R is an expression for r of the form

r = u · pe11 . . . pemm

where u is a unit, p1 through pm are non-associate [229] irreducible elements, and the eis are positive integers.
Two factorizations

r = u · pe11 . . . pemm

r = v · qf1
1 . . . qfnn

[228] Among other uses, these facts are used to discuss Vandermonde determinants, and in the proof that the parity

(or sign) of a permutation is well-defined.

[229] Recall that two elements x, y of a commutative ring R are associate if x = yu for some unit u in R. This

terminology is most often applied to prime or irreducible elements.
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into irreducibles pi and qj with units u, v are equivalent if m = n and (after possibly renumbering the
irreducibles) qi is associate to pi for all indices i. A domain R is a unique factorization domain (UFD)
if any two factorizations are equivalent.

12.1.1 Theorem: (Gauss) Let R be a unique factorization domain. Then the polynomial ring in one
variable R[x] is a unique factorization domain.

12.1.2 Remark: The proof factors f(x) ∈ R[x] in the larger ring k[x] where k is the field of fractions of R
(see below), and rearranges constants to get coefficients into R rather than k. Uniqueness of the factorization
follows from uniqueness of factorization in R and uniqueness of factorization in k[x].

12.1.3 Corollary: A polynomial ring k[x1, . . . , xn] in a finite number of variables x1, . . ., xn over a field
k is a unique factorization domain. (Proof by induction.) ///

12.1.4 Corollary: A polynomial ring Z[x1, . . . , xn] in a finite number of variables x1, . . ., xn over the
integers Z is a unique factorization domain. (Proof by induction.) ///

Before proving the theorem itself, we must verify that unique factorization recovers some naive ideas about
divisibility. Recall that for r, s ∈ R not both 0, an element g ∈ R dividing both r and s such that any divisor
d of both r and s also divides g, is a greatest common divisor of r and s, denoted g = gcd(r, s).

12.1.5 Proposition: Let R be a unique factorization domain. For r, s in R not both 0 there exists
gcd(r, s) unique up to an element of R×. Factor both r and s into irreducibles

r = u · pe11 . . . pemm s = v · pf1
1 . . . pfnm

where u and v are units and the pi are mutually non-associate irreducibles (allow the exponents to be 0, to
use a common set of irreducibles to express both r and s). Then the greatest common divisor has exponents
which are the minima of those of r and s

gcd(r, s) = p
min (e1,f1)
1 . . . pmin (em,fm)

m

Proof: Let
g = p

min (e1,f1)
1 . . . pmin (em,fm)

m

First, g does divide both r and s. On the other hand, let d be any divisor of both r and s. Enlarge the
collection of inequivalent irreducibles pi if necessary such that d can be expressed as

d = w · ph1
1 . . . phmm

with unit w and non-negative integer exponents. From d|r there is D ∈ R such that dD = r. Let

D = W · pH1
1 . . . pHmm

Then
wW · ph1+H1

1 . . . phm+Hm
m = d ·D = r = u · pe11 . . . pemm

Unique factorization and non-associateness of the pi implies that the exponents are the same: for all i

hi +Hi = ei

Thus, hi ≤ ei. The same argument applies with r replaced by s, so hi ≤ fi, and hi ≤ min (ei, fi). Thus, d|g.
For uniqueness, note that any other greatest common divisor h would have g|h, but also h|r and h|s. Using
the unique (up to units) factorizations, the exponents of the irreducibles in g and h must be the same, so g
and h must differ only by a unit. ///
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12.1.6 Corollary: Let R be a unique factorization domain. For r and s in R, let g = gcd(r, s) be the
greatest common divisor. Then gcd(r/g, s/g) = 1. ///

12.2 Fields of fractions

The field of fractions k of an integral domain R is the collection of fractions a/b with a, b ∈ R and b 6= 0
and with the usual rules for addition and multiplication. More precisely, k is the set of ordered pairs (a, b)
with a, b ∈ R and b 6= 0, modulo the equivalence relation that

(a, b) ∼ (c, d)

if and only if ad− bc = 0. [230] Multiplication and addition are [231]

(a, b) · (c, d) = (ac, bd)

(a, b) + (c, d) = (ad+ bc, bd)

The map R −→ k by r −→ (r, 1)/ ∼ is readily verified to be a ring homomorphism. [232] Write a/b rather
than (a, b)/ ∼. When R is a unique factorization ring, whenever convenient suppose that fractions a/b are
in lowest terms, meaning that gcd(a, b) = 1.

Extend the notions of divisibility to apply to elements of the fraction field k of R. [233] First, say that x|y
for two elements x and y in k if there is r ∈ R such that s = rx. [234] And, for r1, . . ., rn in k, not all 0,
a greatest common divisor gcd(r1, . . . , rn) is an element g ∈ k such that g divides each ri and such that if
d ∈ k divides each ri then d|g.

12.2.1 Proposition: In the field of fractions k of a unique factorization domain R (extended) greatest
common divisors exist.

Proof: We reduce this to the case that everything is inside R. Given elements xi = ai/bi in k with ai and
bi all in R, take 0 6= r ∈ R such that rxi ∈ R for all i. Let G be the greatest common divisor of the rxi, and
put g = G/r. We claim this g is the greatest common divisor of the xi. On one hand, from G|rxi it follows
that g|xi. On the other hand, if d|xi then rd|rxi, so rd divides G = rg and d|g. ///

The content cont(f) of a polynomial f in k[x] is the greatest common divisor [235] of the coefficients of f .

12.2.2 Lemma: (Gauss) Let f and g be two polynomials in k[x]. Then

cont(fg) = cont(f) · cont(g)

[230] This corresponds to the ordinary rule for equality of two fractions.

[231] As usual for fractions.

[232] The assumption that R is a domain, is needed to make this work so simply. For commutative rings (with 1) with

proper 0-divisors the natural homomorphism r −→ (r, 1) of the ring to its field of fractions will not be injective. And

this construction will later be seen to be a simple extreme example of the more general notion of localization of rings.

[233] Of course notions of divisibility in a field itself are trivial, since any non-zero element divides any other. This is

not what is happening now.

[234] For non-zero r in the domain R, rx|ry if and only if x|y. Indeed, if ry = m · rx then by cancellation (using the

domain property), y = m · x. And y = m · x implies ry = m · rx directly.

[235] The values of the content function are only well-defined up to units R×. Thus, Gauss’ lemma more properly

concerns the equivalence classes of irreducibles dividing the respective coefficients.
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Proof: From the remark just above for any c ∈ k×

cont(c · f) = c · cont(f)

Thus, since

gcd(
a

gcd(a, b)
,

b

gcd(a, b)
) = 1

without loss of generality cont(f) = 1 and cont(g) = 1. Thus, in particular, both f and g have coefficients
in the ring R. Suppose cont(fg) 6= 1. Then there is non-unit irreducible p ∈ R dividing all the coefficients
of fg. Put

f(x) = a0 + a1x+ a2x
2 + . . .

g(x) = b0 + b1x+ b2x
2 + . . .

But p does not divide all the coefficients of f , nor all those of g. Let i be the smallest integer such that p
does not divide ai, j the largest integer such that p does not divide bj , and consider the coefficient of xi+j

in fg. It is

a0bi+j + a1bi+j−1 + . . .+ ai−1bj−1 + aibj + ai+1bj−1 + . . .+ ai+j−1b1 + ai+jb0

In summands to the left of aibj the factor ak with k < i is divisible by p, and in summands to the right of
aibj the factor bk with k < j is divisible by p. This leaves only the summand aibj to consider. Since the
whole sum is divisible by p, it follows that p|aibj . Since R is a unique factorization domain, either p|ai or
p|bj , contradiction. Thus, it could not have been that p divided all the coefficients of fg. ///

12.2.3 Corollary: Let f be a polynomial in R[x]. If f factors properly in k[x] then f factors properly
in R[x]. More precisely, if f factors as f = g · h with g and h polynomials in k[x] of positive degree, then
there is c ∈ k× such that cg ∈ R[x] and h/c ∈ R[x], and

f = (cg) · (h/c)

is a factorization of f in R[x].

Proof: Since f has coefficients in R, cont(f) is in R. By replacing f by f/c we may suppose that cont(f) = 1.
By Gauss’ lemma

cont(g) · cont(h) = cont(f) = 1

Let c = cont(g). Then cont(h) = 1/c, and cont(g/c) = 1 and cont(c · h) = 1, so g/c and ch are in R[x], and
(g/c) · (ch) = f . Thus f is reducible in R[x]. ///

12.2.4 Corollary: The irreducibles in R[x] are of two sorts, namely irreducibles in R and polynomials
f in R[x] with cont(f) = 1 which are irreducible in k[x].

Proof: If an irreducible p in R were to factor in R[x] as p = gh, then the degrees of g and h would be 0,
and g and h would be in R. The irreducibility of p in R would imply that one of g or h would be a unit.
Thus, irreducibles in R remain irreducible in R[x].

Suppose p were irreducible in R[x] of positive degree. If g = cont(p) were a non-unit, then p = (p/g) · g
would be a proper factorization of p, contradiction. Thus, cont(p) = 1. The previous corollary shows that p
is irreducible in k[x].

Last suppose that f is irreducible in k[x], and has cont(f) = 1. The irreducibility in k[x] implies that if
f = gh in R[x] then the degree one of g or h must be 0. Without loss of generality suppose deg g = 0, so
cont(g) = g. Since

1 = cont(f) = cont(g)cont(h)
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g is a unit in R, so f = gh is not a proper factorization, and f is irreducible in R[x]. ///

Proof: (of theorem) We can now combine the corollaries of Gauss’ lemma to prove the theorem. Given
a polynomial f in R[x], let c = cont(f), so from above cont(f/c) = 1. The hypothesis that R is a unique
factorization domain allows us to factor u into irreducibles in R, and we showed just above that these
irreducibles remain irreducible in R[x].

Replace f by f/cont(f) to assume now that cont(f) = 1. Factor f into irreducibles in k[x] as

f = u · pe11 · · · pemm
where u is in k×, the pis are irreducibles in k[x], and the eis are positive integers. We can replace each pi
by pi/cont(pi) and replace u by

u · cont(p1)e1 · · · cont(pm)em

so then the new pis are in R[x] and have content 1. Since content is multiplicative, from cont(f) = 1 we find
that cont(u) = 1, so u is a unit in R. The previous corollaries demonstrate the irreducibility of the (new)
pis in R[x], so this gives a factorization of f into irreducibles in R[x]. That is, we have an explicit existence
of a factorization into irreducibles.

Now suppose that we have two factorizations

f = u · pe11 · · · pemm = v · qf1
1 · · · qfnn

where u, v are in R (and have unique factorizations there) and the pi and qj are irreducibles in R[x] of positive
degree. From above, all the contents of these irreducibles must be 1. Looking at this factorization in k[x],
it must be that m = n and up to renumbering pi differs from qi by a constant in k×, and ei = fi. Since all
these polynomials have content 1, in fact pi differs from qi by a unit in R. By equating the contents of both
sides, we see that u and v differ by a unit in R×. Thus, by the unique factorization in R their factorizations
into irreducibles in R (and, from above, in R[x]) must be essentially the same. Thus, we obtain uniqueness
of factorization in R[x]. ///

12.3 Worked examples

12.3.1 Example: Let R be a principal ideal domain. Let I be a non-zero prime ideal in R. Show that
I is maximal.

Suppose that I were strictly contained in an ideal J . Let I = Rx and J = Ry, since R is a PID. Then x is
a multiple of y, say x = ry. That is, ry ∈ I. But y is not in I (that is, not a multiple of p), since otherwise
Ry ⊂ Rx. Thus, since I is prime, r ∈ I, say r = ap. Then p = apy, and (since R is a domain) 1 = ay. That
is, the ideal generated by y contains 1, so is the whole ring R. That is, I is maximal (proper).

12.3.2 Example: Let k be a field. Show that in the polynomial ring k[x, y] in two variables the ideal
I = k[x, y] · x+ k[x, y] · y is not principal.

Suppose that there were a polynomial P (x, y) such that x = g(x, y) · P (x, y) for some polynomial g and
y = h(x, y) · P (x, y) for some polynomial h.

An intuitively appealing thing to say is that since y does not appear in the polynomial x, it could not appear
in P (x, y) or g(x, y). Similarly, since x does not appear in the polynomial y, it could not appear in P (x, y)
or h(x, y). And, thus, P (x, y) would be in k. It would have to be non-zero to yield x and y as multiples, so
would be a unit in k[x, y]. Without loss of generality, P (x, y) = 1. (Thus, we need to show that I is proper.)

On the other hand, since P (x, y) is supposedly in the ideal I generated by x and y, it is of the form
a(x, y) · x+ b(x, y) · y. Thus, we would have

1 = a(x, y) · x+ b(x, y) · y
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Mapping x −→ 0 and y −→ 0 (while mapping k to itself by the identity map, thus sending 1 to 1 6= 0), we
would obtain

1 = 0

contradiction. Thus, there is no such P (x, y).

We can be more precise about that admittedly intuitively appealing first part of the argument. That is, let’s
show that if

x = g(x, y) · P (x, y)

then the degree of P (x, y) (and of g(x, y)) as a polynomial in y (with coefficients in k[x]) is 0. Indeed, looking
at this equality as an equality in k(x)[y] (where k(x) is the field of rational functions in x with coefficients
in k), the fact that degrees add in products gives the desired conclusion. Thus,

P (x, y) ∈ k(x) ∩ k[x, y] = k[x]

Similarly, P (x, y) lies in k[y], so P is in k.

12.3.3 Example: Let k be a field, and let R = k[x1, . . . , xn]. Show that the inclusions of ideals

Rx1 ⊂ Rx1 +Rx2 ⊂ . . . ⊂ Rx1 + . . .+Rxn

are strict, and that all these ideals are prime.

One approach, certainly correct in spirit, is to say that obviously

k[x1, . . . , xn]/Rx1 + . . .+Rxj ≈ k[xj+1, . . . , xn]

The latter ring is a domain (since k is a domain and polynomial rings over domains are domains: proof?)
so the ideal was necessarily prime.

But while it is true that certainly x1, . . . , xj go to 0 in the quotient, our intuition uses the explicit construction
of polynomials as expressions of a certain form. Instead, one might try to give the allegedly trivial and
immediate proof that sending x1, . . . , xj to 0 does not somehow cause 1 to get mapped to 0 in k, nor
accidentally impose any relations on xj+1, . . . , xn. A too classical viewpoint does not lend itself to clarifying
this. The point is that, given a k-algebra homomorphism fo : k −→ k, here taken to be the identity, and given
values 0 for x1, . . . , xj and values xj+1, . . . , xn respectively for the other indeterminates, there is a unique
k-algebra homomorphism f : k[x1, . . . , xn] −→ k[xj+1, . . . , xn] agreeing with fo on k and sending x1, . . . , xn
to their specified targets. Thus, in particular, we can guarantee that 1 ∈ k is not somehow accidentally
mapped to 0, and no relations among the xj+1 . . . , xn are mysteriously introduced.

12.3.4 Example: Let k be a field. Show that the ideal M generated by x1, . . . , xn in the polynomial
ring R = k[x1, . . . , xn] is maximal (proper).

We prove the maximality by showing that R/M is a field. The universality of the polynomial algebra implies
that, given a k-algebra homomorphism such as the identity fo : k −→ k, and given αi ∈ k (take αi = 0
here), there exists a unique k-algebra homomorphism f : k[x1, . . . , xn] −→ k extending fo. The kernel of f
certainly contains M , since M is generated by the xi and all the xi go to 0.

As in the previous exercise, one perhaps should verify that M is proper, since otherwise accidentally in the
quotient map R −→ R/M we might not have 1 −→ 1. If we do know that M is a proper ideal, then by
the uniqueness of the map f we know that R −→ R/M is (up to isomorphism) exactly f , so M is maximal
proper.

Given a relation
1 =

∑
i

fi · xi
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with polynomials fi, using the universal mapping property send all xi to 0 by a k-algebra homomorphism
to k that does send 1 to 1, obtaining 1 = 0, contradiction.

12.3.5 Remark: One surely is inclined to allege that obviously R/M ≈ k. And, indeed, this quotient
is at most k, but one should at least acknowledge concern that it not be accidentally 0. Making the point
that not only can the images of the xi be chosen, but also the k-algebra homomorphism on k, decisively
eliminates this possibility.

12.3.6 Example: Show that the maximal ideals in R = Z[x] are all of the form

I = R · p+R · f(x)

where p is a prime and f(x) is a monic polynomial which is irreducible modulo p.

Suppose that no non-zero integer n lies in the maximal ideal I in R. Then Z would inject to the quotient
R/I, a field, which then would be of characteristic 0. Then R/I would contain a canonical copy of Q. Let
α be the image of x in K. Then K = Z[α], so certainly K = Q[α], so α is algebraic over Q, say of degree
n. Let f(x) = anx

n + . . .+ a1x+ a0 be a polynomial with rational coefficient such that f(α) = 0, and with
all denominators multiplied out to make the coefficients integral. Then let β = cnα: this β is still algebraic
over Q, so Q[β] = Q(β), and certainly Q(β) = Q(α), and Q(α) = Q[α]. Thus, we still have K = Q[β], but
now things have been adjusted so that β satisfies a monic equation with coefficients in Z: from

0 = f(α) = f(
β

cn
) = c1−nn βn + cn−1c

1−n
n βn−1 + . . .+ c1c

−1
n β + c0

we multiply through by cn−1
n to obtain

0 = βn + cn−1β
n−1 + cn−2cnβ

n−2 + cn−3c
2
nβ

n−3 + . . .+ c2c
n−3
n β2 + c1c

n−2
n β + c0c

n−1
n

Since K = Q[β] is an n-dimensional Q-vectorspace, we can find rational numbers bi such that

α = b0 + b1β + b2β
2 + . . .+ bn−1β

n−1

Let N be a large-enough integer such that for every index i we have bi ∈ 1
N ·Z. Note that because we made

β satisfy a monic integer equation, the set

Λ = Z+ Z · β + Z · β2 + . . .+ Z · βn−1

is closed under multiplication: βn is a Z-linear combination of lower powers of β, and so on. Thus, since
α ∈ N−1Λ, successive powers α` of α are in N−`Λ. Thus,

Z[α] ⊂
⋃
`≥1

N−`Λ

But now let p be a prime not dividing N . We claim that 1/p does not lie in Z[α]. Indeed, since 1, β, . . . , βn−1

are linearly independent over Q, there is a unique expression for 1/p as a Q-linear combination of them,
namely the obvious 1

p = 1
p · 1. Thus, 1/p is not in N−` · Λ for any ` ∈ Z. This (at last) contradicts the

supposition that no non-zero integer lies in a maximal ideal I in Z[x].

Note that the previous argument uses the infinitude of primes.

Thus, Z does not inject to the field R/I, so R/I has positive characteristic p, and the canonical Z-algebra
homomorphism Z −→ R/I factors through Z/p. Identifying Z[x]/p ≈ (Z/p)[x], and granting (as proven in
an earlier homework solution) that for J ⊂ I we can take a quotient in two stages

R/I ≈ (R/J)/(image of J in R/I)
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Thus, the image of I in (Z/p)[x] is a maximal ideal. The ring (Z/p)[x] is a PID, since Z/p is a field, and
by now we know that the maximal ideals in such a ring are of the form 〈f〉 where f is irreducible and of
positive degree, and conversely. Let F ∈ Z[x] be a polynomial which, when we reduce its coefficients modulo
p, becomes f . Then, at last,

I = Z[x] · p+ Z[x] · f(x)

as claimed.

12.3.7 Example: Let R be a PID, and x, y non-zero elements of R. Let M = R/〈x〉 and N = R/〈y〉.
Determine HomR(M,N).

Any homomorphism f : M −→ N gives a homomorphism F : R −→ N by composing with the quotient
map q : R −→ M . Since R is a free R-module on one generator 1, a homomorphism F : R −→ N is
completely determined by F (1), and this value can be anything in N . Thus, the homomorphisms from R
to N are exactly parametrized by F (1) ∈ N . The remaining issue is to determine which of these maps F
factor through M , that is, which such F admit f : M −→ N such that F = f ◦ q. We could try to define
(and there is no other choice if it is to succeed)

f(r +Rx) = F (r)

but this will be well-defined if and only if kerF ⊃ Rx.

Since 0 = y · F (r) = F (yr), the kernel of F : R −→ N invariably contains Ry, and we need it to contain Rx
as well, for F to give a well-defined map R/Rx −→ R/Ry. This is equivalent to

kerF ⊃ Rx+Ry = R · gcd(x, y)

or
F (gcd(x, y)) = {0} ⊂ R/Ry = N

By the R-linearity,
R/Ry 3 0 = F (gcd(x, y)) = gcd(x, y) · F (1)

Thus, the condition for well-definedness is that

F (1) ∈ R · y

gcd(x, y)
⊂ R/Ry

Therefore, the desired homomorphisms f are in bijection with

F (1) ∈ R · y

gcd(x, y)
/Ry ⊂ R/Ry

where
f(r +Rx) = F (r) = r · F (1)

12.3.8 Example: (A warm-up to Hensel’s lemma) Let p be an odd prime. Fix a 6≡ 0 mod p and suppose
x2 = a mod p has a solution x1. Show that for every positive integer n the congruence x2 = a mod pn has a
solution xn. (Hint: Try xn+1 = xn + pny and solve for y mod p).

Induction, following the hint: Given xn such that x2
n = a mod pn, with n ≥ 1 and p 6= 2, show that there

will exist y such that xn+1 = xn + ypn gives x2
n+1 = a mod pn+1. Indeed, expanding the desired equality, it

is equivalent to
a = x2

n+1 = x2
n + 2xnpny + p2ny2 mod pn+1

Since n ≥ 1, 2n ≥ n+ 1, so this is
a = x2

n + 2xnpny mod pn+1
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Since a− x2
n = k · pn for some integer k, dividing through by pn gives an equivalent condition

k = 2xny mod p

Since p 6= 2, and since x2
n = a 6= 0 mod p, 2xn is invertible mod p, so no matter what k is there exists y to

meet this requirement, and we’re done.

12.3.9 Example: (Another warm-up to Hensel’s lemma) Let p be a prime not 3. Fix a 6= 0 mod p and
suppose x3 = a mod p has a solution x1. Show that for every positive integer n the congruence x3 = a mod pn

has a solution xn. (Hint: Try xn+1 = xn + pny and solve for y mod p).

Induction, following the hint: Given xn such that x3
n = a mod pn, with n ≥ 1 and p 6= 3, show that there

will exist y such that xn+1 = xn + ypn gives x3
n+1 = a mod pn+1. Indeed, expanding the desired equality, it

is equivalent to
a = x3

n+1 = x3
n + 3x2

np
ny + 3xnp2ny2 + p3ny3 mod pn+1

Since n ≥ 1, 3n ≥ n+ 1, so this is
a = x3

n + 3x2
np
ny mod pn+1

Since a− x3
n = k · pn for some integer k, dividing through by pn gives an equivalent condition

k = 3x2
ny mod p

Since p 6= 3, and since x3
n = a 6= 0 mod p, 3x2

n is invertible mod p, so no matter what k is there exists y to
meet this requirement, and we’re done.

Exercises

12.1 Let k be a field. Show that every non-zero prime ideal in k[x] is maximal.

12.2 Let k be a field. Let x, y, z be indeterminates. Show that the ideal I in k[x, y, z] generated by x, y, z
is not principal.

12.3 Let R be a commutative ring with identity that is not necessarily an integral domain. Let S be a
multiplicative subset of R. The localization S−1R is defined to be the set of pairs (r, s) with r ∈ R and
s ∈ S modulo the equivalence relation

(r, s) ∼ (r′, s′) ⇐⇒ there is t ∈ S such thatt · (rs′ − r′s) = 0

Show that the natural map iS : r −→ (r, 1) is a ring homomorphism, and that S−1R is a ring in which every
element of S becomes invertible.

12.4 Indeed, in the situation of the previous exercise, show that every ring homomorphism ϕ : R −→ R′

such that ϕ(s) is invertible in R′ for s ∈ S factors uniquely through S−1R. That is, there is a unique
f : S−1R −→ R′ such that ϕ = f ◦ iS with the natural map iS .



174 Polynomials over UFDs



Garrett: Abstract Algebra 175

13. Symmetric groups

13.1 Cycles, disjoint cycle decompositions
13.2 Adjacent transpositions
13.3 Worked examples

13.1 Cycles, disjoint cycle decompositions

The symmetric group Sn is the group of bijections of {1, . . . , n} to itself, also called permutations of n
things. A standard notation for the permutation that sends i −→ `i is(

1 2 3 . . . n
`1 `2 `3 . . . `n

)
Under composition of mappings, the permutations of {1, . . . , n} is a group.

The fixed points of a permutation f are the elements i ∈ {1, 2, . . . , n} such that f(i) = i.

A k-cycle is a permutation of the form

f(`1) = `2 f(`2) = `3 . . . f(`k−1) = `k and f(`k) = `1

for distinct `1, . . . , `k among {1, . . . , n}, and f(i) = i for i not among the `j . There is standard notation for
this cycle:

(`1 `2 `3 . . . `k)

Note that the same cycle can be written several ways, by cyclically permuting the `j : for example, it also
can be written as

(`2 `3 . . . `k `1) or (`3 `4 . . . `k `1 `2)

Two cycles are disjoint when the respective sets of indices properly moved are disjoint. That is, cycles
(`1 `2 `3 . . . `k) and (`′1 `

′
2 `
′
3 . . . `′k′) are disjoint when the sets {`1, `2, . . . , `k} and {`′1, `′2, . . . , `′k′} are

disjoint.

13.1.1 Theorem: Every permutation is uniquely expressible as a product of disjoint cycles.
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Proof: Given g ∈ Sn, the cyclic subgroup 〈g〉 ⊂ Sn generated by g acts on the set X = {1, . . . , n} and
decomposes X into disjoint orbits

Ox = {gix : i ∈ Z}

for choices of orbit representatives x ∈ X. For each orbit representative x, let Nx be the order of g when
restricted to the orbit 〈g〉 · x, and define a cycle

Cx = (x gx g2x . . . gNx−1x)

Since distinct orbits are disjoint, these cycles are disjoint. And, given y ∈ X, choose an orbit representative
x such that y ∈ 〈g〉 · x. Then g · y = Cx · y. This proves that g is the product of the cycles Cx over orbit
representatives x. ///

13.2 Transpositions

The (adjacent) transpositions in the symmetric group Sn are the permutations si defined by

si(j) =

 i+ 1 (for j = i)
i (for j = i+ 1)
j (otherwise)

That is, si is a 2-cycle that interchanges i and i+ 1 and does nothing else.

13.2.1 Theorem: The permutation group Sn on n things {1, 2, . . . , n} is generated by adjacent
transpositions si.

Proof: Induction on n. Given a permutation p of n things, we show that there is a product q of adjacent
transpositions such that (q ◦ p)(n) = n. Then q ◦ p can be viewed as a permutation in Sn−1, and we do
induction on n. We may suppose p(n) = i < n, or else we already have p(n) = n and we can do the induction
on n.

Do induction on i to get to the situation that (q ◦ p)(n) = n for some product q of adjacent transposition.
Suppose we have a product q of adjacent transpositions such that (q ◦p)(n) = i < n. For example, the empty
product q gives q ◦ p = p. Then (si ◦ q ◦ p)(n) = i+ 1. By induction on i we’re done. ///

The length of an element g ∈ Sn with respect to the generators s1, . . . , sn−1 is the smallest integer ` such
that

g = si1 si2 . . . si`−1 si`

13.3 Worked examples

13.3.1 Example: Classify the conjugacy classes in Sn (the symmetric group of bijections of {1, . . . , n}
to itself).

Given g ∈ Sn, the cyclic subgroup 〈g〉 generated by g certainly acts on X = {1, . . . , n} and therefore
decomposes X into orbits

Ox = {gix : i ∈ Z}

for choices of orbit representatives xi ∈ X. We claim that the (unordered!) list of sizes of the (disjoint!)
orbits of g on X uniquely determines the conjugacy class of g, and vice versa. (An unordered list that allows
the same thing to appear more than once is a multiset. It is not simply a set!)
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To verify this, first suppose that g = tht−1. Then 〈g〉 orbits and 〈h〉 orbits are related by

〈g〉-orbit Otx ↔ 〈h〉-orbit Ox

Indeed,
g` · (tx) = (tht−1)` · (tx) = t(h` · x)

Thus, if g and h are conjugate, the unordered lists of sizes of their orbits must be the same.

On the other hand, suppose that the unordered lists of sizes of the orbits of g and h are the same. Choose
an ordering of orbits of the two such that the cardinalities match up:

|O(g)
xi | = |O

(h)
yi | (for i = 1, . . . ,m)

where O
(g)
xi is the 〈g〉-orbit containing xi and O

(h)
yi is the 〈g〉-orbit containing yi. Fix representatives as

indicated for the orbits. Let p be a permutation such that, for each index i, p bijects O(g)
xi to O(g)

xi by

p(g`xi) = h`yi

The only slightly serious point is that this map is well-defined, since there are many exponents ` which may
give the same element. And, indeed, it is at this point that we use the fact that the two orbits have the
same cardinality: we have

O(g)
xi ↔ 〈g〉/〈g〉xi (by g`〈g〉xi ↔ g`xi)

where 〈g〉xi is the isotropy subgroup of xi. Since 〈g〉 is cyclic, 〈g〉xi is necessarily 〈gN 〉 where N is the
number of elements in the orbit. The same is true for h, with the same N . That is, g`xi depends exactly on
` mod N , and h`yi likewise depends exactly on ` mod N . Thus, the map p is well-defined.

Then claim that g and h are conjugate. Indeed, given x ∈ X, take O(g)
xi containing x = g`xi and O

(h)
yi

containing px = h`yi. The fact that the exponents of g and h are the same is due to the definition of p.
Then

p(gx) = p(g · g`xi) = h1+` yi = h · h` yi = h · p(g` xi) = h(px)

Thus, for all x ∈ X
(p ◦ g)(x) = (h ◦ p)(x)

Therefore,
p ◦ g = h ◦ p

or
pgp−1 = h

(Yes, there are usually many different choices of p which accomplish this. And we could also have tried to
say all this using the more explicit cycle notation, but it’s not clear that this would have been a wise choice.)

13.3.2 Example: The projective linear group PGLn(k) is the group GLn(k) modulo its center
k, which is the collection of scalar matrices. Prove that PGL2(F3) is isomorphic to S4, the group of
permutations of 4 things. (Hint: Let PGL2(F3) act on lines in F2

3, that is, on one-dimensional F3-subspaces
in F2

3.)

The group PGL2(F3) acts by permutations on the set X of lines in F2
3, because GL2(F3) acts on non-zero

vectors in F2
3. The scalar matrices in GL2(F3) certainly stabilize every line (since they act by scalars), so

act trivially on the set X.

On the other hand, any non-scalar matrix
(
a b
c d

)
acts non-trivially on some line. Indeed, if

(
a b
c d

)(
∗
0

)
=
(
∗
0

)
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then c = 0. Similarly, if (
a b
c d

)(
0
∗

)
=
(

0
∗

)
then b = 0. And if (

a 0
0 d

)(
1
1

)
= λ ·

(
1
1

)
for some λ then a = d, so the matrix is scalar.

Thus, the map from GL2(F3) to permutations Autset(X) of X has kernel consisting exactly of scalar matrices,
so factors through (that is, is well defined on) the quotient PGL2(F3), and is injective on that quotient. (Since
PGL2(F3) is the quotient of GL2(F3) by the kernel of the homomorphism to Autset(X), the kernel of the
mapping induced on PGL2(F3) is trivial.)

Computing the order of PGL2(F3) gives

|PGL2(F3)| = |GL2(F3)|/|scalar matrices| = (32 − 1)(32 − 3)
3− 1

= (3 + 1)(32 − 3) = 24

(The order of GLn(Fq) is computed, as usual, by viewing this group as automorphisms of Fnq .)

This number is the same as the order of S4, and, thus, an injective homomorphism must be surjective, hence,
an isomorphism.

(One might want to verify that the center of GLn(Fq) is exactly the scalar matrices, but that’s not strictly
necessary for this question.)

13.3.3 Example: An automorphism of a group G is inner if it is of the form g −→ xgx−1 for fixed
x ∈ G. Otherwise it is an outer automorphism. Show that every automorphism of the permutation group
S3 on 3 things is inner. (Hint: Compare the action of S3 on the set of 2-cycles by conjugation.)

Let G be the group of automorphisms, and X the set of 2-cycles. We note that an automorphism must send
order-2 elements to order-2 elements, and that the 2-cycles are exactly the order-2 elements in S3. Further,
since the 2-cycles generate S3, if an automorphism is trivial on all 2-cycles it is the trivial automorphism.
Thus, G injects to Autset(X), which is permutations of 3 things (since there are three 2-cycles).

On the other hand, the conjugation action of S3 on itself stabilizes X, and, thus, gives a group homomorphism
f : S3 −→ Autset(X). The kernel of this homomorphism is trivial: if a non-trivial permutation p conjugates
the two-cycle t = (1 2) to itself, then

(ptp−1)(3) = t(3) = 3

so tp−1(3) = p−1(3). That is, t fixes the image p−1(3), which therefore is 3. A symmetrical argument shows
that p−1(i) = i for all i, so p is trivial. Thus, S3 injects to permutations of X.

In summary, we have group homomorphisms

S3 −→ Autgroup(S3) −→ Autset(X)

where the map of automorphisms of S3 to permutations of X is an isomorphism, and the composite map of
S3 to permutations of X is surjective. Thus, the map of S3 to its own automorphism group is necessarily
surjective.

13.3.4 Example: Identify the element of Sn requiring the maximal number of adjacent transpositions
to express it, and prove that it is unique.

We claim that the permutation that takes i −→ n− i+1 is the unique element requiring n(n−1)/2 elements,
and that this is the maximum number.
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For an ordered listing (t1, . . . , tn) of {1, . . . , n}, let

do(t1, . . . , tn) = number of indices i < j such that ti > tj

and for a permutation p let
d(p) = do(p(1), . . . , p(n))

Note that if ti < tj for all i < j, then the ordering is (1, . . . , n). Also, given a configuration (t1, . . . , tn)
with some ti > tj for i < j, necessarily this inequality holds for some adjacent indices (or else the opposite
inequality would hold for all indices, by transitivity!). Thus, if the ordering is not the default (1, . . . , n), then
there is an index i such that ti > ti+1. Then application of the adjacent transposition si of i, i + 1 reduces
by exactly 1 the value of the function do().

Thus, for a permutation p with d(p) = ` we can find a product q of exactly ` adjacent transpositions such
that q ◦ p = 1. That is, we need at most d(p) = ` adjacent transpositions to express p. (This does not
preclude less efficient expressions.)

On the other hand, we want to be sure that d(p) = ` is the minimum number of adjacent transpositions
needed to express p. Indeed, application of si only affects the comparison of p(i) and p(i+ 1). Thus, it can
decrease d(p) by at most 1. That is,

d(si ◦ p) ≥ d(p)− 1

and possibly d(si ◦ p) = d(p). This shows that we do need at least d(p) adjacent transpositions to express p.

Then the permutation wo that sends i to n− i+ 1 has the effect that wo(i) > wo(j) for all i < j, so it has
the maximum possible d(wo) = n(n− 1)/2. For uniqueness, suppose p(i) > p(j) for all i < j. Evidently, we
must claim that p = wo. And, indeed, the inequalities

p(n) < p(n− 1) < p(n− 2) < . . . < p(2) < p(1)

leave no alternative (assigning distinct values in {1, . . . , n}) but

p(n) = 1 < p(n− 1) = 2 < . . . < p(2) = n− 1 < p(1) = n

(One might want to exercise one’s technique by giving a more careful inductive proof of this.)

13.3.5 Example: Let the permutation group Sn on n things act on the polynomial ring Z[x1, . . . , xn]
by Z-algebra homomorphisms defined by p(xi) = xp(i) for p ∈ Sn. (The universal mapping property of the
polynomial ring allows us to define the images of the indeterminates xi to be whatever we want, and at the
same time guarantees that this determines the Z-algebra homomorphism completely.) Verify that this is a
group homomorphism

Sn −→ AutZ−alg(Z[x1, . . . , xn])

Consider
D =

∏
i<j

(xi − xj)

Show that for any p ∈ Sn
p(D) = σ(p) ·D

where σ(p) = ±1. Infer that σ is a (non-trivial) group homomorphism, the sign homomorphism on Sn.

Since these polynomial algebras are free on the indeterminates, we check that the permutation group acts
(in the technical sense) on the set of indeterminates. That is, we show associativity and that the identity of
the group acts trivially. The latter is clear. For the former, let p, q be two permutations. Then

(pq)(xi) = x(pq)(i)
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while
p(q(xi)) = p(xq(i) = xp(q(i))

Since p(q(i)) = (pq)(i), each p ∈ Sn gives an automorphism of the ring of polynomials. (The endomorphisms
are invertible since the group has inverses, for example.)

Any permutation merely permutes the factors of D, up to sign. Since the group acts in the technical sense,

(pq)(D) = p(q(D))

That is, since the automorphisms given by elements of Sn are Z-linear,

σ(pq) ·D = p(σ(q) ·D) = σ(q)p(D) = σ(q) · σ(p) ·D

Thus,
σ(pq) = σ(p) · σ(q)

which is the homomorphism property of σ. ///

Exercises

13.1 How many distinct k-cycles are there in the symmetric group Sn?

13.2 How many elements of order 35 are there in the symmetric group S12?

13.3 What is the largest order of an element of S12?

13.4 How many elements of order 6 are there in the symmetric group S11?

13.5 Show that the order of a permutation is the least common multiple of the lengths of the cycles in a
disjoint cycle decomposition of it.

13.6 Let X be the set Z/31, and let f : X −→ X be the permutation f(x) = 2 · x. Decompose this
permutation into disjoint cycles.

13.7 Let X be the set Z/29, and let f : X −→ X be the permutation f(x) = x3. Decompose this
permutation into disjoint cycles.

13.8 Show that if a permutation is expressible as a product of an odd number of 2-cycles in one way, then
any expression of it as a product of 2-cycles expresses it as a product of an odd number of 2-cycles.

13.9 Identify the lengths (expressed in terms of adjacent transpositions) of all the elements in S4.

13.10 (*) Count the number of elements of Sn having at least one fixed point.
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14. Naive Set Theory

14.1 Sets
14.2 Posets, ordinals
14.3 Transfinite induction
14.4 Finiteness, infiniteness
14.5 Comparison of infinities
14.6 Example: transfinite induction in Lagrange replacement
14.7 Equivalents of the Axiom of Choice

14.1 Sets
Naive definition: A set is an unordered collection of things (not counting multiplicities), its elements.
Write x ∈ S or S 3 x for an element x of S. Sets are described either as comma-separated lists (whose order
is not supposed to be significant)

S = {x1, x2, . . .}

or by a rule

S = {x : some condition on x is met}

The empty set is

φ = {}

14.1.1 Theorem: There is no set S such that x ∈ S if and only if x 6∈ x.

Proof: Suppose there were such S. Then S ∈ S if and only if S 6∈ S, contradiction. ///

Extension Principle (Leibniz) Two sets are equal if and only if they have the same elements.

14.1.2 Corollary: There is only one empty set φ. ///

Idea: Everything is a set.

A subset T of S is a set such that for all elements x of T also x is an element of S. Write T ⊂ S or S ⊃ T .
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A subset of S is proper if it is neither S itself nor φ. The union of a set F of sets is⋃
S∈F

S = {x : x ∈ S for some S ∈ F}

The intersection is ⋂
S∈F

S = {x : x ∈ S for all S ∈ F}

We make an exception in the case of intersections over F for F = φ, since the defining condition would be
vacuous, and (supposedly) every set would be an element of that intersection, which is not viable. The union
and intersection of a finite number of sets can also be written, respectively, as

S1 ∪ . . . ∪ Sn

S1 ∩ . . . ∩ Sn

Proto-definition: The ordered pair construct (x, y) with first component x and second component y should
have the property that

(x, y) = (z, w)⇐⇒ x = z and y = w

14.1.3 Remark: As sets, taking (x, y) = {x, y} fails, since the elements of a set are not ordered. Taking
(x, y) = {x, {y}} fails, since it may be that x = {y}.

14.1.4 Proposition: We can construct ordered pairs as sets by defining

(x, y) = {{x}, {x, y}}

Proof: We must prove that (x, y) = (z, w) if and only if the respective components are equal. One direction
of the implication is clear. For the other implication, from

{{x}, {x, y}} = {{z}, {z, w}}

{x} is either {z} or {z, w}, and {x, y} is either {z} or {z, w}. Treat cases, using the Extension Principle.
///

For finite n, define recursively ordered n-tuples by

(x1, . . . , xn−1, xn) = ((x1, . . . , xn−1), xn)

14.1.5 Remark: Subsequently we ignore the internal details of the construction of ordered pair, and
only use its properties. This is a typical ruse.

The Cartesian product X × Y of two sets X and Y is the set of ordered pairs

X × Y = {(x, y) : x ∈ X, y ∈ Y }

A function or map f : X −→ Y from X to Y is a subset of X×Y such that for all x ∈ X there is a unique
y in Y such that (x, y) ∈ f . As usual, this is written f(x) = y or fx = y. The image f(X) of f is

f(X) = image of f = {f(x) : x ∈ X}

14.1.6 Remark: This definition identifies a function with its graph, rather than by a formula or algorithm
by which to compute the function.



Garrett: Abstract Algebra 183

14.1.7 Definition: A function f : X −→ Y is surjective if for every y ∈ Y there is x ∈ X such that
f(x) = y. It is injective if f(x) = f(x′) implies x = x′. If f is both surjective and injective is it bijective.

The composition f ◦ g of two functions f : Y −→ Z and g : X −→ Y is defined by

(f ◦ g)(x) = f(g(x))

A left inverse g (if it exists) to a function f : X −→ Y is a function g : Y −→ X such that g ◦ f = 1X ,
where 1X is the identity function on X, defined by 1X(x) = x for all x ∈ X. A right inverse g (if it
exists) to a function f : X −→ Y is a function g : Y −→ X such that f ◦ g = 1Y

Let F be a set of sets. A choice function f on F (if it exists) is any function

f : F −→
⋃
S∈F

S

such that
f(S) ∈ S

for all S in F . To postulate that at least one choice function exists for any set F of sets is a non-trivial thing,
and, roughly, is the Axiom of Choice. The collection of all choice functions on F is the direct product
of the sets, denoted ∏

S∈F
S

Again, to know that this is non-empty (for F infinite) requires something!

K. Godel and P. Cohen proved that the Axiom of Choice is not only not provable from other more mundane
axioms for sets, but is independent of them, in the sense that it is equally consistent to assume the negation
of the Axiom of Choice.

A relation R between sets X and Y is a subset of X × Y . A (binary) relation on a set X is a subset of
X ×X. A relation R on X is
• reflexive if (x, x) ∈ R for all x ∈ X
• symmetric if (x, y) ∈ R implies (y, x) ∈ R for all x, y ∈ X
• transitive if (x, y) ∈ R and (y, z) ∈ R implies (x, z) ∈ R An equivalence relation is a relation that
enjoys all three of these properties. For an equivalence relation R, the equivalence class of x is

equivalence class of x = {y ∈ X : (x, y) ∈ R}

14.2 Posets, ordinals
A partial order ≤ on a set X is a relation R on X, written x ≤ y if (x, y) ∈ R, such that
• (Reflexivity) x ≤ x for all x ∈ X
• If x ≤ y and y ≤ x then x = y
• (Transitivity) If x ≤ y and y ≤ z then x ≤ z Then X is a partially ordered set or poset. We may write
x < y if x ≤ y and x 6= y.

A partial ordering on X is a total ordering if for all x, y ∈ X either x ≤ y or y ≤ x.

A well ordering [sic] on a set X is a total ordering on X such that any non-empty subset Y of X has a
minimal element (also called least element). That is, there is an element y ∈ Y such that for all z ∈ Y
we have y ≤ z.

14.2.1 Proposition: Let X be a well-ordered set. Let f : X −→ X be an order-preserving injective
map (so x ≤ x′ implies f(x) ≤ f(x′)). Then, for all x ∈ X,

f(x) ≥ x
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Proof: Let Z be the subset of X consisting of elements x such that f(x) < x. If Z is non-empty, then it
has a least element x. Thus, on one hand, f(x) < x. On the other hand, f(x) 6∈ Z, so f(f(x)) > f(x). But,
since f preserves order and is injective, f(x) < x implies f(f(x)) < f(x), contradiction. ///

14.2.2 Corollary: The only order-preserving bijection of a well-ordered set X to itself is the identity
map. ///

14.2.3 Corollary: There is no order-preserving bijection of a well-ordered set X to a proper initial
segment

X<x = {y ∈ X : y < x}
of it for any x ∈ X. ///

14.2.4 Example: The set

Z = {X<x = {y ∈ X : y < x} : x ∈ X}

of initial segments X<x of a well-ordered set X, with ordering

z ≤ w ⇐⇒ z ⊂ w

has an order-preserving bijection to X by
X<x ←→ x

An ordinal is a well-ordered set X such for every element x ∈ X

x = X<x

That is, x is the set X<x = {y ∈ X : y < x} of its predecessors in X.

14.2.5 Example: The empty set is an ordinal, since the defining condition is met vacuously. Let X be
an ordinal that is not the empty set. Then X (being non-empty) has a least element x. Since x is the union
of its predecessors, of which there are none, x = φ. So φ is the least element of every ordinal.

14.2.6 Example: If X is an ordinal, and x ∈ X, then the initial segment below x

X<x = {y ∈ X : y < x}

is also an ordinal. Indeed, the well-ordering is preserved, and by transitivity the predecessors of y in X<x

are exactly the predecessors of y in X, so the defining property of ordinals holds.

14.2.7 Example: If X is an ordinal, then Y = X ∪ {X}, with ordering

a ≤ b⇐⇒ a ⊂ b

is an ordinal, the successor of X. To see this, first note that, for all y ∈ Y we have y ⊂ X, that is (by
definition of the ordering) y ≤ X. Thus, for y ∈ Y , if y 6= X, then y ⊂ X and (since X is an ordinal) is the
set of its predecessors in X. And since y < X in Y , X is not among y’s predecessors in Y , so y really is the
set of its predecessors in Y . And X is the set of its predecessors in Y . ///

Since everything is to be a set, following J. von Neumann, define the initial (finite) ordinals by

0 = φ = {}

1 = {0} = {φ, {φ}} = {{}, {{}}}

2 = {0, 1} = {φ, {φ}, {φ, {φ}}} = {{}, {{}}, {{}, {{}}}}

3 = {0, 1, 2} = {φ, {φ}, {φ, {φ}}, {φ, {φ}, {φ, {φ}}}}

= {{}, {{}}, {{}, {{}}}, {{}, {{}}, {{}, {{}}}}}

and so on
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The set ω of natural numbers is [236]

ω = {0, 1, 2, . . .}

Define an order ≤ on ω by
x ≤ y ⇐⇒ x ⊂ y

It is not at all immediate (with the present definition of the symbols) that ω is an ordinal.

14.2.8 Proposition: If X and Y are ordinals and Y ⊂ X then there is x ∈ X such that Y is the initial
segment

Y = {y ∈ X : y < x} = x

Proof: Let Z be the set of elements of X that are not in Y but are below some element of Y . The claim is
that Z is empty. If not, let z be the least element in Z. Let y ∈ Y be such that z < y. Since y is the set of
its predecessors in X, x ∈ y. But also y is the set of its predecessors in Y , so x ∈ y, contradiction. ///

14.2.9 Theorem: Any two ordinals X,Y are comparable, in the sense that either X = Y , or X is an
initial segment of Y , or Y is an initial segment of X.

Proof: The intersection X ∩ Y is an ordinal, since for z ∈ X ∩ Y

{w ∈ X ∩ Y : w < z} = {x ∈ X : x < z} ∩ {y ∈ Y : y < z} = z ∩ z = z

Suppose that X is not contained in Y , and Y is not contained in X. From above, X ∩ Y ⊂ is an initial
segment

X ∩ Y = {z ∈ X : z < x} = x

in X for some x ∈ X, and also an initial segment

X ∩ Y = {w ∈ Y : z < y} = y

in Y for some y ∈ Y . But then x = y, contradiction. ///

14.2.10 Corollary: Two ordinals admit an order-preserving bijection between them if and only if they
are identical, and in that case the only order-preserving bijection is the identity map.

Proof: We already saw that there is at most one order-preserving bijection between two well-ordered sets.
Thus, let X and Y be ordinals, and X 6= Y . By the theorem, one is an initial segment of the other, so
assume without loss of generality that Y is an initial segment

Y = {y ∈ X : y < x}

for some x in X. Let f : X −→ Y be an order-preserving bijection. We saw earlier that f(z) ≥ z for any
well-ordered sets in this situation. But then f(x) ≥ x, which is impossible. ///

14.2.11 Corollary: The relation on ordinals defined by x < y if and only if x is an initial segment of y
is a total ordering. ///

14.2.12 Corollary: Given an ordinal x, its successor ordinal y = x ∪ {x} has the property that x < y.
///

14.2.13 Corollary: There is no largest ordinal. ///

14.2.14 Theorem: The union of any set of ordinals is an ordinal.

[236] Shuddering at the casual formation of this ostensibly infinite set is reasonable, since its existence as a set is not

formally assured by the existence of the separate finite ordinals.
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Proof: Let F be a set of ordinals, and
E =

⋃
X∈F

X

is also a set of ordinals. Define a relation < on E by x < y if x is an initial segment in y, that is, is an
element of y. The transitivity of < follows (again) from the fact that every element of an ordinal is an
ordinal. The comparability of all ordinals (from above) says that this is a total ordering. To prove that < is
a well-ordering, let D be a non-empty subset of E, and let d be any element of D. If d is least in D, we are
done. If d is not least in D, then nevertheless c ∈ D with c < d are elements of d, since c < d only for c an
initial segment of d, that is an element of d. Since d is an ordinal, it is well-ordered, so

{c ∈ D : c < d} = D ∩ d

is well-ordered. Thus, D contains a least element. Finally, we must prove that any element e of E is the set
of its predecessors in E. Let X be an element of F such that e ∈ X. Since X is an ordinal, e is the set of its
predecessors d in X. Thus, all such predecessors d are elements of X, so are elements of the union E. Thus,

e = {d ∈ X : d < e} ⊂ {d ∈ E : d < e}

On the other hand, for any d ∈ E, the definition of d < e is that d is an initial segment of e, that is, that
d ∈ e. In that case, d ∈ X for every ordinal containing e. That is, we have the opposite inclusion

e = {d ∈ X : d < e} ⊃ {d ∈ E : d < e}

and e is exactly the set of its predecessors in the union E. ///

14.2.15 Theorem: Every well-ordered set has an order-preserving bijection to exactly one ordinal.

Proof: First, let X be a well-ordered set with each initial segment

X<x = {y ∈ X : y < x}

for x ∈ X isomorphic [237] to an ordinal ωx. We claim that X is isomorphic to an ordinal. From above,
since no two distinct ordinals are isomorphic, and since an ordinal admits no non-trivial maps to itself, for
each x ∈ X the ordinal ωx is uniquely determined and the order-preserving map fx : x −→ ωx is unique.
We view F : x −→ ωx as an ordinal-valued function F on X.

Consider x < y in X. Since x and y are distinct initial segments of X, they are not isomorphic as ordered sets
(indeed, there is no order-preserving injection of y to x). Thus, F (x) = ωx is not isomorphic to F (y) = ωy.
Thus, since any two ordinals can be compared, either F (x) = ωx is an initial segment of F (y) = ωy or vice
versa. Unsurprisingly, if ωy < ωx then

y ≈ ωy ⊂ ωx ≈ x

would give an isomorphism of y to a proper initial segment x, but (again) this is impossible. Thus, F is an
order-preserving bijection of X to a set Ω = {ωx = F (x) : x ∈ X} of ordinals. Since Ω = F (X) is the image
of the well-ordered set X, Ω is well-ordered. To show that Ω is an ordinal, by definition, we must show that
for ω ∈ Ω the initial segment

Ω<ω = {ω′ ∈ Ω : ω′ < ω}

is equal to ω. Indeed, the hypothesis is exactly this, so Ω is an ordinal, and X is an ordinal (being isomorphic
to Ω).

Now we prove the theorem. First we prove that every element of a (non-empty) well-ordered set X is
isomorphic to an ordinal. The least element of X is isomorphic to the ordinal φ. Given α in X with β
isomorphic to an ordinal for all β < α, then apply the claim to α (in place of X) to conclude that α is

[237] As ordered set, of course.
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isomorphic to an ordinal. And then the claim implies that X is isomorphic to an ordinal. Since two distinct
ordinals are not isomorphic, there is exactly one ordinal to which X is isomorphic. ///

The following corollary is sometimes recast as a paradox:

14.2.16 Corollary: (Burali-Forti) The collection of all ordinals is not a set.

Proof: Suppose the collection F of all ordinals were a set. Then (by the theorem) the union

E =
⋃
S∈F

S

would be an ordinal. Thus, E would be an element of itself, contradiction. ///

14.3 Transfinite induction

14.3.1 Theorem: Let P (α) be a property that may or may not hold of ordinals α. Suppose that for
any ordinal α if P (β) for all ordinals β < α then P (α) holds. The P (α) holds for all ordinals α.

Proof: Let ω = α ∪ {α}, so ω is an ordinal containing α. Then we can do induction on the set ω: prove
that P (β) holds for all β ∈ ω (including α). If P (γ) failed for some γ in ω, then there would be a least γ in
ω for which it failed. But P (δ) holds for all δ < γ, and the hypothesis assures that P (γ) does hold, after all.
This contradiction shows that P (γ) holds for all γ ∈ ω, in particular, for α. ///

In some situations the induction step, namely, proving that P (α) holds if P (β) holds for all β < α, must be
broken into cases, depending on the nature of α.
• The initial ordinal, φ.
• Successor ordinals α = β ∪ {β} for some β.
• Limit ordinals α =

⋃
β<α β.

14.3.2 Remark: First, contrast the definition of limit ordinal with the property enjoyed by every ordinal,
namely

α = {β : β ∈ α} = {β : β < α}

A successor ordinal α is not a limit ordinal, since if α = β ∪ {β} then all predecessors of α are subsets of β,
and likewise their union, which cannot contain β as an element.

14.3.3 Proposition: Every ordinal is either the initial ordinal φ, a successor ordinal, or a limit ordinal.

Proof: Suppose α is not φ and is not a successor. Let β be the union of the predecessors of α. Since a
union of ordinals is an ordinal, β is an ordinal, and β ≤ α. If β < α then β is among α’s predecessors, so
is in the union of predecessors, so is the largest among the predecessors of α. The assumption β < α gives
β ∪ {β} ≤ α. It cannot be that β ∪ {β} ≤ α since otherwise β ∪ {β} would be a predecessor of α, and thus
β ≥ β ∪ {β}, which is false. So, then, the successor β ∪ {β} of β is α, contradiction to the hypothesis that
α is not a successor. Thus, β = α. ///

Thus, we can rewrite the first theorem in a manner that refers explicitly to the types of ordinals: to prove a
property P (α) holds for all ordinals α:
• Prove P (φ) holds.
• Prove (for all α) that if P (α) holds then P (α ∪ {α}) holds.
• Prove for every limit ordinal λ that if P (α) holds for all α < λ then P (λ) holds.
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14.4 Finiteness, infiniteness
A set S is Peano finite if there is some n ∈ ω such that there is a bijection of S to

n = {0, 1, 2, . . . , n− 1}

The set is Peano infinite if it is not Peano finite.

A set S is Dedekind infinite if there is an injection from S to a proper subset of S. It is Dedekind finite
if it is not Dedekind infinite.

14.4.1 Theorem: (Granting the Axiom of Choice) The two notions of infinite are the same.

14.4.2 Remark: To avoid circularity, we should not presume arithmetic at this point.

Proof: Let f : S −→ S be an injection of S to a proper subset of itself. Choose s1 ∈ S but not lying in the
image f(S). Claim f(f(S)) is a proper subset of f(S). Indeed, f(s1) cannot be in f(f(S)), or there would
be t ∈ f(S) such that f(t) = f(s1), and then by injectivity of f we would have t = s1, contradicting the fact
that s1 6∈ f(S). Certainly f restricted to f(S) is still injective.

Thus, f(f(f(S))) is strictly smaller than f(f(S)) By induction, we can find s1, s2, . . . such that s1 6∈ f(S),
s2 ∈ f(S) but s2 6∈ f(f(S)), s3 ∈ f(f(S)) but s3 6∈ f(f(f(S))), etc. In particular, all these si are distinct,
so we have an injection

{1, 2, 3, . . .} −→ S

Thus, Dedekind infinite implies Peano infinite. ///

14.5 Comparison of infinities
The Cantor-Schroeder-Bernstein Theorem proven here is the key result that allows comparison of
infinities. Perhaps it is the first serious theorem in set theory after Cantor’s diagonalization argument.
Apparently Cantor conjectured this result, and it was proven independently by F. Bernstein and E. Schröder
in the 1890s. The proof given below is a natural proof that one might find after sufficient experimentation
and reflection.

It is noteworthy that there is no invocation of the Axiom of Choice, since one can imagine that it would
have been needed.

The argument below is not the most succinct possible, but is intended to lend a greater sense of inevitability
to the conclusion than would the shortest possible version.

14.5.1 Theorem: (Cantor-Schroeder-Bernstein) Let A and B be sets, with injections f : A −→ B and
g : B −→ A. Then there exists a canonical bijection F : A −→ B.

Proof: Let
Ao = {a ∈ A : a 6∈ g(B)} Bo = {b ∈ B : b 6∈ f(A)}

The sets
A2n = (g ◦ f)n(Ao) A2n+1 = (g ◦ f)ng(Bo)

are disjoint. Let A∞ be the complement in A to the union
⋃
n An. Define F by

F (a) =

 f(a) (for a ∈ An, n ∈ 2Z)
g−1(a) (for a ∈ An, n ∈ 1 + 2Z)
f(a) (for a ∈ A∞)

We must verify that this moderately clever apparent definition really gives a well-defined F , and that F is
a bijection. For n ≥ 1, let

Bn = f(An−1)
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and also let B∞ = f(A∞).

The underlying fact is that A∪B (disjoint union) is partitioned into one-sided or two-sided maximal sequences
of elements that map to each other under f and g: we have three patterns. First, one may have

ao
f
−→b1

g
−→a1

f
−→b2

g
−→a2 −→ . . .

f
−→bn

g
−→an −→ . . .

beginning with ao ∈ Ao, all ai ∈ A and bi ∈ B. Second, one may have

bo
g
−→a1

f
−→b1

g
−→a2

f
−→b2 −→ . . .

g
−→an

f
−→bn −→ . . .

with bo ∈ Bo, and ai ∈ A and bi ∈ B. The third and last possibility is that none of the elements involved is
an image of Ao or Bo under any number of iterations of f ◦ g or g ◦ f . Such elements fit into pictures of the
form

. . .
g
−→a−2

f
−→b−1

g
−→a−1

f
−→bo

g
−→ao

f
−→b1

g
−→ . . .

where ai ∈ A and bi ∈ B. The fundamental point is that any two distinct such sequences of elements are
disjoint. And any element certainly lies in such a sequence.

The one-sided sequences of the form

ao
f
−→b1

g
−→a1

f
−→b2

g
−→a2 −→ . . .

f
−→bn

g
−→an −→ . . .

beginning with ao ∈ Ao, can be broken up to give part of the definition of F by

F : ao
f
−→b1 F : a1

f
−→b2 . . .

The one-sided sequences of the form

bo
g
−→a1

f
−→b1

g
−→a2

f
−→b2 −→ . . .

g
−→an

f
−→bn −→ . . .

with bo ∈ Bo, beginning with bo ∈ Bo, can be broken up to give another part of the definition of F

bo
g
−→a1 b1

g
−→a2 . . .

which is to say

F : a1

g−1

−→ bo F : a2

g−1

−→ b1 . . .

For a double-sided sequence,

. . .
g
−→a−2

f
−→b−1

g
−→a−1

f
−→bo

g
−→ao

f
−→b1

g
−→ . . .

there are two equally simple ways to break it up, and we choose

F : ai
f
−→bi+1

Since the sequences partition A ∪ B, and since every element of B (and A) appears, F is surely a bijection
from A to B. ///
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14.6 Example: transfinite Lagrange replacement
Let V be a vector space over a field k. Let E = {eα : α ∈ A} be a set of linearly independent elements, and
F = {fβ : β ∈ B} be a basis for V .

14.6.1 Theorem: We have an inequality of cardinalities: |A| ≤ |B|.

Proof: Well order [238] A. We prove by transfinite induction that there is an injection j : A −→ B such
that

{eα : α ∈ A} ∪ {fβ : β ∈ B, β 6∈ j(A)}

is a basis for V . That is, we can exchange (following Lagrange) every element in E for a basis element in F
and still have a basis. Thus, since E injects to F we have an inequality of cardinalities.

Fix α ∈ A. Let
A<α = {γ ∈ A : γ < α}

For the induction step, suppose that we have an injection

j : A<α −→ B

such that
{eγ : γ < α} ∪ {fβ : β 6∈ j(A<α)}

is a disjoint union, and is still a basis for V . Then, since these elements span V , there exist elements aγ and
bβ in the field such that

eα =
∑
γ<α

aγ · eγ +
∑

β 6∈j(A<α)

bβ · fβ

Since the e’s were linearly independent, not all the bβs can be 0. Pick β 6∈ j(A<α) such that bβ 6= 0, and
extend j by defining j(α) = β.

We must check that
{eγ : γ ≤ α} ∪ {fβ : β 6∈ j(A≤α)}

is still a basis (and that the union is disjoint). For linear independence, since

{eγ : γ < α} ∪ {fδ : δ 6∈ j(A<α)}

is a basis, any linear relation must properly involve eα, as

eα =
∑
γ<α

cγeγ +
∑

δ 6∈j(A≤α)

dδfδ

Replace eα by its expression
eα =

∑
γ<α

aγ · eγ +
∑

δ 6∈j(A<α)

bδ · fδ

to obtain ∑
γ<α

aγ · eγ +
∑

δ 6∈j(A≤α)

bδ · fδ + bβfβ =
∑
γ<α

cγeγ +
∑

δ 6∈j(A≤α)

dδfδ

But bβ 6= 0, fβ occurs only on the left-hand side, and the vectors involved in this sum are a basis, so this is
impossible. This proves the linear independence (and disjointness of the union).

[238] To well-order a set is, in effect, an invocation of the Axiom of Choice, and should not be taken lightly, even if it

is useful or necessary. See the last section in this chapter.
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To prove the spanning property, use the fact that

{eγ : γ < α} ∪ {fβ : β 6∈ j(A<α)}

is a basis. That is, given v ∈ V , there are field elements xγ and yδ such that

v =
∑
γ<α

xγeγ + +
∑

δ 6∈j(A<α)

yδfδ

Since bβ 6= 0 above, we can express fβ in terms of eα, by

fβ = b−1
β eα −

∑
γ<α

aγ · eγ +
∑

δ 6∈j(A≤α)

bδ · fδ

Thus, we can replace fβ by this expression to express v as a linear combination of

{eγ : γ ≤ α} ∪ {fβ : β 6∈ j(A≤α)}

proving the spanning. By transfinite induction there exists an injection of A to B. ///

14.6.2 Remark: We could make the invocation of Well-Ordering more explicit: if there were no injection
A −→ B as indicated, by Well-Ordering let α be the first element in A such that there is no such injection
on A<α. Then the same discussion yields a contradiction.

We use the Axiom of Choice in the guise of the Well-Ordering Principle: we assume that any set can be well-
ordered. From the theory of ordinals and well-orderings any well-ordered set is isomorphic (as well-ordered
set) to a unique ordinal. From the theory of ordinals, any two ordinals are comparable, in the sense that one
is an initial segment of the other. Thus, putting these things together, any two sets A,B are comparable in
size, in the sense that either A injects to B, or B injects to A.

14.7 Equivalents of the Axiom of Choice
There are several statements which are all logically equivalent to each other, and often used to prove existence
when only existence is required, and no object must be explicitly exhibited. These are Zorn’s Lemma,
Hausdorff Maximality Principle, Well-Ordering Principle, and Axiom of Choice. Here we describe
these assertions in the context of naive set theory, in the style of the discussion above, rather than formal
or axiomatic set theory. [239]

The Axiom of Choice or Zermelo’s postulate asserts that, given a set of sets

{Si : i ∈ I}

with (not necessarily mutually disjoint) non-empty sets Si (indexed by a set I), there exists a set of choices
si, one from each Si. That is, there exists a choice set

C = {si : i ∈ I} with si ∈ Si for all indices i ∈ I

[239] In the late nineteenth and early twentieth centuries, it was unclear whether or not one could expect to prove these

assertions from first principles. Further, some mathematicians felt that one or more of these assertions was obviously

true, while others felt uneasy to varying degrees about invocation of them. In the early 1930’s Kurt Gödel proved

that the Axiom of Choice is consistent (in the Zermelo-Frankel first-order axiomatization) with the other axioms of

set theory. In 1963, Paul Cohen proved that the Axiom of Choice was independent of the other axioms. In fact, Gödel

also proved that the Continuum Hypothesis is consistent. This is the hypothesis that there are no cardinals between

the countable and the cardinality of the reals. Cohen also proved that the Continuum Hypothesis is independent.
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This is intuitively obvious for finite sets I, but less obviously clear for infinite sets of sets. Sometimes this is
stated in the form that there is a choice function f on the index set I such that f(i) ∈ Si.
The Well-ordering Principle asserts that every set can be well-ordered. More precisely, the assertion is that,
given a set S, there is a bijection of S to an ordinal.

To state Zorn’s lemma some preparation is needed. In a poset X, a chain is a totally ordered subset. An
upper bound for a totally ordered subset Y of a poset X is an element b ∈ X (not necessarily in Y ) such that
y ≤ b for all y ∈ Y . A maximal element m ∈ X is an element of X such that, for all x ∈ X, m ≤ x implies
m = x. Then Zorn’s lemma asserts that every poset in which every chain has an upper bound contains at
least one maximal element.

The Hausdorf maximality principle asserts that in any poset, every totally ordered subset is contained in
a maximal totally ordered subset. Here a maximal totally ordered subset is what it sounds like, namely, a
totally ordered subset such that any strictly larger subset fails to be totally ordered. A seemingly weaker,
but equivalent, form is the assertion that every poset contains a maximal totally ordered subset.

We give a representative proof.

Proof: (Axiom of Choice implies the Well-ordering Principle.) Fix a set X. Let c be a choice function on
the set of subsets of X. Try to define a function f on ordinals α by transfinite induction, by

f(α) = c
(
X − {f(β) : ordinals β < α}

)
where for two sets X,A

X −A = {x : x ∈ X, x 6∈ A}

This definition fails if-and-when

X − {f(β) : ordinals β < α}
)

= φ

Let us show that each function so defined (as long as we have not run out of elements of X to hit) is injective.
Indeed, for ordinals α > β, consider the definition

f(α) = c
(
X − {f(γ) : ordinals γ < α}

)
The set of values removed from X to choose a value for f(α) includes f(β), so necessarily f(α) 6= f(β). If
at any point

X − {f(β) : ordinals β < α}
)

= φ

then f gives a surjection from {β) : β < α} to X, which we have just shown is injective, giving a well-ordering
of X. Thus, it suffices to show that it is impossible that

X − {f(β) : ordinals β < α}
)
6= φ

for all ordinals α. Indeed, if this were so, then the transfinite induction proceeds uninterrupted, and we have
an injective map f from all ordinals to X. But the collection of all ordinals is a class, not a set, so cannot
be injected to any set, contradiction. That is, at some point the transfinite induction fails, and we have the
desired well-ordering. ///

Exercises

14.1 Show that the Well-Ordering Principle implies the Axiom of Choice.

14.2 Show that an arbitrary poset is isomorphic, as a poset, to a set of sets, partially ordered by set
inclusion.
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15. Symmetric polynomials

15.1 The theorem
15.2 First examples
15.3 A variant: discriminants

15.1 The theorem
Let Sn be the group of permutations of {1, . . . , n}, also called the symmetric group on n things.

For indeterminates xi, let p ∈ Sn act on Z[x1, . . . , xn] by

p(xi) = xp(i)

A polynomial f(x1, . . . , xn) ∈ Z[x1, . . . , xn] is invariant under Sn if for all p ∈ Sn

f(p(x1), . . . , p(xn)) = f(x1, . . . , xn)

The elementary symmetric polynomials in x1, . . . , xn are

s1 = s1(x1, . . . , xn) =
∑
i xi

s2 = s2(x1, . . . , xn) =
∑
i<j xixj

s3 = s3(x1, . . . , xn) =
∑
i<j<k xixjxk

s4 = s4(x1, . . . , xn) =
∑
i<j<k<` xixjxkx`

. . .
st = st(x1, . . . , xn) =

∑
i1<i2<...<it

xi1xi2 . . . xit
. . .

sn = sn(x1, . . . , xn) = x1x2x3 . . . xn

15.1.1 Theorem: A polynomial f(x1, . . . , xn) ∈ Z[x1, . . . , xn] is invariant under Sn if and only if it is
a polynomial in the elementary symmetric functions s1, . . . , sn.

15.1.2 Remark: In fact, the proof shows an algorithm which determines the expression for a given
Sn-invariant polynomial in terms of the elementary ones.
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Proof: Let f(x1, . . . , xn) be Sn-invariant. Let

q : Z[x1, . . . , xn−1, xn] −→ Z[x1, . . . , xn−1]

be the map which kills off xn, that is

q(xi) =
{
xi (1 ≤ i < n)
0 (i = n)

If f(x1, . . . , xn) is Sn-invariant, then

q(f(x1, . . . , xn−1, xn)) = f(x1, . . . , xn−1, 0)

is Sn−1-invariant, where we take the copy of Sn−1 inside Sn that fixes n. And note that

q(si(x1, . . . , xn)) =
{
si(x1, . . . , xn−1) (1 ≤ i < n)

0 (i = n)

By induction on the number of variables, there is a polynomial P in n− 1 variables such that

q(f(x1, . . . , xn)) = P (s1(x1, . . . , xn−1), . . . , sn−1(x1, . . . , xn−1))

Now use the same polynomial P but with the elementary symmetric functions augmented by insertion of
xn, by

g(x1, . . . , xn) = P (s1(x1, . . . , xn), . . . , sn−1(x1, . . . , xn))

By the way P was chosen,
q(f(x1, . . . , xn)− g(x1, . . . , xn)) = 0

That is, mapping xn −→ 0 sends the difference f − g to 0. Using the unique factorization in Z[x1, . . . , xn],
this implies that xn divides f − g. The Sn-invariance of f − g implies that every xi divides f − g. That is,
by unique factorization, sn(x1, . . . , xn) divides f − g.

The total degree of a monomial c xe11 . . . xenn is the sum of the exponents

total degree (c xe11 . . . xenn ) = e1 + . . .+ en

The total degree of a polynomial is the maximum of the total degrees of its monomial summands.

Consider the polynomial
f − g
sn

=
f(x1, . . . , xn)− g(x1, . . . , xn)

sn(x1, . . . , xn)

It is of lower total degree than the original f . By induction on total degree (f −g)/sn is expressible in terms
of the elementary symmetric polynomials in x1, . . . , xn. ///

15.1.3 Remark: The proof also shows that if the total degree of an Sn-invariant polynomial
f(x1, . . . , xn−1, xn) in n variables is less than or equal the number of variables, then the expression for
f(x1, . . . , xn−1, 0) in terms of si(x1, . . . , xn−1) gives the correct formula in terms of si(x1, . . . , xn−1, xn).

15.2 First examples

15.2.1 Example: Consider
f(x1, . . . , xn) = x2

1 + . . .+ x2
n
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The induction on n and the previous remark indicate that the general formula will be found if we find the
formula for n = 2, since the total degree is 2. Let q : Z[x, y] −→ Z[x] be the Z-algebra map sending x −→ x
and y −→ 0. Then

q(x2 + y2) = x2 = s1(x)2

Then, following the procedure of the proof of the theorem,

(x2 + y2)− s1(x, y)2 = (x2 + y2)− (x+ y)2 = −2xy

Dividing by s2(x, y) = xy we obtain −2. (This is visible, anyway.) Thus,

x2 + y2 = s1(x, y)2 − 2s2(x, y)

The induction on the number of variables gives

x2
1 + . . .+ x2

n = s1(x1, . . . , xn)2 − s2(x1, . . . , xn)

15.2.2 Example: Consider
f(x1, . . . , xn) =

∑
i

x4
i

Since the total degree is 4, as in the remark just above it suffices to determine the pattern with just 4
variables x1, x2, x3, x4. Indeed, we start with just 2 variables. Following the procedure indicated in the
theorem, letting q be the Z-algebra homomorphism which sends y to 0,

q(x4 + y4) = x4 = s1(x)4

so consider

(x4 + y4)− s1(x, y)4 = −4x3y − 6x2y2 − 4xy3 = −s1(x, y) · (4x2 + 6xy + 4y2)

The latter factor of lower total degree is analyzed in the same fashion:

q(4x2 + 6xy + 4y2) = 4x2 = 4s1(x)2

so consider
(4x2 + 6xy + 4y2)− 4s1(x, y)2 = −2xy

Going backward,
x4 + y4 = s1(x, y)4 − s1(x, y) · (4s1(x, y)2 − 2s2(x, y))

Passing to three variables,

q(x4 + y4 + z4) = x4 + y4 = s1(x, y)4 − s1(x, y) · (4s1(x, y)2 − 2s2(x, y))

so consider
(x4 + y4 + z4)−

(
s1(x, y, z)4 − s1(x, y, z) · (4s1(x, y, z)2 − 2s2(x, y, z))

)
Before expanding this, dreading the 15 terms from the (x+ y + z)4, for example, recall that the only terms
which will not be cancelled are those which involve all of x, y, z. Thus, this is

−12x2yz − 12y2xz − 12z2xy + (xy + yz + zx) · (4(x+ y + z)2 − 2(xy + yz + zx)) + (irrelevant)

= −12x2yz − 12y2xz − 12z2xy + (xy + yz + zx) · (4x2 + 4y2 + 4z2 + 6xy + 6yz + 6zx) + (irrelevant)

= −12x2yz − 12y2xz − 12z2xy + 4xyz2 + 4yzx2 + 4zxy2 + 6xy2z

+ 6x2yz + 6x2yz + 6xyz2 + 6xy2z + 6xyz2
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= 4xyz(x+ y + z) = 4s3(x, y, z) · s1(x, y, z)

Thus, with 3 variables,
x4 + y4 + z4

= s1(x, y, z)4 − s2(x, y, z) · (4s1(x, y, z)2 − 2s2(x, y, z)) + 4s3(x, y, z) · s1(x, y, z)

Abbreviating si = si(x, y, z, w), we anticipate that

x4 + y4 + z4 + w4 −
(
s4

1 − 4s2
1s2 + 2s2

2 + 4s1s3

)
= constant · xyzw

We can save a little time by evaluating the constant by taking x = y = z = w = 1. In that case

s1(1, 1, 1, 1) = 4
s2(1, 1, 1, 1) = 6
s3(1, 1, 1, 1) = 4

and
1 + 1 + 1 + 1−

(
44 − 4 · 42 · 6 + 2 · 62 + 4 · 4 · 4

)
= constant

or
constant = 4− (256− 384 + 72 + 64) = −4

Thus,
x4 + y4 + z4 + w4 = s4

1 − 4s2
1s2 + 2s2

2 + 4s1s3 − 4s4

By the remark above, since the total degree is just 4, this shows that for arbitrary n

x4
1 + . . .+ x4

n = s4
1 − 4s2

1s2 + 2s2
2 + 4s1s3 − 4s4

15.3 A variant: discriminants
Let x1, . . . , xn be indeterminates. Their discriminant is

D = D(x1, . . . , xn) =
∏
i<j

(xi − xj)

Certainly the sign of D depends on the ordering of the indeterminates. But

D2 =
∏
i 6=j

(xi − xj)2

is symmetric, that is, is invariant under all permutations of the xi. Therefore, D2 has an expression in terms
of the elementary symmetric functions of the xi.

15.3.1 Remark: By contrast to the previous low-degree examples, the discriminant (squared) has as
high a degree as possible.

15.3.2 Example: With just 2 indeterminates x, y, we have the familiar

D2 = (x− y)2 = x2 − 2xy + y2 = (x+ y)2 − 4xy = s2
1 − 4s2

Rather than compute the general version in higher-degree cases, let’s consider a more accessible variation on
the question. Suppose that α1, . . . , αn are roots of an equation

Xn + aX + b = 0
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in a field k, with a, b ∈ k. For simplicity suppose a 6= 0 and b 6= 0, since otherwise we have even simpler
methods to study this equation. Let f(X) = xn + aX + b. The discriminant

D(α1, . . . , αn) =
∏
i<j

(αi − αj)

vanishes if and only if any two of the αi coincide. On the other hand, f(X) has a repeated factor in k[X]
if and only if gcd(f, f ′) 6= 1. Because of the sparseness of this polynomial, we can in effect execute the
Euclidean algorithm explicitly. Assume that the characteristic of k does not divide n(n− 1). Then

(Xn + aX + b)− X

n
· (nXn−1 + a) = a(1− 1

n
)X + b

That is, any repeated factor of f(X) divides X + bn
(n−1)a , and the latter linear factor divides f ′(X).

Continuing, the remainder upon dividing nXn−1 + a by the linear factor X + bn
(n−1)a is simply the value of

nXn−1 + a obtained by evaluating at −bn
(n−1)a , namely

n

(
−bn

(n− 1)a

)n−1

+ a =
(
nn(−1)n−1bn−1 + (n− 1)n−1an

)
· ((n− 1)a)1−n

Thus, (constraining a to be non-zero)

nn(−1)n−1bn−1 + (n− 1)n−1an = 0

if and only if some αi − αj = 0.

We obviously want to say that with the constraint that all the symmetric functions of the αi being 0 except
the last two, we have computed the discriminant (up to a less interesting constant factor).

A relatively graceful approach would be to show that R = Z[x1, . . . , xn] admits a universal Z-algebra
homomorphism ϕ : R −→ Ω for some ring Ω that sends the first n− 2 elementary symmetric functions

s1 = s1(x1, . . . , xn) =
∑
i xi

s2 = s2(x1, . . . , xn) =
∑
i<j xi xj

s3 = s3(x1, . . . , xn) =
∑
i<j<k xi xj xk

. . .
s` = s`(x1, . . . , xn) =

∑
i1<...<i`

xi1 . . . xi`
. . .
sn−2 = sn−2(x1, . . . , xn) =

∑
i1<...<in−2

xi1 . . . xin−2

to 0, but imposes no unnecessary further relations on the images

a = (−1)n−1ϕ(sn−1) b = (−1)nϕ(sn)

We do not have sufficient apparatus to do this nicely at this moment. [240] Nevertheless, the computation
above does tell us something.

[240] The key point is that Z[x1, . . . , xn] is integral over Z[s1, s2, . . . , sn] in the sense that each xi is a root of the monic

equation Xn − s1Xn−2 + s2X
n−2 − . . .+ (−1)n−1sn−1X + (−1)nsn = 0 It is true that for R an integral extension

of a ring S, any homomorphism ϕo : S −→ Ω to an algebraically closed field Ω extends (probably in more than one

way) to a homomorphism ϕ : R −→ Ω. This would give us a justification for our hope that, given a, b ∈ Ω we can

require that ϕo(s1) = ϕo(s2) = . . . = ϕo(sn−2) = 0 while ϕo(sn−1) = (−1)n−1a ϕo(sn) = (−1)nb.
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Exercises

15.1 Express x3
1 + x3

2 + . . .+ x3
n in terms of the elementary symmetric polynomials.

15.2 Express
∑
i 6=j xi x

2
j in terms of the elementary symmetric polynomials.

15.3 Let α, β be the roots of a quadratic equation ax2 + bx+ c = 0, Show that the discriminant, defined
to be (α− β)2, is b2 − 4ac.

15.4 Consider f(x) = x3 + ax + b as a polynomial with coefficients in k(a, b) where k is a field not of
characteristic 2 or 3. By computing the greatest common divisor of f and f ′, give a condition for the roots
of f(x) = 0 to be distinct.

15.5 Express
∑
i,j,k distinct xi xj x

2
k in terms of elementary symmetric polynomials.
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16. Eisenstein’s criterion

16.1 Eisenstein’s irreducibility criterion
16.2 Examples

16.1 Eisenstein’s irreducibility criterion
Let R be a commutative ring with 1, and suppose that R is a unique factorization domain. Let k be the
field of fractions of R, and consider R as imbedded in k.

16.1.1 Theorem: Let

f(x) = xN + aN−1x
N−1 + aN−2x

N−2 + . . .+ a2x
2 + a1x+ a0

be a polynomial in R[x]. If p is a prime in R such that p divides every coefficient ai but p2 does not divide
a0, then f(x) is irreducible in R[x], and is irreducible in k[x].

Proof: Since f has coefficients in R, its content (in the sense of Gauss’ lemma) is in R. Since it is monic,
its content is 1. Thus, by Gauss’ lemma, if f(x) = g(x) · h(x) in k[x] we can adjust constants so that the
content of both g and h is 1. In particular, we can suppose that both g and h have coefficients in R, and are
monic.

Let
g(x) = xm + bm−1x

m−1 + b1x+ b0

h(x) = xn + cm−1x
m−1 + c1x+ c0

Not both b0 and c0 can be divisible by p, since a0 is not divisible by p2. Without loss of generality, suppose
that p|b0. Suppose that p|bi for i in the range 0 ≤ i ≤ i1, and p does not divide bi1 . There is such an index
i1, since g is monic. Then

ai1 = bi1c0 + bi1−1c1 + . . .

On the right-hand side, since p divides b0, . . . , bi1−1, necessarily p divides all summands but possible the
first. Since p divides neither bi1 nor c0, and since R is a UFD, p cannot divide bi1c0, so cannot divide ai1 ,
contradiction. Thus, after all, f does not factor. ///
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16.2 Examples

16.2.1 Example: For a rational prime p, and for any integer n > 1, not only does

xn − p = 0

not have a root in Q, but, in fact, the polynomial xn − p is irreducible in Q[x].

16.2.2 Example: Let p be a prime number. Consider the pth cyclotomic polynomial

Φp(x) = xp−1 + xp−2 = . . .+ x2 + x+ 1 =
xp − 1
x− 1

We claim that Φp(x) is irreducible in Q[x]. Although Φp(x) itself does not directly admit application of
Eisenstein’s criterion, a minor variant of it does. That is, consider

f(x) = Φp(x+ 1) =
(x+ 1)p − 1
(x+ 1)− 1

=
xp +

(
p
1

)
xp−1 +

(
p
2

)
xp−2 + . . .+

(
p
p−2

)
x2 +

(
p
p−1

)
x

x

= xp−1 +
(
p

1

)
xp−2 +

(
p

2

)
xp−3 + . . .+

(
p

p− 2

)
x+

(
p

p− 1

)
All the lower coefficients are divisible by p, and the constant coefficient is exactly p, so is not divisible
by p2. Thus, Eisenstein’s criterion applies, and f is irreducible. Certainly if Φp(x) = g(x)h(x) then
f(x) = Φp(x+ 1) = g(x+ 1)h(x+ 1) gives a factorization of f . Thus, Φp has no proper factorization.

16.2.3 Example: Let f(x) = x2 + y2 + z2 in k[x, y, z] where k is not of characteristic 2. We make
identifications like

k[x, y, z] = k[y, z][x]

via the natural isomorphisms. We want to show that y2 + z2 is divisible by some prime p in k[y, z], and
not by p2. It suffices to show that y2 + z2 is divisible by some prime p in k(z)[y], and not by p2. Thus, it
suffices to show that y2 + z2 is not a unit, and has no repeated factor, in k(z)[y]. Since it is of degree 2, it
is certainly not a unit, so has some irreducible factor. To test for repeated factors, compute the gcd of this
polynomial and its derivative, viewed as having coefficients in the field k(z): [241]

(y2 + z2)− y

2
(2y) = z2 = non-zero constant

Thus, y2 + z2 is a square-free non-unit in k(z)[y], so is divisible by some irreducible p in k[y, z] (Gauss’
lemma), so Eisenstein’s criterion applies to x2 + y2 + z2 and p.

16.2.4 Example: Let f(x) = x2 + y3 + z5 in k[x, y, z] where k is not of characteristic dividing 30. We
want to show that y3 + z5 is divisible by some prime p in k[y, z], and not by p2. It suffices to show that
y3 + z5 is divisible by some prime p in k(z)[y], and not by p2. Thus, it suffices to show that y2 + z2 is not
a unit, and has no repeated factor, in k(z)[y]. Since it is of degree 2, it is certainly not a unit, so has some
irreducible factor. To test for repeated factors, compute the gcd of this polynomial and its derivative, viewed
as having coefficients in the field k(z): [242]

(y2 + z2)− y

2
(2y) = z2 = non-zero constant

Thus, y2 + z2 is a square-free non-unit in k(z)[y], so is divisible by some irreducible p in k[y, z] (Gauss’
lemma), so Eisenstein’s criterion applies to x2 + y2 + z2 and p.

[241] It is here that the requirement that the characteristic not be 2 is visible.

[242] It is here that the requirement that the characteristic not be 2 is visible.
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Exercises

16.1 Prove that x7 + 48x− 24 is irreducible in Q[x].

16.2 Not only does Eisenstein’s criterion (with Gauss’ lemma) fail to prove that x4 + 4 is irreducible in
Q[x], but, also, this polynomial does factor into two irreducible quadratics in Q[x]. Find them.

16.3 Prove that x3 + y3 + z3 is irreducible in k[x, y, z] when k is a field not of characteristic 3.

16.4 Prove that x2 + y3 + z5 is irreducible in k[x, y, z] even when the underlying field k is of characteristic
2, 3, or 5.

16.5 Prove that x3 + y + y5 is irreducible in C[x, y].

16.6 Prove that xn + yn + 1 is irreducible in k[x, y] when the characteristic of k does not divide n.

16.7 Let k be a field with characteristic not dividing n. Show that any polynomial xn−P (y) where P (y)
has no repeated factors is irreducible in k[x, y].
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17. Vandermonde determinants

17.1 Vandermonde determinants
17.2 Worked examples

17.1 Vandermonde determinants
A rigorous systematic evaluation of Vandermonde determinants (below) of the following identity uses the
fact that a polynomial ring over a UFD is again a UFD. A Vandermonde matrix is a square matrix of
the form in the theorem.

17.1.1 Theorem:

det



1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n

x3
1 x3

2 . . . x3
n

...
...

...
xn−1

1 xn−1
2 . . . xn−1

n

 = (−1)n(n−1)/2 ·
∏
i<j

(xi − xj)

17.1.2 Remark: The most universal version of the assertion uses indeterminates xi, and proves an
identity in

Z[x1, . . . , xn]

Proof: First, the idea of the proof. Whatever the determinant may be, it is a polynomial in x1, . . ., xn.
The most universal choice of interpretation of the coefficients is as in Z. If two columns of a matrix are
the same, then the determinant is 0. From this we would want to conclude that for i 6= j the determinant
is divisible by [243] xi − xj in the polynomial ring Z[x1, . . . , xn]. If we can conclude that, then, since these

[243] If one treats the xi merely as complex numbers, for example, then one cannot conclude that the product of the

expressions xi − xj with i < j divides the determinant. Attempting to evade this problem by declaring the xi as

somehow variable complex numbers is an impulse in the right direction, but is made legitimate only by treating

genuine indeterminates.
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polynomials are pairwise relatively prime, we can conclude that the determinant is divisible by∏
i<j

(xi − xj)

Considerations of degree will show that there is no room for further factors, so, up to a constant, this is the
determinant.

To make sense of this line of argument, first observe that a determinant is a polynomial function of its entries.
Indeed, the formula is

detM =
∑
p

σ(p)M1p(1)M2p(2) . . .Mnp(n)

where p runs over permutations of n things and σ(p) is the sign or parity of p, that is, σ(p) is +1 if p is a
product of an even number of 2-cycles and is −1 if p is the product of an odd number of 2-cycles. Thus, for
any Z-algebra homomorphism f to a commutative ring R with identity,

f : Z[x1, . . . , xn] −→ R

we have
f(detV ) = det f(V )

where by f(V ) we mean application of f entry-wise to the matrix V . Thus, if we can prove an identity in
Z[x1, . . . , xn], then we have a corresponding identity in any ring.

Rather than talking about setting xj equal to xi, it is safest to try to see divisibility property as directly as
possible. Therefore, we do not attempt to use the property that the determinant of a matrix with two equal
columns is 0. Rather, we use the property [244] that if an element r of a ring R divides every element of a
column (or row) of a square matrix, then it divides the determinant. And we are allowed to add any multiple
of one column to another without changing the value of the determinant. Subtracting the jth column from
the ith column of our Vandermonde matrix (with i < j), we have

detV = det



. . . 1− 1 . . . 1 . . .

. . . xi − xj . . . xj . . .

. . . x2
i − x2

j . . . x2
j . . .

. . . x3
i − x3

j . . . x3
j . . .

...
...

. . . xn−1
i − xn−1

j . . . xn−1
j . . .


From the identity

xm − ym = (x− y)(xm−1 + xm−2y + . . .+ ym−1)

it is clear that xi−xj divides all entries of the new ith column. Thus, xi−xj divides the determinant. This
holds for all i < j.

Since these polynomials are linear, they are irreducible in Z[x1, . . . , xn]. Generally, the units in a polynomial
ring R[x1, . . . , xn] are the units R× in R, so the units in Z[x1, . . . , xn] are just ±1. Visibly, the various
irreducible xi − xj are not associate, that is, do not merely differ by units. Therefore, their least common
multiple is their product. Since Z[x1, . . . , xn] is a UFD, this product divides the determinant of the
Vandermonde matrix.

To finish the computation, we want to argue that the determinant can have no further polynomial factors
than the ones we’ve already determined, so up to a constant (which we’ll determine) is equal to the latter

[244] This follows directly from the just-quoted formula for determinants, and also from other descriptions of

determinants, but from any viewpoint is still valid for matrices with entries in any commutative ring with identity.
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product. [245] To prove this, we need the notion of total degree: the total degree of a monomial xm1
1 . . . xmnn

is m1 + . . .+mn, and the total degree of a polynomial is the maximum of the total degrees of the monomials
occurring in it. We grant for the moment the result of the proposition below, that the total degree of a
product is the sum of the total degrees of the factors. The total degree of the product is∑

1≤i<j≤n

1 =
∑

1≤i<n

n− i =
1
2
n(n− 1)

To determine the total degree of the determinant, invoke the usual formula for the determinant of a matrix
M with entries Mij , namely

detM =
∑
π

σ(π)
∏
i

Mi,π(i)

where π is summed over permutations of n things, and where σ(π) is the sign of the permutation π. In a
Vandermonde matrix all the top row entries have total degree 0, all the second row entries have total degree
1, and so on. Thus, in this permutation-wise sum for a Vandermonde determinant, each summand has total
degree

0 + 1 + 2 + . . .+ (n− 1) =
1
2
n(n− 1)

so the total degree of the determinant is the total degree of the product∑
1≤i<j≤n

1 =
∑

1≤i<n

n− i =
1
2
n(n− 1)

Thus,

det



1 1 . . . 1
x1 x2 . . . xn
x2

1 x2
2 . . . x2

n

x3
1 x3

2 . . . x3
n

...
...

...
xn−1

1 xn−1
2 . . . xn−1

n

 = constant ·
∏
i<j

(xi − xj)

Granting this, to determine the constant it suffices to compare a single monomial in both expressions. For
example, compare the coefficients of

xn−1
1 xn−2

2 xn−3
3 . . . x1

n−1x
0
n

In the product, the only way xn−1
1 appears is by choosing the x1s in the linear factors x1 − xj with 1 < j.

After this, the only way to get xn−2
2 is by choosing all the x2s in the linear factors x2−xj with 2 < j. Thus,

this monomial has coefficient +1 in the product.

In the determinant, the only way to obtain this monomial is as the product of entries from lower left to
upper right. The indices of these entries are (n, 1), (n − 1, 2), . . . , (2, n − 1), (1, n). Thus, the coefficient of
this monomial is (−1)` where ` is the number of 2-cycles necessary to obtain the permutation p such that

p(i) = n+ 1− i

Thus, for n even there are n/2 two-cycles, and for n odd (n − 1)/2 two-cycles. For a closed form, as these
expressions will appear only as exponents of −1, we only care about values modulo 2. Because of the division
by 2, we only care about n modulo 4. Thus, we have values

n/2 = 0 mod 2 (for n = 0 mod 4)
(n− 1)/2 = 0 mod 2 (for n = 1 mod 4)
n/2 = 1 mod 2 (for n = 3 mod 4)

(n− 1)/2 = 1 mod 2 (for n = 1 mod 4)

[245] This is more straightforward than setting up the right viewpoint for the first part of the argument.
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After some experimentation, we find a closed expression

n(n− 1)/2 mod 2

Thus, the leading constant is
(−1)n(n−1)/2

in the expression for the Vandermonde determinant. ///

Verify the property of total degree:

17.1.3 Lemma: Let f(x1, . . . , xn) and g(x1, . . . , xn) be polynomials in k[x1, . . . , xn] where k is a field.
Then the total degree of the product is the sum of the total degrees.

Proof: It is clear that the total degree of the product is less than or equal the sum of the total degrees.

Let xe11 . . . xenn and xf1
1 . . . xfnn be two monomials of highest total degrees s = e1 + . . .+en and t = f1 + . . .+fn

occurring with non-zero coefficients in f and g, respectively. Assume without loss of generality that the
exponents e1 and f1 of x1 in the two expressions are the largest among all monomials of total degrees s, t in
f and g, respectively. Similarly, assume without loss of generality that the exponents e2 and f2 of x2 in the
two expressions are the largest among all monomials of total degrees s, t in f and g, respectively, of degrees
e1 and f1 in x1. Continuing similarly, we claim that the coefficient of the monomial

M = xe1+f1 . . . xen+fn
n

is simply the product of the coefficients of xe11 . . . xenn and xf1
1 . . . xfnn , so non-zero. Let xu1

1 . . . xunn and
xv1

1 . . . xvnn be two other monomials occurring in f and g such that for all indices i we have ui + vi = ei + fi.
By the maximality assumption on e1 and f1, we have e1 ≥ u1 and f1 ≥ v1, so the only way that the necessary
power of x1 can be achieved is that e1 = u1 and f1 = v1. Among exponents with these maximal exponents
of x1, e2 and f2 are maximal, so e2 ≥ u2 and f2 ≥ v2, and again it must be that e2 = u2 and f2 = v2 to
obtain the exponent of x2. Inductively, ui = ei and vi = fi for all indices. That is, the only terms in f and
g contributing to the coefficient of the monomial M in f · g are monomials xe11 . . . xenn and xf1

1 . . . xfnn . Thus,
the coefficient of M is non-zero, and the total degree is as claimed. ///

17.2 Worked examples

17.2.1 Example: Show that a finite integral domain is necessarily a field.

Let R be the integral domain. The integral domain property can be immediately paraphrased as that for
0 6= x ∈ R the map y −→ xy has trivial kernel (as R-module map of R to itself, for example). Thus, it is
injective. Since R is a finite set, an injective map of it to itself is a bijection. Thus, there is y ∈ R such that
xy = 1, proving that x is invertible. ///

17.2.2 Example: Let P (x) = x3 + ax+ b ∈ k[x]. Suppose that P (x) factors into linear polynomials
P (x) = (x− α1)(x− α2)(x− α3). Give a polynomial condition on a, b for the αi to be distinct.

(One might try to do this as a symmetric function computation, but it’s a bit tedious.)

If P (x) = x3 +ax+ b has a repeated factor, then it has a common factor with its derivative P ′(x) = 3x2 +a.

If the characteristic of the field is 3, then the derivative is the constant a. Thus, if a 6= 0, gcd(P, P ′) = a ∈ k×
is never 0. If a = 0, then the derivative is 0, and all the αi are the same.

Now suppose the characteristic is not 3. In effect applying the Euclidean algorithm to P and P ′,

(
x3 + ax+ b

)
− x

3
·
(
3x2 + a

)
= ax+ b− x

3
· a =

2
3
ax+ b
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If a = 0 then the Euclidean algorithm has already terminated, and the condition for distinct roots or factors
is b 6= 0. Also, possibly surprisingly, at this point we need to consider the possibility that the characteristic
is 2. If so, then the remainder is b, so if b 6= 0 the roots are always distinct, and if b = 0

Now suppose that a 6= 0, and that the characteristic is not 2. Then we can divide by 2a. Continue the
algorithm (

3x2 + a
)
− 9x

2a
·
(

2
3
ax+ b

)
= a+

27b2

4a2

Since 4a2 6= 0, the condition that P have no repeated factor is

4a3 + 27b2 6= 0

17.2.3 Example: The first three elementary symmetric functions in indeterminates x1, . . . , xn are

σ1 = σ1(x1, . . . , xn) = x1 + x2 + . . .+ xn =
∑
i

xi

σ2 = σ2(x1, . . . , xn) =
∑
i<j

xixj

σ3 = σ3(x1, . . . , xn) =
∑
i<j<`

xixjx`

Express x3
1 + x3

2 + . . .+ x3
n in terms of σ1, σ2, σ3.

Execute the algorithm given in the proof of the theorem. Thus, since the degree is 3, if we can derive the
right formula for just 3 indeterminates, the same expression in terms of elementary symmetric polynomials
will hold generally. Thus, consider x3 +y3 +z3. To approach this we first take y = 0 and z = 0, and consider
x3. This is s1(x)3 = x3. Thus, we next consider(

x3 + y3
)
− s1(x, y)3 = 3x2y + 3xy2

As the algorithm assures, this is divisible by s2(x, y) = xy. Indeed,(
x3 + y3

)
− s1(x, y)3 = (3x+ 3y)s2(x, y) = 3s1(x, y) s2(x, y)

Then consider (
x3 + y3 + z3

)
−
(
s1(x, y, z)3 − 3 s2(x, y, z) s1(x, y, z)

)
= 3xyz = 3s3(x, y, z)

Thus, again, since the degree is 3, this formula for 3 variables gives the general one:

x3
1 + . . .+ x3

n = s3
1 − 3s1s2 + 3s3

where si = si(x1, . . . , xn).

17.2.4 Example: Express
∑
i6=j x

2
ixj as a polynomial in the elementary symmetric functions of

x1, . . . , xn.

We could (as in the previous problem) execute the algorithm that proves the theorem asserting that every
symmetric (that is, Sn-invariant) polynomial in x1, . . . , xn is a polynomial in the elementary symmetric
functions.

But, also, sometimes ad hoc manipulations can yield shortcuts, depending on the context. Here,

∑
i 6=j

x2
ixj =

∑
i,j

x2
ixj −

∑
i=j

x2
ixj =

(∑
i

x2
i

)∑
j

xj

−∑
i

x3
i
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An easier version of the previous exercise gives∑
i

x2
i = s2

1 − 2s2

and the previous exercise itself gave ∑
i

x3
i = s3

1 − 3s1s2 + 3s3

Thus, ∑
i6=j

x2
ixj = (s2

1 − 2s2) s1 −
(
s3

1 − 3s1s2 + 3s3

)
= s3

1 − 2s1s2 − s3
1 + 3s1s2 − 3s3 = s1s2 − 3s3

17.2.5 Example: Suppose the characteristic of the field k does not divide n. Let ` > 2. Show that

P (x1, . . . , xn) = xn1 + . . .+ xn`

is irreducible in k[x1, . . . , x`].

First, treating the case ` = 2, we claim that xn + yn is not a unit and has no repeated factors in k(y)[x].
(We take the field of rational functions in y so that the resulting polynomial ring in a single variable is
Euclidean, and, thus, so that we understand the behavior of its irreducibles.) Indeed, if we start executing
the Euclidean algorithm on xn + yn and its derivative nxn−1 in x, we have

(xn + yn)− x

n
(nxn−1) = yn

Note that n is invertible in k by the characteristic hypothesis. Since y is invertible (being non-zero) in k(y),
this says that the gcd of the polynomial in x and its derivative is 1, so there is no repeated factor. And the
degree in x is positive, so xn + yn has some irreducible factor (due to the unique factorization in k(y)[x], or,
really, due indirectly to its Noetherian-ness).

Thus, our induction (on n) hypothesis is that xn2 + xn3 + . . . + xn` is a non-unit in k[x2, x3, . . . , xn] and has
no repeated factors. That is, it is divisible by some irreducible p in k[x2, x3, . . . , xn]. Then in

k[x2, x3, . . . , xn][x1] ≈ k[x1, x2, x3, . . . , xn]

Eisenstein’s criterion applied to xn1 + . . . as a polynomial in x1 with coefficients in k[x2, x3, . . . , xn] and using
the irreducible p yields the irreducibility.

17.2.6 Example: Find the determinant of the circulant matrix

x1 x2 . . . xn−2 xn−1 xn
xn x1 x2 . . . xn−2 xn−1

xn−1 xn x1 x2 . . . xn−2

...
. . .

...
x3 x1 x2

x2 x3 . . . xn x1


(Hint: Let ζ be an nth root of 1. If xi+1 = ζ · xi for all indices i < n, then the (j + 1)th row is ζ times the
jth, and the determinant is 0. )

Let Cij be the ijth entry of the circulant matrix C. The expression for the determinant

detC =
∑
p∈Sn

σ(p)C1,p(1) . . . Cn,p(n)
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where σ(p) is the sign of p shows that the determinant is a polynomial in the entries Cij with integer
coefficients. This is the most universal viewpoint that could be taken. However, with some hindsight, some
intermediate manipulations suggest or require enlarging the ‘constants’ to include nth roots of unity ω.
Since we do not know that Z[ω] is a UFD (and, indeed, it is not, in general), we must adapt. A reasonable
adaptation is to work over Q(ω). Thus, we will prove an identity in Q(ω)[x1, . . . , xn].

Add ωi−1 times the ith row to the first row, for i ≥ 2. The new first row has entries, from left to right,

x1 + ωx2 + ω2x3 + . . .+ ωn−1xn

x2 + ωx3 + ω2x4 + . . .+ ωn−1xn−1

x3 + ωx4 + ω2x5 + . . .+ ωn−1xn−2

x4 + ωx5 + ω2x6 + . . .+ ωn−1xn−3

. . .

x2 + ωx3 + ω2x4 + . . .+ ωn−1x1

The tth of these is
ω−t · (x1 + ωx2 + ω2x3 + . . .+ ωn−1xn)

since ωn = 1. Thus, in the ring Q(ω)[x1, . . . , xn],

x1 + ωx2 + ω2x3 + . . .+ ωn−1xn)

divides this new top row. Therefore, from the explicit formula, for example, this quantity divides the
determinant.

Since the characteristic is 0, the n roots of xn − 1 = 0 are distinct (for example, by the usual computation
of gcd of xn − 1 with its derivative). Thus, there are n superficially-different linear expressions which divide
detC. Since the expressions are linear, they are irreducible elements. If we prove that they are non-associate
(do not differ merely by units), then their product must divide detC. Indeed, viewing these linear expressions
in the larger ring

Q(ω)(x2, . . . , xn)[x1]

we see that they are distinct linear monic polynomials in x1, so are non-associate.

Thus, for some c ∈ Q(ω),

detC = c ·
∏

1≤`≤n

(
x1 + ω`x2 + ω2`x3 + ω3`x4 + . . .+ ω(n−1)`xn

)
Looking at the coefficient of xn1 on both sides, we see that c = 1.

(One might also observe that the product, when expanded, will have coefficients in Z.)

Exercises

17.1 A k-linear derivation D on a commutative k-algebra A, where k is a field, is a k-linear map
D : A −→ A satisfying Leibniz’ identity

D(ab) = (Da) · b+ a · (Db)

Given a polynomial P (x), show that there is a unique k-linear derivation D on the polynomial ring k[x]
sending x to P (x).
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17.2 Let A be a commutative k-algebra which is an integral domain, with field of fractions K. Let D be
a k-linear derivation on A. Show that there is a unique extension of D to a k-linear derivation on K, and
that this extension necessarily satisfies the quotient rule.

17.3 Let f(x1, . . . , xn) be a homogeneous polynomial of total degree n, with coefficients in a field k. Let
∂/∂xi be partial differentiation with respect to xi. Prove Euler’s identity, that

n∑
i=1

xi
∂f

∂xi
= n · f

17.4 Let α be algebraic over a field k. Show that any k-linear derivation D on k(α) necessarily gives
Dα = 0.
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18. Cyclotomic polynomials II

18.1 Cyclotomic polynomials over Z
18.2 Worked examples

Now that we have Gauss’ lemma in hand we can look at cyclotomic polynomials again, not as polynomials
with coefficients in various fields, but as universal things, having coefficients in Z. [246] Most of this discussion
is simply a rewrite of the earlier discussion with coefficients in fields, especially the case of characteristic 0,
paying attention to the invocation of Gauss’ lemma. A new point is the fact that the coefficients lie in Z.
Also, we note the irreducibility of Φp(x) for prime p in both Z[x] and Q[x], via Eisenstein’s criterion (and
Gauss’ lemma, again).

18.1 Cyclotomic polynomials over Z
Define

Φ1(x) = x− 1 ∈ Z[x]

and for n > 1 try to define [247]

Φn(x) =
xn − 1∏

d|n, d<n Φd(x)

We prove inductively that Φn(x) is monic, has integer coefficients, and has constant coefficient ±1.

First, we claim that xn− 1 ∈ Z[x] has no repeated factors. The greatest common divisor of its coefficients is
1, so by Gauss’ lemma any irreducible factors can be taken to be monic polynomials with integer coefficients
which are irreducible in Q[x], not merely in Z[x]. Thus, it suffices to compute the greatest common divisor
of xn − 1 and its derivative nxn−1 in Q[x]. Since n is invertible in Q,

(xn − 1)− x

n
· nxn−1 = −1

[246] Given any field k, there is a unique Z-algebra homomorphism Z[x] −→ k[x] sending x to x and 1 to 1. Thus,

if we can successfully demonstrate properties of polynomials in Z[x] then these properties descend to any particular

k[x]. In particular, this may allow us to avoid certain complications regarding the characteristic of the field k.

[247] It is not immediately clear that the denominator divides the numerator, for example.
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Thus, there are no repeated factors [248] in xn − 1.

Next, note that in Z[x] we still do have the unlikely-looking

gcd(xm − 1, xn − 1) = xgcd(m,n) − 1

Again, the gcd of the coefficients of each polynomial is 1, so by Gauss’ lemma the gcd of the two polynomials
can be computed in Q[x] (and will be a monic polynomial with integer coefficients whose gcd is 1). Taking
m ≤ n without loss of generality,

(xn − 1)− xn−m(xm − 1) = xn−m − 1

For n = qm+ r with 0 ≤ r < m, repeating this procedure q times allows us to reduce n modulo m, finding
that the gcd of xn − 1 and xm − 1 is the same as the gcd of xm − 1 and xr − 1. In effect, this is a single step
in the Euclidean algorithm applied to m and n. Thus, by an induction, we obtain the assertion.

Claim that in Z[x], for m < n, Φm(x) and Φn(x) have no common factor. Again, by induction, they have
integer coefficients with gcd 1, so by Gauss’ lemma any common factor has the same nature. Any common
factor would be a common factor of xn− 1 and xm− 1, hence, by the previous paragraph, a factor of xd− 1
where d = gcd(m,n). Since m 6= n, d must be a proper factor n, and by its recursive definition

Φn(x) =
xn − 1∏

δ|n, δ<n Φδ(x)
divides

xn − 1∏
δ|d Φδ(x)

= divides
xn − 1
xd − 1

Thus, since xn − 1 has no repeated factors, Φn(x) shares no common factors with xd − 1. Thus, for m < n,
Φm(x) and Φn(x) have greatest common factor 1.

Therefore, in the attempted definition

Φn(x) =
xn − 1∏

d|n, d<n Φδ(x)

by induction the denominators in the right-hand side have no common factor, all divide xn − 1, so their
product divides xn−1, by unique factorization in Z[x]. Thus, the apparent definition of Φn(x) as a polynomial
with integer coefficients succeeds. [249]

Also, by induction, from
xn − 1 =

∏
d|n, d≤n

Φδ(x)

the constant coefficient of Φn(x) is ±1. And Φn(x) is monic.

Finally, note that for p prime

Φp(x+ 1) =
(x+ 1)p − 1
(x+ 1)− 1

= xp−1 +
(
p

1

)
xp−2 +

(
p

2

)
xp−3 + . . .+

(
p

p− 2

)
x+

(
p

p− 1

)
This has all lower coefficients divisible by p, and the constant coefficient is exactly p, so is not divisible by
p2. Thus, by Eisenstein’s criterion, Φp(x) is irreducible in Z[x]. By Gauss’ lemma, it is irreducible in Q[x].

[248] We had noted this earlier, except the conclusion was weaker. Previously, we could only assert that there were

no repeated factors in Q[x], since we knew that the latter ring was Euclidean, hence a PID. One weakness of that

viewpoint is that it does not directly tell anything about what might happen over finite fields. Treating integer

coefficients is the universal.

[249] Proving that the cyclotomic polynomials have integer coefficients is more awkward if one cannot discuss unique

factorization in Z[x].
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18.2 Worked examples

18.2.1 Example: Prove that a finite division ring D (a not-necessarily commutative ring with 1 in
which any non-zero element has a multiplicative inverse) is commutative. (This is due to Wedderburn.)
(Hint: Check that the center k of D is a field, say of cardinality q. Let D× act on D by conjugation, namely
α · β = αβα−1, and count orbits, to obtain an equality of the form

|D| = qn = q +
∑
d

qn − 1
qd − 1

where d is summed over some set of integers all strictly smaller than n. Let Φn(x) be the nth cyclotomic
polynomial. Show that, on one hand, Φn(q) divides qn − q, but, on the other hand, this is impossible unless
n = 1. Thus D = k. )

First, the center k of D is defined to be

k = center D = {α ∈ D : αx = xα for all x ∈ D}

We claim that k is a field. It is easy to check that k is closed under addition, multiplication, and contains 0
and 1. Since −α = (−1) · α, it is closed under taking additive inverses. There is a slight amount of interest
in considering closure under taking multiplicative inverses. Let 0 6= α ∈ k, and x ∈ D. Then left-multiply
and right-multiply αx = xα by α−1 to obtain xα−1 = α−1x. This much proves that k is a division ring.
Since its elements commute with every x ∈ D certainly k is commutative. This proves that k is a field.

The same argument shows that for any x ∈ D the centralizer

Dx = centralizer of x = {α ∈ D : αx = xα}

is a division ring, though possibly non-commutative. It certainly contains the center k, so is a k-vectorspace.
Noting that αx = xα is equivalent to αxα−1 = x for α invertible, we see that D×x is the pointwise fixer of x
under the conjugation action.

Thus, the orbit-counting formula gives

|D| = |k|+
∑

non-central orbits Ox
[D× : D×x ]

where the center k is all singleton orbits and Ox is summed over orbits of non-central elements, choosing
representatives x for Ox. This much did not use finiteness of D.

Let q = |k|, and n = dimkD. Suppose n > 1. Let nx = dimkDx. Then

qn = q +
∑

non-central orbits Ox

qn − 1
qnx − 1

In all the non-central orbit summands, n > nx. Rearranging,

q − 1 = −(qn − 1) +
∑

non-central orbits Ox

qn − 1
qnx − 1

Let Φn(x) be the nth cyclotomic polynomial, viewed as an element of Z[x]. Then, from the fact that the
recursive definition of Φn(x) really does yield a monic polynomial of positive degree with integer coefficients
(and so on), and since nx < n for all non-central orbits, the integer Φn(q) divides the right-hand side, so
divides q − 1.
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We claim that as a complex number |Φn(q)| > q − 1 for n > 1. Indeed, fix a primitive nth root of unity
ζ ∈ C. The set of all primitive nth roots of unity is {ζa} where 1 ≤ a ≤ p prime to p. Then

|Φn(q)|2 =
∏

a: gcd(a,n)=1

|q − ζa|2 =
∏

a: gcd(a,n)=1

[
(q − Re(ζa))2 + (Im(ζa))2

]
Since |ζ| = 1, the real part is certainly between −1 and +1, so q −Re(ζa) > q− 1 unless Re(ζa) = 1, which
happens only for ζa = 1, which can happen only for n = 1. That is, for n > 1, the integer Φn(q) is a product
of complex numbers each larger than q − 1, contradicting the fact that Φn(q)|(q − 1). That is, n = 1. That
is, there are no non-central orbits, and D is commutative.

18.2.2 Example: Let q = pn be a (positive integer) power of a prime p. Let F : Fq −→ Fq by F (α) = αp

be the Frobenius map over Fp. Let S be a set of elements of Fq stable under F (that is, F maps S to itself).
Show that the polynomial ∏

α∈S
(x− α)

has coefficients in the smaller field Fp.

Since the set S is Frobenius-stable, application of the Frobenius to the polynomial merely permutes the linear
factors, thus leaving the polynomial unchanged (since the multiplication of the linear factors is insensitive
to ordering.) Thus, the coefficients of the (multiplied-out) polynomial are fixed by the Frobenius. That is,
the coefficients are roots of the equation xp − x = 0. On one hand, this polynomial equation has at most p
roots in a given field (from unique factorization), and, on the other hand, Fermat’s Little Theorem assures
that the elements of the field Fp are roots of that equation. Thus, any element fixed under the Frobenius
lies in the field Fp, as asserted.

18.2.3 Example: Let q = pn be a power of a prime p. Let F : Fq −→ Fq by F (α) = αp be the Frobenius
map over Fp. Show that for every divisor d of n that the fixed points of F d form the unique subfield Fpd of
Fq of degree d over the prime field Fp.

This is similar to the previous example, but emphasizing a different part. Fixed points of the dth power F d

of the Frobenius F are exactly the roots of the equation xp
d − x = 0 of x(xp

d−1 − 1) = 0. On one hand, a
polynomial has at most as many roots (in a field) as its degree. On the other hand, F×

pd
is of order pd − 1,

so every element of Fpd is a root of our equation. There can be no more, so Fpd is exactly the set of roots.

18.2.4 Example: Let f(x) be a monic polynomial with integer coefficients. Show that f is irreducible
in Q[x] if it is irreducible in (Z/p)[x] for some p.

First, claim that if f(x) is irreducible in some (Z/p)[x], then it is irreducible in Z[x]. A factorization
f(x) = g(x)·h(x) in Z[x] maps, under the natural Z-algebra homomorphism to (Z/p)[x], to the corresponding
factorization f(x) = g(x) · h(x) in (Z/p)[x]. (There’s little reason to invent a notation for the reduction
modulo p of polynomials as long as we are clear what we’re doing.) A critical point is that since f is
monic both g and h can be taken to be monic also (multiplying by −1 if necessary), since the highest-
degree coefficient of a product is simply the product of the highest-degree coefficients of the factors. The
irreducibility over Z/p implies that the degree of one of g and h modulo p is 0. Since they are monic,
reduction modulo p does not alter their degrees. Since f is monic, its content is 1, so, by Gauss’ lemma, the
factorization in Z[x] is not proper, in the sense that either g or h is just ±1.

That is, f is irreducible in the ring Z[x]. Again by Gauss’ lemma, this implies that f is irreducible in Q[x].

18.2.5 Example: Let n be a positive integer such that (Z/n)× is not cyclic. Show that the nth

cyclotomic polynomial Φn(x) factors properly in Fp[x] for any prime p not dividing n.

(See subsequent text for systematic treatment of the case that p divides n.) Let d be a positive integer such
that pd−1 = 0 mod n. Since we know that F×

pd
is cyclic, Φn(x) = 0 has a root in Fpd when pd−1 = 0 mod n.

For Φn(x) to be irreducible in Fp[x], it must be that d = ϕ(n) (Euler’s totient function ϕ) is the smallest
exponent which achieves this. That is, Φn(x) will be irreducible in Fp[x] only if pϕ(n) = 1 mod n but no
smaller positive exponent achieves this effect. That is, Φn(x) is irreducible in Fp[x] only if p is of order ϕ(n)
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in the group (Z/n)×. We know that the order of this group is ϕ(n), so any such p would be a generator for
the group (Z/n)×. That is, the group would be cyclic.

18.2.6 Example: Show that the 15th cyclotomic polynomial Φ15(x) is irreducible in Q[x], despite being
reducible in Fp[x] for every prime p.

First, by Sun-Ze
(Z/15)× ≈ (Z/3)× × (Z/5)× ≈ Z/2⊕ Z/4

This is not cyclic (there is no element of order 8, as the maximal order is 4). Thus, by the previous problem,
there is no prime p such that Φ15(x) is irreducible in Fp[x].

To prove that Φ15 is irreducible in Q[x], it suffices to show that the field extension Q(ζ) of Q generated by
any root ζ of Φ15(x) = 0 (in some algebraic closure of Q, if one likes) is of degree equal to the degree of
the polynomial Φ15, namely ϕ(15) = ϕ(3)ϕ(5) = (3 − 1)(5 − 1) = 8. We already know that Φ3 and Φ5 are
irreducible. And one notes that, given a primitive 15th root of unity ζ, η = ζ3 is a primitive 5th root of unity
and ω = ζ5 is a primitive third root of unity. And, given a primitive cube root of unity ω and a primitive
5th root of unity η, ζ = ω2 · η−3 is a primitive 15th root of unity: in fact, if ω and η are produced from ζ,
then this formula recovers ζ, since

2 · 5− 3 · 3 = 1

Thus,
Q(ζ) = Q(ω)(η)

By the multiplicativity of degrees in towers of fields

[Q(ζ) : Q] = [Q(ζ) : Q(ω)] · [Q(ω) : Q] = [Q(ζ) : Q(ω)] · 2 = [Q(ω, η) : Q(ω)] · 2

Thus, it would suffice to show that [Q(ω, η) : Q(ω)] = 4.

We should not forget that we have shown that Z[ω] is Euclidean, hence a PID, hence a UFD. Thus, we
are entitled to use Eisenstein’s criterion and Gauss’ lemma. Thus, it would suffice to prove irreducibility of
Φ5(x) in Z[ω][x]. As in the discussion of Φp(x) over Z with p prime, consider f(x) = Φ5(x + 1). All its
coefficients are divisible by 5, and the constant coefficient is exactly 5 (in particular, not divisible by 52).
We can apply Eisenstein’s criterion and Gauss’ lemma if we know, for example, that 5 is a prime in Z[ω].
(There are other ways to succeed, but this would be simplest.)

To prove that 5 is prime in Z[ω], recall the norm

N(a+ bω) = (a+ bω)(a+ bω) = (a+ bω)(a+ bω2) = a2 − ab+ b2

already used in discussing the Euclidean-ness of Z[ω]. One proves that the norm takes non-negative integer
values, is 0 only when evaluated at 0, is multiplicative in the sense that N(αβ) = N(α)N(β), and N(α) = 1
if and only if α is a unit in Z[ω]. Thus, if 5 were to factor 5 = αβ in Z[ω], then

25 = N(5) = N(α) ·N(β)

For a proper factorization, meaning that neither α nor β is a unit, neither N(α) nor N(β) can be 1. Thus,
both must be 5. However, the equation

5 = N(a+ bω) = a2 − ab+ b2 = (a− b

2
)2 +

3
4
b2 =

1
4
(
(2a− b)2 + 3b2

)
has no solution in integers a, b. Indeed, looking at this equation mod 5, since 3 is not a square mod 5 it must
be that b = 0 mod 5. Then, further, 4a2 = 0 mod 5, so a = 0 mod 5. That is, 5 divides both a and b. But
then 25 divides the norm N(a+ bω) = a2 − ab+ b2, so it cannot be 5.

Thus, in summary, 5 is prime in Z[ω], so we can apply Eisenstein’s criterion to Φ5(x + 1) to see that it is
irreducible in Z[ω][x]. By Gauss’ lemma, it is irreducible in Q(ω)[x], so [Q(ω, η) : Q(ω)] = ϕ(5) = 4. And
this proves that [Q(ζ) : Q)] = 8, so Φ15(x) is irreducible over Q.
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18.2.7 Example: Let p be a prime. Show that every degree d irreducible in Fp[x] is a factor of xp
d−1−1.

Show that that the (pd − 1)th cyclotomic polynomial’s irreducible factors in Fp[x] are all of degree d.

Let f(x) be a degree d irreducible in Fp[x]. For a linear factor x− α with α in some field extension of Fp,
we know that

[Fp(α) : Fp] = degree of minimal poly of α = deg f = d

Since there is a unique (up to isomorphism) field extension of degree d of Fp, all roots of f(x) = 0 lie in
that field extension Fpd . Since the order of the multiplicative group F×

pd
is pd − 1, by Lagrange the order of

any non-zero element α of Fpd is a divisor of pd − 1. That is, α is a root of xp
d−1 − 1 = 0, so x− α divides

xp
d−1 − 1 = 0. Since f is irreducible, f has no repeated factors, so f(x) = 0 has no repeated roots. By

unique factorization (these linear factors are mutually distinct irreducibles whose least common multiple is
their product), the product of all the x− α divides xp

d−1 − 1.

For the second part, similarly, look at the linear factors x−α of Φpd−1(x) in a sufficiently large field extension
of Fp. Since p does not divide n = pd−1 there are no repeated factors. The multiplicative group of the field
Fpd is cyclic, so contains exactly ϕ(pd − 1) elements of (maximal possible) order pd − 1, which are roots of
Φpd−1(x) = 0. The degree of Φpd−1 is ϕ(pd − 1), so there are no other roots. No proper subfield Fpe of Fpd
contains any elements of order pd − 1, since we know that e|d and the multiplicative group F×pe is of order
pe − 1 < pd − 1. Thus, any linear factor x− α of Φpd−1(x) has [Fp(α) : Fp] = d, so the minimal polynomial
f(x) of α over Fp is necessarily of degree d. We claim that f divides Φpd−1. Write

Φpd−1 = q · f + r

where q, r are in Fp[x] and deg r < deg f . Evaluate both sides to find r(α) = 0. Since f was minimal over
Fp for α, necessarily r = 0 and f divides the cyclotomic polynomial.

That is, any linear factor of Φpd−1 (over a field extension) is a factor of a degree d irreducible polynomial in
Fp[x]. That is, that cyclotomic polynomial factors into degree d irreducibles in Fp[x].

18.2.8 Example: Fix a prime p, and let ζ be a primitive pth root of 1 (that is, ζp = 1 and no smaller
exponent will do). Let

V = det



1 1 1 1 . . . 1
1 ζ ζ2 ζ3 . . . ζp−1

1 ζ2 (ζ2)2 (ζ2)3 . . . (ζ2)p−1

1 ζ3 (ζ3)2 (ζ3)3 . . . (ζ3)p−1

1 ζ4 (ζ4)2 (ζ4)3 . . . (ζ4)p−1

...
...

1 ζp−1 (ζp−1)2 (ζp−1)3 . . . (ζp−1)p−1


Compute the rational number V 2.

There are other possibly more natural approaches as well, but the following trick is worth noting. The ijth

entry of V is ζ(i−1)(j−1). Thus, the ijth entry of the square V 2 is∑
`

ζ(i−1)(`−1) · ζ(`−1)(j−1) =
∑
`

ζ(i−1+j−1)(`−1) =
{

0 if (i− 1) + (j − 1) 6= 0 mod p
p if (i− 1) + (j − 1) = 0 mod p

since ∑
0≤`<p

ω` = 0

for any pth root of unity ω other than 1. Thus,

V 2 =


p 0 0 . . . 0 0
0 0 0 . . . 0 p
0 0 0 . . . p 0

. . .

0 0 p . . . 0 0
0 p 0 . . . 0 0


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That is, there is a p in the upper left corner, and p’s along the anti-diagonal in the lower right (n−1)-by-(n−1)
block. Thus, granting that the determinant squared is the square of the determinant,

(detV )2 = det(V 2) = pp · (−1)(p−1)(p−2)/2

Note that this did not, in fact, depend upon p being prime.

18.2.9 Example: Let K = Q(ζ) where ζ is a primitive 15th root of unity. Find 4 fields k strictly
between Q and K.

Let ζ be a primitive 15th root of unity. Then ω = ζ5 is a primitive cube root of unity, and η = ζ3 is a
primitive fifth root of unity. And Q(ζ) = Q(ω)(η).

Thus, Q(ω) is one intermediate field, of degree 2 over Q. And Q(η) is an intermediate field, of degree 4 over
Q (so certainly distinct from Q(ω).)

By now we know that
√

5 ∈ Q(η), so Q(
√

5) suggests itself as a third intermediate field. But one must
be sure that Q(ω) 6= Q(

√
5). We can try a direct computational approach in this simple case: suppose

(a+ bω)2 = 5 with rational a, b. Then

5 = a2 + 2abω + b2ω2 = a2 + 2abω − b2 − b2ω = (a2 − b2) + ω(2ab− b2)

Thus, 2ab − b2 = 0. This requires either b = 0 or 2a − b = 0. Certainly b cannot be 0, or 5 would be the
square of a rational number (which we have long ago seen impossible). Try 2a = b. Then, supposedly,

5 = a2 − 2(2a)2 = −3a2

which is impossible. Thus, Q(
√

5) is distinct from Q(ω).

We know that Q(ω) = Q(
√
−3). This might suggest

Q(
√
−3 ·
√

5) = Q(
√
−15)

as the fourth intermediate field. We must show that it is distinct from Q(
√
−3) and Q(

√
5). If it were equal

to either of these, then that field would also contain
√

5 and
√
−3, but we have already checked that (in

effect) there is no quadratic field extension of Q containing both these.

Thus, there are (at least) intermediate fields Q(η), Q(
√
−3), Q(

√
5, and Q(

√
−15).

Exercises

18.1 Find two fields intermediate between Q and Q(ζ9), where ζ9 is a primitive 9th root of unity.

18.2 Find two fields intermediate between Q and Q(ζ8, where ζ8 is a primitive 8th root of unity.

18.3 Find the smallest exponent ` such that the irreducible x3 + x+ 1 in F2[x] divides x2` − x.

18.4 Find the smallest exponent ` such that the irreducible x3 − x+ 1 in F3[x] divides x3` − x.
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19. Roots of unity

19.1 Another proof of cyclicness
19.2 Roots of unity
19.3 Q with roots of unity adjoined
19.4 Solution in radicals, Lagrange resolvents
19.5 Quadratic fields, quadratic reciprocity
19.6 Worked examples

19.1 Another proof of cyclicness
Earlier, we gave a more complicated but more elementary proof of the following theorem, using cyclotomic
polynomials. There is a cleaner proof using the structure theorem for finite abelian groups, which we give
now. [250] Thus, this result is yet another corollary of the structure theory for finitely-generated free modules
over PIDs.

19.1.1 Theorem: Let G be a finite subgroup of the multiplicative group k× of a field k. Then G is
cyclic.

Proof: By the structure theorem, applied to abelian groups as Z-modules,

G ≈ Z/d1 ⊕ . . .⊕ Z/dn
where the integers di have the property 1 < d1| . . . |dn and no elementary divisor di is 0 (since G is finite).
All elements of G satisfy the equation

xdt = 1

By unique factorization in k[x], this equation has at most dt roots in k. Thus, there can be only one direct
summand, and G is cyclic. ///

19.1.2 Remark: Although we will not need to invoke this theorem for our discussion just below of
solutions of equations

xn = 1
[250] The argument using cyclotomic polynomials is wholesome and educational, too, but is much grittier than the

present argument.
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one might take the viewpoint that the traditional pictures of these solutions as points on the unit circle in
the complex plane are not at all misleading about more general situations.

19.2 Roots of unity
An element ω in any field k with the property that ωn = 1 for some integer n is a root of unity. For
positive integer n, if ωn = 1 and ωt 6= 1 for positive integers [251] t < n, then ω is a primitive nth root of
unity. [252]

Note that
µn = {α ∈ k× : αn = 1}

is finite since there are at most n solutions to the degree n equation xn = 1 in any field. This group is known
to be cyclic, by at least two proofs.

19.2.1 Proposition: Let k be a field and n a positive integer not divisible by the characteristic of the
field. An element ω ∈ k× is a primitive nth root of unity in k if and only if ω is an element of order n in the
group µn of all nth roots of unity in k. If so, then

{ω` : 1 ≤ ` ≤ n, and gcd(`, n) = 1}

is a complete (and irredundant) list of all the primitive nth roots of unity in k. A complete and irredundant
list of all nth roots of unity in k is

{ω` : 1 ≤ ` ≤ n} = {ω` : 0 ≤ ` ≤ n− 1}

Proof: To say that ω is a primitive nth root of unity is to say that its order in the group k× is n. Thus, it
generates a cyclic group of order n inside k×. Certainly any integer power ω` is in the group µn of nth roots
of unity, since

(ω`)n = (ωn)` = 1` = 1

Since the group generated by ω is inside µn and has at least as large cardinality, it is the whole. On the
other hand, a generator for µn has order n (or else would generate a strictly smaller group). This proves the
equivalence of the conditions describing primitive nth roots of unity.

As in the more general proofs of analogous results for finite cyclic groups, the set of all elements of a cyclic
group of order n is the collection of powers ω1, ω2, . . . , ωn−1, ωn of any generator ω of the group.

As in the more general proofs of analogous results for cyclic groups, the order of a power ω` of a generator
ω is exactly n/gcd(n, `), since (ω`)t = 1 if and only if n|`t. Thus, the set given in the statement of the
proposition is a set of primitive nth roots of unity. There are ϕ(n) of them in this set, where ϕ is Euler’s
totient-function. ///

19.3 Q with roots of unity adjoined
One of the general uses of Galois theory is to understand fields intermediate between a base field k and an
algebraic field extension K of k. In the case of finite fields we already have simple means to completely

[251] If ωn = 1 then in any case the smallest positive integer ` such that ω` = 1 is a divisor of n. Indeed, as we have

done many times already, write n = q`+ r with 0 ≤ r < |`|, and 1 = ωn = ωq`+r = ωr. Thus, since ` is least, r = 0,

and ` divides n.

[252] If the characteristic p of the field k divides n, then there are no primitive nth roots of unity in k. Generally, for

n = pem with p not dividing m, Φpem(x) = Φm(x)ϕ(pe) = Φm(x)(p−1)pe−1
. We’ll prove this later.
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understand intermediate fields. Any situation beyond from the finite field case is more complicated. But,
to provide further examples, it is possible to consider fields intermediate between Q and Q(ζ) where ζ is a
(primitive) nth root of unity.

There are obvious and boring inclusions, since if ζ is a primitive mnth root of unity, then ζm is a primitive
nth root of unity. That is, we have

Q(primitive nth root of unity) ⊂ Q(primitive mnth root of unity)

In any case, by the multiplicativity of field extension degrees in towers, for a primitive nth root of unity ζ,
given

Q ⊂ k ⊂ Q(ζ)

we have
[Q(ζ) : k] · [k : Q] = [Q(ζ) : Q]

In particular, for prime n = p, we have already seen that Eisenstein’s criterion proves that the pth cyclotomic
polynomial Φp(x) is irreducible of degree ϕ(p) = p− 1, so

[Q(ζ) : Q] = p− 1

We will discuss the irreducibility of other cyclotomic polynomials a bit later.

19.3.1 Example: With
ζ5 = a primitive fifth root of unity

[Q(ζ5) : Q] = 5− 1 = 4

so any field k intermediate between Q(ζ5) and Q must be quadratic over Q. In particular, from

ζ4
5 + ζ3

5 + ζ2
5 + ζ5 + 1 = 0

by dividing through by ζ2
5 we obtain

ζ2
5 + ζ5 + 1 + ζ−1

5 + ζ−2
5 = 0

and this can be rearranged to (
ζ5 +

1
ζ5

)2

+
(
ζ5 +

1
ζ5

)
− 1 = 0

Letting

ξ = ξ5 = ζ5 +
1
ζ5

we have
ξ2 + ξ − 1 = 0

so

ξ =
−1±

√
1− 4(−1)
2

=
−1±

√
5

2

From the standard picture of 5th roots of unity in the complex plane, we have

ξ = ζ5 +
1
ζ5

= e2πi/5 + e−2πi/5 = 2 cos
2π
5

= 2 cos 72o

Therefore,

cos
2π
5

=
−1 +

√
5

4
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It should be a bit surprising that
Q(
√

5) ⊂ Q(ζ5)

To prove that there are no other intermediate fields will require more work.

19.3.2 Example: With
ζ7 = a primitive seventh root of unity

[Q(ζ7) : Q] = 7− 1 = 6

so any field k intermediate between Q(ζ7) and Q must be quadratic or cubic over Q. We will find one of
each degree. We can use the same front-to-back symmetry of the cyclotomic polynomial that we exploited
for a fifth root of 1 in the previous example. In particular, from

ζ6
7 + ζ5

7 + ζ4
7 + ζ3

7 + ζ2
7 + ζ7 + 1 = 0

by dividing through by ζ3
7

ζ3
7 + ζ2

7 + ζ7 + 1 + ζ−1
7 + ζ−2

7 + ζ−3
7 = 0

and thus (
ζ7 +

1
ζ7

)3

+
(
ζ7 +

1
ζ7

)2

− 2
(
ζ7 +

1
ζ7

)
− 1 = 0

Again letting

ξ = ξ7 = ζ7 +
1
ζ7

we have
ξ3 + ξ2 − 2ξ − 1 = 0

and in the complex plane

ξ = ζ7 +
1
ζ7

= e2πi/7 + e−2πi/7 = 2 cos
2π
7

Thus,
[Q(ξ7) : Q] = 3

We will return to this number in a moment, after we find the intermediate field that is quadratic over Q.

Take n = p prime for simplicity. Let’s think about the front-to-back symmetry a bit more, to see whether
it can suggest something of broader applicability. Again, for any primitive pth root of unity ζ = ζp, and for
a relatively prime to p, ζa is another primitive pth root of unity. Of course, since ζp = 1. ζa only depends
upon a mod p. Recalling that 1, ζ.ζ2, . . . , ζp−3, ζp−2 is a Q-basis [253] for Q(ζ), we claim that the map

σa : c0 + c1ζ + c2ζ
2 + c3ζ

3 + . . .+ cp−2ζ
p−2 −→ c0 + c1ζ

a + c2ζ
2a + c3ζ

3a + . . .+ cp−2ζ
(p−2)a

is a Q-algebra automorphism of Q(ζ). That is, σa raises each ζj to the ath power. Since, again, ζj only
depends upon j mod p, all the indicated powers of ζ are primitive pth roots of 1. The Q-linearity of this
map is built into its definition, but the multiplicativity is not obvious. Abstracting just slightly, we have

[253] Yes, the highest index is p − 2, not p − 1, and not p. The pth cyclotomic polynomial is of degree p − 1, and in

effect gives a non-trivial linear dependence relation among 1, ζ, ζ2, . . . , ζp−2, ζp−1.
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19.3.3 Proposition: Let k be a field, k(α) a finite algebraic extension, where f(x) is the minimal
polynomial of α over k. Let β ∈ k(α) be another root [254] of f(x) = 0. Then there is a unique field
automorphism [255] σ of k(α) over k sending α to β, given by the formula

σ

 ∑
0≤i<deg f

ciα
i

 =
∑

0≤i<deg f

ciβ
i

where ci ∈ Q.

Proof: Thinking of the universal mapping property of the polynomial ring k[x], let

qα : k[x] −→ k[α] = k(α)

be the unique k-algebra homomorphism sending x −→ α. By definition of the minimal polynomial f of α
over k, the kernel of aα is the principal ideal 〈f〉 in k[x] generated by f . Let

qβ : k[x] −→ k[α] = k(α)

be the unique k-algebra homomorphism [256] sending x −→ β. Since β satisfies the same monic equation
f(x) = 0 with f irreducible, the kernel of qβ is also the ideal 〈f〉. Thus, since

ker qβ ⊃ ker qα

the map qβ factors through qα in the sense that there is a unique k-algebra homomorphism

σ : k(α) −→ k(α)

such that
qβ = σ ◦ qα

That is, the obvious attempt at defining σ, by

σ

 ∑
0≤i<deg f

ciα
i

 =
∑

0≤i<deg f

ciβ
i

with ci ∈ Q gives a well-defined map. [257] Since

dimk σ(k(α)) = dimk qβ(k[x]) = deg f = dimk k[α] = dimk k(α)

the map σ is bijective, hence invertible. ///

[254] It is critical that the second root lie in the field generated by the first. This issue is a presagement of the idea

of normality of k(α) over k, meaning that all the other roots of the minimal polynomial of α lie in k(α) already. By

contrast, for example, the field Q(α) for any cube root α of 2 does not contain any other cube roots of 2. Indeed, the

ratio of two such would be a primitive cube root of unity lying in Q(α), which various arguments show is impossible.

[255] This use of the phrase automorphism over is standard terminology: a field automorphism τ : K −→ K of a field

K to itself, with τ fixing every element of a subfield k, is an automorphism of K over k.

[256] Such a homomorphism exists for any element β of any k-algebra k[α], whether or not β is related to α.

[257] Note that this approach makes the multiplicativity easy, packaging all the issues into the well-definedness, which

then itself is a straightforward consequence of the hypothesis that α and β are two roots of the same equation, and

that β ∈ k(α).
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19.3.4 Corollary: Let p be prime and ζ a primitive pth root of unity. The automorphism group
Aut(Q(ζ)/Q) is isomorphic to

(Z/p)× ≈ Aut(Q(ζ)/Q)

by the map
a↔ σa

where
σa(ζ) = ζa

Proof: This uses the irreducibility of Φp(x) in Q[x]. Thus, for all a ∈ (Z/p)× the power ζa is another root
of Φp(x) = 0, and Φp(x) is the minimal polynomial of both ζ and ζa. This gives an injection

(Z/p)× −→ Aut(Q(ζ)/Q)

On the other hand, any automorphism σ of Q(ζ) over Q must send ζ to another root of its minimal
polynomial, so σ(ζ) = ζa for some a ∈ (Z/p)×, since all primitive pth roots of unity are so expressible. This
proves that the map is surjective. ///

Returning to roots of unity: for a primitive pth root of unity ζ, the map

ζ −→ ζ−1

maps ζ to another primitive pth root of unity lying in Q(ζ), so this map extends to an automorphism

σ−1 : Q(ζ) −→ Q(ζ)

of Q(ζ) over Q. And [258]

2 cos
2π
p

= ξ = ζ +
1
ζ

= ζ + σ−1(ζ)

Of course, the identity map on Q(ζ) is the automorphism σ1, and

σ2
−1 = σ1

That is,
{σ1, σ−1}

is a subgroup of the group of automorphisms of Q(ζ) over Q. Indeed, the map

a −→ σa

is a group homomorphism
(Z/p)× −→ Aut(Q(ζ)/Q)

since
σa (σb(ζ)) = σa(ζb) = (σaζ)b

since σa is a ring homomorphism. Thus, recapitulating a bit,

σa (σb(ζ)) = σa(ζb) = (σaζ)b = (ζa)b = σab(ζ)

That is, we can take the viewpoint that ξ is formed from ζ by a certain amount of averaging or
symmetrizing over the subgroup {σ1, σ−1} of automorphisms.

[258] Writing an algebraic number in terms of cosine is not quite right, though it is appealing. The problem is that

unless we choose an imbedding of Q(ζ) into the complex numbers, we cannot really know which root of unity we

have chosen. Thus, we cannot know which angle’s cosine we have. Nevertheless, it is useful to think about this.
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That this symmetrizing or averaging does help isolate elements in smaller subfields of cyclotomic fields Q(ζ)
is the content of

19.3.5 Proposition: Let G be the group of automorphisms ofQ(ζp) overQ given by σa for a ∈ (Z/p)×.
Let α ∈ Q(ζp).

α ∈ Q if and only if σ(α) = α for all σ ∈ G

Proof: Certainly elements of Q are invariant under all σa, by the definition. Let [259]

α =
∑

1≤i≤p−1

ciζ
i

with ci ∈ Q. The condition α = σa(α) is ∑
1≤i≤p−1

ciζ
i =

∑
1≤i≤p−1

ciζ
ai

Since ζp = 1, the powers ζai only depend upon ai mod p. The map

i −→ ai mod p

permutes {i : 1 ≤ i ≤ p− 1}. Thus, looking at the coefficient of ζa as a varies, the equation α = σa(α) gives

ca = c1

That is, the G-invariance of α requires that α be of the form

α = c · (ζ + ζ2 + . . .+ ζp−1) = c · (1 + ζ + ζ2 + . . .+ ζp−1)− c = −c

for c ∈ Q, using
0 = Φp(ζ) = 1 + ζ + ζ2 + . . .+ ζp−1

That is, G-invariance implies rationality. ///

19.3.6 Corollary: Let H be a subgroup of G = (Z/p)×, identified with a group of automorphisms of
Q(ζ) over Q by a −→ σa. Let α ∈ Q(ζp) be fixed under H. Then

[Q(α) : Q] ≤ [G : H] =
|G|
|H|

Proof: Since α is H-invariant, the value
σa(α)

depends only upon the image of a in G/H, that is, upon the coset aH ∈ G/H. Thus, in

f(x) =
∏

a∈G/H

(x− σa(α)) ∈ Q(ζ)[x]

everything is well-defined. Since it is a ring homomorphism, σb ∈ G may be applied to this polynomial
factor-wise (acting trivially upon x, of course) merely permuting the σa(α) among themselves. That is,
G fixes this polynomial. On the other hand, multiplying the factors out, this invariance implies that the

[259] It is a minor cleverness to use the Q-basis ζi with 1 ≤ i ≤ p− 1 rather than the Q-basis with 0 ≤ i ≤ p− 2. The

point is that the latter is stable under the automorphisms σa, while the former is not.
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coefficients of f are G-invariant. By the proposition, the coefficients of f are in Q. Thus, the degree of α
over Q is at most the index [G : H]. ///

19.3.7 Remark: We know that (Z/p)× is cyclic of order p − 1, so we have many explicit subgroups
available in any specific numerical example.

19.3.8 Example: Returning to p = 7, with ζ = ζ7 a primitive 7th root of unity, we want an element of
Q(ζ7) of degree 2 over Q. Thus, by the previous two results, we want an element invariant under the (unique
[260] ) subgroup H of G = (Z/7)× of order 3. Since 23 = 1 mod 7, (and 2 6= 1 mod 7) the automorphism

σ2 : ζ −→ ζ2

generates the subgroup H of order 3. Thus, consider

α = ζ + σ2(ζ) + σ2
2(ζ) = ζ + ζ2 + ζ4

Note that this α is not invariant under σ3, since

σ3(ζ + ζ2 + ζ4) = ζ3 + ζ6 + ζ12 = ζ3 + ζ5 + ζ6

That is, α 6∈ Q. Of course, this is clear from its expression as a linear combination of powers of ζ. Thus, we
have not overshot the mark in our attempt to make a field element inside a smaller subfield. The corollary
assures that

[Q(α) : Q] ≤ [G : H] =
6
3

= 2

Since α 6∈ Q, we must have equality. The corollary assures us that

f(x) = (x− α)(x− σ3(α))

has rational coefficients. Indeed, the linear coefficient is

−
(
(ζ + ζ2 + ζ4) + (ζ3 + ζ6 + ζ12)

)
= −

(
1 + ζ + ζ2 + . . .+ ζ5 + ζ6)

)
− 1 = −1

since 1 + ζ + . . .+ ζ6 = 0. The constant coefficient is

(ζ + ζ2 + ζ4) · (ζ3 + ζ6 + ζ12)

= ζ(1+3) + ζ(1+6) + ζ(1+12)ζ(2+3) + ζ(2+6) + ζ(2+12)ζ(4+3) + ζ(4+6) + ζ(4+12)

= ζ4 + 1 + ζ6 + ζ5 + ζ + 1 + 1 + ζ3 + ζ2 = 2

Thus, α = ζ + ζ2 + ζ4 satisfies the quadratic equation

x2 + x+ 2 = 0

On the other hand, by the quadratic formula we have the roots

α =
−1±

√
(−1)2 − 4 · 2

2
=
−1±

√
−7

2

That is,
Q(
√
−7) ⊂ Q(ζ7)

This is not obvious. [261]

[260] The group (Z/7)× is cyclic, since 7 is prime.

[261] Not only is this assertion not obvious, but, also, there is the mystery of why it is
√
−7, not

√
7.
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19.4 Solution in radicals, Lagrange resolvents
As an example, we follow a method of J.-L. Lagrange to obtain an expression for

ξ = ξ7 = ζ7 +
1
ζ7

in terms of radicals, that is, in terms of roots. Recall from above that ξ satisfies the cubic equation [262]

x3 + x2 − 2x− 1 = 0

Lagrange’s method was to create an expression in terms of the roots of an equation designed to have more
accessible symmetries than the original. In this case, let ω be a cube root of unity, not necessarily primitive.
For brevity, let τ = σ2. The Lagrange resolvent associated to ξ and ω is

λ = ξ + ωτ(ξ) + ω2τ2(ξ)

Since σ−1(ξ) = ξ, the effect on ξ of σa for a ∈ G = (Z/7)× depends only upon the coset aH ∈ G/H where
H = {±1}. Convenient representatives for this quotient are {1, 2, 4}, which themselves form a subgroup.
[263] Grant for the moment that we can extend σa to an automorphism on Q(ξ, ω) over Q(ω), which we’ll
still denote by σa. [264] Then the simpler behavior of the Lagrange resolvent λ under the automorphism
τ = σ2 is

τ(λ) = τ(ξ + ωτ(ξ) + ω2τ2(ξ)) = τ(ξ) + ωτ2(ξ) + ω2τ3(ξ) = τ(ξ) + ωτ2(ξ) + ω2ξ = ω−1 · λ

since τ3(ξ) = ξ. Similarly, τ2(λ) = ω−2 · λ. Consider

f(x) = (x− λ)(x− τ(λ))(x− τ2(λ)) = (x− λ)(x− ω−1λ)(x− ωλ)

Multiplying this out, since 1 + ω + ω2 = 0,

f(x) = x3 − λ3

And note that, because τ is a ring homomorphism,

τ(λ3) = (τ(λ))3 = (ω−1λ)3 = λ3

Therefore, [265] λ3 ∈ Q(ω). What is it? Let α, β, γ be the three roots of x3 + x2 − 2x− 1 = 0.

λ3 =
(
ξ + ωτ(ξ) + ω2τ2(ξ)

)3
=
(
α+ ωβ + ω2γ

)3
[262] After some experimentation, one may notice that, upon replacing x by x + 2, the polynomial x3 + x2 − 2x − 1

becomes

x3 + (3 · 2 + 1)x2 + (3 · 22 + 2 · 2− 2)x+ (23 + 22 − 2 · 2− 1) = x3 + 7x2 − 14x+ 7

which by Eisenstein’s criterion is irreducible in Q[x]. Thus, [Q(ξ) : Q] = 3. This irreducibility is part of a larger

pattern involving roots of unity and Eisenstein’s criterion.

[263] That there is a set of representatives forming a subgroup ought not be surprising, since a cyclic group of order 6

is isomorphic to Z/2⊕ Z/3, by either the structure theorem, or, more simply, by Sun-Ze’s theorem.

[264] All of ω, ζ = ζ7, and ξ are contained in Q(ζ21), for a primitive 21th root of unity ζ21. Thus, the compositum field

Q(ξ, ω) can be taken inside Q(ζ21).

[265] We will return to address this variant of our earlier proposition and corollary about invariant expressions lying

in subfields.
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= α3 + β3 + γ3 + 3ωα2β + 3ω2αβ2 + 3ω2α2γ + 3ωαγ2 + 3ωβ2γ + 3ω2βγ2 + 6αβγ

= α3 + β3 + γ3 + 3ω(α2β + β2γ + γ2α) + 3ω2(αβ2 + βγ2 + α2γ) + 6αβγ

Since ω2 = −1− ω this is

α3 + β3 + γ3 + 6αβγ + 3ω(α2β + β2γ + γ2α)− 3ω(αβ2 + βγ2 + α2γ)− 3(αβ2 + βγ2 + α2γ)

In terms of elementary symmetric polynomials,

α3 + β3 + γ3 = s3
1 − 3s1s2 + 3s3

Thus,

λ3 = s3
1 − 3s1s2 + 9s3 + 3ω(α2β + β2γ + γ2α)− 3ω(αβ2 + βγ2 + α2γ)− 3(αβ2 + βγ2 + α2γ)

Note that neither of the two expressions

α2β + β2γ + γ2α αβ2 + βγ2 + α2γ

is invariant under all permutations of α, β, γ, but only under powers of the cycle

α −→ β −→ γ −→ α

Thus, we cannot expect to use the symmetric polynomial algorithm to express the two parenthesized items
in terms of elementary symmetric polynomials. A more specific technique is necessary.

Writing α, β, γ in terms of the 7th root of unity ζ gives

αβ2 + βγ2 + γα2 = (ζ + ζ6)(ζ2 + ζ5)2 + (ζ2 + ζ5)(ζ4 + ζ3)2 + (ζ4 + ζ3)(ζ + ζ6)2

= (ζ + ζ6)(ζ4 + 2 + ζ3) + (ζ2 + ζ5)(ζ + 2 + ζ6) + (ζ4 + ζ3)(ζ2 + 2ζ5)

= (ζ + ζ6)(ζ4 + 2 + ζ3) + (ζ2 + ζ5)(ζ + 2 + ζ6) + (ζ4 + ζ3)(ζ2 + 2 + ζ5)

= 4(ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6)

= −4

since [266] Φ7(ζ) = 0. This is one part of the second parenthesized expression. The other is superficially
very similar, but in fact has different details:

α2β + β2γ + γ2α = (ζ + ζ6)2(ζ2 + ζ5) + (ζ2 + ζ5)2(ζ4 + ζ3) + (ζ4 + ζ3)2(ζ + ζ6)

= (ζ2 + 2 + ζ5)(ζ2 + ζ5) + (ζ4 + 2 + ζ3)(ζ4 + ζ3) + (ζ + 2 + ζ6)(ζ + ζ6)

= 6 + 3(ζ + ζ2 + ζ3 + ζ4 + ζ5 + ζ6) = 3

From the equation x3 + x2 − 2x− 1 = 0 we have

s1 = −1 s2 = −2 s3 = 1

Putting this together, we have

λ3 = s3
1 − 3s1s2 + 9s3 + 3ω · 3− 3ω · (−4)− 3(−4)

= (−1)3 − 3(−1)(−2) + 9(1) + 3ω · 3− 3ω · (−4)− 3(−4)

[266] Anticipating that ζ must not appear in the final outcome, we could have managed some slightly clever economies

in this computation. However, the element of redundancy here is a useful check on the accuracy of the computation.
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= −1− 6 + 9 + +9ω + 12ω + 12 = 14 + 21ω

That is,
λ = 3
√

14 + 21ω

or, in terms of ξ
ξ + ωτ(ξ) + ω2τ2(ξ) = 3

√
14 + 21ω

Now we will obtain a system of three linear equations which we can solve for ξ.

The same computation works for ω2 in place of ω, since ω2 is another primitive cube root of 1. The
computation is much easier when ω is replaced by 1, since

(α+ 1 · β + 12 · γ)3

is already s3
1 = −1 Thus, fixing a primitive cube root ω of 1, we have ξ + τ(ξ) + τ2(ξ) = −1

ξ + ωτ(ξ) + ω2τ2(ξ) = 3
√

14 + 21ω
ξ + ω2τ(ξ) + ωτ2(ξ) = 3

√
14 + 21ω2

Solving for ξ gives

ξ =
−1 + 3

√
14 + 21ω + 3

√
14 + 21ω2

3
Despite appearances, we know that ξ can in some sense be expressed without reference to the cube root of
unity ω, since

ξ3 + ξ2 − 2ξ − 1 = 0

and this equations has rational coefficients. The apparent entanglement of a cube root of unity is an artifact
of our demand to express ξ in terms of root-taking.

19.4.1 Remark: There still remains the issue of being sure that the automorphisms σa of Q(ζ) over Q
(with ζ a primitive 7th root of unity) can be extended to automorphisms of Q(ζ7, ω) over Q(ω). As noted
above, for a primitive 21th root of unity η, we have

ζ = η3 ω = η7

so all the discussion above can take place inside Q(η).

We can take advantage of the fact discussed earlier that Z[ω] is Euclidean, hence a PID. [267] Note that 7
is no longer prime in Z[ω], since

7 = (2− ω)(2− ω2) = (2− ω)(3 + ω)

Let
N(a+ bω) = (a+ bω)(a+ bω2)

be the norm discussed earlier. It is a multiplicative map Z[ω] −→ Z, N(a + bω) = 0 only for a + bω = 0,
and N(a+ bω) = 1 if and only if a+ bω is a unit in Z[ω]. One computes directly

N(a+ bω) = a2 − ab+ b2

Then both 2−ω and 3 +ω are prime in Z[ω], since their norms are 7. They are not associate, however, since
the hypothesis 3 + ω = µ · (2− ω) gives

5 = (3 + ω) + (2− ω) = (1 + µ)(2− ω)

[267] We will eventually give a systematic proof that all cyclotomic polynomials are irreducible in Q[x].
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and then taking norms gives
25 = 7 ·N(1 + µ)

which is impossible. Thus, 7 is not a unit, and is square-free in Z[ω].

In particular, we can still apply Eisenstein’s criterion and Gauss’ lemma to see that Φ7(x) is irreducible in
Q(ω)[x]. In particular,

[Q(ζ7, ω) : Q(ω)] = 6

And this allows an argument parallel to the earlier one for Aut(Q(ζ7)/Q) to show that

(Z/7)× ≈ Aut(Q(ζ7, ω)/Q(ω))

by
a −→ τa

where
τa(ζ7) = ζa7

Then the automorphisms σa of Q(ζ) over Q) are simply the restrictions of τa to Q(ζ).

19.4.2 Remark: If we look for zeros of the cubic f(x) = x3 + x2 − 2x− 1 in the real numbers R, then
we find three real roots. Indeed, 

f(2) = 7
f(1) = −1
f(−1) = 1
f(−2) = −1

Thus, by the intermediate value theorem there is a root in the interval [1, 2], a second root in the interval
[−1, 1], and a third root in the interval [−2,−1]. All the roots are real. Nevertheless, the expression for the
roots in terms of radicals involves primitive cube roots of unity, none of which is real. [268]

19.5 Quadratic fields, quadratic reciprocity

This discussion will do two things: show that all field extensions Q(
√
D) lie inside fields Q(ζn) obtained by

adjoining primitive nth roots of unity [269] to Q, and prove quadratic reciprocity. [270]

Let p be an odd prime and x an integer. The quadratic symbol is defined to be

(
a

p

)
2

=

 0 (for a = 0 mod p)
1 (for a a non-zero square mod p)
−1 (for a a non-square mod p)

One part of quadratic reciprocity is an easy consequence of the cyclicness of (Z/p)× for p prime, and amounts
to a restatement of earlier results:

[268] Beginning in the Italian renaissance, it was observed that the formula for real roots to cubic equations involved

complex numbers. This was troubling, both because complex numbers were certainly not widely accepted at that

time, and because it seemed jarring that natural expressions for real numbers should necessitate complex numbers.

[269] The fact that every quadratic extension of Q is contained in a field generated by roots of unity is a very special

case of the Kronecker-Weber theorem, which asserts that any galois extension of Q with abelian galois group lies

inside a field generated over Q by roots of unity.

[270] Though Gauss was the first to give a proof of quadratic reciprocity, it had been conjectured by Lagrange some

time before, and much empirical evidence supported the conclusion.
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19.5.1 Proposition: For p an odd prime(
−1
p

)
2

= (−1)(p−1)/2 =
{

1 (for p = 1 mod 4)
−1 (for p = 3 mod 4)

Proof: If −1 is a square mod p, then a square root of it has order 4 in (Zp)×, which is of order p−1. Thus,
by Lagrange, 4|(p− 1). This half of the argument does not need the cyclicness. On the other hand, suppose
4|(p− 1). Since (Z/p)× is cyclic, there are exactly two elements α, β of order 4 in (Z/p)×, and exactly one
element −1 of order 2. Thus, the squares of α and β must be −1, and −1 has two square roots. ///

Refining the previous proposition, as a corollary of the cyclicness of (Z/p)×, we have Euler’s criterion:

19.5.2 Proposition: (Euler) Let p be an odd prime. For an integer a(
a

p

)
2

= a(p−1)/2 mod p

Proof: If p|a, this equality certainly holds. For a 6= 0 mod p certainly a(p−1)/2 = ±1 mod p, since

(
a(p−1)/2

)2

= ap−1 = 1 mod p

and the only square roots of 1 in Z/p are ±1. If a = b2 mod p is a non-zero square mod p, then

a(p−1)/2 = (b2)(p−1)/2 = bp−1 = 1 mod p

This was the easy half. For the harder half we need the cyclicness. Let g be a generator for (Z/p)×. Let
a ∈ (Z/p)×, and write a = gt. If a is not a square mod p, then t must be odd, say t = 2s+ 1. Then

a(p−1)/2 = gt(p−1)/2 = g(2s+1)(p−1)/2 = gs(p−1) · g(p−1)/2 = g(p−1)/2 = −1

since g is of order p− 1, and since −1 is the unique element of order 2. ///

19.5.3 Corollary: The quadratic symbol has the multiplicative property(
ab

p

)
2

=
(
a

p

)
2

·
(
b

p

)
2

Proof: This follows from the expression for the quadratic symbol in the previous proposition. ///

A more interesting special case [271] is

19.5.4 Theorem: For p an odd prime, we have the formula [272]

(
2
p

)
2

= (−1)(p2−1)/8 =


1 (for p = 1 mod 8)
−1 (for p = 3 mod 8)
−1 (for p = 5 mod 8)

1 (for p = 7 mod 8)

[271] Sometimes called a supplementary law of quadratic reciprocity.

[272] The expression of the value of the quadratic symbol as a power of −1 is just an interpolation of the values. That

is, the expression (p2 − 1)/8 does not present itself naturally in the argument.



232 Roots of unity

Proof: Let i denote a square root of −1, and we work in the ring Z[i]. Since the binomial coefficients
(
p
k

)
are divisible by p for 0 < k < p, in Z[i]

(1 + i)p = 1p + ip = 1 + ip

Also, 1 + i is roughly a square root of 2, or at least of 2 times a unit in Z[i], namely

(1 + i)2 = 1 + 2i− 1 = 2i

Then, using Euler’s criterion, in Z[i] modulo the ideal generated by p(
2
p

)
2

= 2(p−1)/2 = (2i)(p−1)/2 · i−(p−1)/2

=
(
(1 + i)2

)(p−1)/2 · i−(p−1)/2 = (1 + i)p−1 · i−(p−1)/2 mod p

Multiply both sides by 1 + i to obtain, modulo p,

(1 + i) ·
(

2
p

)
2

= (1 + i)p · i−(p−1)/2 = (1 + ip) · i−(p−1)/2 mod p

The right-hand side depends only on p modulo 8, and the four cases given in the statement of the theorem
can be computed directly. ///

The main part of quadratic reciprocity needs somewhat more preparation. Let p and q be distinct odd
primes. Let ζ = ζq be a primitive qth root of unity. The quadratic Gauss sum mod q is

g =
∑

b mod q

ζbq ·
(
b

q

)
2

19.5.5 Proposition: Let q be an odd prime, ζq a primitive qth root of unity. Then

g2 =

 ∑
b mod q

ζbq ·
(
b

q

)
2

2

=
(
−1
q

)
2

· q

That is, either
√
q or

√
−q is in Q(ζq), depending upon whether q is 1 or 3 modulo 4.

Proof: Compute

g2 =
∑

a,b mod q

ζa+b
q ·

(
ab

q

)
2

from the multiplicativity of the quadratic symbol. And we may restrict the sum to a, b not 0 mod q. Then

g2 =
∑

a,b mod q

ζa+ab
q ·

(
a2b

q

)
2

by replacing b by ab mod q. Since a 6= 0 mod q this is a bijection of Z/q to itself. Then

g2 =
∑

a 6=0, b 6=0

ζa+ab
q ·

(
a2

q

)
2

(
b

q

)
2

=
∑

a 6=0, b 6=0

ζa(1+b)
q ·

(
b

q

)
2
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For fixed b, if 1 + b 6= 0 mod q then we can replace a(1 + b) by a, since 1 + b is invertible mod q. With
1 + b 6= 0 mod q, the inner sum over a is

∑
a6=0 mod q

ζaq =

 ∑
a mod q

ζaq

− 1 = 0− 1 = −1

When 1 + b = 0 mod q, the sum over a is q − 1. Thus, the whole is

g2 =
∑

b=−1 mod q

(q − 1) ·
(
b

q

)
2

−
∑

b 6=0,−1 mod q

(
b

q

)
2

= (q − 1) ·
(
−1
q

)
2

−
∑

b mod q

(
b

q

)
2

+
(
−1
q

)
2

Let c be a non-square mod q. Then b −→ bc is a bijection of Z/q to itself, and so

∑
b mod q

(
b

q

)
2

=
∑

b mod q

(
bc

q

)
2

=
(
c

q

)
2

·
∑

b mod q

(
b

q

)
2

= −
∑

b mod q

(
b

q

)
2

Since A = −A implies A = 0 for integers A, we have

∑
b mod q

(
b

q

)
2

= 0

Then we have

g2 = (q − 1) ·
(
−1
q

)
2

−
∑

b mod q

(
b

q

)
2

+
(
−1
q

)
2

= q ·
(
−1
q

)
2

as claimed. ///

Now we can prove

19.5.6 Theorem: (Quadratic Reciprocity) Let p and q be distinct odd primes. Then(
p

q

)
2

= (−1)(p−1)(q−1)/4 ·
(
q

p

)
2

Proof: Using Euler’s criterion and the previous proposition, modulo p in the ring Z[ζq],(
q

p

)
2

= q(p−1)/2 =
(
g2

(
−1
q

)
2

)(p−1)/2

= gp−1

(
−1
q

)(p−1)/2

2

= gp−1
(

(−1)(q−1)/2
)(p−1)/2

Multiply through by the Gauss sum g, to obtain

g ·
(
q

p

)
2

= gp · (−1)(p−1)(q−1)/4 mod p

Since p divides the middle binomial coefficients, and since p is odd (so (b/q)p2 = (b/q)2 for all b),

gp =

 ∑
b mod q

ζbq ·
(
b

q

)
2

p

=
∑

b mod q

ζbpq ·
(
b

q

)
2

mod p
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Since p is invertible modulo q, we can replace b by bp−1 mod q to obtain

gp =
∑

b mod q

ζbq ·
(
bp−1

q

)
2

=
(
p−1

q

)
2

·
∑

b mod q

ζbq ·
(
b

q

)
2

=
(
p

q

)
2

· g mod p

Putting this together,

g ·
(
q

p

)
2

=
(
p

q

)
2

· g · (−1)(p−1)(q−1)/4 mod p

We obviously want to cancel the factor of g, but we must be sure that it is invertible in Z[ζq] modulo p.
Indeed, since

g2 = q ·
(
−1
q

)
2

we could multiply both sides by g to obtain

q

(
−1
q

)
2

·
(
q

p

)
2

· q
(
−1
q

)
2

=
(
p

q

)
2

· q
(
−1
q

)
2

· (−1)(p−1)(q−1)/4 mod p

Since ±q is invertible mod p, we cancel the q(−1/q)2 to obtain(
q

p

)
2

=
(
p

q

)
2

· (−1)(p−1)(q−1)/4 mod p

Both sides are ±1 and p > 2, so we have an equality of integers(
q

p

)
2

=
(
p

q

)
2

· (−1)(p−1)(q−1)/4

which is the assertion of quadratic reciprocity. ///

19.6 Worked examples

19.6.1 Example: Let ζ be a primitive nth root of unity in a field of characteristic 0. Let M be the
n-by-n matrix with ijth entry ζij . Find the multiplicative inverse of M .

Some experimentation (and an exercise from the previous week) might eventually suggest consideration of
the matrix A having ijth entry 1

n ζ
−ij . Then the ijth entry of MA is

(MA)ij =
1
n

∑
k

ζik−kj =
1
n

∑
k

ζ(i−j)k

As an example of a cancellation principle we claim that

∑
k

ζ(i−j)k =
{

0 (for i− j 6= 0)
n (for i− j = 0)

The second assertion is clear, since we’d be summing n 1’s in that case. For i − j 6= 0, we can change
variables in the indexing, replacing k by k + 1 mod n, since ζa is well-defined for a ∈ Z/n. Thus,∑

k

ζ(i−j)k =
∑
k

ζ(i−j)(k+1) = ζi−j
∑
k

ζ(i−j)k
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Subtracting,
(1− ζi−j)

∑
k

ζ(i−j)k = 0

For i− j 6= 0, the leading factor is non-zero, so the sum must be zero, as claimed. ///

19.6.2 Example: Let µ = αβ2 + βγ2 + γα2 and ν = α2β + β2γ + γ2α. Show that these are the two
roots of a quadratic equation with coefficients in Z[s1, s2, s3] where the si are the elementary symmetric
polynomials in α, β, γ.

Consider the quadratic polynomial

(x− µ)(x− ν) = x2 − (µ+ ν)x+ µν

We will be done if we can show that µ+ ν and µν are symmetric polynomials as indicated. The sum is

µ+ ν = αβ2 + βγ2 + γα2 + α2β + β2γ + γ2α

= (α+ β + γ)(αβ + βγ + γα)− 3αβγ = s1s2 − 3s3

This expression is plausibly obtainable by a few trial-and-error guesses, and examples nearly identical to this
were done earlier. The product, being of higher degree, is more daunting.

µν = (αβ2 + βγ2 + γα2)(α2β + β2γ + γ2α)

= α3 + αβ4 + α2β2γ2 + α2β2γ2 + β3γ3 + αβγ4 + α4βγ + α2β2γ2 + α3γ3

Following the symmetric polynomial algorithm, at γ = 0 this is α3β3 = s2(α, β)3, so we consider

µν − s3
2

s3
= α3 + β3 + γ3 − 3s3 − 3(µ+ ν)

where we are lucky that the last 6 terms were µ + ν. We have earlier found the expression for the sum of
cubes, and we have expressed µ+ ν, so

µν − s3
2

s3
= (s3

1 − 3s1s2 + 3s3)− 3s3 − 3(s1s2 − 3s3) = s3
1 − 6s1s2 + 9s3

and, thus,
µν = s3

2 + s3
1s3 − 6s1s2s3 + 9s2

3

Putting this together, µ and ν are the two roots of

x2 − (s1s2 − 3s3)x+ (s3
2 + s3

1s3 − 6s1s2s3 + 9s2
3) = 0

(One might also speculate on the relationship of µ and ν to solution of the general cubic equation.) ///

19.6.3 Example: The 5th cyclotomic polynomial Φ5(x) factors into two irreducible quadratic factors
over Q(

√
5). Find the two irreducible factors.

We have shown that
√

5 occurs inside Q(ζ), where ζ is a primitive fifth root of unity. Indeed, the discussion
of Gauss sums in the proof of quadratic reciprocity gives us the convenient

ζ − ζ2 − ζ3 + ζ4 =
√

5

We also know that [Q(
√

5) : Q] = 2, since x2 − 5 is irreducible in Q[x] (Eisenstein and Gauss). And
[Q(ζ) : Q] = 4 since Φ5(x) is irreducible in Q[x] of degree 5− 1 = 4 (again by Eisenstein and Gauss). Thus,
by multiplicativity of degrees in towers of fields, [Q(ζ) : Q(

√
5)] = 2.
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Thus, since none of the 4 primitive fifth roots of 1 lies in Q(
√

5), each is necessarily quadratic over Q(
√

5),
so has minimal polynomial over Q(

√
5) which is quadratic, in contrast to the minimal polynomial Φ5(x) over

Q. Thus, the 4 primitive fifth roots break up into two (disjoint) bunches of 2, grouped by being the 2 roots
of the same quadratic over Q(

√
5). That is, the fifth cyclotomic polynomial factors as the product of those

two minimal polynomials (which are necessarily irreducible over Q(
√

5)).

In fact, we have a trick to determine the two quadratic polynomials. Since

ζ4 + ζ3 + ζ2 + ζ + 1 = 0

divide through by ζ2 to obtain
ζ2 + ζ + 1 + ζ−1 + ζ−2 = 0

Thus, regrouping, (
ζ +

1
ζ

)2

+
(
ζ +

1
ζ

)2

− 1 = 0

Thus, ξ = ζ + ζ−1 satisfies the equation
x2 + x− 1 = 0

and ξ = (−1±
√

5)/2. Then, from

ζ +
1
ζ

= (−1±
√

5)/2

multiply through by ζ and rearrange to

ζ2 − −1±
√

5
2

ζ + 1 = 0

Thus,

x4 + x3 + x2 + x+ 1 =

(
x2 − −1 +

√
5

2
x+ 1

)(
x2 − −1−

√
5

2
x+ 1

)

Alternatively, to see what can be done similarly in more general situations, we recall that Q(
√

5) is the
subfield of Q(ζ) fixed pointwise by the automorphism ζ −→ ζ−1. Thus, the 4 primitive fifth roots of unity
should be paired up into the orbits of this automorphism. Thus, the two (irreducible inQ(

√
5)[x]) quadratics

are
(x− ζ)(x− ζ−1) = x2 − (ζ + ζ−1)x+ 1

(x− ζ2)(x− ζ−2) = x2 − (ζ2 + ζ−2)x+ 1

Again, without imbedding things into the complex numbers, etc., there is no canonical one of the two square
roots of 5, so the ±

√
5 just means that whichever one we pick first the other one is its negative. Similarly,

there is no distinguished one among the 4 primitive fifth roots unless we imbed them into the complex
numbers. There is no need to do this. Rather, specify one ζ, and specify a

√
5 by

ζ + ζ−1 =
−1 +

√
5

2

Then necessarily

ζ2 + ζ−2 =
−1−

√
5

2
And we find the same two quadratic equations again. Since they are necessarily the minimal polynomials of
ζ and of ζ2 over Q(

√
5) (by the degree considerations) they are irreducible in Q(

√
5)[x]. ///

19.6.4 Example: The 7th cyclotomic polynomial Φ7(x) factors into two irreducible cubic factors over
Q(
√
−7. Find the two irreducible factors.
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Let ζ be a primitive 7th root of unity. Let H = 〈τ〉 be the order 3 subgroup of the automorphism group
G ≈ (Z/7)× of Q(ζ) over Q, where τ = σ2 is the automorphism τ(ζ) = ζ2, which has order 3. We have
seen that Q(

√
−7) is the subfield fixed pointwise by H. In particular, α = ζ + ζ2 + ζ4 should be at most

quadratic over Q. Recapitulating the earlier discussion, α is a zero of the quadratic polynomial

(x− (ζ + ζ2 + ζ4))(x− (ζ3 + ζ6 + ζ5))

which will have coefficients in Q, since we have arranged that the coefficients are G-invariant. Multiplying
out and simplifying, this is

x2 + x+ 2

with zeros (−1±
√
−7)/2.

The coefficients of the polynomial

(x− ζ)(x− τ(ζ))(x− τ2(ζ)) = (x− ζ)(x− ζ2)(x− ζ4)

will be H-invariant and therefore will lie in Q(
√
−7). In parallel, taking the primitive 7th root of unity ζ3

which is not in the H-orbit of ζ, the cubic

(x− ζ3)(x− τ(ζ3))(x− τ2(ζ3)) = (x− ζ3)(x− ζ6)(x− ζ5)

will also have coefficients in Q(
√
−7). It is no coincidence that the exponents of ζ occuring in the two cubics

are disjoint and exhaust the list 1, 2, 3, 4, 5, 6.

Multiplying out the first cubic, it is

(x− ζ)(x− ζ2)(x− ζ4) = x3 − (ζ + ζ2 + ζ4)x2 + (ζ3 + ζ5 + ζ6)x− 1

= x3 −
(
−1 +

√
−7

2

)
x2 +

(
−1−

√
−7

2

)
x− 1

for a choice of ordering of the square roots. (Necessarily!) the other cubic has the roles of the two square
roots reversed, so is

(x− ζ3)(x− ζ6)(x− ζ2) = x3 − (ζ3 + ζ5 + ζ6)x+ (ζ + ζ2 + ζ4)x− 1

= x3 −
(
−1−

√
−7

2

)
x2 +

(
−1 +

√
−7

2

)
x− 1

Since the minimal polynomials of primitive 7th roots of unity are of degree 3 overQ(
√
−7) (by multiplicativity

of degrees in towers), these cubics are irreducible over Q(
√
−7). Their product is Φ7(x), since the set of all

6 roots is all the primitive 7th roots of unity, and there is no overlap between the two sets of roots. ///

19.6.5 Example: Let ζ be a primitive 13th root of unity in an algebraic closure of Q. Find an element
α in Q(ζ) which satisfies an irreducible cubic with rational coefficients. Find an element β in Q(ζ) which
satisfies an irreducible quartic with rational coefficients. Determine the cubic and the quartic explicitly.

Again use the fact that the automorphism group G of Q(ζ) over Q is isomorphic to (Z/13)× by a −→ σa
where σa(ζ) = ζa. The unique subgroup A of order 4 is generated by µ = σ5. From above, an element
α ∈ Q(ζ) fixed by A is of degree at most |G|/|A| = 12/4 = 3 over Q. Thus, try symmetrizing/averaging ζ
itself over the subgroup A by

α = ζ + µ(ζ) + µ2(ζ) + µ3(ζ) = ζ + ζ5 + ζ12 + ζ8

The unique subgroup B of order 3 in G is generated by ν = σ3. Thus, necessarily the coefficients of

(x− α)(x− ν(α))(x− ν2(α))
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are in Q. Also, one can see directly (because the ζi with 1 ≤ i ≤ 12 are linearly independent over Q) that
the images α, ν(α), ν2(α) are distinct, assuring that the cubic is irreducible over Q.

To multiply out the cubic and determine the coefficients as rational numbers it is wise to be as economical
as possible in the computation. Since we know a priori that the coefficients are rational, we need not drag
along all the powers of ζ which appear, since there will necessarily be cancellation. Precisely, we compute
in terms of the Q-basis

1, ζ, ζ2, . . . , ζ10, ζ11

Given ζn appearing in a sum, reduce the exponent n modulo 13. If the result is 0, add 1 to the sum. If the
result is 12, add −1 to the sum, since

ζ12 = −(1 + ζ + ζ2 + . . .+ ζ11)

expresses ζ12 in terms of our basis. If the reduction mod 13 is anything else, drop that term (since we know it
will cancel). And we can go through the monomial summand in lexicographic order. Using this bookkeeping
strategy, the cubic is(

x− (ζ + ζ5 + ζ12 + ζ8)
) (
x− (ζ3 + ζ2 + ζ10 + ζ11)

) (
x− (ζ9 + ζ6 + ζ4 + ζ7)

)
= x3 − (−1)x2 + (−4)x− (−1) = x3 + x2 − 4x+ 1

Yes, there are 3·42 terms to sum for the coefficient of x, and 43 for the constant term. Most give a contribution
of 0 in our bookkeeping system, so the workload is not completely unreasonable. (A numerical computation
offers a different sort of check.) Note that Eisenstein’s criterion (and Gauss’ lemma) gives another proof of
the irreducibility, by replacing x by x+ 4 to obtain

x3 + 13x2 + 52x+ 65

and noting that the prime 13 fits into the Eisenstein criterion here. This is yet another check on the
computation.

For the quartic, reverse the roles of µ and ν above, so put

β = ζ + ν(ζ) + ν2(ζ) = ζ + ζ3 + ζ9

and compute the coefficients of the quartic polynomial

(x− β)(x− µ(β))(x− µ2(β))(x− µ3(β))

=
(
x− (ζ + ζ3 + ζ9)

) (
x− (ζ5 + ζ2 + ζ6)

) (
x− (ζ12 + ζ10 + ζ4)

) (
x− (ζ8 + ζ11 + ζ7)

)
Use the same bookkeeping approach as earlier, to allow a running tally for each coefficient. The sum of the 4
triples is −1. For the other terms some writing-out seems necessary. For example, to compute the constant
coefficient, we have the product

(ζ + ζ3 + ζ9)(ζ5 + ζ2 + ζ6)(ζ12 + ζ10 + ζ4)(ζ8 + ζ11 + ζ7)

which would seem to involve 81 summands. We can lighten the burden by writing only the exponents which
appear, rather than recopying zetas. Further, multiply the first two factors and the third and fourth, leaving
a multiplication of two 9-term factors (again, retaining only the exponents)

( 6 3 7 8 5 9 1 11 2 ) ( 7 10 6 5 8 4 12 2 11 )

As remarked above, a combination of an exponent from the first list of nine with an exponent from the second
list will give a non-zero contribution only if the sum (reduced modulo 13) is either 0 or 12, contributing 1 or
−1 respectively. For each element of the first list, we can keep a running tally of the contributions from each
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of the 9 elements from the second list. Thus, grouping by the elements of the first list, the contributions are,
respectively,

(1− 1) + (1) + (1− 1) + (1− 1) + (−1 + 1) + (1) + (1− 1) + (1)(−1 + 1) = 3

The third symmetric function is a sum of 4 terms, which we group into two, writing in the same style

( 1 3 9 5 2 6 ) ( 7 10 6 5 8 4 12 2 11 )

+ ( 6 3 7 8 5 9 1 11 2 ) ( 12 10 4 8 11 7 )

In each of these two products, for each item in the lists of 9, we tally the contributions of the 6 items in the
other list, obtaining,

(0 + 0− 1 + 0 + 1 + 1 + 1 + 0 + 0) + (1 + 1 + 0− 1 + 0 + 1 + 0 + 0 + 0) = 4

The computation of the second elementary symmetric function is, similarly, the sum

( 1 3 9 ) ( 5 2 6 12 10 4 8 11 7 )

+ ( 5 2 6 ) ( 12 10 4 8 11 7 ) + ( 12 10 4 ) ( 8 11 7 )

Grouping the contributions for each element in the lists 1, 3, 9 and 5, 2, 6 and 12, 10, 4, this gives

[(1− 1) + (1) + (1)] + [(1− 1) + (−1 + 1) + (1)] + [0 + 0 + (−1)] = 2

Thus, in summary, we have
x4 + x3 + 2x2 − 4x+ 3

Again, replacing x by x+ 3 gives
x4 + 13x3 + 65x2 + 143x+ 117

All the lower coefficients are divisible by 13, but not by 132, so Eisenstein proves irreducibility. This again
gives a sort of verification of the correctness of the numerical computation. ///

19.6.6 Example: Let f(x) = x8 + x6 + x4 + x2 + 1. Show that f factors into two irreducible quartics
in Q[x]. Show that

x8 + 5x6 + 25x4 + 125x2 + 625

also factors into two irreducible quartics in Q[x].

The first assertion can be verified by an elementary trick, namely

x8 + x6 + x4 + x2 + 1 =
x10 − 1
x2 − 1

=
Φ1(x)Φ2(x)Φ5(x)Φ10(x)

Φ1(x)Φ2(x)

= Φ5(x)Φ10(x) = (x4 + x3 + x2 + x+ 1)(x4 − x3 + x2 − x+ 1)

But we do learn something from this, namely that the factorization of the first octic into linear factors
naturally has the eight linear factors occurring in two bunches of four, namely the primitive 5th roots of
unity and the primitive 10th roots of unity. Let ζ be a primitive 5th root of unity. Then −ζ is a primitive
10th. Thus, the 8 zeros of the second polynomial will be

√
5 times primitive 5th and 10th roots of unity. The

question is how to group them together in two bunches of four so as to obtain rational coefficients of the
resulting two quartics.

The automorphism group G of Q(ζ) over Q is isomorphic to (Z/10)×, which is generated by τ(ζ) = ζ3.
That is, taking a product of linear factors whose zeros range over an orbit of ζ under the automorphism
group G,

x4 + x3 + x2 + x+ 1 = (x− ζ)(x− ζ3)(x− ζ9)(x− ζ7)
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has coefficients in Q and is the minimal polynomial for ζ over Q. Similarly looking at the orbit of −ζ under
the automorphism group G, we see that

x4 − x3 + x2 − x+ 1 = (x+ ζ)(x+ ζ3)(x+ ζ9)(x+ ζ7)

has coefficients in Q and is the minimal polynomial for −ζ over Q.

The discussion of Gauss sums in the proof of quadratic reciprocity gives us the convenient

ζ − ζ2 − ζ3 + ζ4 =
√

5

Note that this expression allows us to see what effect the automorphism σa(ζ) = ζa has on
√

5

σa(
√

5) = σa(ζ − ζ2 − ζ3 + ζ4) =
{ √

5 (for a = 1, 9)
−
√

5 (for a = 3, 7)

Thus, the orbit of
√

5ζ under G is
√

5ζ, τ(
√

5ζ) = −
√

5ζ3, τ2(
√

5ζ) =
√

5ζ4, τ3(
√

5ζ) = −
√

5ζ2

giving quartic polynomial
(x−

√
5ζ)(x+

√
5ζ3)(x−

√
5ζ4)(x+

√
5ζ2)

= x4 −
√

5(ζ − ζ2 − ζ3 + ζ4)x3 + 5(−ζ4 + 1− ζ3 − ζ2 + 1− ζ)x2 − 5
√

5(ζ4 − ζ2 + ζ − ζ3)x+ 25

= x4 − 5x3 + 15x2 − 25x+ 25

We might anticipate what happens with the other bunch of four zeros, but we can also compute directly
(confirming the suspicion). The orbit of −

√
5ζ under G is

−
√

5ζ, τ(−
√

5ζ) =
√

5ζ3, τ2(−
√

5ζ) = −
√

5ζ4, τ3(−
√

5ζ) =
√

5ζ2

giving quartic polynomial
(x+

√
5ζ)(x−

√
5ζ3)(x+

√
5ζ4)(x−

√
5ζ2)

= x4 +
√

5(ζ − ζ2 − ζ3 + ζ4)x3 + 5(−ζ4 + 1− ζ3 − ζ2 + 1− ζ)x2 + 5
√

5(ζ4 − ζ2 + ζ − ζ3)x+ 25

= x4 + 5x3 + 15x2 + 25x+ 25

Thus, we expect that

x8 + 5x6 + 25x4 + 125x2 + 625 = (x4 − 5x3 + 15x2 − 25x+ 25) · (x4 + 5x3 + 15x2 + 25x+ 25)

Note that because of the sign flips in the odd-degree terms in the quartics, the octic can also be written as

x8 + 5x6 + 25x4 + 125x2 + 625 = (x4 + 15x2 + 25)2 − 25(x3 + 5x)2

(This factorization of an altered product of two cyclotomic polynomials is sometimes called an Aurifeuille-
LeLasseur factorization after two amateur mathematicians who studied such things, brought to wider
attention by E. Lucas in the late 19th century.)

19.6.7 Example: Let p be a prime not dividing m. Show that in Fp[x]

Φmp(x) = Φm(x)p−1

From the recursive definition,

Φpm(x) =
xpm − 1∏

d|m Φpεd(x) ·
∏
d|m, d<m Φpd(x)
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In characteristic p, the numerator is (xm−1)p. The first product factor in the denominator is xm−1. Thus,
the whole is

Φpm(x) =
(xm − 1)p

(xm − 1) ·
∏
d|m, d<m Φpd(x)

By induction on d < m, in the last product in the denominator has factors

Φpd(x) = Φd(x)p−1

Cancelling,

Φpm(x) =
(xm − 1)p

(xm − 1) ·
∏
d|m, d<m Φd(x)p−1

=
(xm − 1)p−1∏

d|m, d<m Φd(x)p−1

=

(
xm − 1∏

d|m, d<m Φd(x)

)p−1

which gives Φm(x)p−1 as claimed, by the recursive definition. ///

Exercises

19.1 Find two fields intermediate between Q and Q(ζ11), where ζ11 is a primitive 11th root of unity.

19.2 The 5th cyclotomic polynomial factors into two irreducibles in F19[x]. Find these two irreducibles.

19.3 The 8th cyclotomic polynomial factors into two irreducibles in F7[x]. Find these two irreducibles.

19.4 The 8th cyclotomic polynomial factors into two irreducible quadratics in Q(
√

2)[x]. Find these two
irreducibles.
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20. Cyclotomic III

20.1 Prime-power cyclotomic polynomials over Q
20.2 Irreducibility of cyclotomic polynomials over Q
20.3 Factoring Φn(x) in Fp[x] with p|n
20.4 Worked examples

The main goal is to prove that all cyclotomic polynomials Φn(x) are irreducible in Q[x], and to see what
happens to Φn(x) over Fp when p|n.

The irreducibility over Q allows us to conclude that the automorphism group of Q(ζn) over Q (with ζn a
primitive nth root of unity) is

Aut(Q(ζn)/Q) ≈ (Z/n)×

by the map
(ζn −→ ζan)←− a

The case of prime-power cyclotomic polynomials in Q[x] needs only Eisenstein’s criterion, but the case of
general n seems to admit no comparably simple argument. The proof given here uses ideas already in hand,
but also an unexpected trick. We will give a different, less elementary, but possibly more natural argument
later using p-adic numbers and Dirichlet’s theorem on primes in an arithmetic progression.

20.1 Prime-power cyclotomic polynomials over Q
The proof of the following is just a slight generalization of the prime-order case.

20.1.1 Proposition: For p prime and for 1 ≤ e ∈ Z the prime-power pe-th cyclotomic polynomial
Φpe(x) is irreducible in Q[x].

Proof: Not unexpectedly, we use Eisenstein’s criterion to prove that Φpe(x) is irreducible in Z[x], and the
invoke Gauss’ lemma to be sure that it is irreducible in Q[x]. Specifically, let

f(x) = Φpe(x+ 1)

If e = 1, we are in the familiar prime-order case. Since p divides binomial coefficients
(
p
i

)
for 0 < i < p

Φp(x+ 1) =
(x+ 1)p − 1
(x+ 1)− 1

= xp−1 +
(
p

1

)
xp−2 + . . .+

(
p

2

)
x+

(
p

1

)
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reaching the usual conclusion directly in this case.

Now consider e > 1. Let
f(x) = Φpe(x+ 1)

Recall that

Φpe(x) = Φp(xp
e−1

) =
xp

e − 1
xpe−1 − 1

First, we check that p divides all but the highest-degree coefficient of f(x). To do so, map everything to
Fp[x], by reducing coefficients modulo p. For e ≥ 1

(x+ 1)p
e−1

= xp
e−1

+ 1 mod p

Therefore, in Fp[x]

f(x) = Φp((x+ 1)p
e−1

) =
(x+ 1)p

e − 1
(x+ 1)pe−1 − 1

= ((x+ 1)p
e−1

)p−1 + ((x+ 1)p
e−1

)p−2 + . . .+ ((x+ 1)p
e−1

) + 1

= (xp
e−1

+ 1)p−1 + (xp
e−1

+ 1)p−2 + . . .+ (xp
e−1

+ 1) + 1

=
(xp

e−1
+ 1)p − 1

(xpe−1 +1)− 1
=

xp
e−1

+ 1− 1
xpe−1 =

xp
e

xpe−1 = xp
e−1(p−1)

in Fp[x]. Thus, all the lower coefficients are divisible by p. [273] To determine the constant coefficient of
f(x), again use

Φpe(x) = Φp(xp
e−1

)

to compute
constant coefficient of f = f(0) = Φpe(1) = Φp(1p

e−1
) = Φp(1) = p

as in the prime-order case. Thus, p2 does not divide the constant coefficient of f . Then apply Eisenstein’s
criterion and Gauss’ lemma to obtain the irreducibility. ///

20.1.2 Corollary: Let ζ be a primitive pe-th root of unity. The automorphism group Aut(Q(ζ)/Q) is
isomorphic

(Z/pe)× ≈ Aut(Q(ζ)/Q)

by
a −→ σa

where
σa(ζ) = ζa

Proof: This follows from the irreducibility of Φpe(x) in Q[x] and the fact that all primitive pe-th roots of
unity are expressible as ζa with a in (Z/pe)×. More precisely, we saw earlier that for any other root β of
f(x) = 0 in Q(α) with f the minimal polynomial of α over Q, there is an automorphism of Q(α) sending α
to β. Thus, for any a relatively prime to p there is an automorphism which sends ζ −→ ζa. On the other
hand, any automorphism must send ζ to a root of Φpe(x) = 0, and these are all of the form ζa. Thus, we
have an isomorphism. ///

[273] Note that this argument in Fp[x] by itself cannot prove that p2 does not divide the constant coefficient, since we

are computing only in Fp[x].
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20.2 Irreducibility of cyclotomic polynomials over Q
Now consider general n, and ζ a primitive nth root of unity. We prove irreducibility over Q of the nth

cyclotomic polynomial, and the very useful corollary that the automorphism group of Q(ζn) over Q (for a
primitive nth root of unity ζn) is isomorphic to (Z/n)×.

20.2.1 Theorem: The nth cyclotomic polynomial Φn(x) is irreducible in Q[x].

Proof: Suppose that Φn(x) = f(x)g(x) inQ[x] with f of positive degree. Via Gauss’ lemma we can suppose
that both f and g are monic and are in Z[x]. Let x − ζ be a linear factor of f(x) in k[x] for an extension
field k of Q. We wish to show that x− ζa is also a linear factor of f for every a ∈ (Z/n)×, and thus that

deg f = ϕ(n) = deg Φn

concluding that f = Φn.

Since each a ∈ (Z/n)× is a product of primes p not dividing n, it suffices to show that x − ζp is a linear
factor of f(x) for all primes p not dividing n. If not, then x − ζp is necessarily a linear factor of g(x), by
unique factorization in k[x]. That is, ζ is a root of g(xp) = 0 in k, so x− ζ divides g(xp) in k[x].

Thus, in Q[x] the gcd of f(x) and g(xp) is not 1: otherwise, there would be r(x), s(x) ∈ Q[x] such that

1 = r(x) · f(x) + s(x) · g(xp)

Mapping Q[x] to k by x −→ ζ would give the impossible

1 = r(ζ) · 0 + s(ζ) · 0 = 0

Thus, d(x) = gcd(f(x), g(xp)) in Q[x] is of positive degree. Let a(x) and b(x) be in Q[x] such that

f(x) = a(x) · d(x) g(xp) = b(x) · d(x)

We can certainly take d to be in Z[x] and have content 1. By Gauss’ lemma, a(x) and b(x) are in Z[x] and
have content 1. In fact, adjusting by at most ±1, we can take a(x), b(x), and d(x) all to be monic.

Map everything to Fp[x]. There g(xp) = g(x)p, so{
f(x) = a(x) · d(x)
g(x)p = g(xp) = b · d

Let δ(x) ∈ Fp[x] be an irreducible dividing d(x) in Fp[x]. Then since δ(x) divides g(x)p in Fp[x] it divides
g(x). Also δ(x) divides f(x) in Fp[x], so δ(x)2 apparently divides Φn(x) = f(x) · g(x) in Fp[x]. But p does
not divide n, so Φn(x) has no repeated factor in Fp[x], contradiction. Thus, it could not have been that
Φn(x) factored properly in Q[x]. ///

20.2.2 Corollary: Let ζ be a primitive n-th root of unity. The automorphism group Aut(Q(ζ)/Q) is
isomorphic

(Z/n)× ≈ Aut(Q(ζ)/Q)

by
a −→ σa

where
σa(ζ) = ζa

Proof: This follows from the irreducibility of Φn(x) in Q[x] and the fact that all primitive n-th roots of
unity are expressible as ζa with a in (Z/n)×. More precisely, we saw earlier that for any other root β of
f(x) = 0 in Q(α) with f the minimal polynomial of α over Q, there is an automorphism of Q(α) sending α
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to β. Thus, for any a relatively prime to n there is an automorphism which sends ζ −→ ζa. On the other
hand, any automorphism must send ζ to a root of Φn(x) = 0, and these are all of the form ζa, because of
the nature of cyclic groups. Thus, we have an isomorphism. ///

20.3 Factoring Φn(x) in Fp[x] with pjn

It turns out that a sensible proof of the following can be given using only the inductive definition of Φn(x)
in Z[x].

20.3.1 Theorem: For a prime p, integer m not divisible by p, and integer e ≥ 1, in Fp[x] the pemth

cyclotomic polynomial Φpem(x) is

Φpem(x) = Φm(x)ϕ(pe) = Φm(x)(p−1)(pe−1)

where ϕ is Euler’s totient function.

Proof: From the recursive definition, for 1 ≤ e ∈ Z,

Φpem(x) =
xp

em − 1∏
d|m, 0≤ε<e Φpεd(x) ·

∏
d|m, d<m Φped(x)

In characteristic p, the numerator is (xm − 1)p
e

. The first product factor in the denominator is xp
e−1m − 1,

which in characteristic p is (xm − 1)p
e−1

. Thus, the whole is

Φpem(x) =
(xm − 1)p

e

(xm − 1)pe−1 ·
∏
d|m, d<m Φped(x)

By induction on d < m, in the last product in the denominator has factors

Φped(x) = Φd(x)ϕ(pe)

Cancelling,

Φpem(x) =
(xm − 1)p

e

(xm − 1)pe−1 ·
∏
d|m, d<m Φd(x)ϕ(pe)

=
(xm − 1)(p−1)pe−1∏
d|m, d<m Φd(x)ϕ(pe)

=

(
xm − 1∏

d|m, d<m Φd(x)

)ϕ(pe)

which gives Φm(x)ϕ(pe) as claimed, by the recursive definition. ///

20.4 Worked examples

20.4.1 Example: Prove that a prime p such that p = 1 mod 3 factors properly as p = ab in Z[ω], where
ω is a primitive cube root of unity. (Hint: If p were prime in Z[ω], then Z[ω]/p would be a integral domain.)

The hypothesis on p implies that (Z/p)× has order divisible by 3, so there is a primitive third root of unity
ζ in Z/p. That is, the third cyclotomic polynomial x2 + x+ 1 factors mod p. Recall the isomorphisms

Z[ω]/p ≈ (Z[x]/(x2 + x+ 1))/p ≈ (Z/p)[x]/(x2 + x+ 1)

Since x2 +x+1 factors mod p, the right-most quotient is not an integral domain. Recall that a commutative
ring modulo an ideal is an integral domain if and only if the ideal is prime. Thus, looking at the left-most
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quotient, the ideal generated by p in Z[ω] is not prime. Since we have seen that Z[ω] is Euclidean, hence a
PID, the element p must factor properly. ///

20.4.2 Example: Prove that a prime p such that p = 2 mod 5 generates a prime ideal in the ring Z[ζ],
where ζ is a primitive fifth root of unity.

The hypothesis on p implies that F×pn has order divisible by 5 only for n divisible by 4. Thus, the fifth
cyclotomic polynomial Φ5 is irreducible modulo p: (If it had a linear factor then F×p would contain a
primitive fifth root of unity, so have order divisible by 5. If it had a quadratic factor then F×p2 would contain
a primitive fifth root of unity, so have order divisible by 5.) Recall the isomorphisms

Z[ζ]/p ≈ (Z[x]/Φ5)/p ≈ (Z/p)[x]/(Φ5)

Since Φ5 is irreducible mod p, the right-most quotient is an integral domain. As recalled in the previous
example, a commutative ring modulo an ideal is an integral domain if and only if the ideal is prime. Thus,
looking at the left-most quotient, the ideal generated by p in Z[ζ] is prime. ///

20.4.3 Example: Find the monic irreducible polynomial with rational coefficients which has as zero

α =
√

3 +
√

5

In this simple example, we can take a rather ad hoc approach to find a polynomial with α as 0. Namely,

α2 = 3 + 2
√

3
√

5 + 5 = 8 + 2
√

15

Then
(α2 − 8)2 = 4 · 15 = 60

Thus,
α4 − 16α2 + 4 = 0

But this approach leaves the question of the irreducibility of this polynomial over Q.

By Eisenstein, x2 − 3 and x2 − 5 are irreducible in Q[x], so the fields generated over Q by the indicated
square roots are of degree 2 over Q. Since (inside a fixed algebraic closure of Q) [Q(

√
3,
√

5) : Q] ≤ [Q(
√

3) :
Q] · [Q(

√
3) : Q],

[Q(
√

3,
√

5) : Q] ≤ 4

It is natural to claim that we have equality. To prove equality, one approach is to show that there is no
√

5
in Q(

√
3): supposed that (a+ b

√
3)2 = 5 with a, b ∈ Q. Then

(a2 − 3b2) + 2ab
√

3 = 5 = 5 + 0 ·
√

3

Since
√

3 and 1 are linearly independent over Q (this is what the field degree assertions are), this requires
that either a = 0 or b = 0. In the latter case, we would have a2 = 5. In the former, 3b2 = 5. In either case,
Eisenstein’s criterion (or just unique factorization in Z) shows that the corresponding polynomials x2 − 5
and 3x2 − 5 are irreducible, so this is impossible.

To prove that the quartic of which α =
√

3 +
√

5 is a root is irreducible, it suffices to show that α generates
Q(
√

3,
√

5). Certainly
α2 − 8

2
=
√

15

(If we were in characteristic 2 then we could not divide by 2. But, also, in that case 3 = 5.) Then

(
α2 − 8

2
) · α =

√
15 · α = 3

√
5 + 5

√
3
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The system of two linear equations √
3 +
√

5 = α
5
√

3 + 3
√

5 = (α
2−8
2 ) · α

can be solved for
√

3 and
√

5. Thus, α generates the quartic field extension, so has a quartic minimal
polynomial, which must be the monic polynomial we found. ///

A more extravagant proof (which generalizes in an attractive manner) that

[Q(
√

3,
√

5) : Q] = 4

uses cyclotomic fields and (proto-Galois theoretic) facts we already have at hand about them. Let ζn be a
primitive nth root of unity. We use the fact that

Aut(Q(ζn)/Q) ≈ (Z/n)×

by
(σa : ζn −→ ζan)←− a

Letting n = 4pq with distinct odd primes p, q, by Sun-Ze’s theorem

Z/n ≈ Z/4⊕ Z/p⊕ Z/q

Thus, given an automorphism τ1 ofQ(ζp) overQ, an automorphism τ2 ofQ(ζq) overQ, and an automorphism
τ3 of Q(i) over Q, there is an automorphism σ of Q(ζ4pq) over Q which restricts to τ1 on Q(ζp), to τ2 on
Q(ζ2), and to τ3 on Q(i). Also,√

p ·
(
−1
p

)
2

∈ Q(primitive pth root of unity)

In particular, letting ζp be a primitive pth root of unity, the Gauss sum expression√
p ·
(
−1
p

)
2

=
∑

b mod p

(
b

p

)
2

· ζbp

shows (as observed earlier) that

σa(

√
p ·
(
−1
p

)
2

=
(
a

p

)
2

·

√
p ·
(
−1
p

)
2

The signs under the radicals can be removed by removing a factor of i, if necessary. Thus, we can choose
a ∈ (Z/4pq)× with a = 1 mod 4 to assure that σa(i) = i, and{

σa(
√
p) = −√p

σa(
√
q) =

√
q

That is, a is any non-zero square modulo q and is a non-square modulo p. That is, σa is an automorphism of
Q(ζ4pq) which properly moves

√
p but does not move

√
q. Thus, σa is trivial on Q(

√
q, so this field cannot

contain
√
p. Thus, the degree [Q(

√
p,
√
q) : Q] > 2. But also this degree is at most 4, and is divisible by

[Q(
√
q) : Q] = 2. Thus, the degree is 4, as desired. ///

20.4.4 Example: Find the monic irreducible polynomial with rational coefficients which has as zero

α =
√

3 + 3
√

5
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Eisenstein’s criterion shows that x2 − 3 and x3 − 5 are irreducible in Q[x], so the separate field degrees are
as expected: [Q

√
3) : Q] = 2, and [Q( 3

√
5) : Q] = 3. This case is somewhat simpler than the case of two

square roots, since the degree [Q(
√

3, 3
√

5) : Q] of any compositum is divisible by both 2 = [Q(
√

3)] and
3 = [Q( 3

√
5) : Q] = 3, so is divisible by 6 = lcm(2, 3). On the other hand, it is at most the product 6 = 2 · 3

of the two degrees, so is exactly 6.

To find a sextic over Q satisfied by α, we should be slightly more clever. Note that immediately

(α−
√

3)3 = 5

which is
α3 − 3

√
3α2 + 3 · 3α− 3

√
3 = 5

Moving all the square roots to one side,

α3 + 9α− 5 =
√

3 · 3 · (α2 + 1)

and then square again to obtain

α6 + 81α2 + 25 + 18α4 − 10α3 − 90α = 27(α4 + 2α2 + 1)

Rearranging gives
α6 − 9α4 − 10α3 + 27α2 − 90α− 2 = 0

Thus, since α is of degree 6 over Q, the polynomial

x6 − 9x4 − 10x3 + 27x2 − 90x− 2

of which α is a zero is irreducible. ///

20.4.5 Example: Find the monic irreducible polynomial with rational coefficients which has as zero

α =
1 + 3
√

10 + 3
√

10
2

3

First, by Eisenstein’s criterion x3 − 10 is irreducible over Q, so 3
√

10 generates a cubic extension of Q, and
thus 1, 3

√
10, and 3

√
10

2
are linearly independent over Q. Thus, α is not in Q. Since it lies inside a cubic

field extension of Q, it satisfies a monic cubic equation with rational coefficients. The issue, then, is to find
the cubic.

First we take advantage of the special nature of the situation. A little more generally, let β3 = A with A 6= 1.
We note that

β2 + β + 1 =
β3 − 1
β − 1

=
A− 1
β − 1

From β3 −A = 0, using β = (bη − 1) + 1, we have

(β − 1)3 + 3(β − 1)2 + 3(β − 1)2 − (A− 1) = 0

Dividing through by (β − 1)3 gives

1 + 3(
1

β − 1
) + 3(

1
β − 1

)2 − A− 1
(β − 1)3

= 0

Multiplying through by −(A− 1)2 and reversing the order of the terms gives

(
A− 1
β − 1

)3 − 3(
A− 1
β − 1

)2 − 3(A− 1)(
A− 1
β − 1

)− (A− 1)2 = 0
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That is, 1 + 3
√
A+ 3

√
A

2
is a root of

x3 − 3x2 − 3(A− 1)x− (A− 1)2 = 0

Then (1 + 3
√
A+ 3

√
A

2
)/3 is a root of

x3 − x2 − (
A− 1

3
)x− (A− 1)2

27
= 0

When (A− 1)2 is divisible by 27 we have a nice simplification, as with A = 10, in which case the cubic is

x3 − x2 − 3x− 3 = 0

which has integral coefficients. ///

20.4.6 Remark: The fact that the coefficients are integral despite the apparent denominator of α is
entirely parallel to the fact that −1±

√
D

2 satisfies the quadratic equation

x2 − x+
1−D

4
= 0

which has integral coefficients if D = 1 mod 4.

There is a more systematic approach to finding minimal polynomials that will work in more general
circumstances, which we can also illustrate in this example. Again let β = 3

√
A where A is not a cube in the

base field k. Then, again, we know that 1 + β + β2 is not in the ground field k, so, since it lies in a cubic
field extension, has minimal polynomial over k which is an irreducible (monic) cubic, say x3 + ax2 + bx+ c.
We can determine a, b, c systematically, as follows. Substitute 1 + β + β2 for x and require

(1 + β + β2)3 + a(1 + β + β2)2 + b(1 + β + β2) + c = 0

Multiply out, obtaining

(β6 + β3 + 1 + 3β5 + 3β4 + 3β2 + 3β4 + 3β2 + 3β + 6β3)

+ a(β4 + β2 + 1 + 2β3 + 2β2 + 2β) + b(β2 + β + 1) + c

= 0

Use the fact that β3 = A (if β satified a more complicated cubic this would be messier, but still succeed) to
obtain

(3A+ 6 + 3a+ b)β2 + (6A+ 3 + (A+ 2)a+ +b)β

+ (A2 + 7A+ 1 + (2A+ 1)a+ b+ c) = 0

Again, 1, β, β2 are linearly independent over the ground field k, so this condition is equivalent to the system 3a + b = −(3A+ 6)
(A+ 2)a + b = −(6A+ 3)
(2A+ 1)a + b + c = −(A2 + 7A+ 1)

From the first two equations a = −3, and then b = −3(A− 1), and from the last c = −(A− 1)2, exactly as
earlier. ///

20.4.7 Remark: This last approach is only palatable if there’s no other recourse.

20.4.8 Example: Let p be a prime number, and a ∈ F×p . Prove that xp − x+ a is irreducible in Fp[x].
(Hint: Verify that if α is a root of xp − x+ a = 0, then so is α+ 1.)
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Comment: It might have been even more helpful to recommend to look at the effect of Frobenious b −→ bp,
but the hint as given reveals an interesting fact in its own right, and takes us part of the way to understanding
the situation.

If α is a root in an algebraic closure, then

(α+ 1)p − (α+ 1) + a = αp + 1− α− 1 + a = 0

so α+ 1 is another root. Thus, the roots of this equation are exactly

α, α+ 1, α+ 2, . . . , α+ (p− 1)

which are distinct. (The polynomial is of degree p, so there are no more than p zeros.)

Similarly, but even more to the point is that the Frobenius automorphism F has the effect

F (α) = αp = (αp − α+ a) + α− a = α− a

Let A be a subset of this set of zeros. We have shown that a polynomial∏
β∈A

(x− β)

has coefficients in Fp if and only if A is stable under the action of the Frobenius. Since a 6= 0, the smallest
F -stable subset of A is necessarily the whole, since the values

F `(α) = α− ` · a

are distinct for ` = 0, 1, . . . , p − 1. By unique factorization, any factor of xp − x + 1 is a product of linear
factors x− F `(α), and we have shown that a product of such factors has coefficients in Fp only if all these
factors are included. That is, xp − x+ a is irreducible in Fp[x]. ///

20.4.9 Example: Let k = Fp(t) be the field of rational expressions in an indeterminate t with coefficients
in Fp. Show that the polynomial Xp − t ∈ k[X] is irreducible in k[X], but has properly repeated factors
over an algebraic closure of k.

That polynomial meets Eisenstein’s criterion in Fp[t][X], since t is a prime element in the UFD Fp[t], so
(via Gauss’ lemma) Xp − t is irreducible in Fp(t)[X]. Let α be any root of Xp − t = 0. Then, because the
inner binomial coefficients

(
p
i

)
are divisible by p,

(X − α)p = Xp − αp = Xp − t

That is, over an algebraic closure of Fp(t), the polynomial Xp − t is a linear polynomial raised to the pth

power.

20.4.10 Example: Let x be an indeterminate over C. For a, b, c, d in C with ad− bc 6= 0, let

σ(x) = σa,b,c,d(x) =
ax+ b

cx+ d

and define

σ

(
P (x)
Q(x)

)
=
P (σ(x))
Q(σ(x))

for P and Q polynomials. Show that σ gives a field automorphism of the field of rational functions C(x)
over C.

The argument uses no properties of the complex numbers, so we discuss an arbitrary field k instead of C.
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Since the polynomial algebra k[x] is the free k-algebra on one generator, by definition for any k-algebra A
and chosen element a ∈ A, there is a unique k-algebra map k[x] −→ A such that x −→ a. And, second, for
any injective k-algebra map f of k[x] to a domain R the field of fractions k(x) of k[x] has an associated map
f̃ to the field of fractions of R, by

f̃(P/Q) = f(P )/f(Q)

where P and Q are polynomials.

In the case at hand, any choice σ(x) = g(x)/h(x) in k(x) (with polynomials g, h with h not the 0 polynomial)
gives a unique k-algebra homomorphism k[x] −→ k(x), by

σ(P (x)) = P (σ(x)) = P (
g(x)
h(x)

)

To know that we have an extension to the field of fractions k(x) of k[x], we must check that the kernel of
the map k[x] −→ k(x) is non-zero. That is, we must verify for a positive-degree polynomial (assume without
loss of generality that an 6= 0)

P (x) = anx
n + . . .+ ao

that
0 6= σ(P (x)) ∈ k(x)

Again,

σ(P (x)) = P (σ(x)) = P (
g(x)
h(x)

) = an(
g

h
)n + . . .+ ao

= h−n · (angn + an−1g
n−1h+ . . .+ a1gh

n−1 + aoh
n)

We could have assumed without loss of generality that g and h are relatively prime in k[x]. If the degree of
g is positive, let p(x) be an irreducible factor of g(x). Then an equality

0 = ang
n + an−1g

n−1h+ . . .+ a1gh
n−1 + aoh

n

would imply that p|h, contradiction. But if deg h > 0 we reach a nearly identical contradiction. That is, a
field map k(x) −→ k(x) can send x to any element of k(x) not lying in k. Thus, certainly, for ad− bc 6= 0,
(ax+ b)/(cx+ d) is not in k, and is a legitimate field map image of x.

To prove surjectivity of σ(x) = (ax + b)/(cx + d), we find an inverse τ , specifically such that σ ◦ τ = 1. It
may not be surprising that

τ : x −→ dx− b
−cx+ a

is such an inverse:

(σ ◦ τ)(x) =
a( dx−b
−cx+a ) + b

c( dx−b
−cx+a ) + d

=
a(dx− b) + b(−cx+ a)
c(dx− b) + d(−cx+ a)

=
(ad− bc)x− ab+ ba

cdx− cb− dcx+ ad
=

(ad− bc)x
ad− bc

= x

That is, the given field maps are surjective. All field maps that do not map all elements to 0 are injective,
so these maps are field automorphisms of k(x).

20.4.11 Example: In the situation of the previous exercise, show that every automorphism of C(x)
over C is of this form.

We did also show in the previous example that for g and h polynomials, not both constant, h not 0,

σ(x) =
g(x)
h(x)
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determines a field map k(x) −→ k(x). If it were surjective, then there would be coefficients ai and bj in k
such that x is expressible as

x =
amσ(x)m + . . .+ a0

bnσ(x)n + . . .+ b0

with am 6= 0 and bn 6= 0. Let σ(x) = p/q where p and q are relatively prime polynomials. Then

x · q−n(bnpn + bn−1p
n−1q + . . .+ b0q

n) = q−m(ampm + am−1p
m−1q + . . .+ a0q

m)

or
x · qm(bnpn + bn−1p

n−1q + . . .+ b0q
n) = qn(ampm + am−1p

m−1q + . . .+ a0q
m)

Collecting the only two terms lacking an explicit factor of p, we find that

(b0x− a0) · qm+n

is visibly a multiple of p. Since p and q are relatively prime and k[x] is a UFD, necessarily p divides b0x−a0.
Since degrees add in products, the degree of p is at most 1.

One argument to prove that deg q ≤ 1 is to observe that if p/q generates all of a field then so does its inverse
q/p. Thus, by the previous paragraph’s argument which showed that deg p ≤ 1, we have deg q ≤ 1.

For another argument concerning the denominator: a more direct computation approach does illustrate
something useful about polynomial algebra: For m > n, we would have a polynomial equation

x · qm−n(bnpn + bn−1p
n−1q + . . .+ b0q

n) = amp
m + am−1p

m−1q + . . .+ a0q
m

The only term not visibly divisible by q is ampm, so apparently q divides ampm. Since p, q are relatively
prime, this would imply that deg q = 0. Similarly, for m < n, the polynomial equation

x · (bnpn + bn−1p
n−1q + . . .+ b0q

n) = qn−m(ampm + am−1p
m−1q + . . .+ a0q

m)

implies that q divides x · bnpn, and the coprimality of p, q implies that deg q ≤ 1. If m = n, then the
polynomial equation

x · (bnpn + bn−1p
n−1q + . . .+ b0q

n) = amp
m + am−1p

m−1q + . . .+ a0q
m

implies that q divides (keeping in mind that m = n)

x · bnpn − ampm = (xbn − an) · pn

The coprimality of p, q implies that q divides xbn − an, so deg q ≤ 1 again in this case.

Thus, if σ(x) = p/q gives a surjection of k(x) to itself, the maximum of the degrees of p and q is 1. ///

20.4.12 Example: Let s and t be indeterminates over Fp, and let Fp(s1/p, t1/p) be the field extension
of the rational function field Fp(s, t) obtained by adjoining roots of Xp − s = 0 and of Xp − t = 0. Show
that there are infinitely-many (distinct) fields intermediate between Fp(s, t) and Fp(s1/p, t1/p).

By Eisenstein’s criterion in k[s, t][X] we see that both Xp − s and Xp − t are irreducible in k(s, t)[X], so
s1/p and t1/p each generates a degree p extension of k(s, t). We show that [k(s1/p, t1/p) : k(s, t)] = p2. By
Eisenstein’s criterion in Fp(t)[s][X] the polynomial Xp − s is irreducible, since the prime s in Fp(t)[s], but
not its square, divides all but the highest term. And then Xp − t is irreducible in k(s1/p)[t][X] since the
prime t in k(s1/p(s))[t] divides all the lower coefficients and its square does not divide the constant term.

Observe that for any polynomial f(s, t), because the characteristic is p,

(s1/p + f(s, t)t1/p)p = s+ f(s, t)p t



254 Cyclotomic III

For example, for any positive integer n

(s1/p + snt1/p)p = s+ snp t

Again, by Eisenstein’s criterion in Fp(t)[s][X] the polynomial

Xp − (s+ snpt)

is irreducible, since the prime s in Fp(t)[s], but not its square, divides all but the highest term. Thus, the
pth root of any s+ snpt generates a degree p extension of Fp(s, t).

We claim that for distinct positive integers m,n

Fp(s, t, (s+ smpt)1/p) 6= Fp(s, t, (s+ snpt)1/p)

To prove this, we will show that any subfield of Fp(s1/p, t1/p) which contains both (s + smpt)1/p and
(s+ snpt)1/p is the whole field Fp(s1/p, t1/p), which is of degree p2 (rather than p). Indeed,

(s+ smpt)1/p − (s+ snpt)1/p = s1/p + smt1/p − (s1/p + snt1/p) = (sm − sn)t1/p

Since m 6= n we can divide by sm − sn to obtain t1/p. Then we can surely express s1/t as well. Thus, for
m 6= n, the field obtained by adjoining the two different pth roots is of degree p2 over Fp(s, t), so the two
degree p extensions cannot be identical (or the whole degree would be just p). ///

20.4.13 Remark: From a foundational viewpoint, the above discussion is a bit glib about the interaction
of s and t, and the interaction of s1/n and t. Though this is not the main point at the moment, detection
of implied relations among variables can become serious. At present, the idea is that there are no relations
between s and t, so relations between s1/n and t will not pop up. This can be made more precise in
preparation for coping with more complicated situations later.

20.4.14 Example: Determine the degree of Q(
√

65 + 56i) over Q, where i =
√
−1.

We show that 65 + 56i is not a square in Q(i). We use the norm

N(α) = α · ασ

from Q(i) to Q, where as usual (a+ bi)σ = a− bi for rational a, b. Since −i is the other zero of the minimal
polynomial x2 +1 of i over Q, the map σ is a field automorphism of Q(i) over Q. (Indeed, we showed earlier
that there exists a Q-linear field automorphism of Q(i) taking i to −i.) Since σ is a field automorphism, N
is multiplicative, in the sense that

N(αβ) = N(α) ·N(β)

Thus, if α = β2, we would have
N(α) = N(β2) = N(β)2

and the latter is a square in Q. Thus, if α = 65 + 56i were a square, then

N(65 + 56i) = 652 + 562 = 7361

would be a square. One could factor this into primes in Z to see that it is not a square, or hope that it is
not a square modulo some relatively small prime. Indeed, modulo 11 it is 2, which is not a square modulo
11 (by brute force, or by Euler’s criterion (using the cyclicness of (Z/11)×) 2(11−1)/2 = −1 mod 11, or by
recalling the part of Quadratic Reciprocity that asserts that 2 is a square mod p only for p = ±1 mod 8).

20.4.15 Example: Fix an algebraically closed field k. Find a simple condition on w ∈ k such that the
equation z5 + 5zw + 4w2 = 0 has no repeated roots z in k.
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Use some form of the Euclidean algorithm to compute the greatest common divisor in k(w)[z] of f(z) =
z5 + 5zw + 4w2 and its (partial?) derivative (with respect to z, not w). If the characteristic of k is 5,
then we are in trouble, since the derivative (in z) vanishes identically, and therefore it is impossible to avoid
repeated roots. So suppose the characteristic is not 5. Similarly, if the characteristic is 2, there will always
be repeated roots, since the polynomial becomes z(z4 + w). So suppose the characteristic is not 2.

(z5 + 5zw + 4w2)− z
5 · (5z

4 + 5w) = 4zw + 4w2

(z4 + w)− 1
4w (z3 − z2w + zw2 − w3) · (4zw + 4w2) = w − w4

where we also assumed that w 6= 0 to be able to divide. The expression w − w4 is in the ground field k(w)
for the polynomial ring k(w)[z], so if it is non-zero the polynomial and its derivative (in z) have no common
factor. We know that this implies that the polynomial has no repeated factors. Thus, in characteristic not
5 or 2, for w(1− w3) 6= 0 we are assured that there are no repeated factors.

20.4.16 Remark: The algebraic closedness of k did not play a role, but may have helped avoid various
needless worries.

20.4.17 Example: Fix a field k and an indeterminate t. Fix a positive integer n > 1 and let t1/n be an
nth root of t in an algebraic closure of the field of rational functions k(t). Show that k[t1/n] is isomorphic to
a polynomial ring in one variable.

(There are many legitimate approaches to this question...)

We show that k[t1/n] is a free k-algebra on one generator t1/n. That is, given a k-algebra A, a k-algebra
homomorphism f : k −→ A, and an element a ∈ A, we must show that there is a unique k-algebra
homomorphism F : k[t1/n] −→ A extending f : k −→ A and such that F (t1/n) = a.

Let k[x] be a polynomial ring in one variable, and let f : k[x] −→ k[t1/n] be the (surjective) k-algebra
homomorphism taking x to t1/n. If we can show that the kernel of f is trivial, then f is an isomorphism
and we are done.

Since k[t] is a free k-algebra on one generator, it is infinite-dimensional as a k-vectorspace. Thus,
k[t1/n] is infinite-dimensional as a k-vectorspace. Since f : k[x] −→ k[t1/n] is surjective, its image
k[x]/(ker f) ≈ f(k[x]) is infinite-dimensional as a k-vectorspace.

Because k[x] is a principal ideal domain, for an ideal I, either a quotient k[x]/I is finite-dimensional as
a k-vector space, or else I = {0}. There are no (possibly complicated) intermediate possibilities. Since
k[x]/(ker f) is infinite-dimensional, ker f = {0}. That is, f : k[x] −→ k[t1/n] is an isomorphism. ///

20.4.18 Remark: The vague and mildly philosophical point here was to see why an nth root of an
indeterminate is still such a thing. It is certainly possible to use different language to give structurally
similar arguments, but it seems to me that the above argument captures the points that occur in any
version. For example, use of the notion of field elements transcendental over some ground field does suggest
a good intuition, but still requires attention to similar details.

20.4.19 Example: Fix a field k and an indeterminate t. Let s = P (t) for a monic polynomial P in k[x]
of positive degree. Find the monic irreducible polynomial f(x) in k(s)[x] such that f(t) = 0.

Perhaps this yields to direct computation, but we will do something a bit more conceptual.

Certainly s is a root of the equation P (x)− s = 0. It would suffice to prove that P (x)− s is irreducible in
k(s)[x]. Since P is monic and has coefficients in k, the coefficients of P (x)− s are in the subring k[s] of k(s),
and their gcd is 1. In other words, as a polynomial in x, P (x)− s has content 1. Thus, from Gauss’ lemma,
P (x)− s is irreducible in k(s)[x] if and only if it is irreducible in k[s][x] ≈ k[x][s]. As a polynomial in s (with
coefficients in k[x]), P (x)− s has content 1, since the coefficient of s is −1. Thus, P (x)− s is irreducible in
k[x][s] if and only if it is irreducible in k(x)[s]. In the latter ring it is simply a linear polynomial in s, so is
irreducible.

20.4.20 Remark: The main trick here is to manage to interchange the roles of x and s, and then use
the fact that P (x)− s is much simpler as a polynomial in s than as a polynomial in x.
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20.4.21 Remark: The notion of irreducibility in k[s][x] ≈ k[x][s] does not depend upon how we view
these polynomials. Indeed, irreducibility of r ∈ R is equivalent to the irreducibility of f(r) in S for any ring
isomorphism f : R −→ S.

20.4.22 Remark: This approach generalizes as follows. Let s = P (t)/Q(t) with relatively prime
polynomials P,Q (and Q 6= 0). Certainly t is a zero of the polynomial Q(x)s − P (s), and we claim that
this is a (not necessarily monic) polynomial over k(x) of minimal degree of which t is a 0. To do this we
show that Q(x)s−P (x) is irreducible in k(s)[x]. First, we claim that its content (as a polynomial in x with
coefficients in k[s]) is 1. Let P (x) =

∑
i aix

i and Q(x) =
∑
j bjx

j , where ai, bj ∈ k and we allow some of
them to be 0. Then

Q(x)s− P (x) =
∑
i

(bit− ai)xi

The content of this polynomial is the gcd of the linear polynomials bit− ai. If this gcd were 1, then all these
linear polynomials would be scalar multiples of one another (or 0). But that would imply that P,Q are scalar
multiples of one another, which is impossible since they are relatively prime. So (via Gauss’ lemma) the
content is 1, and the irreducibility of Q(x)s−P (x) in k(s)[x] is equivalent to irreducibility in k[s][x] ≈ k[x][s].
Now we verify that the content of the polynomial in t (with coefficient in k[x]) Q(x)s−P (x) is 1. The content
is the gcd of the coefficients, which is the gcd of P,Q, which is 1 by assumption. Thus, Q(x)s − P (x) is
irreducible in k[x][s] if and only if it is irreducible in k(x)[s]. In the latter, it is a polynomial of degree at
most 1, with non-zero top coefficients, so in fact linear. Thus, it is irreducible in k(x)[s]. We conclude that
Q(x)s− P (x) was irreducible in k(s)[x].

Further, this approach shows that f(x) = Q(x)− sP (x) is indeed a polynomial of minimal degree, over k(x),
of which t is a zero. Thus,

[k(t) : k(s)] = max(degP, degQ)

Further, this proves a much sharper fact than that automorphisms of k(t) only map t −→ (at+ b)/(ct+ d),
since any rational expression with higher-degree numerator or denominator generates a strictly smaller field,
with the degree down being the maximum of the degrees.

20.4.23 Example: Let p1, p2, . . . be any ordered list of the prime numbers. Prove that
√
p1 is not in

the field
Q(
√
p2,
√
p3, . . .)

generated by the square roots of all the other primes.

First, observe that any rational expression for
√
p1 in terms of the other square roots can only involve finitely

many of them, so what truly must be proven is that
√
p1 is not in the field

Q(
√
p2,
√
p3, . . . ,

√
pN )

generated by any finite collection of square roots of other primes.

Probably an induction based on direct computation can succeed, but this is not the most interesting or
informative. Instead:

Let ζn be a primitive nth root of unity. Recall that for an odd prime p√
p ·
(
−1
p

)
2

∈ Q(ζp)

Certainly i =
√
−1 ∈ Q(ζ4). Thus, letting n = 4p1p2 . . . pN , all the

√
p1, . . .

√
pN are in K = Q(ζn). From

the Gauss sum expression for these square roots, the automorphism σa(ζn) = ζan of Q(ζn) has the effect

σa

√
pi ·
(
−1
pi

)
2

=
(
a

pi

)
2

·

√
pi ·
(
−1
pi

)
2
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Thus, for a = 1 mod 4, we have σa(i) = i, and

σa(
√
pi) =

(
a

pi

)
2

· √pi

Since (Z/pi)× is cyclic, there are non-squares modulo pi. In particular, let b be a non-square mod p1. if we
have a such that 

a = 1 mod 4
a = b mod p1

a = 1 mod p2
...

a = 1 mod pN

then σa fixes
√
p2, . . . ,

√
pN , so when restricted to K = Q(

√
p2, . . . ,

√
pN ) is trivial. But by design

σa(
√
p1) = −√p1, so this square root cannot lie in K. ///

20.4.24 Example: Let p1, . . . , pn be distinct prime numbers. Prove that

Q(
√
p1, . . . ,

√
pN ) = Q(

√
p1 + . . .+

√
pN )

Since the degree of a compositum KL of two field extensions K,L of a field k has degree at most [K : k]·[L : k]
over k,

[Q(
√
p1, . . . ,

√
pN ) : Q] ≤ 2N

since [Q(
√
pi) : Q] = 2, which itself follows from the irreducibility of x2− pi from Eisenstein’s criterion. The

previous example shows that the bound 2N is the actual degree, by multiplicativity of degrees in towers.

Again, a direct computation might succeed here, but might not be the most illuminating way to proceed.
Instead, we continue as in the previous solution. Let

α =
√
p1 + . . .+

√
pn

Without determining the minimal polynomial f of α over Q directly, we note that any automorphism τ of
Q(ζn) over Q can only send alf to other zeros of f , since

f(τα) = τ(f(α)) = τ(0) = 0

where the first equality follows exactly because the coefficients of f are fixed by τ . Thus, if we show that α
has at least 2N distinct images under automorphisms of Q(ζn) over Q, then the degree of f is at least 2N .
(It is at most 2N since α does lie in that field extension, which has degree 2N , from above.)

As in the previous exercise, for each index i among 1, . . . , N we can find ai such that

σai(
√
pj) =

{
+√pj for j 6= i
−√pj for j = i

Thus, among the images of α are
±√p1 ±

√
p2 ± . . .±

√
pN

with all 2N sign choices. These elements are all distinct, since any equality would imply, for some non-empty
subset {i1, . . . , i`} of {1, . . . , N}, a relation

√
pi1 + . . .+

√
pi` = 0

which is precluded by the previous problem (since no one of these square roots lies in the field generated by
the others). Thus, there are at least 2N images of α, so α is of degree at least over 2N , so is of degree exactly
that. By multiplicativity of degrees in towers, it must be that α generates all of Q(

√
p1, . . . ,

√
pN ). ///
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20.4.25 Example: Let α = xy2 + yz2 + zx2, β = x2y + y2z + z2x and let s1, s2, s3 be the elementary
symmetric polynomials in x, y, z. Describe the relation between the quadratic equation satisfied by α and β
over the field Q(s1, s2, s3) and the quantity

∆2 = (x− y)2(y − z)2(z − x)2

Letting the quadratic equation be ax2 + bx + c with a = 1, the usual b2 − 4ac will turn out to be this
∆2. (Thus, there is perhaps some inconsistency in whether these are discriminants or their squares.) The
interesting question is how to best be sure that this is so. As usual, in principle a direct computation would
work, but it is more interesting to give a less computational argument.

Let
δ = b2 − 4ac = (−α− β)2 − 4 · 1 · αβ = (α− β)2

The fact that this δ is the square of something is probably unexpected, unless one has anticipated what
happens in the sequel. Perhaps the least obvious point is that, if any two of x, y, z are identical, then α = β.
For example, if x = y, then

α = xy2 + yz2 + zx2 = x3 + xz2 + zx2

and
β = x2y + y2z + z2x = x3 + x2z + z2x = α

The symmetrical arguments show that x − y, x − z, and y − z all divide α − β, in the (UFD, by Gauss)
polynomial ring Q[x, y, z]. The UFD property implies that the product (x− y)(x− z)(y − z) divides α− β.
Since δ = (α − β)2, and since ∆ is the square of that product of three linear factors, up to a constant they
are equal.

To determine the constant, we need only look at a single monomial. For example, the x4y2 term in (α− β)2

can be determined with z = 0, in which case

(α− β)2 = (xy2 − x2y)2 = 1 · x4y2 + other

Similarly, in ∆2, the coefficient of x4y2 can be determined with z = 0, in which case

∆2 = (x− y)2(x)2(y)2 = x4y2 + other

That is, the coefficient is 1 in both cases, so, finally, we have δ = ∆2, as claimed. ///

20.4.26 Example: Let t be an integer. If the image of t in Z/p is a square for every prime p, is t
necessarily a square?

Yes, but we need not only Quadratic Reciprocity but also Dirichlet’s theorem on primes in arithmetic
progressions to see this. Dirichlet’s theorem, which has no intelligible purely algebraic proof, asserts that for
a positive integer N and integer a with gcd(a,N) = 1, there are infinitely many primes p with p = a mod N .

Factor t into prime powers t = εpm1
1 . . . pmnn where ε = ±1, the pi are primes, and the mi are positive

integers. Since t is not a square either ε = −1 or some exponent mi is odd.

If ε = −1, take q to be a prime different from all the pi and q = 3 mod 4. The latter condition assures
(from the cyclicness of (Z/q)×) that −1 is not a square mod q, and the first condition assures that t is not
0 modulo q. We will arrange further congruence conditions on q to guarantee that each pi is a (non-zero)
square modulo q. For each pi, if pi = 1 mod 4 let bi = 1, and if pi = 3 mod 4 let bi be a non-square mod pi.
Require of q that q = 7 mod 8 and q = bi mod pi for odd pi. (The case of pi = 2 is handled by q = 7 mod 8,
which assures that 2 is a square mod q, by Quadratic Reciprocity.) Sun-Ze’s theorem assures us that these
conditions can be met simultaneously, by integer q. Then by the main part of Quadratic Reciprocity, for
pi > 2, (

pi
q

)
2

= (−1)(pi−1)(q−1) ·
(
q

pi

)
2
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=

 (−1) ·
(
q
pi

)
2

(for pi = 3 mod 4)

(+1) ·
(
q
pi

)
2

(for pi = 1 mod 4)

 = 1 (in either case)

That is, all the pi are squares modulo q, but ε = −1 is not, so t is a non-square modulo q, since Dirichlet’s
theorem promises that there are infinitely many (hence, at least one) primes q meeting these congruence
conditions.

For ε = +1, there must be some odd mi, say m1. We want to devise congruence conditions on primes q
such that all pi with i ≥ 2 are squares modulo q but p1 is not a square mod q. Since we do not need to
make q = 3 mod 4 (as was needed in the previous case), we can take q = 1 mod 4, and thus have somewhat
simpler conditions. If p1 = 2, require that q = 5 mod 8, while if p1 > 2 then fix a non-square b mod p1 and
let q = b mod p1. For i ≥ 2 take q = 1 mod pi for odd pi, and q = 5 mod 8 for pi = 2. Again, Sun-Ze assures
us that these congruence conditions are equivalent to a single one, and Dirichlet’s theorem assures that there
are primes which meet the condition. Again, Quadratic Reciprocity gives, for pi > 2,(

pi
q

)
2

= (−1)(pi−1)(q−1) ·
(
q

pi

)
2

=
(
q

pi

)
2

=
{
−1 (for i = 1)
+1 (for i ≥ 2)

The case of pi = 2 was dealt with separately. Thus, the product t is the product of a single non-square mod
q and a bunch of squares modulo q, so is a non-square mod q.

20.4.27 Remark: And in addition to everything else, it is worth noting that for the 4 choices of odd q
modulo 8, we achieve all 4 of the different effects(

−1
q

)
2

= ±1
(

2
q

)
2

= ±1

20.4.28 Example: Find the irreducible factors of x5 − 4 in Q[x]. In Q(ζ)[x] with a primitive fifth root
of unity ζ.

First, by Eisenstein’s criterion, x5−2 is irreducible over Q, so the fifth root of 2 generates a quintic extension
of Q. Certainly a fifth root of 4 lies in such an extension, so must be either rational or generate the quintic
extension, by multiplicativity of field extension degrees in towers. Since 4 = 22 is not a fifth power in Q, the
fifth root of 4 generates a quintic extension, and its minimal polynomial over Q is necessarily quintic. The
given polynomial is at worst a multiple of the minimal one, and has the right degree, so is it. That is, x5− 4
is irreducible in Q[x]. (Comment: I had overlooked this trick when I thought the problem up, thinking,
instead, that one would be forced to think more in the style of the Kummer ideas indicated below.)

Yes, it is true that irreducibility over the larger field would imply irreducibility over the smaller, but it might
be difficult to see directly that 4 is not a fifth power in Q(ζ). For example, we do not know anything about
the behavior of the ring Z[ζ], such as whether it is a UFD or not, so we cannot readily attempt to invoke
Eisenstein. Thus, our first method to prove irreducibility over Q(ζ) uses the irreducibility over Q.

Instead, observe that the field extension obtained by adjoining ζ is quartic over Q, while that obtained by
adjoining a fifth root β of 4 is quintic. Any field K containing both would have degree divisible by both
degrees (by multiplicativity of field extension degrees in towers), and at most the product, so in this case
exactly 20. As a consequence, β has quintic minimal polynomial over Q(ζ), since [K : Q(ζ)] = 5 (again
by multiplicativity of degrees in towers). That is, the given quintic must be that minimal polynomial, so is
irreducible. ///

Another approach to prove irreducibility of x5−4 in Q[x] is to prove that it is irreducible modulo some prime
p. To have some elements of Z/p not be 5th powers we need p = 1 mod 5 (by the cyclicness of (Z/p)×),
and the smallest candidate is p = 11. First, 4 is not a fifth power in Z/11, since the only fifth powers are
±1 (again using the cyclicness to make this observation easy). In fact, 25 = 32 = −1 mod 11, so we can
infer that 2 is a generator for the order 11 cyclic group (Z/11)×. Then if 4 = α5 for some α ∈ F112 , also
α112−1 = 1 and 45 = 1 mod 11 yield

1 = α112−1 = (α5)24 = 424 = 44 = 52 = 2 mod 11
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which is false. Thus, x5−4 can have no linear or quadratic factor inQ[x], so is irreducible inQ[x]. (Comment:
And I had overlooked this trick, too, when I thought the problem up.)

Yet another approach, which illustrates more what happens in Kummer theory, is to grant ourselves just
that a is not a 5th power in Q(ζ), and prove irreducibility of x5 − a. That a is not a 5th power in Q(ζ) can
be proven without understanding much about the ring Z[ζ] (if we are slightly lucky) by taking norms from
Q(ζ) to Q, in the sense of writing

N(β) =
∏

τ∈Aut(Q(ζ)/Q)

τ(β)

In fact, we know that Aut(Q(ζ)/Q) ≈ (Z/5)×, generated (for example) by σ2(ζ) = ζ2. We compute directly
that N takes values in Q: for lightness of notation let τ = σ2, and then

τ(Nβ) = τ
(
β · τβ · τ2β · τ3β

)
= τβ · τ2β · τ3β · τ4β

= β · τβ · τ2β · τ3β = N(β)

since τ4 = 1, by rearranging. Since we are inside a cyclotomic field, we already know the (proto-Galois
theory) fact that invariance under all automorphisms means the thing lies inside Q, as claimed. And since
τ is an automorphism, the norm N is multiplicative (as usual). Thus, if β = γ5 is a fifth power, then

N(β) = N(γ5) = N(γ)5

is a fifth power of a rational number. The norm of β = 4 is easy to compute, namely

N(4) = 4 · 4 · 4 · 4 = 28

which is not a fifth power in Q (by unique factorization). So, without knowing much about the ring Z[ζ],
we do know that 4 does not become a fifth power there.

Let α be a fifth root of 4. Then, in fact, the complete list of fifth roots of 4 is α, ζα, ζ2α, ζ3α, ζ4α. If x5 − 4
factored properly in Q(ζ)[x], then it would have a linear or quadratic factor. There can be no linear factor,
because (as we just showed) there is no fifth root of 4 in Q(ζ). If there were a proper quadratic factor it
would have to be of the form (with i 6= j mod 5)

(x− ζiα)(x− ζjα) = x2 − (ζi + ζj)αx+ ζi+jα2

Since α 6∈ Q(ζ), this would require that ζi + ζj = 0, or ζi−j = −1, which does not happen. Thus, we have
irreducibility.

20.4.29 Remark: This last problem is a precursor to Kummer theory. As with cyclotomic extensions
of fields, extensions by nth roots have the simplicity that we have an explicit and simple form for all the
roots in terms of a given one. This is not typical.

Exercises

20.1 Prove that a prime p such that p = 3 mod 7 generates a prime ideal in Z[ζ] where ζ is a primitive
7th root of unity.

20.2 Let P (y) be an irreducible polynomial in k[x]. Let n be an integer not divisible by the characteristic
of the field k. Show that xn − P (y) is irreducible in k[x, y].

20.3 Let x be an indeterminate over a field k. Show that there is a field automorphism of k(x) sending x
to c · x for any non-zero element c of k.

20.4 Let x be an indeterminate over a field k of characteristic p, a prime. Show that there are only
finitely-many fields between k(x) and k(x1/p).

20.5 Let k be an algebraically closed field of characteristic 0. Find a polynomial condition on a ∈ k such
that z5 − z + a = 0 has distinct roots.
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21. Primes in arithmetic progressions

21.1 Euler’s theorem and the zeta function
21.2 Dirichlet’s theorem
21.3 Dual groups of abelian groups
21.4 Non-vanishing of on Re(s) = 1
21.5 Analytic continuations
21.6 Dirichlet series with positive coefficients

Dirichlet’s theorem is a strengthening of Euclid’s theorem that there are infinitely many primes p. Dirichlet’s
theorem allows us to add the condition that p = a mod N for fixed a invertible modulo fixed N , and still be
assured that there are infinitely-many primes meeting this condition.

The most intelligible proof of this result uses a bit of analysis, in addition to some interesting algebraic ideas.
The analytic idea already arose with Euler’s proof of the infinitude of primes, which we give below. New
algebraic ideas due to Dirichlet allowed him to isolate primes in different congruence classes modulo N .

In particular, this issue is an opportunity to introduce the dual group, or group of characters, of a finite
abelian group. This idea was one impetus to the development of a more abstract notion of group, and also
of group representations studied by Schur and Frobenious.

21.1 Euler’s theorem and the zeta function
To illustrate how to use special functions of the form

Z(s) =
∞∑
n=1

an
ns

called Dirichlet series to prove things about primes, we first give Euler’s proof of the infinitude of primes.
[274]

[274] Again, the 2000 year old elementary proof of the infinitude of primes, ascribed to Euclid perhaps because his

texts survived, proceeds as follows. Suppose there were only finitely many primes altogether, p1, . . . , pn. Then

N = 1 + p1 . . . pn cannot be divisible by any pi in the list, yet has some prime divisor, contradiction. This viewpoint

does not give much indication about how to make the argument more quantitative. Use of ζ(s) seems to be the way.
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The simplest Dirichlet series is the Euler-Riemann zeta function [275]

ζ(s) =
∞∑
n=1

1
ns

This converges absolutely and (uniformly in compacta) for real s > 1. For real s > 1

1
s− 1

=
∫ ∞

1

dx

xs
= 1 +

1
s− 1

≤ ζ(s) ≤ 1 +
∫ ∞

1

dx

xs
= 1 +

1
s− 1

This proves that
lim

s−→1+
ζ(s) = +∞

The relevance of this to a study of primes is the Euler product expansion [276]

ζ(s) =
∞∑
n=1

1
ns

=
∏

p prime

1
1− 1

ps

To prove that this holds, observe that

∞∑
n=1

1
ns

=
∏

p prime

(
1 +

1
ps

+
1
p2s

+
1
p3s

+ . . .

)

by unique factorization into primes. [277] Summing the indicated geometric series gives

ζ(s) =
∏

p prime

1
1− 1

ps

Since sums are more intuitive than products, take a logarithm

log ζ(s) =
∑
p

− log(1− 1
ps

) =
∑
p

(
1
ps

+
1

2p2s
+

1
3p3s

+ . . .

)

by the usual expansion (for |x| < 1)

− log(1− x) = x+
x2

2
+
x3

3
+ . . .

Taking a derivative in s gives

−ζ
′(s)
ζ(s)

=
∑

p prime, m≥1

log p
pms

Note that, for each fixed p > 1, ∑
m≥1

log p
pms

=
(log p) p−s

1− p−s

converges absolutely for real s > 0.

[275] Studied by many other people before and since.

[276] Valid only for s > 1.

[277] Manipulation of this infinite product of infinite sums is not completely trivial to justify.
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Euler’s argument for the infinitude of primes is that, if there were only finitely-many primes, then the
right-hand side of

−ζ
′(s)
ζ(s)

=
∑

p prime,m≥1

log p
pms

would converge for real s > 0. However, we saw that ζ(s) −→ +∞ as s approaches 1 from the right. Thus,
log ζ(s) −→ +∞, and d

ds (log ζ(s)) = ζ ′(s)/ζ(s) −→ −∞ as s −→ 1+. This contradicts the convergence of
the sum over (supposedly finitely-many) primes. Thus, there must be infinitely many primes. ///

21.2 Dirichlet’s theorem
In addition to Euler’s observation (above) that the analytic behavior [278] of ζ(s) at s = 1 implied the
existence of infinitely-many primes, Dirichlet found an algebraic device to focus attention on single congruence
classes modulo N .

21.2.1 Theorem: (Dirichlet) Fix an integer N > 1 and an integer a such that gcd(a,N) = 1. Then
there are infinitely many primes p with

p = a mod N

21.2.2 Remark: If gcd(a,N) > 1, then there is at most one prime p meeting the condition p = a mod n,
since any such p would be divisible by the gcd. Thus, the necessity of the gcd condition is obvious. It is
noteworthy that beyond this obvious condition there is nothing further needed.

21.2.3 Remark: For a = 1, there is a simple purely algebraic argument using cyclotomic polynomials.
For general a the most intelligible argument involves a little analysis.

Proof: A Dirichlet character modulo N is a group homomorphism

χ : (Z/N)× −→ C×

extended by 0 to all of Z/n, that is, by defining χ(a) = 0 if a is not invertible modulo N . This extension-
by-zero then allows us to compose χ with the reduction-mod-N map Z −→ Z/N and also consider χ as a
function on Z. Even when extended by 0 the function χ is still multiplicative in the sense that

χ(mn) = χ(m) · χ(n)

where or not one of the values is 0. The trivial character χo modulo N is the character which takes only
the value 1 (and 0).

The standard cancellation trick is that

∑
a mod N

χ(a) =
{
ϕ(N) (for χ = χo)

0 (otherwise)

where ϕ is Euler’s totient function. The proof of this is easy, by changing variables, as follows. For χ = χo,
all the values for a invertible mod N are 1, and the others are 0, yielding the indicated sum. For χ 6= χo,

[278] Euler’s proof uses only very crude properties of ζ(s), and only of ζ(s) as a function of a real, rather than complex,

variable. Given the status of complex number and complex analysis in Euler’s time, this is not surprising. It is

slightly more surprising that Dirichlet’s original argument also was a real-variable argument, since by that time, a

hundred years later, complex analysis was well-established. Still, until Riemann’s memoir of 1858 there was little

reason to believe that the behavior of ζ(s) off the real line was of any interest.
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there is an invertible b mod N such that χ(b) 6= 1 (and is not 0, either, since b is invertible). Then the map
a −→ a · b is a bijection of Z/N to itself, so∑

a mod N

χ(a) =
∑

a mod N

χ(a · b) =
∑

a mod N

χ(a) · χ(b) = χ(b) ·
∑

a mod N

χ(a)

That is,
(1− χ(b)) ·

∑
a mod N

χ(a) = 0

Since χ(b) 6= 1, it must be that 1− χ(b) 6= 0, so the sum is 0, as claimed.

Dirichlet’s dual trick is to sum over characters χ mod N evaluated at fixed a in (Z/N)×. We claim that

∑
χ

χ(a) =
{
ϕ(N) (for a = 1 mod N)

0 (otherwise)

We will prove this in the next section.

Granting that, we have also, for b invertible modulo N ,

∑
χ

χ(a)χ(b)−1 =
∑
χ

χ(ab−1) =
{
ϕ(N) (for a = b mod N)

0 (otherwise)

Given a Dirichlet character χ modulo N , the corresponding Dirichlet L-function is

L(s, χ) =
∑
n≥1

χ(n)
ns

Since we have the multiplicative property χ(mn) = χ(m)χ(n), each such L-function has an Euler product
expansion

L(s, χ) =
∏

p prime, p 6 |N

1
1− χ(p) p−s

This follows as it did for ζ(s), by

L(s, χ) =
∑

n with gcd(n,N)=1

χ(n)
ns

=
∏

p prime, p 6 |N

(
1 + χ(p)p−s + χ(p)2 p−2s + . . .

)
=

∏
p prime, p 6 |N

1
1− χ(p) p−s

by summing geometric series. Taking a logarithmic derivative (as with zeta) gives

−L
′(s, χ)
L(s, χ)

=
∑

p 6 |N prime,m≥1

log p
χ(p)m pms

=
∑

p6 |N prime

log p
χ(p) ps

+
∑

p 6 |N prime,m≥2

log p
χ(p)m pms

The second sum on the right will turn out to be subordinate to the first, so we aim our attention at the first
sum, where m = 1.

To pick out the primes p with p = a mod N , use the sum-over-χ trick to obtain

∑
χ mod N

χ(a) · log p
χ(p) ps

=

ϕ(N) · (log p) p−s (for p = a mod N)

0 (otherwise)
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Thus,

−
∑

χ mod N

χ(a)
L′(s, χ)
L(s, χ)

=
∑

χ mod N

χ(a)
∑

p 6 |N prime,m≥1

log p
χ(p)m pms

=
∑

p=a mod N

ϕ(N) log p
ps

+
∑

χ mod N

χ(a)
∑

p 6 |N prime,m≥2

log p
χ(p)m pms

We do not care about whether cancellation does or does not occur in the second sum. All that we care is
that it is absolutely convergent for Re(s) > 1

2 . To see this we do not need any subtle information about
primes, but, rather, dominate the sum over primes by the corresponding sum over integers ≥ 2. Namely,∣∣∣∣∣∣

∑
p 6 |N prime,m≥2

log p
χ(p)m pms

∣∣∣∣∣∣ ≤
∑

n≥2,m≥2

log n
nmσ

=
∑
n≥2

(log n)/n2σ

1− n−σ
≤ 1

1− 2−σ
∑
n≥2

log n
n2σ

where σ = Re(s). This converges for Re(s) > 1
2 .

That is, for s −→ 1+,

−
∑

χ mod N

χ(a)
L′(s, χ)
L(s, χ)

= ϕ(N)
∑

p=a mod N

log p
ps

+ (something continuous at s = 1)

We have isolated primes p = a mod N . Thus, as Dirichlet saw, to prove the infinitude of primes p = a mod N
it would suffice to show that the left-hand side of the last inequality blows up at s = 1. In particular, for
the trivial character χo mod N , with values

χ(b) ==
{

1 (for gcd(b,N) = 1)
0 (for gcd(b,N) > 1)

the associated L-function is barely different from the zeta function, namely

L(s, χo) = ζ(s) ·
∏
p|N

(
1− 1

ps

)

Since none of those finitely-many factors for primes dividing N is 0 at s = 1, L(s, χo) still blows up at s = 1.

By contrast, we will show below that for non-trivial character χ mod N , lims−→1+ L(s, χ) is finite, and

lim
s−→1+

L(s, χ) 6= 0

Thus, for non-trivial character, the logarithmic derivative is finite and non-zero at s = 1. Putting this all
together, we will have

lim
s−→1+

−
∑

χ mod N

χ(a)
L′(s, χ)
L(s, χ)

= +∞

Then necessarily

lim
s−→1+

ϕ(N)
∑

p=a mod N

log p
ps

= +∞

and there must be infinitely many primes p = a mod N . ///

21.2.4 Remark: The non-vanishing of the non-trivial L-functions at 1, which we prove a bit further
below, is a crucial technical point.
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21.3 Dual groups of abelian groups
Before worrying about the non-vanishing of L-functions at s = 1 for non-trivial characters χ, we explain
Dirichlet’s innovation, the use of group characters to isolate primes in a specified congruence class modulo
N .

These ideas were the predecessors of the group theory work of Frobenious and Schur 50 years later, and one
of the ancestors of representation theory of groups.

The dual group or group of characters Ĝ of a finite abelian group G is by definition

Ĝ = {group homomorphisms χ : G −→ C×}

This Ĝ is itself an abelian group under the operation on characters defined for g ∈ G by

(χ1 · χ2)(g) = χ1(g) · χ2(g)

21.3.1 Proposition: Let G be a cyclic group of order n with specified generator g1. Then Ĝ is
isomorphic to the group of complex nth roots of unity, by

(g1 −→ ζ)←− ζ

That is, an nth root of unity ζ gives the character χ such that

χ(g`1) = ζ`

In particular, Ĝ is cyclic of order n.

Proof: First, the value of a character χ on g1 determines all values of χ, since g1 is a generator for G. And
since gn1 = e,

χ(g1)n = χ(gn1 ) = χ(e) = 1

it follows that the only possible values of χ(g1) are nth roots of unity. At the same time, for an nth root of
unity ζ the formula

χ(g`1) = ζ`

does give a well-defined function on G, since the ambiguity on the right-hand side is by changing ` by
multiples of n, but g`1 does only depend upon ` mod n. Since the formula gives a well-defined function, it
gives a homomorphism, hence, a character. ///

21.3.2 Proposition: Let G = A⊕ B be a direct sum of finite abelian groups. Then there is a natural
isomorphism of the dual groups

Ĝ ≈ Â⊕ B̂

by
((a⊕ b) −→ χ1(a) · χ2(b)) ←− χ1 ⊕ χ2

Proof: The indicated map is certainly an injective homomorphism of abelian groups. To prove surjectivity,
let χ be an arbitrary element of Ĝ. Then for a ∈ A and b ∈ B

χ1(a) = χ(a⊕ 0) χ2(a) = χ(0⊕ b)

gives a pair of characters χ1 and χ2 in Â and B̂. Unsurprisingly, χ1 ⊕ χ2 maps to the given χ, proving
surjectivity. ///
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21.3.3 Corollary: Invoking the Structure Theorem for finite abelian groups, write a finite abelian group
G as

G ≈ Z/d1 ⊕ . . .Z/dt
for some elementary divisors di. [279] Then

Ĝ ≈ Ẑ/d1 ⊕ . . . Ẑ/dt ≈ Z/d1 ⊕ . . .Z/dt ≈ G

In particular,
|Ĝ| = |G|

Proof: The leftmost of the three isomorphisms is the assertion of the previous proposition. The middle
isomorphism is the sum of isomorphisms of the form (for d 6= 0 and integer)

Ẑ/d ≈ Z/d

proven just above in the guise of cyclic groups. ///

21.3.4 Proposition: Let G be a finite abelian group. For g 6= e in G, there is a character χ ∈ Ĝ such
that χ(g) 6= 1. [280]

Proof: Again expressing G as a sum of cyclic groups

G ≈ Z/d1 ⊕ . . .Z/dt

given g 6= e in G, there is some index i such that the projection gi of g to the ith summand Z/di is non-zero.
If we can find a character on Z/di which gives value 6= 1 on gi, then we are done. And, indeed, sending a
generator of Z/di to a primitive dthi root of unity sends every non-zero element of Z/di to a complex number
other than 1. ///

21.3.5 Corollary: (Dual version of cancellation trick) For g in a finite abelian group,∑
χ∈ bG

χ(g) =
{
|G| (for g = e)
0 (otherwise)

Proof: If g = e, then the sum counts the characters in Ĝ. From just above,

|Ĝ| = |G|

On the other hand, given g 6= e in G, by the previous proposition let χ1 be in Ĝ such that χ1(g) 6= 1. The
map on Ĝ

χ −→ χ1 · χ

is a bijection of Ĝ to itself, so ∑
χ∈ bG

χ(g) =
∑
χ∈ bG

(χ · χ1)(g) = χ1(g) ·
∑
χ∈ bG

χ(g)

which gives
(1− χ1(g)) ·

∑
χ∈ bG

χ(g) = 0

Since 1− χ1(g) 6= 0, it must be that the sum is 0. ///

[279] We do not need to know that d1| . . . |dt for present purposes.

[280] This idea that characters can distinguish group elements from each other is just the tip of an iceberg.
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21.4 Non-vanishing on Re(s) = 1
Dirichlet’s argument for the infinitude of primes p = a mod N (for gcd(a,N) = 1) requires that L(1, χ) 6= 0
for all χ mod N . We prove this now, granting that these functions have meromorphic extensions to some
neighborhood of s = 1. We also need to know that for the trivial character χo mod N the L-function L(s, χo)
has a simple pole at s = 1. These analytical facts are proven in the next section.

21.4.1 Theorem: For a Dirichlet character χ mod N other than the trivial character χo mod N ,

L(1, χ) 6= 0

Proof: To prove that the L-functions L(s, χ) do not vanish at s = 1, and in fact do not vanish on the whole
line [281] Re(s) = 1, any direct argument involves a trick similar to what we do here. [282]

For χ whose square is not the trivial character χo modulo N , the standard trick is to consider

λ(s) = L(s, χo)3 · L(s, χ)4 · L(s, χ2)

Then, letting σ = Re(s), from the Euler product expressions for the L-functions noted earlier, in the region
of convergence,

|λ(s)| = | exp

(∑
m,p

3 + 4χ(pm) + χ2(pm)
mpms

)
| = exp

∣∣∣∣∣∑
m,p

3 + 4 cos θm,p + cos 2θm,p
mpmσ

∣∣∣∣∣
where for each m and p we let

θm,p = (the argument of χ(pm)) ∈ R

The trick [283] is that for any real θ

3 + 4 cos θ + cos 2θ = 3 + 4 cos θ + 2 cos2 θ − 1 = 2 + 4 cos θ + 2 cos2 θ = 2(1 + cos θ)2 ≥ 0

Therefore, all the terms inside the large sum being exponentiated are non-negative, and, [284]

|λ(s)| ≥ e0 = 1

In particular, if L(1, χ) = 0 were to be 0, then, since L(s, χo) has a simple pole at s = 1 and since L(s, χ2)
does not have a pole (since χ2 6= χo), the multiplicity ≥ 4 of the 0 in the product of L-functions would
overwhelm the three-fold pole, and λ(1) = 0. This would contradict the inequality just obtained.

For χ2 = χo, instead consider

λ(s) = L(s, χ) · L(s, χo) = exp

(∑
p,m

1 + χ(pm)
mpms

)

[281] Non-vanishing of ζ(s) on the whole line Re(s) = 1 yields the Prime Number Theorem: let π(x) be the number

of primes less than x. Then π(x) ∼ x/ lnx, meaning that the limit of the ratio of the two sides as x −→ ∞ is 1.

This was first proven in 1896, separately, by Hadamard and de la Vallée Poussin. The same sort of argument

also gives an analogous asymptotic statement about primes in each congruence class modulo N , namely that

πa,N (x) ∼ x/[ϕ(N) · lnx], where gcd(a,N) = 1 and ϕ is Euler’s totient function.

[282] A more natural (and dignified) but considerably more demanding argument for non-vanishing would entail

following the Maaß-Selberg discussion of the spectral decomposition of SL(2,Z)\SL(2,R).

[283] Presumably found after considerable fooling around.

[284] Miraculously...
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If L(1, χ) = 0, then this would cancel the simple pole of L(s, χo) at 1, giving a non-zero finite value at s = 1.
The series inside the exponentiation is a Dirichlet series with non-negative coefficients, and for real s∑

p,m

1 + χ(pm)
mpms

≥
∑

p,m even

1 + 1
mpms

=
∑
p,m

1 + 1
2mp2ms

=
∑
p,m

1
mp2ms

= log ζ(2s)

Since ζ(2s) has a simple pole at s = 1
2 the series

log (L(s, χ) · L(s, χo)) =
∑
p,m

1 + χ(pm)
mpms

≥ log ζ(2s)

necessarily blows up as s −→ 1
2

+. But by Landau’s Lemma (in the next section), a Dirichlet series with
non-negative coefficients cannot blow up as s −→ so along the real line unless the function represented by
the series fails to be holomorphic at so. Since the function given by λ(s) is holomorphic at s = 1/2, this
gives a contradiction to the supposition that λ(s) is holomorphic at s = 1 (which had allowed this discussion
at s = 1/2). That is, L(1, χ) 6= 0. ///

21.5 Analytic continuations
Dirichlet’s original argument did not emphasize holomorphic functions, but by now we know that discussion
of vanishing and blowing-up of functions is most clearly and simply accomplished if the functions are
meromorphic when viewed as functions of a complex variable.

For the purposes of Dirichlet’s theorem, it suffices to meromorphically continue [285] the L-functions to
Re(s) > 0. [286]

21.5.1 Theorem: The Dirichlet L-functions

L(s, χ) =
∑
n

χ(n)
ns

=
∏
p

1
1− χ(p) p−s

have meromorphic continuations to Re(s) > 0. For χ non-trivial, L(s, χ) is holomorphic on that half-plane.
For χ trivial, L(s, χo) has a simple pole at s = 1 and is holomorphic otherwise.

Proof: First, to treat the trivial character χo mod N , recall, as already observed, that the corresponding
L-function differs in an elementary way from ζ(s), namely

L(s, χo) = ζ(s) ·
∏
p|N

(
1− 1

ps

)
Thus, we analytically continue ζ(s) instead of L(s, χo). To analytically continue ζ(s) to Re(s) > 0 observe
that the sum for ζ(s) is fairly well approximated by a more elementary function

ζ(s)− 1
s− 1

=
∞∑
n=1

1
ns
−
∫ ∞

1

dx

xs
=
∞∑
n=1

 1
ns
−

(
1

ns−1 − 1
(n+1)s−1

)
1− s


[285] An extension of a holomorphic function to a larger region, on which it may have some poles, is called a

meromorphic continuation. There is no general methodology for proving that functions have meromorphic

continuations, due in part to the fact that, generically, functions do not have continuations beyond some natural region

where they’re defined by a convergent series or integral. Indeed, to be able to prove a meromorphic continuation

result for a given function is tantamount to proving that it has some deeper significance.

[286] Already prior to Riemann’s 1858 paper, it was known that the Euler-Riemann zeta function and all the L-

functions we need here did indeed have meromorphic continuations to the whole complex plane, have no poles unless

the character χ is trivial, and have functional equations similar to that of zeta, namely that π−s/2Γ(s/2)ζ(s) is

invariant under s −→ 1− s.
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Since (
1

ns−1 − 1
(n+1)s−1

)
1− s

=
1
ns

+O(
1

ns+1
)

with a uniform O-term, we obtain

ζ(s)− 1
s− 1

=
∑
n

O(
1

ns+1
) = holomorphic for Re(s) > 0

The obvious analytic continuation of 1/(s− 1) allows analytic continuation of ζ(s).

A relatively elementary analytic continuation argument for non-trivial characters uses partial summation.
That is, let {an} and {bn} be sequences of complex numbers such that the partial sums An =

∑n
i=1 ai are

bounded, and bn −→ 0. Then it is useful to rearrange (taking A0 = 0 for notational convenience)

∞∑
n=1

anbn =
∞∑
n=1

(An −An−1)bn =
∞∑
n=0

Anbn −
∞∑
n=0

Anbn+1 =
∞∑
n=0

An(bn − bn+1)

Taking an = χ(n) and bn = 1/ns gives

L(s, χ) =
∞∑
n=0

(
n∑
i=1

χ(n)

)
(

1
ns
− 1

(n+ 1)s
)

The difference 1/ns − 1/(n+ 1)s is s/ns+1 up to higher-order terms, so this expression gives a holomorphic
function for Re(s) > 0. ///

21.6 Dirichlet series with positive coefficients
Now we prove Landau’s result on Dirichlet series with positive coefficients. (More precisely, the coefficients
are non-negative.)

21.6.1 Theorem: (Landau) Let

f(s) =
∞∑
n=1

an
ns

be a Dirichlet series with real coefficients an ≥ 0. Suppose that the series defining f(s) converges for
Re(s) ≥ σo. Suppose further that the function f extends to a function holomorphic in a neighborhood of
s = σo. Then, in fact, the series defining f(s) converges for Re(s) > σo − ε for some ε > 0.

Proof: First, by replacing s by s − σo we lighten the notation by reducing to the case that σo = 0. Since
the function f(s) given by the series is holomorphic on Re(s) > 0 and on a neighborhood of 0, there is ε > 0
such that f(s) is holomorphic on |s− 1| < 1 + 2ε, and the power series for the function converges nicely on
this open disk. Differentiating the original series termwise, we evaluate the derivatives of f(s) at s = 1 as

f (i)(1) =
∑
n

(− log n)i an
n

= (−1)i
∑
n

(log n)i an
n

and Cauchy’s formulas yield, for |s− 1| < 1 + 2ε,

f(s) =
∑
i≥0

f (i)(1)
i!

(s− 1)i
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In particular, for s = −ε, we are assured of the convergence to f(−ε) of

f(−ε) =
∑
i≥0

f (i)(1)
i!

(−ε− 1)i

Note that (−1)if (i)(1) is a positive Dirichlet series, so we move the powers of −1 a little to obtain

f(−ε) =
∑
i≥0

(−1)if (i)(1)
i!

(ε+ 1)i

The series
(−1)if (i)(1) =

∑
n

(log n)i
an
n

has positive terms, so the double series (convergent, with positive terms)

f(−ε) =
∑
n,i

an (log n)i

i!
(1 + ε)i

1
n

can be rearranged to

f(−ε) =
∑
n

an
n

(∑
i

(log n)i(1 + ε)i

i!

)
=
∑
n

an
n
n(1+ε) =

∑
n

an
n−ε

That is, the latter series converges (absolutely). ///
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22. Galois theory

22.1 Field extensions, imbeddings, automorphisms
22.2 Separable field extensions
22.3 Primitive elements
22.4 Normal field extensions
22.5 The main theorem
22.6 Conjugates, trace, norm
22.7 Basic examples
22.8 Worked examples

The main result here is that inside nice [287] finite-degree field extensions L of k, the intermediate fields K
are in (inclusion-reversing) bijection with subgroups H of the Galois group

G = Gal(L/k) = Aut(L/k)

of automorphisms of L over k, by

subgroup H ↔ subfield K fixed by H

This is depicted as

G


L
|
K

H

|
k

For K the fixed field of subgroup H there is the equality

[L : K] = |H|

Further, if H is a normal subgroup of G, then

Gal(K/k) ≈ G/H

[287] Namely Galois field extensions, which are by definition both separable and normal, defined momentarily.
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In the course of proving these things we also elaborate upon the situations in which these ideas apply.

Galois’ original motivation for this study was solution of equations in radicals (roots), but by now that
classical problem is of much less importance than the general structure revealed by these results.

Also, notice that much of our earlier discussion of finite fields, cyclotomic polynomials, and roots of unity
amounted to explicit examples of the statements here. In fact, there are few computationally accessible
examples beyond those we have already discussed.

This whole discussion is more technical than the previous examples, but this is not surprising, considering
the scope.

22.1 Field extensions, imbeddings, automorphisms
A more flexible viewpoint on field extensions, imbeddings, and automorphisms will be useful in what follows.
Some of this is review.

A field extension K of a given field k is a field which is a k-algebra. That is, in addition to being a field,
K is a k-module, and with the commutativity property

ξ(α · η) = α · (ξ η) (for α ∈ k and ξ, η ∈ K)

and with the unital property
1k · ξ = ξ (for all ξ ∈ K)

Note that the unital-ness promises that the map

α −→ α · 1K

gives an isomorphism of k to a subfield of K. Thus, when convenient, we may identify k with a subfield
of K. However, it would be inconvenient if we did not have the flexibility to treat field extensions of k as
k-algebras in this sense.

A field K is algebraically closed if, for every polynomial f(x) ∈ K[x] of positive degree n, the equation
f(x) = 0 has n roots in K.

An algebraic closure k of a field k is an algebraically closed field extension k of k such that every element of
k is algebraic over k. We proved that algebraic closures exist, and are essentially unique, in the sense that,
for two algebraic closures K1 and K2 of k, there is a field isomorphism σ : K1 −→ K2 which is the identity
map on k.

It is immediate from the definition that an algebraic closure k of a field k is an algebraic closure of any
intermediate field k ⊂ K ⊂ k.

As a matter of traditional terminology, when K and L are field extensions of k and ϕ : K −→ L is a k-algebra
map, we may also say that ϕ : K −→ L is a field map over k.

Next, for an irreducible f(x) ∈ k[x], and for β a root of f(x) = 0 in a field extension K of k, there is a
k-algebra map k(α) −→ K such that σα = β. To prove this, first note that, by the universal property of
k[x], there is a unique k-algebra homomorphism k[x] −→ k sending x to β. The kernel is the ideal generated
by the minimal polynomial of β, which is f(x). That is, this map factors through k[x]/f , which isomorphic
to k(α).

In particular, an algebraic extension k(α) of k can be imbedded by a k-algebra map into an algebraic
closure k of k in at least one way. In fact, for each root β of f(x) = 0 in k, there is a k-algebra
homomorphism k(α) −→ k sending α to β. Conversely, any β in k which is the image σα of α under a
k-algebra homomorphism σ must be a root of f(x) = 0: compute

f(β) = f(σα) = σ
(
f(α)

)
= σ(0) = 0
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As a corollary of this last discussion, we see that any k-algebra automorphism of k(α) must send α to another
root of its minimal polynomial over k, of which there are at most

deg f = [k(α) : k]

An induction based on the previous observations will show that any finite (hence, algebraic) field extension
K of k admits at least one k-algebra homomorphism σ : K −→ k to a given algebraic closure k of k. [288]

This is proven as follows. Using the finiteness of K over k, there are finitely-many elements α1, . . . , αn in K
such that

K = k(α1, α2, . . . , αn) = k(α1)(α2) . . . (αn)

Then there is a k-algebra imbedding of k(α1) into k. Classically, one would say that we will identify k(α1)
with its image by this map. It is better to say that we give K a σ(k(α1))-algebra structure by

σ(β) · ξ = β · ξ (for β ∈ k(α1) and ξ ∈ K)

Since k is an algebraic closure of σk(α1), the same principle shows that there is a k(α1)-linear field
homomorphism of k(α1, α2) to k. Continuing inductively, we obtain a field homomorphism of K to k.

Then a similar argument proves that, given a finite extension L of a finite extension K of k, any k-algebra
imbedding of K into an algebraic closure k extends to an imbedding of L into k. To see this, let σ : K −→ k
be given. View the finite field extension L of K as a finite field extension of σK as indicated above. Since k
is also an algebraic closure of K, there is at least one K-algebra imbedding of L into k.

22.2 Separable field extensions
The notion of separability of a field extension has several useful equivalent formulations. We will rarely be
interested in non-separable field extensions. Happily, in characteristic 0, all extensions are separable (see
below). Also, even in positive characteristic, all finite extensions of finite fields are separable. That is, for
our purposes, non-separable field extensions are a pathology that we can avoid. Indeed, the results of this
section can be viewed as proving that we can avoid non-separable extensions by very mild precautions.

A finite (hence, algebraic) field extension K of k is separable if the number of (nonzero) field maps

σ : K −→ k

of K to an algebraic closure k of k is equal to the degree [K : k].

22.2.1 Proposition: Let k(α) be a field extension of k with α a zero of an irreducible monic polynomial
f in k[x]. Then k(α) is separable over k if and only if f has no repeated factors. [289]

Proof: As noted much earlier, the only possible images of α in k are zeros of the irreducible polynomial
f(x) of α over k, since

f(σα) = σ
(
f(α)

)
= σ(0) = 0

because σ is a field homomorphism fixing the field k, in which the coefficients of f lie. We have already seen
that

[k(α) : k] = deg f

regardless of separability. Thus, there are at most [k(α) : k] imbeddings of k(α) into k. If the roots are not
distinct, then there are strictly fewer than [k(α) : k] imbeddings into k.

[288] In fact, any algebraic extension K of k imbeds into an algebraic closure of k, but the proof requires some equivalent

of the Axiom of Choice, such as Well-Ordering, or Zorn’s Lemma.

[289] In many examples one easily tests for repeated factors by computing the gcd of f and its derivative.
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We recall the earlier argument that every root β of f(x) = 0 in k can be hit by some imbedding of k(α).
Because the polynomial ring k[x] is the free k-algebra on one generator, there is a homomorphism

σo : k[x] −→ k

sending x to β and the identity on k. The kernel is the ideal generated by the minimal polynomial of β over
k, which is f . Thus, this homomorphism factors through the quotient k(α) ≈ k[x]/f . ///

22.2.2 Example: The simplest example of a non-separable extension is Fp(t1/p) over Fp(t), where Fp
is the field with p elements and t is an indeterminate. The minimal polynomial for α = t1/p is

xp − t = (x− t1/p)p

It is reasonable to view this as an avoidable pathology.

Now we give an iterated version of the first proposition:

22.2.3 Proposition: A finite field extension k(α1, α2, . . . , αn) of k is separable if and only each
intermediate extension

k(α1, α2, . . . , αi) / k(α1, α2, . . . , αi−1)

is separable.

Proof: The notation means to consider the large field as obtained by repeatedly adjoining single elements:

k(α1, α2, . . . , αn) = k(α1)(α2) . . . (αn)

Let
[k(α1, . . . , αi) : k(α1, . . . , αi−1)] = di

Since degrees multiply in towers,
[K : k] = d1 ·2 · . . . · dn

An imbedding of K into an algebraic closure k of k can be given by first imbedding k(α1), then extending
this to an imbedding of k(α1, α2), and so on, noting that an algebraic closure of k is an algebraic closure of
any of these finite extensions. There are at most d1, d2, . . ., dn such imbeddings at the respective stages,
with equality achieved if and only if the intermediate extension is separable. ///

Now a version which de-emphasizes elements:

22.2.4 Proposition: If K is a finite separable extension of k and L is a finite separable extension of
K, then L is a finite separable extension of k.

Proof: By the finiteness, we can write
K = k(α1, . . . , αm)

By the separability assumption on K/k, by the previous proposition, each intermediate extension

k(α1, . . . , αi) / k(α1, . . . , αi−1)

is separable. Further, write
L = k(α1, . . . , αm, αn+1, . . . , αm+n)

The separability hypothesis on K/L and the previous proposition imply that all the further intermediate
extensions are separable. Then apply the previous proposition in the opposite order to see that L/k is
separable. ///

22.2.5 Proposition: If K and L are finite separable extensions of k inside a fixed algebraic closure k
of k, then their compositum KL (inside k) is a finite separable extension of k.
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Proof: By the previous proposition, it suffices to prove that the compositum KL is separable over K. Let
L = k(β1, . . . , βn). By the second proposition, the separability of L/k implies that all the intermediate
extensions

k(β1, . . . , βi) / k(β1, . . . , βi−1)

are separable. Thus, the minimal polynomial fi of βi over k(β1, . . . , βi−1) has no repeated factors. Since the
minimal polynomial of βi over K(β1, . . . , βi−1) is a factor of fi, it has no repeated factors. Going back in
the other direction again, this means that

K(β1, . . . , βi) / K(β1, . . . , βi−1)

is separable, for every i. Then L/K is separable. ///

22.3 Primitive elements
The following finiteness result is stronger than one might suspect, and gives further evidence that finite
separable extensions are well-behaved.

22.3.1 Proposition: Let K be a finite field extension of k. There is a single generator α such that
K = k(α) if and only if there are only finitely-many fields between k and K.

Proof: First, suppose that K = k(α). Let E be an intermediate field, and let g(x) ∈ E[x] be the minimal
polynomial of α over E. Adjoining the coefficients of g to k gives a field F between k and E. Since g is
irreducible in E[x], it is certainly irreducible in the smaller F [x]. Since K = k(α) = F (α), the degree of
K over E is equal to its degree over F . By the multiplicativity of degrees in towers, E = F . That is, E is
uniquely determined by the monic polynomial g. Since g divides f , and since there are only finitely-many
monic divisors of f , there are only finitely-many possible intermediate fields.

Conversely, assume that there are only finitely-many fields between k and K. For k finite, the intermediate
fields are k vector subspaces of the finite-dimensional k vector space K, so there are only finitely-many. Now
consider infinite k. It suffices to show that for any two algebraic elements α, β over k, there is a single γ
such that k(α, β) = k(γ). Indeed, let γ = α+ tβ with t ∈ k to be determined. Since there are finitely-many
intermediate fields and k is infinite, there are t1 6= t2 such that

k(α+ t1β) = k(α+ t2β)

Call this intermediate field E. Then

(t2 − t1)β = (α+ t1β)− (α+ t2β) ∈ E

We can divide by t1 − t2 ∈ k×, so β ∈ E, and then α ∈ E. Thus, the singly-generated E is equal to k(α, β).
The finite-dimensional extension K is certainly finitely generated, so an induction proves that K is singly
generated over k. ///

22.3.2 Remark: There can be infinitely-many fields between a base field and a finite extension, as the
example of the degree p2 extension Fp(s1/p, t1/p) of Fp(s, t) with independent indeterminates s, t showed
earlier.

In classical terminology, a single element α of K such that K = k(α) is called a primitive elements for K
over k.

22.3.3 Corollary: Let K be a finite separable extension of k. Then there are finitely-many fields
between K and k, and K can be generated by a single element over k.

Proof: The issue is to show that a separable extension with two generators can be generated by a single
element. Let E = k(α, β), with α, β separable over k. Let X be the set of distinct imbeddings of E into k
over k, and put

f(x) = Πσ 6=τ, in X(σα+ x · σβ − τα− xτβ)
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This f is not the 0 polynomial, so there is t ∈ k such that f(t) 6= 0. Then the σ(α+ tβ) are n distinct field
elements. Thus, k(α + tβ) has degree at least n over k. On the other hand, this n is the degree of k(α, β)
over k, so k(α, β) = k(α+ tβ). ///

22.4 Normal field extensions
In contrast to separability, the condition that a finite field extension K of k be normal is not typical. [290]

There are several different useful characterizations of the property.

A finite field extension K of k is normal if all k-algebra homomorphisms of K into a fixed algebraic closure
k of k have the same image.

22.4.1 Remark: Thus, in discussions of a normal extensions, it is not surprising that an algebraic
closure can serve a useful auxiliary role.

22.4.2 Example: To illustrate that normal extensions are arguably atypical, note that the field extension
Q( 3
√

2) of Q is not normal, since one imbedding into a copy of Q inside C sends the cube root to a real
number, while two others send it to complex (non-real) numbers.

22.4.3 Example: All cyclotomic extensions of Q are normal. Indeed, let ζ be a primitive nth root of
unity. We have already seen that every primitive nth root of unity is of the form ζk where k is relatively
prime to n. Since any mapping of Q(ζ) to an algebraic closure of Q sends ζ to a primitive nth root of unity,
the image is unavoidably the same.

22.4.4 Remark: Note that the key feature of roots of unity used in the last example was that by
adjoining one root of an equation to a base field we include all. This motivates:

22.4.5 Proposition: Let f(x) be the minimal polynomial of a generator α of a finite field extension
k(α) of k. The extension k(α)/k is normal if and only if every root β of f(x) = 0 lies in k(α), if and only if
f(x) factors into linear factors in k(α)[x].

Proof: The equivalence of the last two conditions is elementary. As we have seen several times by now, the
k-algebra imbeddings σ : k(α) −→ k are in bijection with the roots of f(x) = 0 in k, with each root getting
hit by a unique imbedding. If k(α)/k is normal, then k(σ(α)) = k(τ(α)) for any two roots σ(α) and τ(α) in
k. That is, any one of these images of k(α) contains every root of f(x) = 0 in k. Since k(α) ≈ k(σ(α)) for
any such imbedding σ, the same conclusion applies to k(α).

On the other hand, suppose that f(x) factors into linear factors in k(α)[x]. Then it certainly factors into
linear factors in k(σ(α))[x], for every σ : k(α) −→ k. That is, any k(σ(α)) contains all the roots of f(x) = 0
in k. That is,

k(σ(α)) = k(τ(α))

for any two such imbeddings, which is to say that the two images are the same. ///

22.4.6 Proposition: If L is a finite normal field extension of k, and k ⊂ K ⊂ L, then L is normal over
K.

Proof: An algebraic closure k of k is also an algebraic closure of any image σ(K) of K in k, since K is
algebraic over k. The collection of imbeddings of L into k that extend σ : K −→ σ(K) is a subset of the
collection of all k-algebra imbeddings of L to k. Thus, the fact that all the latter images are the same implies
that all the former images are the same. ///

22.4.7 Remark: In the situation of the last proposition, it is certainly not the case that K/k is normal.
This is in sharp contrast to the analogous discussion regarding separability.

[290] Thus, this terminology is potentially misleading, in essentially the same manner as the terminology normal

subgroups.
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22.4.8 Proposition: A finite field extension K of k is normal if and only if, for every irreducible
polynomial f in k[x], if f(x) has one linear factor in K[x], then it factors completely into linear factors in
K[x].

Proof: First, suppose that K is normal over k, sitting inside an algebraic closure k of k. Let α ∈ K be a
root in k of an irreducible polynomial f(x) ∈ k[x]. As recalled at the beginning of this chapter, given a root
β of f(x) = 0 in k, there is a k-algebra homomorphism σ : k(α) −→ K sending α to β. As recalled above,
σ extends to a k-algebra homomorphism σ : K −→ k. By the assumption of normality, σK = K. Thus,
β ∈ K.

For the converse, first let K = k(α). Let f(x) be the minimal polynomial of α over k. By assumption, all
the other roots of f(x) = 0 in k are in K. As recalled above, any k-algebra map of k(α) −→ k must send
α to some such root β, any k-algebra map of k(α) to k sends k(α) to K. Since k(α) is a finite-dimensional
k-vectorspace, the injectivity of a field map implies surjectivity. That is, every k-algebra image of K in k is
the original copy of K in k.

For the general case of the converse, let K = k(α1, . . . , αn). Let fi(x) be the minimal polynomial of αi over
k(α1, . . . , αi−1). Do induction on i. By hypothesis, and by the previous proposition, all the other roots of
fi(x) = 0 lie in K. Since any k(α1, . . . , αi−1)-linear map must send αi to one of these roots, every image
of k(α1, . . . , αi) is inside K. The induction implies that every k-algebra image of K in k is inside K. The
finite-dimensionality implies that the image must be equal to K. ///

The idea of the latter proof can be re-used to prove a slightly different result:

22.4.9 Proposition: Let f be a not-necessarily irreducible polynomial in k[x]. Let k be a fixed algebraic
closure of k. Any finite field extension K of k obtained as

K = k(all roots of f(x) = 0 in k)

is normal over k.

Proof: First, suppose K is obtained from k by adjoining all the roots α1, . . . , αn of an irreducible f(x) in
k[x]. Certainly K = k(α1, . . . , αn). Let fi(x) be the minimal polynomial of αi over k(α1, . . . , αi−1). Any
k-algebra homomorphism k(α1) −→ k must send α1 to some αi ∈ K, so any such image of k(α1) is inside
K. Do induction on i. Since fi(x) is a factor of f(x), all the other roots of fi(x) = 0 lie in K. Since any
k(α1, . . . , αi−1)-linear map must send αi to one of these roots, every image of k(α1, . . . , αi) is inside K. By
induction, every k-algebra image of K in k is inside K. The finite-dimensionality implies that the image
must be equal to K. Thus, K is normal over k. ///

Given a (not necessarily irreducible) polynomial f in k[x], a splitting field for f over k is a field extension
K obtained by adjoining to k all the zeros of f (in some algebraic closure k of k). Thus, the assertion of the
previous proposition is that splitting fields are normal.

The same general idea of proof gives one more sort of result, that moves in a slightly new conceptual direction:

22.4.10 Proposition: Let K be a normal field extensions of k. Let f(x) be an irreducible in k[x]. Let
α, β be two roots of f(x) = 0 in K. Then there is a k-algebra automorphism σ : K −→ K such that

σ(α) = β

Proof: Let k be an algebraic closure of k, and take K ⊂ k without loss of generality. By now we know that
there is a k-algebra map k(α) −→ k sending α to β, and that this map extends to a k-algebra homomorphism
K −→ k. By the normality of K over k, every image of K in k is K. Thus, the extended map is an
automorphism of K over k. ///

22.4.11 Remark: For K normal over k and L normal over K, it is not necessarily the case that L
is normal over k. For example, Q(

√
2) is normal over Q, and Q(

√
1 +
√

2) is normal over Q(
√

2), but
Q(
√

1 +
√

2) is not normal over Q.
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22.5 The main theorem
A finite field extension K of k is Galois if it is both separable and normal over k. Let K be a finite Galois
field extension of k. The Galois group of K over k is the automorphism group

G = Gal(K/k) = Aut(K/k)

The Galois group of a polynomial f in k[x] over k is the Galois group of the splitting field of f over k.

22.5.1 Theorem: Let L be a finite Galois extension of k. The intermediate fields K between k and L
are in inclusion-reversing bijection with subgroups H of the Galois group G = Gal(L/k) by

subgroup H ↔ subfield K fixed by H

For K the fixed field of subgroup H there is the equality

[L : K] = |H|

Further, H is a normal subgroup of G if and only if its fixed field K is Galois over k. If so, then

Gal(K/k) ≈ G/H

The standard picture for this is

G


L
|
K

H

|
k

22.5.2 Remark: The bijection between subgroups and intermediate fields is inclusion-reversing.

Proof: This proof is complicated. The first part goes from intermediate fields to subgroups of the Galois
group. The second part goes from subgroups to intermediate fields. Then a few odds and ends are cleaned
up.

First, we prove that the pointwise-fixed field

LG = {α ∈ L : g · α = α for all g ∈ G}

is just k itself, as opposed to being anything larger. Suppose that α ∈ L but α 6∈ k. Let f(x) be the minimal
polynomial of α over k. Since L is separable over k, α is separable over k, so there is a root β 6= α of f(x)
in k. Since L is normal over k, in fact β ∈ L. The last proposition of the previous section shows that there
is an automorphism of L sending α to β. Thus, α 6∈ k. This proves that the pointwise-fixed field of LG is k.

Upon reflection, this argument proves that for an intermediate field K between k and L, the pointwise-fixed
field of Gal(L/K) is K itself. In symbols, K = LGal(L/K).

Next, we show that the map K −→ Gal(L/K) of intermediate fields to subgroups of the Galois group is
injective. For an intermediate field K, L/K is Galois. We just proved that K is the fixed field of Gal(L/K)
inside L. Likewise, for another intermediate field K ′ 6= K, the pointwise-fixed field of Gal(L/K ′) in L is K ′.
Thus, these two subgroups must be distinct.

Next, show that, for two intermediate fields K,K ′ between L and k, with H = Gal(L/K) and H ′ =
Gal(L/K ′), the Galois group of L over the compositum KK ′ is

H ∩H ′ = Gal(L/KK ′)
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Indeed, every element of H ∩H ′ leaves KK ′ fixed pointwise. On the other hand, every element of Gal(L/k)
leaving KK ′ fixed pointwise certainly fixes both K and K ′.

Next, with the notation of the previous pragraph, we claim that the pointwise-fixed field of the smallest
subgroup A of G containing both H and H ′ is K ∩ K ′. Indeed, this fixed field must lie inside the fixed
field of H, which is K, and must lie inside the fixed field of H ′, which is K ′. Thus, the fixed field of A is
contained in K ∩K ′. On the other hand, every element of K ∩K ′ is fixed by H and by H ′, so is fixed by
the subgroup of Gal(L/k) generated by them.

Keeping this notation, next we claim that K ⊂ K ′ if and only if H ⊃ H ′. Indeed, g ∈ Gal(L/k) leaving K ′

fixed certainly leaves K fixed, so g ∈ H. This is one direction of the equivalence. On the other hand, when
H ⊃ H ′, certainly the fixed field of the larger group H is contained in the fixed field of the smaller.

Now, following Artin, we go from subgroups of the Galois group to intermediate fields. That is, we prove
that every subgroup of a Galois group is the Galois group of the top field L over an intermediate field. Let
E be an arbitrary field, and B a group of field automorphisms of E, with |B| = n. Let K = EB be the
pointwise-fixed field of B inside E. Then E/K is Galois, with Galois group B. To see this, let α ∈ E and
let b1, . . . , bn ∈ B be a maximal collection of elements of B such that the biα are distinct. Certainly α is a
root of the polynomial

f(x) = Πn
i=1 (x− biα)

For any b ∈ B the list bb1α, . . . , bbnα must be merely a permutation of the original list b1α, . . . , bn, or else
the maximality is contradicted. Thus, the polynomial f b obtained by letting b ∈ B act on the coefficients
of f is just f itself. That is, the coefficients lie in the pointwise-fixed field K = EB . By construction, the
roots of f are distinct. This shows that every element of E is separable of degree at most n over K, and the
minimal polynomial over K of every α ∈ E splits completely in E. Thus, E is separable and normal over
K, hence, Galois. By the theorem of the primitive element, E = K(α) for some α in E, and [E : K] ≤ n
since the degree of the minimal polynomial of α over K is at most n. On the other hand, we saw that the
number of automorphisms of E = K(α) over K(α) is at most the degree of the extension. Thus, B is the
whole Galois group.

Incidentally, this last discussion proves that the order of the Galois group is equal to the degree of the field
extension.

Finally, for an intermediate field K between k and L, as shown earlier, the top field L is certainly separable
over K, and is also normal over K. Thus, L is Galois over K. The last paragraph does also show that
Gal(L/K) is the subgroup of Gal(L/k) pointwise-fixing K.

Finally, we must prove that an intermediate field K between k and L is normal over the bottom field k if and
only if its pointwise-fixer subgroup N in G = Gal(L/k) is a normal subgroup of G. First, for K normal over
k, any element of G stabilizes K, giving a group homomorphism G −→ Gal(K/k). The kernel is a normal
subgroup of G, and by definition is the subgroup of G fixing K. On the other hand, if K is not normal
over k, then there is an imbedding σ of K to k whose image is not K itself. Early on, we saw that such an
imbedding extends to L, and, since L is normal over k, the image of L is L. Thus, this map gives an element
σ of the Galois group Gal(L/k). We have σK 6= K. Yet it is immediate that Gal(L/K) and Gal(L/σK) are
conjugate by σ. By now we know that these pointwise-fixer groups are unequal, so neither one is normal in
Gal(L/k).

This finishes the proof of the main theorem of Galois theory. ///
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22.6 Conjugates, trace, norm
Let K/k be a finite Galois field extension with Galois group. For α ∈ K, the (Galois) conjugates of α
over k are the images σα for σ ∈ G.

The (Galois) trace from K to k is the map

traceK/k α = trK/k =
∑
σ∈G

σα (for α ∈ K)

The (Galois) norm from K to k is the map

normK/k α = NK/k = Πσ∈Gσα (for α ∈ K)

Of course, usually an element α in K has a non-trivial isotropy subgroup in G, so there may be fewer distinct
conjugates of α than conjugates altogether. For that matter, sometimes conjugates insinuates that one is to
take distinct conjugates.

When K is the splitting field over k of the minimal polynomial f(x) ∈ k[x] for α separable algebraic over k,

f(x) = Πσ∈G(x− σα) = xn − trK/kα xn−1 + . . .+ (−1)n ·NK/kα

where n = [K : k]. The other symmetric polynomials in α do not have names as common as the trace and
norm.

22.7 Basic examples
A Galois extension is called cyclic if its Galois group is cyclic. Generally, any adjective that can be applied
to a group can be applied to a Galois field extension if its Galois group has that property.

22.7.1 Example: Let k = Fq be a finite field Fq with q elements. Although the result was not couched
as Galois theory, we have already seen (essentially) that every extension K of k is cyclic, generated by the
Frobenius automorphism

Frobq : α −→ αq

Thus, without citing the main theorem of Galois theory, we already knew that

[K : k] = |Gal(K/k)|

22.7.2 Example: Let k = Q, and ζ a primitive nth root of unity. Again, the result was not portrayed
as Galois theory, but we already saw (essentially) that K = Q(ζ) is an abelian Galois extension, with

Gal(Q(ζ)/Q) ≈ (Z/n)×

by
(ζ −→ ζa)←− a

22.7.3 Example: (Kummer extensions) Fix a prime p, let k = Q(ζ) where ζ is a primitive pth root
of unity, and take a to be not a pth power in k×. Let K be the splitting field over Q(ζ) of xp − a. Then
K = k(α) for any pth root α of a,

[K : Q(ζ)] = p

and the Galois group is
Gal(K/Q(ζ)) ≈ Z/p (with addition)
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by
(α −→ ζ` · α)←− `

(Proof of this is left as an exercise.)

22.7.4 Example: Fix a prime p, let k = Q and take a to be not a pth power in Q×. Let K be the
splitting field over Q(ζ) of xp − a. Then K = k(α, ζ) for any pth root α of a, and for ζ a primitive pth root
of unity. We have

[K : Q] = p(p− 1)

and the Galois group is a semi-direct product

Gal(K/Q) ≈ Z/p×f (Z/p)×

(Proof of this is left as an exercise at the end of this section.)

22.7.5 Example: Let t1, . . . , tn be independent indeterminates over a field E. Let K = E(t1, . . . , tn)
be the field of fractions of the polynomial ring E[t1, . . . , tn]. Let the permutation group G = Sn on n things
act on K by permutations of the ti, namely, for a permutation π, let

σπ(ti) = tπ(i)

We prove below that the fixed field in K of G is the field

k = E(s1, . . . , sn)

generated by the elementary symmetric polynomials si in the ti.

22.7.6 Remark: The content of the last example is that generic polynomials of degree n have Galois
groups Sn, even though various particular polynomials may have much smaller Galois groups.

22.8 Worked examples

22.8.1 Example: Show that Q(
√

2) is normal over Q.

We must show that all imbeddings σ : Q(
√

2) −→ Q to an algebraic closure of Q have the same image.
Since (by Eisenstein and Gauss) x2 − 2 is irreducible in Q[x], it is the minimal polynomial for any square
root of 2 in any field extension of Q. We know that (non-zero) field maps Q(α) −→ Q over Q can only
send roots of an irreducible f(x) ∈ Q[x] to roots of the same irreducible in Q. Let β be a square root of 2
in Q. Then −β is another, and is the only other square root of 2, since the irreducible is of degree 2. Thus,
σ(
√

2) = ±β. Whichever sign occurs, the image of the whole Q(
√

2) is the same. ///

22.8.2 Example: Show that Q( 3
√

5) is not normal over Q.

By Eisenstein and Gauss, x3 − 5 is irreducible in Q[x], so [Q( 3
√

5) : Q] = 3. Let α be one cube root of 5
in an algebraic closure Q of Q. Also, observe that x3 − 5 has no repeated factors, since its derivative is
3x2, and the gcd is readily computed to be 1. Let β be another cube root of 5. Then (α/beta)3 = 1 and
α/beta 6= 1, so that ratio is a primitive cube root of unity ω, whose minimal polynomial over Q we know
to be x2 + x + 1 (which is indeed irreducible, by Eisenstein and Gauss). Thus, the cubic field extension
Q(α) over Q cannot contain β, since otherwise it would have a quadratic subfield Q(ω), contradicting the
multiplicativity of degrees in towers.

Since
Q(α) ≈ Q[x]/〈x3 − 5〉 ≈ Q(β)

we can map a copy of Q( 3
√

5) to either Q(α) or Q(β), sending 3
√

5 to either α or β. But inside Q the two
fields Q(α) and Q(β) are distinct sets. That is, Q( 3

√
5) is not normal. ///
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22.8.3 Example: Find all fields intermediate between Q and Q(ζ13) where ζ13 is a primitive 13th root
of unity.

We already know that the Galois group G of the extension is isomorphic to (Z/13)× by

a −→ (σa : ζ −→ ζa)

and that group is cyclic. Thus, the subgroups are in bijection with the divisors of the order, 12, namely
1,2,3,4,6,12. By the main theorem of Galois theory, the intermediate fields are in bijection with the proper
subgroups, which will be the fixed fields of the subgroups of orders 2, 3, 4, 6. We have already identified the
quadratic-over-Q subfield of any cyclotomic field Q(ζp) with a primitive pth root of unity ζp with p prime,
via Gauss sums, as Q(

√
±p) with the sign being the quadratic symbol (−1/p)2. Thus, here, the subgroup

fixed by the subgroup of order 6 is quadratic over Q, and is Q(
√

13).

We claim that the subfield fixed by ζ −→ ζ±1 is Q(ξ), where ξ = ζ + ζ−1 is obtained by averaging ζ over
that group of automorphisms. First, ξ is not 0, since those two powers of ζ are linearly independent over Q.
Second, to show that ξ is not accidentally invariant under any larger group of automorphisms, observe that

σa(ξ) = ζa + ζ−a = ζa + ζ13−a

Since ζ1, ζ2, . . . , ζ11, ζ12 are a Q-basis for Q(ζ), an equality σa(ξ) = ξ is

ζa + ζ13−a = σa(ξ) = ξ = ζ + ζ12

which by the linear independence implies a = ±1. This proves that this ξ generates the sextic-over-Q
subextension.

To give a second description of ξ by telling the irreducible in Q[x] of which it is a zero, divide through the
equation satisfied by ζ by ζ6 to obtain

ζ6 + ζ5 + . . .+ ζ + 1 + ζ−1 + . . .+ ζ−6 = 0

Thus,

ξ6 + ξ5 + (1−
(

6
1

)
)ξ4 + (1−

(
5
1

)
)ξ3 + (1−

(
6
2

)
+ 5 ·

(
4
1

)
)ξ2

+ (1−
(

5
2

)
+ 4 ·

(
3
1

)
)ξ + (1−

(
6
3

)
+ 5 ·

(
4
2

)
− 6
(

2
1

)
)

= ξ6 + ξ5 − 5ξ4 − 4ξ3 + 6ξ2 + 3ξ − 1 = 0

To describe ξ as a root of this sextic is an alternative to describing it as ξ = ζ + ζ−1. Since we already know
that ξ is of degree 6 over Q, this sextic is necessarily irreducible.

The quartic-over-Q intermediate field is fixed by the (unique) order 3 subgroup {1, σ3, σ9} of automorphisms.
Thus, we form the average

α = ζ + ζ3 + ζ9

and claim that α generates that quartic extension. Indeed, if σa were to fix α, then

ζ2 + ζ3a + ζ9a = σa(α) = α = ζ + ζ3 + ζ9

By the linear independence of ζ2, ζ2, . . . , ζ12, this is possible only for a among 1, 3, 9 modulo 13. This verifies
that this α exactly generates the quartic extension.

To determine the quartic irreducible of which α is a root, we may be a little clever. Namely, we first find the
irreducible quadratic over Q(

√
13) of which α is a root. From Galois theory, the non-trivial automorphism

of Q(α) over Q(
√

13) is (the restriction of) σ4, since 4 is of order 6 in (Z/13)×. Thus, the irreducible of α
over Q(

√
13) is

(x− α)(x− σ4α)
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in
α+ σ4α = ζ + ζ3 + ζ9 + ζ4 + ζ12 + ζ10 ∈ Q(

√
13)

the exponents appearing are exactly the non-zero squares modulo 13, so

α+ σ4α =
∑

`: ( `
13 )2

=1

ζ` =
1
2
·

 ∑
1≤`≤12

(
`

13

)
2

ζ` +
∑

1≤`≤12

ζ`

 =
√

13− 1
2

from discussion of Gauss sums. And

α · σ4α = 3 + ζ5 + ζ11 + ζ7 + ζ2 + ζ8 + ζ6 ∈ Q(
√

13)

The exponents are exactly the non-squares modulo 13, so this is

3− 1
2
·

 ∑
1≤`≤12

(
`

13

)
2

ζ` −
∑

1≤`≤12

ζ`

 = 3−
√

13 + 1
2

=
−
√

13 + 5
2

Thus, the quadratic over Q(
√

13) is

x2 −
√

13− 1
2

x+
−
√

13 + 5
2

It is interesting that the discriminant of this quadratic is

√
13 · 3−

√
13

2

and that (taking the norm)
3−
√

13
2

· 3 +
√

13
2

= −1

To obtain the quartic over Q, multiply this by the same expression with
√

13 replaced by its negative, to
obtain

(x2 +
x

2
+

5
2

)2 − 13(
x

2
+

1
2

)2 = x4 +
x2

4
+

25
4

+ x3 + 5x2 +
5x
2
− 13x2

4
− 13x

2
− 13

4

= x4 + x3 + 2x2 − 4x+ 3

Finally, to find the cubic-over-Q subfield fixed by the subgroup {1, σ5, σ−1, σ8} of the Galois group, first
consider the expression

β = ζ + ζ5 + ζ12 + ζ8

obtained by averaging ζ by the action of this subgroup. This is not zero since those powers of ζ are linearly
independent over Q. And if

ζa + ζ5a + ζ12a + ζ8a = σa(β) = β = ζ + ζ5 + ζ12 + ζ8

the the linear independence implies that a is among 1, 5, 12, 8 mod 13. Thus, β is not accidentally invariant
under a larger group.

Of course we might want a second description of β by telling the irreducible cubic it satisfies. This was done
by brute force earlier, but can also be done in other fashions to illustrate other points. For example, we
know a priori that it does satisfy a cubic.

The linear coefficient is easy to determine, as it is the negative of

β + σ2(β) + σ2
2(β) = (ζ + ζ5 + ζ12 + ζ8) + (ζ2 + ζ10 + ζ11 + ζ3) + (ζ4 + ζ7 + ζ9 + ζ6) = −1
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since the powers of ζ are ζi with i running from 1 to 12. Thus, the cubic is of the form x3 + x2 + ax+ b for
some a, b in Q.

We know that β = ζ + ζ5 + ζ12 + ζ8 is a zero of this equation, and from

β3 + β2 + aβ + b = 0

we can determine a and b. Expanding β3 and β2, we have(
ζ3 + ζ2 + ζ10 + ζ11

+3(ζ7 + ζ4 + ζ + ζ12 + ζ10 + ζ4 + ζ9 + ζ3 + ζ5 + |zeta8 + ζ6 + ζ2)

+6(ζ5 + ζ + ζ8 + ζ12
)

+
(
ζ2 + ζ10 + ζ11 + ζ3 + 2(ζ6 + 1 + ζ9 + ζ4 + 1 + ζ7)

)
+a · (ζ + ζ5 + ζ12 + ζ8) + b = 0

Keeping in mind that
ζ12 = −(1 + ζ + ζ2 + . . .+ ζ10 + ζ11)

using the linear independence of 1, ζ, ζ2, . . . , ζ10, ζ11 by looking at the coefficients of 1, ζ, ζ2, ζ3, . . . we obtain
relations, respectively,

−3− 6 + 2 · 2− a+ b = 0
0 = 0

1− 6 + 1− a = 0
1− 6 + 1− a = 0

. . .

From this, a = −4 and b = 1, so
x3 + x2 − 4x+ 1

is the cubic of which β = ζ + ζ5 + ζ12 + ζ8 is a zero. ///

22.8.4 Remark: It is surprising that the product of β and its two conjugates is −1.

22.8.5 Example: Find all fields intermediate between Q and a splitting field of x3 − x+ 1 over Q.

First, we check the irreducibility in Q[x]. By Gauss this is irreducible in Q[x] if and only if so in Z[x]. For
irreducibility in the latter it suffices to have irreducibility in (Z/p)[x], for example for Z/3, as suggested by
the exponent. Indeed, an earlier example showed that for prime p and a 6= 0 mod p the polynomial xp−x+a
is irreducible modulo p. So x3 − x+ 1 is irreducible mod 3, so irreducible in Z[x], so irreducible in Q[x].

Even though we’ll see shortly that in characteristic 0 irreducible polynomials always have distinct zeros,
we briefly note why: if f = g2h over an extension field, then deg gcd(f, f ′) > 0, where as usual f ′ is the
derivative of f . If f ′ 6= 0, then the gcd has degree at most deg f ′ = deg f − 1, and is in Q[x], contradicting
the irreducibility of f . And the derivative can be identically 0 if the characteristic is 0.

Thus, any of the three distinct zeros α, β, γ of x3 − x+ 1 generates a cubic extension of Q.

Now things revolve around the discriminant

∆ = (α− β)2(β − γ)2(γ − α)2 = −27 · 13 − 4 · (−1)3 = −27 + 4 = −23

from the computations that show that the discriminant of x3 + bx+ c is −27c2− 4b3. From its explicit form,
if two (or all) the roots of a cubic are adjoined to the groundfield Q, then the square root of the discriminant
also lies in that (splitting) field. Since −23 is not a square of a rational number, the field Q(

√
−23) is a

subfield of the splitting field.
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Since the splitting field K is normal (and in characteristic 0 inevitably separable), it is Galois over Q. Any
automorphism σ of K over Q must permute the 3 roots among themselves, since

σ(α)3 − σ(α) + 1 = σ(α3 − α+ 1) = σ(0) = 0

Thus, the Galois group is a subgroup of the permutation group S3 on 3 things. Further, the Galois group is
transitive in its action on the roots, so cannot be merely of order 1 or 2. That is, the Galois group is either
cyclic of order 3 or is the full permutation group S3. Since the splitting field has a quadratic subfield, via
the main theorem of Galois theory we know that the order of the Galois group is even, so is the full S3.

By the main theorem of Galois theory, the intermediate fields are in inclusion-reversing bijection with the
proper subgroups of S3. Since the discriminant is not a square, the 3 subfields obtained by adjoining the
different roots of the cubic are distinct (since otherwise the square root of the discriminant would be there),
so these must give the subfields corresponding to the 3 subgroups of S3 of order 2. The field Q(

√
−23)

must correspond to the single remaining subgroup of order 3 containing the 3-cycles. There are no other
subgroups of S3 (by Lagrange and Sylow, or even by direct observation), so there are no other intermediate
fields. ///

22.8.6 Example: Find all fields intermediate between Q and Q(ζ21) where ζ21 is a primitive 21st root
of unity.

We have already shown that the Galois group G is isomorphic to

(Z/21)× ≈ (Z/7)× × (Z/3)× ≈ Z/6⊕ Z/2 ≈ Z/3⊕ Z/2⊕ Z/2

(isomorphisms via Sun-Ze’s theorem), using the fact that (Z/p)× for p prime is cyclic.

Invoking the main theorem of Galois theory, to determine all intermediate fields (as fixed fields of subgroups)
we should determine all subgroups of Z/3⊕Z/2⊕Z/2. To understand the collection of all subgroups, proceed
as follows. First, a subgroup H either contains an element of order 3 or not, so H either contains that copy
of Z/3 or not. Second, Z/2 ⊕ Z/2 is a two-dimensional vector space over F2, so its proper subgroups
correspond to one-dimensional subspaces, which correspond to non-zero vectors (since the scalars are just
{0, 1}), of which there are exactly 3. Thus, combining these cases, the complete list of proper subgroups of
G is

H1 = Z/3⊕ 0⊕ 0
H2 = Z/3⊕ Z/2⊕ 0
H3 = Z/3⊕ 0⊕ Z/2
H4 = Z/3⊕ Z/2 · (1, 1)
H5 = Z/3⊕ Z/2⊕ Z/2
H6 = 0⊕ Z/2⊕ 0
H7 = 0⊕ 0⊕ Z/2
H8 = 0⊕ Z/2 · (1, 1)
H9 = 0⊕ Z/2⊕ Z/2

At worst by trial and error, the cyclic subgroup of order 3 in (Z/21)× is {1, 4, 16}, and the Z/2 ⊕ Z/2
subgroup is {1, 8, 13,−1}.
An auxiliary point which is useful and makes things conceptually clearer is to verify that in Q(ζn), where
n = p1 . . . pt is a product of distinct primes pi, and ζn is a primitive nth root of unity, the powers

{ζt : 1 ≤ t < n, with gcd(t, n) = 1}

is (as you might be hoping [291] ) a Q-basis for Q(ζn).

Prove this by induction. Let ζm be a primitive mth root of unity for any m. The assertion holds for n prime,
since for p prime

xp − 1
x− 1

[291] For n = 4 and n = 9 the assertion is definitely false, for example.
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is the minimal polynomial for a primitive pth root of unity. Suppose the assertion is true for n, and let p be
a prime not dividing n. By now we know that the npth cyclotomic polynomial is irreducible over Q, so the
degree of Q(ζnp) over Q is (with Euler’s totient function ϕ)

[Q(ζnp)Q] = ϕ(np) = ϕ(n) · ϕ(p) = [Q(ζn)Q] · [Q(ζp)Q]

since p and n are relatively prime. Let a, b be integers such that 1 = an+ bp. Also note that ζ = ζn · ζp is a
primitive npth root of unity. Thus, in the explicit form of Sun-Ze’s theorem, given i mod p and j mod n we
have

an · i+ bp · j =
{

i mod p
j mod n

Suppose that there were a linear dependence relation

0 =
∑
i

c` ζ
`
np

with ci ∈ Q and with ` summed over 1 ≤ ` < np with gcd(`, np) = 1. Let i = ` mod p and j = ` mod n.
Then

ζani+bpjnp = ζjn · ζip
and

0 =
p∑
i=1

ζip

∑
j

cani+bpj ζ
j
n


where j is summed over 1 ≤ j < n with gcd(j, n) = 1. Such a relation would imply that ζp, . . . , ζp−1

p would
be linearly dependent over Q(ζn). But the minimal polynomial of ζp over this larger field is the same as it
is over Q (because the degree of Q(ζn, ζp) over Q(ζn) is still p − 1), so this implies that all the coefficients
are 0. ///

22.8.7 Example: Find all fields intermediate between Q and Q(ζ27) where ζ27 is a primitive 27th root
of unity.

We know that the Galois group G is isomorphic to (Z/27)×, which we also know is cyclic, of order
(3 − 1)33−1 = 18, since 27 is a power of an odd prime (namely, 3). The subgroups of a cyclic group
are in bijection with the divisors of the order, so we have subgroups precisely of orders 1, 2, 3, 6, 9, 18. The
proper ones have orders 2, 3, 6, 9. We can verify that g = 2 is a generator for the cyclic group (Z/27)×, and
the subgroups of a cyclic group are readily expressed in terms of powers of this generator. Thus, letting
ζ = ζ27, indexing the alphas by the order of the subgroup fixing them,

α2 = ζ + ζ−1

α3 = ζ + ζ26
+ ζ212

α6 = ζ + ζ23
+ ζ26

+ ζ29
+ ζ212

+ ζ215

α9 = ζ + ζ22
+ ζ24

+ ζ26
+ ζ28

+ ζ210
ζ212

+ ζ214
+ ζ216

But there are some useful alternative descriptions, some of which are clearer. Since ζ3
27 is a primitive 9th

root of unity ζ9, which is of degree ϕ(9) = 6 over Q, this identifies the degree 6 extension generated by α3

(3 · 6 = 18) more prettily. Similarly, ζ9
27 is a primitive cube root of unity ζ3, and Q(ζ3) = Q(

√
−3) from

earlier examples. This is the quadratic subfield also generated by α9. And from

0 =
ζ9
9 − 1
ζ3
9 − 1

= ζ6
9 + ζ3

9 + 1

we use our usual trick
ζ3
9 + 1 + ζ−3

9 = 0
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and then
(ζ9 + ζ−1

9 )3 − 3(ζ9 + ζ−1
9 )− 1 = 0

so a root of
x3 − 3x− 1 = 0

generates the degree 3 field over Q also generated by α6. ///

22.8.8 Example: Find all fields intermediate between Q and Q(
√

2,
√

3,
√

5).

Let K = Q(
√

2,
√

3,
√

5). Before invoking the main theorem of Galois theory, note that it really is true that
[K : Q] = 23, as a special case of a more general example we did earlier, with an arbitrary list of primes.

To count the proper subgroups of the Galois group G ≈ Z/2 ⊕ Z/2 ⊕ Z/2, it is useful to understand the
Galois group as a 3-dimensional vector space over F2. Thus, the proper subgroups are the one-dimensional
subspace and the two-dimensional subspaces, as vector spaces.

There are 23 − 1 non-zero vectors, and since the field is F2, this is the number of subgroups of order 2.
Invoking the main theorem of Galois theory, these are in bijection with the intermediate fields which are
of degree 4 over Q. We can easily think of several quartic fields over Q, namely Q(

√
2,
√

3), Q(
√

2,
√

5),
Q(
√

3,
√

5), Q(
√

6,
√

5), Q(
√

10,
√

3), Q(
√

2,
√

15), and the least obvious Q(
√

6,
√

15). The argument that
no two of these are the same is achieved most efficiently by use of the automorphisms σ, τ, ρ of the whole
field which have the effects

σ(
√

2) = −
√

2 σ(
√

3) =
√

3 σ(
√

5) =
√

5
τ(
√

2) =
√

2 τ(
√

3) = −
√

3 τ(
√

5) =
√

5
ρ(
√

2) =
√

2 ρ(
√

3) =
√

3 ρ(
√

5) = −
√

5

which are restrictions of automorphisms of the form ζ −→ ζa of the cyclotomic field containing all these
quadratic extensions, for example Q(ζ120) where ζ120 is a primitive 120th root of unity.

To count the subgroups of order 4 = 22, we might be a little clever and realize that the two-dimensional
F2-vectorsubspaces are exactly the kernels of non-zero linear maps F3

2 −→ F2. Thus, these are in bijection
with the non-zero vectors in the F2-linear dual to F3

2, which is again 3-dimensional. Thus, the number of
two-dimensional subspaces is again 23 − 1.

Or, we can count these two-dimensional subspaces by counting ordered pairs of two linearly independent
vectors (namely (23 − 1)(23 − 2) = 42) and dividing by the number of changes of bases possible in a two-
dimensional space. The latter number is the cardinality of GL(2,F2), which is (22 − 1)(22 − 2) = 6. The
quotient is 7 (unsurprisingly).

We can easily write down several quadratic extensions of Q inside the whole field, namely Q(
√

2), Q(
√

3),
Q(
√

5), Q(
√

6), Q(
√

10), Q(
√

15), Q(
√

30). That these are distinct can be shown, for example, by observing
that the effects of the automorphisms σ, τ, ρ differ. ///

22.8.9 Example: Let a, b, c be independent indeterminates over a field k. Let z be a zero of the cubic

x3 + ax2 + bx+ c

in some algebraic closure of K = k(a, b, c). What is the degree [K(z) : K]? What is the degree of the
splitting field of that cubic over K?

First, we prove that f(x) = x3+ax2+bx+c is irreducible in k(a, b, c)[x]. As a polynomial in x with coefficients
in the ring k(a, b)[c], it is monic and has content 1, so its irreducibility in k(a, b, c)[x] is equivalent to its
irreducibility in k(a, b)[c][x] ≈ k(a, b)[x][c]. As a polynomial in c it is monic and linear, hence irreducible.
This proves the irreducibility in k(a, b, c)[x]. Generally, [K(z) : K] is equal to the degree of the minimal
polynomial of z over K. Since f is irreducible it is the minimal polynomial of z over K, so [K(z) : K] = 3.

To understand the degree of the splitting field, let the three roots of x3 + ax2 + bx+ c = 0 be z, u, v. Then
(the discriminant)

∆ = (z − u)2(u− v)2(v − z)2
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certainly lies in the splitting field, and is a square in the splitting field. But if ∆ is not a square in the
ground field K, then the splitting field contains the quadratic field K(

√
∆), which is of degree 2 over K.

Since gcd(2, 3) = 1, this implies that the splitting field is of degree at least 6 over K. But f(x)/(x− z) is of
degree 2, so the degree of the splitting field cannot be more than 6, so it is exactly 6 if the discriminant is
not a square in the ground field K.

Now we use the fact that the a, b, c are indeterminates. Gauss’ lemma assures us that a polynomial A in
a, b, c is a square in k(a, b, c) if and only it is a square in k[a, b, c], since the reducibilities of x2 − A in the
two rings are equivalent. Further, if A is square in k[a, b, c] then it is a square in any homomorphic image of
k[a, b, c]. If the characteristic of k is not 2, map a −→ 0, c −→ 0, so that f(x) becomes x3 + bx. The zeros
of this are 0 and ±

√
b, so the discriminant is

∆ = (0−
√
b)2(0 +

√
b)2(−

√
b−
√
b)2 = b · b · 4b = 4b3 = (2b)2 · b

The indeterminate b is not a square. (For example, x2−b is irreducible by Gauss, using Eisenstein’s criterion.)
That is, because this image is not a square, we know that the genuine discriminant is not a square in k(a, b, c)
without computing it.

Thus, the degree of the splitting field is always 6, for characteristic not 2.

For characteristic of k equal to 2, things work differently, since the cubic expression (z − u)(u− v)(v − z) is
already invariant under any group of permutations of the three roots. But, also, in characteristic 2, separable
quadratic extensions are not all obtained via square roots, but, rather, by adjoining zeros of Artin-Schreier
polynomials x2 − x+ a. ... ///

22.8.10 Example: Let x1, . . . , xn be independent indeterminates over a field k, with elementary
symmetric polynomials s1, . . . , sn. Prove that the Galois group of k(x1, . . . , xn) over k(s1, . . . , sn) is the
symmetric group Sn on n things.

Since k[x1, . . . , xn] is the free (commutative) k-algebra on those n generators, for a given permutation p we
can certainly map xi −→ xp(i). Then, since this has trivial kernel, we can extend it to a map on the fraction
field k(x1, . . . , xn). So the permutation group Sn on n things does act by automorphisms of k(x1, . . . , xn).
Certainly such permutations of the indeterminates leaves k[s1, . . . , sn] pointwise fixed, so certainly leaves the
fraction field k(s1, . . . , sn) pointwise fixed.

Each xi is a zero of
f(X) = Xn − s1X

n−1 + s2X
n−2 − . . .+ (−1)nsn

so certainly k(x1, . . . , xn) is finite over k(s1, . . . , sn). Indeed, k(x1, . . . , xn) is a splitting field of f(X) over
k(s1, . . . , sn), since no smaller field could contain x1, . . . , xn (with or without s1, . . . , sn). So the extension is
normal over k(s1, . . . , sn). Since the xi are mutually independent indeterminates, certainly no two are equal,
so f(X) is separable, and the splitting field is separable over k(s1, . . . , sn). That is, the extension is Galois.

The degree of k(x1, . . . , xn) over k(s1, . . . , sn) is at most n!, since x1 is a zero of f(X), x2 is a zero of the
polynomial f(X)/(X−x1) in k(x1)[X], x3 is a zero of the polynomial f(X)/(X−x1)(X−x2) in k(x1, x2)[X],
and so on. Since the Galois group contains Sn, the degree is at least n! (the order of Sn). Thus, the degree
is exactly n! and the Galois group is exactly Sn.

Incidentally, this proves that f(X) ∈ k(s1, . . . , sn)[X] is irreducible, as follows. Note first that the degree of
the splitting field of any polynomial g(X) of degree d is at most d!, proven best by induction: given one root
α1, in k(α1)[X] the polynomial g(X)/(X − α1) has splitting field of degree at most (d− 1)!, and with that
number achieved only if g(X)/(X − α1) is irreducible in k(α1)[X]. And [k(α1) : k] ≤ d, with the maximum
achieved if and only if g(X) is irreducible in k[X]. Thus, by induction, the maximum possible degree of the
splitting field of a degree d polynomial is d!, and for this to occur it is necessary that the polynomial be
irreducible.

Thus, in the case at hand, if f(X) were not irreducible, its splitting field could not be of degree n! over
k(s1, . . . , sn), contradiction. ///
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22.8.11 Example: Let K/k be a finite separable extension, k an algebraic closure of k, and σ1, . . . , σn
distinct field homomorphisms of K to k. These σ are linearly independent over k, in the following sense. If
α1, . . . , αn ∈ k are such that for all β ∈ K

α1 σ1(β) + . . .+ αn σn(β) = 0

then all αi are 0.

Renumbering if necessary, let
α1 σ1(β) + . . .+ αn σn(β) = 0

be the shortest such relation with all αi nonzero. Let γ ∈ K× be a primitive element for K/k, that is,
K = k(γ). Then all the σi(γ) are distinct. Replacing β by γ · β in the displayed relation and dividing by
σ1(γ) gives another relation

α1 σ1(β) +
α2 · σ2(γ)
σ1(γ)

σ(β) + . . .+
αn σn(γ)
σ1(γ)

σn(β) = 0

Since the ratios χi(γ)/χ1(γ) are not 1 for i > 1, subtraction of this relation from the first relation gives a
shorter relation, contradiction. ///

22.8.12 Example: Let K be a finite separable extension of a field k. Show that the Galois trace
tr : K −→ k is not the 0 map.

Let σ1, . . . , σn be the distinct field homomorphisms of K into a chosen algebraic closure k of k. The trace is

tr (β) = σ1(β) + . . .+ σn(β) = 1 · σ1(β) + . . .+ 1 · σn(β)

The previous example shows that this linear combination of the imbeddings σi is not the 0 map. ///

22.8.13 Example: Let K/k be a finite separable extension. Show that the trace pairing

〈, 〉 : K ×K −→ k

defined by
〈α, β〉 = trK/k(α · beta)

is non-degenerate.

That is, we must prove that, for any non-zero α ∈ K, there is β ∈ K such that tr (αβ) 6= 0. The previous
example shows that the trace of a primitive element γ is non-zero. Thus, given α 6= 0, let β = γ/α. ///

Exercises

22.8.1 Example: Show that any quadratic extension of Q is normal over Q.

22.8.2 Example: Take an integer d which is not a cube or a rational number. Show that Q( 3
√
d) is not

normal over Q.

22.8.3 Example: Find all fields intermediate between Q and Q(ζ11) where ζ11 is a primitive 13th root
of unity.

22.8.4 Example: Find all fields intermediate between Q and Q(ζ8) where ζ8 is a primitive 27th root of
unity.

22.8.5 Example: Find all fields intermediate between Q and Q(
√

3,
√

5,
√

7).

22.6 What is the Galois group of x3 − x− 1 over Q?
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22.7 What is the Galois group of x3 − 2 over Q?

22.8 What is the Galois group of x3 − x− 1 over Q(
√

23)?

22.9 What is the Galois group of x4 − 5 over Q, over Q(
√

5, over
√
−5, over Q(i), and over Q(

√
2)?

22.10 Let K/k be a finite separable extension. Show that for every intermediate field k ⊂ E ⊂ K, the
extensions E/k and K/E are separable.

22.11 Show that Q(
√

2) is normal over Q, and Q(
√

1 +
√

2) is normal over Q(
√

2), but Q(
√

1 +
√

2) is
not normal over Q.

22.12 Find all subfields of the splitting field over Q of x4 + 2.

22.13 Let k be a field. Let α1, . . . , αn be distinct elements of k×. Suppose that c1, . . . , cn in k are such
that for all positive integers ` ∑

i

ci α
`
i = 0

Show that all the ci are 0.

22.14 Let K be a finite normal field extension of a field k. Let P be a monic irreducible in k[x]. Let Q
and R be two monic irreducible factors of P in K[x]. Show that there is σ ∈ Aut(K/k) such that Qσ = R
(with σ acting on the coefficients).

22.15 Show that every finite algebraic extension of a finite field is normal and separable, hence Galois.

22.16 Show that any cyclotomic field (that is, an extension of Q obtained by adjoining a root of unity)
is normal and separable, hence Galois.

22.17 Fix a prime p. Let k be a field not of characteristic p, containing a primitive pth root of unity ζ.
Let a ∈ k not be a pth power of any element of k, and let α be a pth root of α. Prove that the Kummer
extension K = k(α) is normal and separable, hence Galois. Prove that the Galois group is cyclic of order p,
given by automorphisms

α −→ ζ` · α (for 0 ≤ ` < p)

22.18 Let t1, . . . , tn be independent indeterminates over a field E. Let K = E(t1, . . . , tn) be the field of
fractions of the polynomial ring E[t1, . . . , tn]. Let

k = E(s1, . . . , sn)

be the subfield generated by the elementary symmetric polynomials si in the ti. Prove that the extension
K/k is normal and separable, hence Galois. (Then, from our earlier discussion, its Galois group is the
permutation group on n things.)

22.19 Show that the Galois trace σ : Fqn −→ Fq is

σ(α) = α+ αq + αq
2

+ . . .+ αq
n−1

22.20 Show that the Galois norm ν : Fqn −→ Fq is

ν(α) = α
qn−1
q−1

22.21 Let k be a finite field, and K a finite extension. Show that trace and norm maps K −→ k are
surjective.

22.22 Let k be a finite field with q elements. Fix a positive integer n. Determine the order of the largest
cyclic subgroup in GL(n, k).
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22.23 Let m and n be coprime. Let ζ be a primitive mth root of unity. Show that the cyclotomic
polynomial ϕn(x) is irreducible in Q(ζ)[x].

22.24 (Artin) Let Q be a fixed algebraic closure of Q. Let k be a maximal subfield of Q not containing√
2. Show that every finite extension of k is cyclic.

22.25 (Artin) Let σ be an automorphism of Q over Q, with fixed field k. Show that every finite extension
of k is cyclic.
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23. Solving equations by radicals

23.1 Galois’ criterion
23.2 Composition series, Jordan-Hölder theorem
23.3 Solving cubics by radicals
23.4 Worked examples

Around 1800, Ruffini sketched a proof, completed by Abel, that the general quintic equation is not solvable in
radicals, by contrast to cubics and quartics whose solutions by radicals were found in the Italian renaissance,
not to mention quadratic equations, understood in antiquity. Ruffini’s proof required classifying the possible
forms of radicals. By contrast, Galois’ systematic development of the idea of automorphism group replaced
the study of the expressions themselves with the study of their movements.

Galois theory solves some classical problems. Ruler-and-compass constructions, in coordinates, can only
express quantities in repeated quadratic extensions of the field generated by given points, but nothing else.
Thus, trisection of angles by ruler and compass is impossible for general-position angles, since the general
trisection requires a cube root.

The examples and exercises continue with other themes.

23.1 Galois’ criterion
We will not prove all the results in this section, for several reasons. First, solution of equations in radicals is
no longer a critical or useful issue, being mostly of historical interest. Second, in general it is non-trivial to
verify (or disprove) Galois’ condition for solvability in radicals. Finally, to understand that Galois’ condition
is intrinsic requires the Jordan-Hölder theorem on composition series of groups (stated below). While its
statement is clear, the proof of this result is technical, difficult, and not re-used elsewhere here.



Garrett: Abstract Algebra 295

23.1.1 Theorem: Let G be the Galois group of the splitting field K of an irreducible polynomial f over
k. If G has a sequence of subgroups

{1} ⊂ G1 ⊂ G2 ⊂ . . . ⊂ Gm = G

such that Gi is normal in Gi+1 and Gi+1/Gi is cyclic for every index i, then a root of f(x) = 0 can be
expressed in terms of radicals. Conversely, if roots of f can be expressed in terms of radicals, then the Galois
group G has such a chain of subgroups.

Proof: (Sketch) On one hand, adjunction of n roots is cyclic of degree n if the primitive nth roots of unity
are in the base field. If the nth roots of unity are not in the base field, we can adjoin them by taking a
field extension obtainable by successive root-taking of orders strictly less than n. Thus, root-taking amounts
to successive cyclic extensions, which altogether gives a solvable extension. On the other hand, a solvable
extension is given by successive cyclic extensions. After nth roots of unity are adjoined (which requires
successive cyclic extensions of degrees less than n), one can prove that any cyclic extension is obtained by
adjoining roots of xn − a for some a in the base. This fact is most usefully proven by looking at Lagrange
resolvents. ///

23.1.2 Theorem: The general nth degree polynomial equation is not solvable in terms of radicals for
n > 4.

Proof: The meaning of general is that the Galois group is the largest possible, namely the symmetric group
Sn on n things. Then we invoke the theorem to see that we must prove that Sn is not solvable for n > 4. In
fact, the normal subgroup An of Sn is simple for n > 4 (see just below), in the sense that it has no proper
normal subgroups (and is not cyclic). In particular, An has no chain of subgroups normal in each other with
cyclic quotients. This almost finishes the proof. What is missing is verifying the plausible claim that the
simplicity of An means that no other possible chain of subgroups inside Sn can exist with cyclic quotients.
We address this just below. ///

A group is simple if it has not proper normal subgroups (and maybe is not a cyclic group of prime order,
and is not the trivial group). A group G with a chain of subgroups Gi, each normal in the next, with the
quotients cyclic, is a solvable group, because of the conclusion of this theorem.

23.1.3 Proposition: For n ≥ 5 the alternating group An on n things is simple.

Proof: (Sketch) The trick is that for n ≥ 5 the group An is generated by 3-cycles. Keeping track of 3-cycles,
one can prove that the commutator subgroup of An, generated by expressions xyx−1y−1, for x, y ∈ An, is
An itself. This yields the simplicity of An. ///

23.1.4 Remark: A similar discussion addresses the question of constructibility by ruler and
compass. One can prove that a point is constructible by ruler and compass if and only if its coordinates
lie in a field extension of Q obtained by successive quadratic field extensions. Thus, for example, a regular
n-gon can be constructed by ruler and compass exactly when (Z/n)× is a two-group. This happens exactly
when n is of the form

n = 2m · p1 . . . p`

where each pi is a Fermat prime, that is, is a prime of the form p = 22t + 1. Gauss constructed a regular
17-gon. The next Fermat prime is 257. Sometime in the early 19th century someone did literally construct
a regular 65537-gon, too.



296 Solving equations by radicals

23.2 Composition series, Jordan-Hölder theorem
Now we should check that the simplicity of An really does prevent there being any other chain of subgroups
with cyclic quotients that might secretly permit a solution in radicals.

A composition series for a finite group G is a chain of subgroups

{1} ⊂ G1 ⊂ . . . ⊂ Gm = G

where each Gi is normal in Gi+1 and the quotient Gi+1/Gi is either cyclic of prime order or simple. [292]

23.2.1 Theorem: Let
{1} = G0 ⊂ G1 ⊂ . . . ⊂ Gm = G

{1} = H0 ⊂ H1 ⊂ . . . ⊂ Hn = G

be two composition series for G. Then m = n and the sets of quotients {Gi+1/Gi} and {Hj+1/Gj} (counting
multiplicities) are identical.

Proof: (Comments) This theorem is quite non-trivial, and we will not prove it. The key ingredient is the
Jordan-Zassenhaus butterfly lemma, which itself is technical and non-trivial. The proof of the analogue for
modules over a ring is more intuitive, and is a worthwhile result in itself, which we leave to the reader.
///

23.3 Solving cubics by radicals
We follow J.-L. Lagrange to recover the renaissance Italian formulas of Cardan and Tartaglia in terms of
radicals for the zeros of the general cubic

x3 + ax2 + bx+ c

with a, b, c in a field k of characteristic neither 3 nor 2. [293] Lagrange’s method creates an expression, the
resolvent, having more accessible symmetries. [294]

Let ω be a primitive cube root of unity. Let α, β, γ be the three zeros of the cubic above. The Lagrange
resolvent is

λ = α+ ω · β + ω2γ

The point is that any cyclic permutation of the roots alters λ by a cube root of unity. Thus, λ3 is invariant
under cyclic permutations of the roots, so we anticipate that λ3 lies in a smaller field than do the roots. This
is intended to reduce the problem to a simpler one.

Compute
λ3 =

(
α+ ωβ + ω2γ

)3
= α3 + β3 + γ3 + 3ωα2β + 3ω2αβ2 + 3ω2α2γ + 3ωαγ2 + 3ωβ2γ + 3ω2βγ2 + 6αβγ

= α3 + β3 + γ3 + 3ω(α2β + β2γ + γ2α) + 3ω2(αβ2 + βγ2 + α2γ) + 6αβγ

[292] Again, it is often convenient that the notion of simple group makes an exception for cyclic groups of prime order.

[293] In characteristic 3, there are no primitive cube roots of 1, and the whole setup fails. In characteristic 2, unless we

are somehow assured that the discriminant is a square in the ground field, the auxiliary quadratic which arises does

not behave the way we want.

[294] The complication that cube roots of unity are involved was disturbing, historically, since complex number were

viewed with suspicion until well into the 19th century.
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Since ω2 = −1− ω this is

α3 + β3 + γ3 + 6αβγ + 3ω(α2β + β2γ + γ2α)− 3ω(αβ2 + βγ2 + α2γ)− 3(αβ2 + βγ2 + α2γ)

In terms of the elementary symmetric polynomials

s1 = α+ βγ s2 = αβ + βγ + γα s3 = αβγ

we have
α3 + β3 + γ3 = s3

1 − 3s1s2 + 3s3

Thus,

λ3 = s3
1 − 3s1s2 + 9s3 + 3ω(α2β + β2γ + γ2α)− 3ω(αβ2 + βγ2 + α2γ)− 3(αβ2 + βγ2 + α2γ)

Neither of the two trinomials

A = α2β + β2γ + γ2α B = αβ2 + βγ2 + γα2

is invariant under all permutations of α, β, γ, but only under the subgroup generated by 3-cycles, so we cannot
use symmetric polynomial algorithm to express these two trinomials polynomially in terms of elementary
symmetric polynomials. [295]

But all is not lost, since A+B and AB are invariant under all permutations of the roots, since any 2-cycle
permutes A and B. So both A+B and AB are expressible in terms of elementary symmetric polynomials,
and then the two trinomials are the roots of

x2 − (A+B)x+AB = 0

which is solvable by radicals in characteristic not 2.

We obtain the expression for A+B in terms of elementary symmetric polynomials. Without even embarking
upon the algorithm, a reasonable guess finishes the problem:

s1s2 − 3s3 = (α+ β + γ)(αβ + βγ + γα)− 3αβγ = α2β + β2γ + γ2α+ αβ2 + βγ2 + γα2 = A+B

Determining the expression for AB is more work, but not so bad.

AB = (α2β + β2γ + γ2α) · (αβ2 + βγ2 + α2γ) = α3β3 + β3γ3 + γ3α3 + α4βγ + αβ4γ + αβγ4 + 3s2
3

We can observe that already (using an earlier calculation)

α4βγ + αβ4γ + αβγ4 = s3 · (α3 + β3 + γ3) = s3(s3
1 − 3s1s2 + 3s3)

For α3β3 + β3γ3 + γ3α3 follow the algorithm: its value at γ = 0 is α3β3 = s3
2 (with the s2 for α, β alone).

Thus, we consider
α3β3 + β3γ3 + γ3α3 − (αβ + βγ + γα)3

= −6s2
3 − 3

(
α2β3γ + α3β2γ + αβ3γ2 + αβ2γ3 + α2βγ3 + α3βγ2

)
= −6s2

3 − 3s3

(
αβ2 + α2β + β2γ + βγ2 + αγ2 + α2γ

)
= −6s2

3 − 3s3(s1s2 − 3s3)

[295] In an earlier computation regarding the special cubic x3 + x2 − 2x − 1, we could make use of the connection to

the 7th root of unity to obtain explicit expressions for α2β + β2γ + γ2α and αβ2 + βγ2 + α2γ, but for the general

cubic there are no such tricks available.
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by our computation of A+B. Together, the three parts of AB give

AB = s3(s3
1 − 3s1s2 + 3s3) +

(
s3

2 − 6s2
3 − 3s3(s1s2 − 3s3)

)
+ 3s2

3

= s3
1s3 − 3s1s2s3 + 3s2

3 + s3
2 − 6s2

3 − 3s1s2s3 + 9s2
3 + 3s2

3 = s3
1s3 − 6s1s2s3 + 9s2

3 + s3
2

That is, A and B are the two zeros of the quadratic

x2 − (s1s2 − 3s3)x+ (s3
1s3 − 6s1s2s3 + 9s2

3 + s3
2) = x2 − (−ab+ 3c)x+ (a3c− 6abc+ 9c2 + b3)

The discriminant of this monic quadratic is [296]

∆ = (linear coef)2 − 4(constant coef) = (−ab+ 3c)2 − 4(a3c− 6abc+ 9c2 + b3)

= a2b2 − 6abc+ 9c2 − 4a3c+ 24abc− 36c2 − 4b3 = a2b2 − 27c2 − 4a3c+ 18abc− 4b3

In particular, the quadratic formula [297] gives

A,B =
(ab− 3c)±

√
∆

2

Then

λ3 = s3
1 − 3s1s2 + 9s3 + 3ω(α2β + β2γ + γ2α)− 3ω(αβ2 + βγ2 + α2γ)− 3(αβ2 + βγ2 + α2γ)

= −a3 + 3bc− 9c+ 3(ω − 1)A− 3ωB

= −a3 + 3bc− 9c+ 3(ω − 1) · (ab− 3c) +
√

∆
2

− 3ω · (ab− 3c)−
√

∆
2

= −a3 + 3bc− 9c− 3
2

(ab− 3c) + (3ω − 1
2

)
√

∆

That is, now we can solve for λ by taking a cube root of the mess on the right-hand side:

λ = 3
√

(right-hand side)

The same computation works for the analogue λ′ of λ with ω replaced by the other [298] primitive cube root
of unity

λ′ = α+ ω2 · β + ω · γ

The analogous computation is much easier when ω is replaced by 1, since

α+ 1 · β + 12 · γ = s1 = −a

Thus, we have a linear system

The linear system  α+ β + γ = −a
α+ ωβ + ω2γ = λ
α+ ω2β + ωγ = λ′

[296] When the x2 coefficient a vanishes, we will recover the better-known special case that the discriminant is

−27c2 − 4b3.

[297] Which is an instance of this general approach, but for quadratics rather than cubics.

[298] In fact, there is no way to distinguish the two primitive cube roots of unity, so neither has primacy over the other.

And, still, either is the square of the other.
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has coefficients that readily allow solution, since for a primitive nth root of unity ζ the matrix

M =



1 1 1 . . . 1
1 ζ ζ2 . . . ζn−1

1 ζ2 (ζ2)2 . . . (ζ2)n−1

1 ζ3 (ζ3)2 . . . (ζ3)n−1

...
1 ζn−1 (ζn−1)2 . . . (ζn−1)n−1


has inverse

M−1 =



1 1 1 . . . 1
1 ζ−1 (ζ−1)2 . . . (ζ−1)n−1

1 ζ−2 (ζ−2)2 . . . (ζ−2)n−1

1 ζ−3 (ζ−3)2 . . . (ζ−3)n−1

...
1 ζ−n+1 (ζ−n+1)2 . . . (ζ−n+1)n−1


In the present simple case this gives the three roots [299] of the cubic as

α = −a+λ+λ′

3

β = −a+ω2λ+ωλ′

3

γ = −a+ωλ+ω2λ′

3

23.4 Worked examples

23.4.1 Example: Let k be a field of characteristic 0. Let f be an irreducible polynomial in k[x]. Prove
that f has no repeated factors, even over an algebraic closure of k.

If f has a factor P 2 where P is irreducible in k[x], then P divides gcd(f, f ′) ∈ k[x]. Since f was monic, and
since the characteristic is 0, the derivative of the highest-degree term is of the form nxn−1, and the coefficient
is non-zero. Since f ′ is not 0, the degree of gcd(f, f ′) is at most deg f ′, which is strictly less than deg f .
Since f is irreducible, this gcd in k[x] must be 1. Thus, there are polynomials a, b such that af + bf ′ = 1.
The latter identity certainly persists in K[x] for any field extension K of k. ///

23.4.2 Example: Let K be a finite extension of a field k of characteristic 0. Prove that K is separable
over k.

Since K is finite over k, there is a finite list of elements α1, . . . , αn in K such that K = k(α1, . . . , αn). From
the previous example, the minimal polynomial f of α1 over k has no repeated roots in an algebraic closure
k of k, so k(α1) is separable over k.

We recall [300] the fact that we can map k(α1) −→ k by sending α1 to any of the [k(α1) : k] = deg f distinct
roots of f(x) = 0 in k. Thus, there are [k(α1) : k] = deg f distinct distinct imbeddings of k(α1) into k, so
k(α1) is separable over k.

Next, observe that for any imbedding σ : k(α1) −→ k of k(α1) into an algebraic closure k of k, by proven
properties of k we know that k is an algebraic closure of σ(k(α1)). Further, if g(x) ∈ k(α1)[x] is the minimal

[299] Again, the seeming asymmetry among the roots is illusory. For example, since λ is a cube root of something, we

really cannot distinguish among λ, ωλ, and ω2λ. And, again, we cannot distinguish between ω and ω2.

[300] Recall the proof: Let β be a root of f(x) = 0 in k. Let ϕ : k[x] −→ k[β] by x −→ β. The kernel of ϕ is the

principal ideal generated by f(x) in k[x]. Thus, the map ϕ factors through k[x]/〈f〉 ≈ k[α1].
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polynomial of α2 over k(α1), then σ(g)(x) (applying σ to the coefficients) is the minimal polynomial of α2

over σ(k(α1)). Thus, by the same argument as in the previous paragraph we have [k(α1, α2) : k(α1)] distinct
imbeddings of k(α1, α2) into k for a given imbedding of k(α1). Then use induction. ///

23.4.3 Example: Let k be a field of characteristic p > 0. Suppose that k is perfect, meaning that for
any a ∈ k there exists b ∈ k such that bp = a. Let f(x) =

∑
i cix

i in k[x] be a polynomial such that its
(algebraic) derivative

f ′(x) =
∑
i

ci i x
i−1

is the zero polynomial. Show that there is a unique polynomial g ∈ k[x] such that f(x) = g(x)p.

For the derivative to be the 0 polynomial it must be that the characteristic p divides the exponent of every
term (with non-zero coefficient). That is, we can rewrite

f(x) =
∑
i

cip x
ip

Let bi ∈ k such that bpi = cip, using the perfectness. Since p divides all the inner binomial coefficients
p!/i!(p− i)!, (∑

i

bi x
i

)p
=
∑
i

cip x
ip

as desired. ///

23.4.4 Example: Let k be a perfect field of characteristic p > 0, and f an irreducible polynomial in
k[x]. Show that f has no repeated factors (even over an algebraic closure of k).

If f has a factor P 2 where P is irreducible in k[x], then P divides gcd(f, f ′) ∈ k[x]. If deg gcd(f, f ′) < deg f
then the irreducibility of f in k[x] implies that the gcd is 1, so no such P exists. If deg gcd(f, f ′) = deg f ,
then f ′ = 0, and (from above) there is a polynomial g(x) ∈ k[x] such that f(x) = g(x)p, contradicting the
irreducibility in k[x]. ///

23.4.5 Example: Show that all finite fields Fpn with p prime and 1 ≤ n ∈ Z are perfect.

Again because the inner binomial coefficients p!/i!(p − i)! are 0 in characteristic p, the (Frobenius) map
α −→ αp is not only (obviously) multiplicative, but also additive, so is a ring homomorphism of Fpn to
itself. Since F×pn is cyclic (of order pn), for any α ∈ Fpn (including 0)

α(pn) = α

Thus, since the map α −→ αp has the (two-sided) inverse α −→ αp
n−1

, it is a bijection. That is, everything
has a pth root. ///

23.4.6 Example: Let K be a finite extension of a finite field k. Prove that K is separable over k.

That is, we want to prove that the number of distinct imbeddings σ of K into a fixed algebraic closure k is
[K : k]. Let α ∈ K be a generator for the cyclic group K×. Then K = k(α) = k[α], since powers of α already
give every element but 0 in K. Thus, from basic field theory, the degree of the minimal polynomial f(x) of
α over k is [K : k]. The previous example shows that k is perfect, and the example before that showed that
irreducible polynomials over a perfect field have no repeated factors. Thus, f(x) has no repeated factors in
any field extension of k.

We have also already seen that for algebraic α over k, we can map k(α) to k to send α to any root β of
f(x) = 0 in k. Since f(x) has not repeated factors, there are [K : k] distinct roots β, so [K : k] distinct
imbeddings. ///

23.4.7 Example: Find all fields intermediate between Q and Q(ζ) where ζ is a primitive 17th root of
unity.
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Since 17 is prime, Gal(Q(ζ)/Q) ≈ (Z/17)× is cyclic (of order 16), and we know that a cyclic group has
a unique subgroup of each order dividing the order of the whole. Thus, there are intermediate fields
corresponding to the proper divisors 2, 4, 8 of 16. Let σa be the automorphism σaζ = ζa.

By a little trial and error, 3 is a generator for the cyclic group (Z/17)×, so σ3 is a generator for the
automorphism group. Thus, one reasonably considers

α8 = ζ + ζ32
+ ζ34

+ ζ36
+ ζ38

+ ζ310
+ ζ312

+ ζ314

α4 = ζ + ζ34
+ ζ38

+ ζ312

α2 = ζ + ζ38
= ζ + ζ−1

The αn is visibly invariant under the subgroup of (Z/17)× of order n. The linear independence of
ζ, ζ2, ζ3, . . . , ζ16 shows αn is not by accident invariant under any larger subgroup of the Galois group. Thus,
Q(αn) is (by Galois theory) the unique intermediate field of degree 16/n over Q.

We can also give other characterizations of some of these intermediate fields. First, we have already seen (in
discussion of Gauss sums) that ∑

a mod 17

( a
17

)
2
· ζa =

√
17

where
(
a
17

)
2

is the quadratic symbol. Thus,

α8 − σ3α8 =
√

17
α8 + σ3α8 = 0

so α8 and σ3α8 are ±
√

17/2. Further computation can likewise express all the intermediate fields as being
obtained by adjoining square roots to the next smaller one. ///

23.4.8 Example: Let f, g be relatively prime polynomials in n indeterminates t1, . . . , tn, with g not 0.
Suppose that the ratio f(t1, . . . , tn)/g(t1, . . . , tn) is invariant under all permutations of the ti. Show that
both f and g are polynomials in the elementary symmetric functions in the ti.

Let si be the ith elementary symmetric function in the tj ’s. Earlier we showed that k(t1, . . . , tn) has Galois
group Sn (the symmetric group on n letters) over k(s1, . . . , sn). Thus, the given ratio lies in k(s1, . . . , sn).
Thus, it is expressible as a ratio

f(t1, . . . , tn)
g(t1, . . . , tn)

=
F (s1, . . . , sn)
G(s1, . . . , sn)

of polynomials F,G in the si.

To prove the stronger result that the original f and g were themselves literally polynomials in the ti, we seem
to need the characteristic of k to be not 2, and we certainly must use the unique factorization in k[t1, . . . , tn].

Write
f(t1, . . . , tn) = pe11 . . . pemm

where the ei are positive integers and the pi are irreducibles. Similarly, write

g(t1, . . . , tn) = qf1
1 . . . qfnm

where the fi are positive integers and the qi are irreducibles. The relative primeness says that none of the
qi are associate to any of the pi. The invariance gives, for any permutation π of

π

(
pe11 . . . pemm

qf1
1 . . . qfnm

)
=
pe11 . . . pemm

qf1
1 . . . qfnm

Multiplying out, ∏
i

π(peii ) ·
∏
i

qfii =
∏
i

peii ·
∏
i

π(qfii )
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By the relative prime-ness, each pi divides some one of the π(pj). These ring automorphisms preserve
irreducibility, and gcd(a, b) = 1 implies gcd(πa, πb) = 1, so, symmetrically, the π(pj)’s divide the pi’s. And
similarly for the qi’s. That is, permuting the ti’s must permute the irreducible factors of f (up to units k×

in k[t1, . . . , tn]) among themselves, and likewise for the irreducible factors of g.

If all permutations literally permuted the irreducible factors of f (and of g), rather than merely up to units,
then f and g would be symmetric. However, at this point we can only be confident that they are permuted
up to constants.

What we have, then, is that for a permutation π

π(f) = απ · f

for some α ∈ k×. For another permutation τ , certainly τ(π(f)) = (τπ)f . And τ(απf) = απ · τ(f), since
permutations of the indeterminates have no effect on elements of k. Thus, we have

ατπ = ατ · απ

That is, π −→ απ is a group homomorphism Sn −→ k×.

It is very useful to know that the alternating group An is the commutator subgroup of Sn. Thus, if f is not
actually invariant under Sn, in any case the group homomorphism Sn −→ k× factors through the quotient
Sn/An, so is the sign function π −→ σ(π) that is +1 for π ∈ An and −1 otherwise. That is, f is equivariant
under Sn by the sign function, in the sense that πf = σ(π) · f .

Now we claim that if πf = σ(π) · f then the square root

δ =
√

∆ =
∏
i<j

(ti − tj)

of the discriminant ∆ divides f . To see this, let sij be the 2-cycle which interchanges ti and tj , for i 6= j.
Then

sijf = −f

Under any homomorphism which sends ti − tj to 0, since the characteristic is not 2, f is sent to 0. That is,
ti − tj divides f in k[t1, . . . , tn]. By unique factorization, since no two of the monomials ti − tj are associate
(for distinct pairs i < j), we see that the square root δ of the discriminant must divide f .

That is, for f with πf = σ(π) · f we know that δ|f . For f/g to be invariant under Sn, it must be that also
πg = σ(π) · g. But then δ|g also, contradicting the assumed relative primeness. Thus, in fact, it must have
been that both f and g were invariant under Sn, not merely equivariant by the sign function. ///

Exercises

23.1 Let k be a field. Let α1, . . . , αn be distinct elements of k×. Suppose that c1, . . . , cn in k are such
that for all positive integers ` ∑

i

ci α
`
i = 0

Show that all the ci are 0.

23.2 Solve the cubic x3 + ax+ b = 0 in terms of radicals.

23.3 Express a primitive 11th root of unity in terms of radicals.

23.4 Solve x4 + ax+ b = 0 in terms of radicals.
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24. Eigenvectors, Spectral Theorems

24.1 Eigenvectors, eigenvalues
24.2 Diagonalizability, semi-simplicity
24.3 Commuting operators ST = TS
24.4 Inner product spaces
24.5 Projections without coordinates
24.6 Unitary operators
24.7 Spectral theorems
24.8 Worked examples

24.1 Eigenvectors, eigenvalues
Let k be a field, not necessarily algebraically closed.

Let T be a k-linear endomorphism of a k-vectorspace V to itself, meaning, as usual, that

T (v + w) = Tv + TW and T (cv) = c · Tv

for v, w ∈ V and c ∈ k. The collection of all such T is denoted Endk(V ), and is a vector space over k with
the natural operations

(S + T )(v) = Sv + Tv (cT )(v) = c · Tv

A vector v ∈ V is an eigenvector for T with eigenvalue c ∈ k if

T (v) = c · v

or, equivalently, if
(T − c · idV ) v = 0

A vector v is a generalized eigenvector of T with eigenvalue c ∈ k if, for some integer ` ≥ 1

(T − c · idV )` v = 0
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We will often suppress the idV notation for the identity map on V , and just write c for the scalar operator
c · idV . The collection of all λ-eigenvectors for T is the λ-eigenspace for T on V , and the collection of all
generalized λ-eigenvectors for T is the generalized λ-eigenspace for T on V .

24.1.1 Proposition: Let T ∈ Endk(V ). For fixed λ ∈ k the λ-eigenspace is a vector subspace of V .
The generalized λ-eigenspace is also a vector subspace of V . And both the λ-eigenspace and the generalized
one are stable under the action of T .

Proof: This is just the linearity of T , hence, of T − λ. Indeed, for v, w λ-eigenvectors, and for c ∈ k,

T (v + w) = Tv + TW = λv + λw = λ(v + w) and T (cv) = c · Tv = c · λv = lam · cv

If (T − λ)mv = 0 and (T − λ)nw = 0, let N = max(m,n). Then

(T − λ)N (v + w) = (T − λ)Nv + (T − λ)Nw = (T − λ)N−m(T − λ)mv + (T − λ)N−n(T − λ)nw

= (T − λ)N−m0 + (T − λ)N−n0 = 0

Similarly, generalized eigenspaces are stable under scalar multiplication.

Since the operator T commutes with any polynomial in T , we can compute, for (T − λ)nv = 0,

(T − λ)n(Tv) = T · (T − λ)n(v) = T (0) = 0

which proves the stability. ///

24.1.2 Proposition: Let T ∈ Endk(V ) and let v1, . . . , vm be eigenvectors for T , with distinct respective
eigenvalues λ1, . . . , λm in k. Then for scalars ci

c1v1 + . . .+ cmvm = 0 =⇒ all ci = 0

That is, eigenvectors for distinct eigenvalues are linearly independent.

Proof: Suppose that the given relation is the shortest such with all ci 6= 0. Then apply T − λ1 to the
relation, to obtain

0 + (λ2 − λ1)c2v2 . . .+ (λm − λ1)cmvm = 0 =⇒ all ci = 0

For i > 1 the scalars λi − λ1 are not 0, and (λi − λ1)vi is again a non-zero λi-eigenvector for T . This
contradicts the assumption that the relation was the shortest. ///

So far no use was made of finite-dimensionality, and, indeed, all the above arguments are correct without
assuming finite-dimensionality. Now, however, we need to assume finite-dimensionality. In particular,

24.1.3 Proposition: Let V be a finite-dimensional vector space over k. Then

dimk Endk(V ) = (dimk V )2

In particular, Endk(V ) is finite-dimensional.

Proof: An endomorphism T is completely determined by where it sends all the elements of a basis v1, . . . , vn
of V , and each vi can be sent to any vector in V . In particular, let Eij be the endomorphism sending vi to
vj and sending v` to 0 for ` 6= i. We claim that these endomorphisms are a k-basis for Endk(V ). First, they
span, since any endomorphism T is expressible as

T =
∑
ij

cijEij

where the cij ∈ k are determined by the images of the given basis

T (vi) =
∑
j

cijvj
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On the other hand, suppose for some coefficients cij∑
ij

cij Eij = 0 ∈ Endk(V )

Applying this endomorphism to vi gives ∑
j

cijvj = 0 ∈ V

Since the vj are linearly independent, this implies that all cij are 0. Thus, the Eij are a basis for the space
of endomorphisms, and we have the dimension count. ///

For V finite-dimensional, the homomorphism

k[x] −→ k[T ] ⊂ Endk(V ) by x −→ T

from the polynomial ring k[x] to the ring k[T ] of polynomials in T must have a non-trivial kernel, since k[x]
is infinite-dimensional and k[T ] is finite-dimensional. The minimal polynomial f(x) ∈ k[x] of T is the
(unique) monic generator of that kernel.

24.1.4 Proposition: The eigenvalues of a k-linear endomorphism T are exactly the zeros of its minimal
polynomial. [301]

Proof: Let f(x) be the minimal polynomial. First, suppose that x − λ divides f(x) for some λ ∈ k, and
put g(x) = f(x)/(x − λ). Since g(x) is not divisible by the minimal polynomial, there is v ∈ V such that
g(T )v 6= 0. Then

(T − λ) · g(T )v = f(T ) · v = 0

so g(T )v is a (non-zero) λ-eigenvector of T . On the other hand, suppose that λ is an eigenvalue, and let v
be a non-zero λ-eigenvector for T . If x − λ failed to divide f(x), then the gcd of x − λ and f(x) is 1, and
there are polynomials a(x) and b(x) such that

1 = a · (x− λ) + b · f

Mapping x −→ T gives
idV = a(T )(T − λ) + 0

Applying this to v gives
v = a(T )(T − λ)(v) = a(T ) · 0 = 0

which contradicts v 6= 0. ///

24.1.5 Corollary: Let k be algebraically closed, and V a finite-dimensional vector space over k. Then
there is at least one eigenvalue and (non-zero) eigenvector for any T ∈ Endk(V ).

Proof: The minimal polynomial has at least one linear factor over an algebraically closed field, so by the
previous proposition has at least one eigenvector. ///

24.1.6 Remark: The Cayley-Hamilton theorem [302] is often invoked to deduce the existence of at least
one eigenvector, but the last corollary shows that this is not necessary.

[301] This does not presume that k is algebraically closed.

[302] The Cayley-Hamilton theorem, which we will prove later, asserts that the minimal polynomial of an endomorphism

T divides the characteristic polynomial det(T − x · idV ) of T , where det is determinant. But this invocation is

unnecessary and misleading. Further, it is easy to give false proofs of this result. Indeed, it seems that Cayley and

Hamilton only proved the two-dimensional and perhaps three-dimensional cases.
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24.2 Diagonalizability, semi-simplicity

A linear operator T ∈ Endk(V ) on a finite-dimensional vectorspace V over a field k is diagonalizable[303] if
V has a basis consisting of eigenvectors of T . Equivalently, T may be said to be semi-simple, or sometimes
V itself, as a k[T ] or k[x] module, is said to be semi-simple.

Diagonalizable operators are good, because their effect on arbitrary vectors can be very clearly described
as a superposition of scalar multiplications in an obvious manner, namely, letting v1, . . . , vn be eigenvectors
with eigenvalues λ1, . . . , λn, if we manage to express a given vector v as a linear combination [304]

v = c1v1 + . . .+ cnvn

of the eigenvectors vi, with ci ∈ k, then we can completely describe the effect of T , or even iterates T `, on
v, by

T `v = λ`1 · c1v1 + . . .+ λ`n · cnvn

24.2.1 Remark: Even over an algebraically closed field k, an endomorphism T of a finite-dimensional
vector space may fail to be diagonalizable by having non-trivial Jordan blocks, meaning that some one of
its elementary divisors has a repeated factor. When k is not necessarily algebraically closed, T may fail to
be diagonalizable by having one (hence, at least two) of the zeros of its minimal polynomial lie in a proper
field extension of k. For not finite-dimensional V , there are further ways that an endomorphism may fail to
be diagonalizable. For example, on the space V of two-sided sequences a = (. . . , a−1, a0, a1, . . .) with entries
in k, the operator T given by

ith component (Ta)i of Ta = (i− 1)th component ai of a

24.2.2 Proposition: An operator T ∈ Endk(V ) with V finite-dimensional over the field k is
diagonalizable if and only if the minimal polynomial f(x) of T factors into linear factors in k[x] and has no
repeated factors. Further, letting Vλ be the λ-eigenspace, diagonalizability is equivalent to

V =
∑

eigenvalues λ

Vλ

Proof: Suppose that f factors into linear factors

f(x) = (x− λ1)(x− λ2) . . . (x− λn)

in k[x] and no factor is repeated. We already saw, above, that the zeros of the minimal polynomial are
exactly the eigenvalues, whether or not the polynomial factors into linear factors. What remains is to show
that there is a basis of eigenvectors if f(x) factors completely into linear factors, and conversely.

First, suppose that there is a basis v1, . . . , vn of eigenvectors, with eigenvalues λ1, . . . , λn. Let Λ be the set
[305] of eigenvalues, specifically not attempting to count repeated eigenvalues more than once. Again, we

[303] Of course, in coordinates, diagonalizability means that a matrix M giving the endomorphism T can be literally

diagonalized by conjugating it by some invertible A, giving diagonal AMA−1. This conjugation amounts to changing

coordinates.

[304] The computational problem of expressing a given vector as a linear combination of eigenvectors is not trivial, but

is reasonably addressed via Gaussian elimination.

[305] Strictly speaking, a set cannot possibly keep track of repeat occurrences, since {a, a, b} = {a, b}, and so on.

However, in practice, the notion of set often is corrupted to mean to keep track of repeats. More correctly, a notion of

set enhanced to keep track of number of repeats is a multi-set. Precisely, a mult-set M is a set S with a non-negative

integer-valued function m on S, where the intent is that m(s) (for s ∈ S) is the number of times s occurs in M ,

and is called the multiplicity of s in M . The question of whether or not the multiplicity can be 0 is a matter of

convention and/or taste.
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already know that all these eigenvalues do occur among the zeros of the minimal polynomial (not counting
multiplicities!), and that all zeros of the minimal polynomial are eigenvalues. Let

g(x) =
∏
λ∈Λ

(x− λ)

Since every eigenvalue is a zero of f(x), g(x) divides f(x). And g(T ) annihilates every eigenvector, and since
the eigenvectors span V the endomorphism g(T ) is 0. Thus, by definition of the minimal polynomial, f(x)
divides g(x). They are both monic, so are equal.

Conversely, suppose that the minimal polynomial f(x) factors as

f(x) = (x− λ1) . . . (x− λn)

with distinct λi. Again, we have already shown that each λi is an eigenvalue. Let Vλ be the λ-eigenspace.
Let {vλ,1, . . . , vlam,dλ} be a basis for Vλ. We claim that the union

{vλ,i : λ an eigenvalue , 1 ≤ i ≤ dλ}

of bases for all the (non-trivial) eigenspaces Vλ is a basis for V . We have seen that eigenvectors for distinct
eigenvalues are linearly independent, so we need only prove∑

λ

Vλ = V

where the sum is over (distinct) eigenvalues. Let fλ(x) = f(x)/(x− λ). Since each linear factor occurs only
once in f , the gcd of the collection of fλ(x) in k[x] is 1. Therefore, there are polynomials aλ(x) such that

1 = gcd({fλ : λ an eigenvector}) =
∑
λ

aλ(x) · fλ(x)

Then for any v ∈ V
v = idV (v) =

∑
λ

aλ(T ) · fλ(T )(v)

Since
(T − λ) · fλ(T ) = f(T ) = 0 ∈ Endk(V )

for each eigenvalue λ
fλ(T )(V ) ⊂ Vλ

Thus, in the expression
v = idV (v) =

∑
λ

aλ(T ) · fλ(T )(v)

each fλ(T )(v) is in Vλ. Further, since T and any polynomial in T stabilizes each eigenspace, aλ(T )fλ(T )(v)
is in Vλ. Thus, this sum exhibits an arbitrary v as a sum of elements of the eigenspaces, so these eigenspaces
do span the whole space.

Finally, suppose that
V =

∑
eigenvalues λ

Vλ

Then
∏
λ(T − λ) (product over distinct λ) annihilates the whole space V , so the minimal polynomial of T

factors into distinct linear factors. ///

An endomorphism P is a projector or projection if it is idempotent, that is, if

P 2 = P
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The complementary or dual idempotent is

1− P = idV − P

Note that
(1− P )P = P (1− P ) = P − P 2 = 0 ∈ Endl(V )

Two idempotents P,Q are orthogonal if

PQ = QP = 0 ∈ Endk(V )

If we have in mind an endomorphism T , we will usually care only about projectors P commuting with T ,
that is, with PT = TP .

24.2.3 Proposition: Let T be a k-linear operator on a finite-dimensional k-vectorspace V . Let λ be
an eigenvalue of T , with eigenspace Vλ, and suppose that the factor x − λ occurs with multiplicity one in
the minimal polynomial f(x) of T . Then there is a polynomial a(x) such that a(T ) is a projector commuting
with T , and is the identity map on the λ-eigenspace.

Proof: Let g(x) = f(x)/(x− λ). The multiplicity assumption assures us that x− λ and g(x) are relatively
prime, so there are a(x) and b(x) such that

1 = a(x)g(x) + b(x)(x− λ)

or
1− b(x)(x− λ) = a(x)g(x)

As in the previous proof, (x− λ)g(x) = f(x), so (T − λ)g(T ) = 0, and g(T )(V ) ⊂ Vλ. And, further, because
T and polynomials in T stabilize eigenspaces, a(T )g(T )(V ) ⊂ Vλ. And

[a(T )g(T )]2 = a(T )g(T ) · [1− b(T )(T − λ)] = a(T )g(T )− 0 = a(T )g(T )

since g(T )(T − λ) = f(T ) = 0. That is,
P = a(T )g(T )·

is the desired projector to the λ-eigenspace. ///

24.2.4 Remark: The condition that the projector commute with T is non-trivial, and without it there
are many projectors that will not be what we want.

24.3 Commuting endomorphisms ST = TS
Two endomorphisms S, T ∈ Endk(V ) are said to commute (with each other) if

ST = TS

This hypothesis allows us to reach some worthwhile conclusions about eigenvectors of the two separately,
and jointly. Operators which do not commute are much more complicated to consider from the viewpoint
of eigenvectors. [306]

24.3.1 Proposition: Let S, T be commuting endomorphisms of V . Then S stabilizes every eigenspace
of T .

[306] Indeed, to study non-commutative collections of operators the notion of eigenvector becomes much less relevant.

Instead, a more complicated (and/but more interesting) notion of irreducible subspace is the proper generalization.
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Proof: Let v be a λ-eigenvector of T . Then

T (Sv) = (TS)v = (ST )v = S(Tv) = S(λv) = λ · Sv

as desired. ///

24.3.2 Proposition: Commuting diagonalizable endomorphisms S and T on V are simultaneously
diagonalizable, in the sense that there is a basis consisting of vectors which are simultaneously eigenvectors
for both S and T .

Proof: Since T is diagonalizable, from above V decomposes as

V =
∑

eigenvalues λ

Vλ

where Vλ is the λ-eigenspace of T on V . From the previous proposition, S stabilizes each Vλ.

Let’s (re) prove that for S diagonalizable on a vector space V , that S is diagonalizable on any S-stable
subspace W . Let g(x) be the minimal polynomial of S on V . Since W is S-stable, it makes sense to speak
of the minimal polynomial h(x) of S on W . Since g(S) annihilates V , it certainly annihilates W . Thus, g(x)
is a polynomial multiple of h(x), since the latter is the unique monic generator for the ideal of polynomials
P (x) such that P (S)(W ) = 0. We proved in the previous section that the diagonalizability of S on V implies
that g(x) factors into linear factors in k[x] and no factor is repeated. Since h(x) divides g(x), the same is
true of h(x). We saw in the last section that this implies that S on W is diagonalizable.

In particular, Vλ has a basis of eigenvectors for S. These are all λ-eigenvectors for T , so are indeed
simultaneous eigenvectors for the two endomorphisms. ///

24.4 Inner product spaces
Now take the field k to be either R or C. We use the positivity property of R that for r1, . . . , rn ∈ R

r2
1 + . . .+ r2

n = 0 =⇒ all ri = 0

The norm-squared of a complex number α = a+ bi (with a, b ∈ R) is

|α|2 = α · α = a2 + b2

where a+ bi = a − bi is the usual complex conjugative. The positivity property in R thus implies an
analogous one for α1, . . . , αn, namely

|α1|2 + . . .+ |αn|2 = 0 =⇒ all αi = 0

24.4.1 Remark: In the following, for scalars k = C we will need to refer to the complex conjugation on
it. But when k is R the conjugation is trivial. To include both cases at once we will systematically refer to
conjugation, with the reasonable convention that for k = R this is the do-nothing operation.

Given a k-vectorspace V , an inner product or scalar product or dot product or hermitian product
(the latter especially if the set k of scalars is C) is a k-valued function

〈, 〉 : V × V −→ k

written
v × w −→ 〈v, w〉
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which meets several conditions. First, a mild condition that 〈, 〉 be k-linear in the first argument and
k-conjugate-linear in the second, meaning that 〈, 〉 is additive in both arguments:

〈v + v′, w + w′〉 = 〈v, w〉+ 〈v′, w〉+ 〈v, w′〉+ 〈v′, w′〉

and scalars behave as
〈αv, βw〉 = αβ 〈v, w〉

The inner product is hermitian in the sense that

〈v, w〉 = 〈w, v〉

Thus, for ground field k either R or C,
〈v, v〉 = 〈v, v〉

so 〈v, v〉 ∈ R.

The most serious condition on 〈, 〉 is positive-definiteness, which is that

〈v, v〉 ≥ 0 with equality only for v = 0

Two vectors v, w are orthogonal or perpendicular if

〈v, w〉 = 0

We may write v ⊥ w for the latter condition. There is an associated norm

|v| = 〈v, v〉1/2

and metric
d(v, w) = |v − w|

A vector space basis e1, e2, . . . , en of V is an orthonormal basis for V if

〈ei, ej〉 =

 1 (for i = j)
1 (for i = j)
0 (for i 6= j)

24.4.2 Proposition: (Gram-Schmidt process) Given a basis v1, v2, . . . , vn of a finite-dimensional inner
product space V , let

e1 = v1
|v1|

v′2 = v2 − 〈v2, e1〉e1 and e2 = v′2
|v′2|

v′3 = v3 − 〈v3, e1〉e1 − 〈v3, e2〉e2 and e3 = v′3
|v′3|

. . .
v′i = vi −

∑
j<i〈vi, ej〉ej and ei = v′i

|v′i|
. . .

Then e1, . . . , en is an orthonormal basis for V .

24.4.3 Remark: One could also give a more existential proof that orthonormal bases exist, but the
conversion of arbitrary basis to an orthonormal one is of additional interest.

Proof: Use induction. Note that for any vector e of length 1

〈v − 〈v, e〉e, e〉 = 〈v, e〉 − 〈v, e〉〈e, e〉 = 〈v, e〉 − 〈v, e〉 · 1 = 0
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Thus, for ` < i,

〈v′i, e`〉 = 〈vi −
∑
j<i

〈vi, ej〉ej , e`〉 = 〈vi, e`〉 − 〈〈vi, e`〉e`, e`〉 −
∑

j<i, j 6=`

〈〈vi, ej〉ej , e`〉

= 〈vi, e`〉 − 〈vi, e`〉〈e`, e`〉 −
∑

j<i, j 6=`

〈vi, ej〉〈ej , e`〉 = 〈vi, e`〉 − 〈vi, e`〉 − 0 = 0

since the ej ’s are (by induction) mutually orthogonal and have length 1. One reasonable worry is that v′i is
0. But by induction e1, e2, . . . , ei−1 is a basis for the subspace of V for which v1, . . . , vi−1 is a basis. Thus,
since vi is linearly independent of v1, . . . , vi−1 it is also independent of e1, . . . , ei−1, so the expression

v′i = vi + (linear combination of e1, . . . , ei−1)

cannot give 0. Further, that expression gives the induction step proving that the span of e1, . . . , ei is the
same as that of v1, . . . , vi. ///

Let W be a subspace of a finite-dimensional k-vectorspace (k is R or C) with a (positive-definite) inner
product 〈, 〉. The orthogonal complement W> is

W> = {v ∈ V : 〈v, w〉 = 0 for all w ∈W}

It is easy to check that the orthogonal complement is a vector subspace.

24.4.4 Theorem: In finite-dimensional vector spaces V , for subspaces W [307]

W⊥
⊥

= W

In particular, for any W
dimkW + dimkW

⊥ = dimk V

Indeed,
V = W ⊕W⊥

There is a unique projector P which is an orthogonal projector to W in the sense that on P is the identity
on W and is 0 on W⊥.

Proof: First, we verify some relatively easy parts. For v ∈ W ∩W⊥ we have 0 = 〈v, v〉, so v = 0 by the
positive-definiteness. Next, for w ∈W and v ∈W⊥,

0 = 〈w, v〉 = 〈v, w〉 = 0

which proves this inclusion W ⊂W⊥⊥.

Next, suppose that for a given v ∈ V there were two expressions

v = w + w′ = u+ u′

with w, u ∈W and w′, u′ ∈W⊥. Then

W 3 w − u = u′ − w′ ∈W⊥

Since W ∩W⊥ = 0, it must be that w = u and w′ = u′, which gives the uniqueness of such an expression
(assuming existence).

[307] In infinite-dimensional inner-product spaces, the orthogonal complement of the orthogonal complement is the

topological closure of the original subspace.
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Let e1, . . . , em be an orthogonal basis for W . Given v ∈ V , let

x =
∑

1≤i≤m

〈v, ei〉 ei

and
y = v − x

Since it is a linear combination of the ei, certainly x ∈W . By design, y ∈W⊥, since for any e`

〈y, w〉 = 〈v −
∑

1≤i≤m

〈v, ei〉 ei, e`〉 = 〈v, e`〉 −
∑

1≤i≤m

〈v, ei〉 〈ei, e`〉 = 〈v, e`〉 − 〈v, e`〉

since the ei are an orthonormal basis for W . This expresses

v = x+ y

as a linear combination of elements of W and W⊥.

Since the map v −→ x is expressible in terms of the inner product, as just above, this is the desired projector
to W . By the uniqueness of the decomposition into W and W⊥ components, the projector is orthogonal, as
desired. ///

24.4.5 Corollary: [308] Suppose that a finite-dimensional vector space V has an inner product 〈, 〉. To
every k-linear map L : V −→ k is attached a unique w ∈ V such that for all v ∈ V

Lv = 〈v, w〉

24.4.6 Remark: The k-linear maps of a k-vectorspace V to k itself are called linear functionals on
V .

Proof: If L is the 0 map, just take w = 0. Otherwise, since

dimk kerL = dimk V − dimk ImL = dimk V − dimk k = dimk V − 1

Take a vector e of length 1 in the orthogonal complement [309] (kerL)⊥. For arbitrary v ∈ V

v − 〈v, e〉e ∈ kerL

Thus,
L(v) = L(v − 〈v, e〉 e) + L(〈v, e〉 e) = 0 + 〈v, e〉L(e) = 〈v, L(e)e〉

That is, w = L(e)e is the desired element of V . ///

The adjoint T ∗ of T ∈ Endk(V ) with respect to an inner product 〈, 〉 is another linear operator in Endk(V )
such that, for all v, w ∈ V ,

〈Tv,w〉 = 〈v, T ∗w〉

[308] This is a very simple case of the Riesz-Fischer theorem, which asserts the analogue for Hilbert spaces, which are

the proper infinite-dimensional version of inner-product spaces. In particular, Hilbert spaces are required, in addition

to the properties mentioned here, to be complete with respect to the metric d(x, y) = |x− y| coming from the inner

product. This completeness is automatic for finite-dimensional inner product spaces.

[309] Knowing that the orthogonal complement exists is a crucial point, and that fact contains more information than

is immediately apparent.
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24.4.7 Proposition: Adjoint operators (on finite-dimensional inner product spaces) exist and are
unique.

Proof: Let T be a linear endomorphism of V . Given x ∈ V , the map v −→ 〈Tv, x〉 is a linear map to k.
Thus, by the previous corollary, there is a unique y ∈ V such that for all v ∈ V

〈Tv, x〉 = 〈v, y〉

We want to define T ∗x = y. This is well-defined as a function, but we need to prove linearity, which, happily,
is not difficult. Indeed, let x, x′ ∈ V and let y, y′ be attached to them as just above. Then

〈Tv, x+ x′〉 = 〈Tv, x〉+ 〈Tv, x〉 = 〈v, y〉+ 〈v, y′〉 = 〈v, y + y′〉

proving the additivity T ∗(x+ x′) = T ∗ x+ T ∗x′. Similarly, for c ∈ k,

〈Tv, cx〉 = c〈Tv, x〉 = c〈v, y〉 = 〈v, cy〉

proving the linearity of T ∗. ///

Note that the direct computation

〈T ∗ v, w〉 = 〈w, T ∗ v〉 = 〈Tw, v〉 = 〈v, Tw, v〉

shows that, unsurprisingly,
(T ∗)∗ = T

A linear operator T on an inner product space V is normal [310] if it commutes with its adjoint, that is, if

TT ∗ = T ∗T

An operator T is self-adjoint or hermitian if it is equal to its adjoint, that is, if

T = T ∗

An operator T on an inner product space V is unitary if [311]

T ∗T = idV

Since we are discussing finite-dimensional V , this implies that the kernel of T is trivial, and thus T is
invertible, since (as we saw much earlier)

dim kerT + dim ImT = dimV

24.4.8 Proposition: Eigenvalues of self-adjoint operators T on an inner product space V are real.

Proof: Let v be a (non-zero) eigenvector for T , with eigenvalue λ. Then

λ〈v, v〉 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, T ∗v〉 = 〈v, Tv〉 = 〈v, λv〉 = λ〈v, v〉

Since 〈v, v〉 6= 0, this implies that λ = λ. ///

[310] Yet another oh-so-standard but unhelpful use of this adjective.

[311] For infinite-dimensional spaces this definition of unitary is insufficient. Invertibility must be explicitly required,

one way or another.
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24.5 Projections without coordinates
There is another construction of orthogonal projections and orthogonal complements which is less coordinate-
dependent, and which applies to infinite-dimensional [312] inner-product spaces as well. Specifically, using
the metric

d(x, y) = |x− y| = 〈x− y, x− y〉1/2

the orthogonal projection of a vector x to the subspace W is the vector in W closest to x.

To prove this, first observe the polarization identity

|x+ y|2 + |x− y|2 = |x|2 + 〈x, y〉+ 〈y, x〉+ |y|2 + |x|2 − 〈x, y〉 − 〈y, x〉+ |y|2 = 2|x|2 + 2|y|2

Fix x not in W , and let u, v be in W such that |x − u|2 and |x − v|2 are within ε > 0 of the infimum µ of
all values |x− w|2 for w ∈W . Then an application of the previous identity gives

|(x− u) + (x− v)|2 + |(x− u)− (x− v)|2 = 2|x− u|2 + 2|x− v|2

so
|u− v|2 = 2|x− u|2 + 2|x− v|2 − |(x− u) + (x− v)|2

The further small trick is to notice that

(x− u) + (x− v) = 2 · (x− u+ v

2
)

which is again of the form x− w′ for w′ ∈W . Thus,

|u− v|2 = 2|x− u|2 + 2|x− v|2 − 4|x− u+ v

2
|2 < 2(µ+ ε) + 2(µ+ ε)− 4µ = 4ε

That is, we can make a Cauchy sequence from the u, v.

Granting that Cauchy sequences converge, this proves existence of a closest point of W to x, as well as the
uniqueness of the closest point. ///

From this viewpoint, the orthogonal complement W⊥ to W can be defined to be the collection of vectors
x in V such that the orthogonal projection of x to W is 0.

24.6 Unitary operators
It is worthwhile to look at different ways of characterizing and constructing unitary operators on a finite-
dimensional complex vector space V with a hermitian inner product 〈, 〉. These equivalent conditions are
easy to verify once stated, but it would be unfortunate to overlook them, so we make them explicit. Again,
the definition of the unitariness of T : V −→ V for finite-dimensional [313] V is that T ∗T = idV .

24.6.1 Proposition: For V finite-dimensional [314] T ∈ EndC(V ) is unitary if and only if TT ∗ = idV .
Unitary operators on finite-dimensional spaces are necessarily invertible.

[312] Precisely, this argument applies to arbitrary inner product spaces that are complete in the metric sense, namely,

that Cauchy sequences converge in the metric naturally attached to the inner product, namely d(x, y) = |x − y| =

〈x− y, x− y〉1/2.

[313] For infinite-dimensional V one must also explicitly require that T be invertible to have the best version of

unitariness. In the finite-dimensional case the first proposition incidentally shows that invertibility is automatic.

[314] Without finite-dimensionality this assertion is generally false.
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Proof: The condition T ∗T = idV implies that T is injective (since it has a left inverse), and since V is
finite-dimensional T is also surjective, so is an isomorphism. Thus, its left inverse T ∗ is also its right inverse,
by uniqueness of inverses. ///

24.6.2 Proposition: For V finite-dimensional with hermitian inner product 〈, 〉 an operator T ∈
EndC(V ) is unitary if and only if

〈Tu, Tv〉 = 〈u, v〉

for all u, v ∈ V .

Proof: If T ∗T = idV , then by definition of adjoint

〈Tu, Tv〉 = 〈T ∗Tu, v〉 = 〈idV u, v〉 = 〈u, v〉

On the other hand, if
〈Tu, Tv〉 = 〈u, v〉

then
0 = 〈T ∗Tu, v〉 − 〈u, v〉 = 〈(T ∗T − idV )u, v〉

Take v = (T ∗T − idV )u and invoke the positivity of 〈, 〉 to conclude that (T ∗T − idV )u = 0 for all u. Thus,
as an endomorphism, T ∗T − idV = 0, and T is unitary. ///

24.6.3 Proposition: For a unitary operator T ∈ EndC(V ) on a finite-dimensional V with hermitian
inner product 〈, 〉, and for given orthonormal basis {fi} for V , the set {Tfi} is also an orthonormal basis.
Conversely, given two ordered orthonormal bases e1, . . . , en and f1, . . . , fn for V , the uniquely determined
endomorphism T such that Tei = fi is unitary.

Proof: The first part is immediate. For an orthonormal basis {ei} and unitary T ,

〈Tei, T ej〉 = 〈ei, ej〉

so the images Tei make up an orthonormal basis.

The other part is still easy, but requires a small computation whose idea is important. First, since ei form
a basis, there is a unique linear endomorphism T sending ei to any particular chosen ordered list of targets.
To prove the unitariness of this T we use the criterion of the previous proposition. Let u =

∑
i aiei and

v =
∑
j bjej with ai and bj in C. Then, on one hand,

〈Tu, Tv〉 =
∑
ij

aibj 〈Tei, T ej〉 =
∑
i

aibi

by the hermitian-ness of 〈, 〉 and by the linearity of T . On the other hand, a very similar computation gives

〈u, v〉 =
∑
ij

aibj 〈Tei, T ej〉 =
∑
i

aibi

Thus, T preserves inner products, so is unitary. ///

24.7 Spectral theorems

The spectral theorem [315] for normal operators subsumes the spectral theorem for self-adjoint operators,
but the proof in the self-adjoint case is so easy to understand that we give this proof separately. Further,

[315] The use of the word spectrum is a reference to wave phenomena, and the idea that a complicated wave is a

superposition of simpler ones.



Garrett: Abstract Algebra 317

many of the applications to matrices use only the self-adjoint case, so understanding this is sufficient for
many purposes.

24.7.1 Theorem: Let T be a self-adjoint operator on a finite-dimensional complex vectorspace V with
a (hermitian) inner product 〈, 〉. Then there is an orthonormal basis {ei} for V consisting of eigenvectors for
T .

Proof: To prove the theorem, we need

24.7.2 Proposition: Let W be a T -stable subspace of V , with T = T ∗. Then the orthogonal
complement W⊥ is also T -stable.

Proof: (of proposition) Let v ∈W⊥, and w ∈W . Then

〈Tv,w〉 = 〈v, T ∗w〉 = 〈v, Tw〉 = 0

since Tw ∈W . ///

To prove the theorem, we do an induction on the dimension of V . Let v 6= 0 be any vector of length 1 which
is an eigenvector for T . We know that T has eigenvectors simply because C is algebraically closed (so the
minimal polynomial of T factors into linear factors) and V is finite-dimensional. Thus, C ·v is T -stable, and,
by the proposition just proved, the orthogonal complement (C · v)⊥ is also T -stable. With the restriction
of the inner product to (C · v)⊥ the restriction of T is still self-adjoint, so by induction on dimension we’re
done. ///

Now we give the more general, and somewhat more complicated, argument for normal operators. This does
include the previous case, as well as the case of unitary operators.

24.7.3 Theorem: Let T be a normal operator on a finite-dimensional complex vectorspace V with a
(hermitian) inner product 〈, 〉. Then there is an orthonormal basis {ei} for V consisting of eigenvectors for
T .

Proof: First prove

24.7.4 Proposition: Let T be an operator on V , and W a T -stable subspace. Then the orthogonal
complement W⊥ of W is T ∗-stable. [316]

Proof: (of proposition) Let v ∈W⊥, and w ∈W . Then

〈T ∗v, w〉 = 〈v, Tw〉 = 0

since Tw ∈W . ///

The proof of the theorem is by induction on the dimension of V . Let λ be an eigenvalue of T , and Vλ
the λ-eigenspace of T on V . The assumption of normality is that T and T ∗ commute, so, from the general
discussion of commuting operators, T ∗ stabilizes Vλ. Then, by the proposition just proved, T = T ∗∗ stabilizes
V ⊥λ . By induction on dimension, we’re done. ///

24.8 Corollaries of the spectral theorem
These corollaries do not mention a spectral theorem directly, and to the untutored would not suggest that
the spectral theorem plays a role.

[316] Indeed, this is the natural extension of the analogous proposition in the theorem for hermitian operators.



318 Eigenvectors, Spectral Theorems

24.8.1 Corollary: Let T be a self-adjoint operator on a finite-dimensional complex vectorspace V with
inner product 〈, 〉. Let {ei} be an orthonormal basis for V . Then there is a unitary operator k on V (that
is, 〈kv, kw〉 = 〈v, w〉 for all v, w ∈ V ) such that

{kei} is an orthonormal basis of T -eigenvectors

Proof: Let {fi} be an orthonormal basis of T -eigenvectors, whose existence is assured by the spectral
theorem. Let k be a linear endomorphism mapping ei −→ fi for all indices i. We claim that k is unitary.
Indeed, letting v =

∑
i aiei and w =

∑
j bjej ,

〈kv, kw〉 =
∑
ij

aibj 〈kei, kej〉 =
∑
ij

aibj 〈fi, fj〉 =
∑
ij

aibj〈ei, ej〉 = 〈v, w〉

///

A self-adjoint operator T on a finite-dimensional complex vectorspace V with hermitian inner product is
positive definite if

〈Tv, v〉 ≥ 0 with equality only for v = 0

The operator T is positive semi-definite if

〈Tv, v〉 ≥ 0

(that is, equality may occur for non-zero vectors v).

24.8.2 Proposition: The eigenvalues of a positive definite operator T are positive real numbers. When
T is merely positive semi-definite, the eigenvalues are non-negative.

Proof: We already showed that the eigenvalues of a self-adjoint operator are real. Let v be a non-zero
λ-eigenvector for T . Then

λ〈v, v〉 = 〈Tv, v〉 > 0

by the positive definiteness. Since 〈v, v〉 > 0, necessarily λ > 0. When T is merely semi-definite, we get only
λ ≥ 0 by this argument. ///

24.8.3 Corollary: Let T = T ∗ be positive semi-definite. Then T has a positive semi-definite square
root S, that is, S is self-adjoint, positive semi-definite, and

S2 = T

If T is positive definite, then S is positive definite.

Proof: Invoking the spectral theorem, there is an orthonormal basis {ei} for V consisting of eigenvectors,
with respective eigenvalues λi ≥ 0. Define an operator S by

Sei =
√
λi · ei

Clearly S has the same eigenvectors as T , with eigenvalues the non-negative real square roots of those of T ,
and the square of this operator is T . We check directly that it is self-adjoint: let v =

∑
i aiei and w =

∑
i biei

and compute

〈S∗v, w〉 = 〈v, Sw〉 =
∑
ij

aibj〈ei, ej〉 =
∑
ij

aibj
√
λj〈ei, ej〉 =

∑
i

aibi
√
λi〈ei, ei〉

by orthonormality and the real-ness of
√
λi. Going backwards, this is∑
ij

aibj〈
√
λiei, ej〉 = 〈Sv,w〉
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Since the adjoint is unique, S = S∗. ///

The standard (hermitian) inner product on Cn is

〈(v1, . . . , vn), (w1, . . . , wn)〉 =
n∑
i=1

viwj

In this situation, certainly n-by-n complex matrices give C linear endomorphisms by left multiplication of
column vectors. With this inner product, the adjoint of an endomorphism T is

T ∗ = T − conjugate-transpose

as usual. Indeed, we often write the superscript-star to indicate conjugate-transpose of a matrix, if no other
meaning is apparent from context, and say that the matrix T is hermitian. Similarly, an n-by-n matrix k
is unitary if

kk∗ = 1n

where 1n is the n-by-n identity matrix. This is readily verified to be equivalent to unitariness with respect
to the standard hermitian inner product.

24.8.4 Corollary: Let T be a hermitian matrix. Then there is a unitary matrix k such that

k∗Tk = diagonal, with diagonal entries the eigenvalues of T

Proof: Let {ei} be the standard basis for Cn. It is orthonormal with respect to the standard inner product.
Let {fi} be an orthonormal basis consisting of T -eigenvectors. From the first corollary of this section, let
k be the unitary operator mapping ei to fi. Then k∗Tk is diagonal, with diagonal entries the eigenvalues.

///

24.8.5 Corollary: Let T be a positive semi-definite hermitian matrix. Then there is a positive semi-
definite hermitian matrix S such that

S2 = T

Proof: With respect to the standard inner product T is positive semi-definite self-adjoint, so has such a
square root, from above. ///

24.9 Worked examples

24.9.1 Example: Let p be the smallest prime dividing the order of a finite group G. Show that a
subgroup H of G of index p is necessarily normal.

Let G act on cosets gH of H by left multiplication. This gives a homomorphism f of G to the group of
permutations of [G : H] = p things. The kernel ker f certainly lies inside H, since gH = H only for g ∈ H.
Thus, p|[G : ker f ]. On the other hand,

|f(G)| = [G : ker f ] = |G|/| ker f |

and |f(G)| divides the order p! of the symmetric group on p things, by Lagrange. But p is the smallest prime
dividing |G|, so f(G) can only have order 1 or p. Since p divides the order of f(G) and |f(G)| divides p, we
have equality. That is, H is the kernel of f . Every kernel is normal, so H is normal. ///

24.9.2 Example: Let T ∈ Homk(V ) for a finite-dimensional k-vectorspace V , with k a field. Let W be
a T -stable subspace. Prove that the minimal polynomial of T on W is a divisor of the minimal polynomial
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of T on V . Define a natural action of T on the quotient V/W , and prove that the minimal polynomial of T
on V/W is a divisor of the minimal polynomial of T on V .

Let f(x) be the minimal polynomial of T on V , and g(x) the minimal polynomial of T on W . (We need the
T -stability of W for this to make sense at all.) Since f(T ) = 0 on V , and since the restriction map

Endk(V ) −→ Endk(W )

is a ring homomorphism,
(restriction of)f(t) = f(restriction of T )

Thus, f(T ) = 0 on W . That is, by definition of g(x) and the PID-ness of k[x], f(x) is a multiple of g(x), as
desired.

Define T (v + W ) = Tv + W . Since TW ⊂ W , this is well-defined. Note that we cannot assert, and do not
need, an equality TW = W , but only containment. Let h(x) be the minimal polynomial of T (on V/W ).
Any polynomial p(T ) stabilizes W , so gives a well-defined map p(T ) on V/W . Further, since the natural
map

Endk(V ) −→ Endk(V/W )

is a ring homomorphism, we have

p(T )(v +W ) = p(T )(v) +W = p(T )(v +W ) +W = p(T )(v +W )

Since f(T ) = 0 on V , f(T ) = 0. By definition of minimal polynomial, h(x)|f(x). ///

24.9.3 Example: Let T ∈ Homk(V ) for a finite-dimensional k-vectorspace V , with k a field. Suppose
that T is diagonalizable on V . Let W be a T -stable subspace of V . Show that T is diagonalizable on W .

Since T is diagonalizable, its minimal polynomial f(x) on V factors into linear factors in k[x] (with zeros
exactly the eigenvalues), and no factor is repeated. By the previous example, the minimal polynomial g(x)
of T on W divides f(x), so (by unique factorization in k[x]) factors into linear factors without repeats. And
this implies that T is diagonalizable when restricted to W . ///

24.9.4 Example: Let T ∈ Homk(V ) for a finite-dimensional k-vectorspace V , with k a field. Suppose
that T is diagonalizable on V , with distinct eigenvalues. Let S ∈ Homk(V ) commute with T , in the natural
sense that ST = TS. Show that S is diagonalizable on V .

The hypothesis of distinct eigenvalues means that each eigenspace is one-dimensional. We have seen
that commuting operators stabilize each other’s eigenspaces. Thus, S stabilizes each one-dimensional λ-
eigenspaces Vλ for T . By the one-dimensionality of Vλ, S is a scalar µλ on Vλ. That is, the basis of
eigenvectors for T is unavoidably a basis of eigenvectors for S, too, so S is diagonalizable. ///

24.9.5 Example: Let T ∈ Homk(V ) for a finite-dimensional k-vectorspace V , with k a field. Suppose
that T is diagonalizable on V . Show that k[T ] contains the projectors to the eigenspaces of T .

Though it is only implicit, we only want projectors P which commute with T .

Since T is diagonalizable, its minimal polynomial f(x) factors into linear factors and has no repeated factors.
For each eigenvalue λ, let fλ(x) = f(x)/(x− λ). The hypothesis that no factor is repeated implies that the
gcd of all these fλ(x) is 1, so there are polynomials aλ(x) in k[x] such that

1 =
∑
λ

aλ(x) fλ(x)

For µ 6= λ, the product fλ(x)fµ(x) picks up all the linear factors in f(x), so

fλ(T )fµ(T ) = 0
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Then for each eigenvalue µ

(aµ(T ) fµ(T ))2 = (aµ(T ) fµ(T )) (1−
∑
λ6=µ

aλ(T ) fλ(T )) = (aµ(T ) fµ(T ))

Thus, Pµ = aµ(T ) fµ(T ) has P 2
µ = Pµ. Since fλ(T )fµ(T ) = 0 for λ 6= µ, we have PµPλ = 0 for λ 6= µ. Thus,

these are projectors to the eigenspaces of T , and, being polynomials in T , commute with T .

For uniqueness, observe that the diagonalizability of T implies that V is the sum of the λ-eigenspaces Vλ
of T . We know that any endomorphism (such as a projector) commuting with T stabilizes the eigenspaces
of T . Thus, given an eigenvalue λ of T , an endomorphism P commuting with T and such that P (V ) = Vλ
must be 0 on T -eigenspaces Vµ with µ 6= λ, since

P (Vµ) ⊂ Vµ ∩ Vλ = 0

And when restricted to Vλ the operator P is required to be the identity. Since V is the sum of the eigenspaces
and P is determined completely on each one, there is only one such P (for each λ). ///

24.9.6 Example: Let V be a complex vector space with a (positive definite) inner product. Show that
T ∈ Homk(V ) cannot be a normal operator if it has any non-trivial Jordan block.

The spectral theorem for normal operators asserts, among other things, that normal operators are
diagonalizable, in the sense that there is a basis of eigenvectors. We know that this implies that the minimal
polynomial has no repeated factors. Presence of a non-trivial Jordan block exactly means that the minimal
polynomial does have a repeated factor, so this cannot happen for normal operators. ///

24.9.7 Example: Show that a positive-definite hermitian n-by-n matrix A has a unique positive-definite
square root B (that is, B2 = A).

Even though the question explicitly mentions matrices, it is just as easy to discuss endomorphisms of the
vector space V = Cn.

By the spectral theorem, A is diagonalizable, so V = Cn is the sum of the eigenspaces Vλ of A. By hermitian-
ness these eigenspaces are mutually orthogonal. By positive-definiteness A has positive real eigenvalues λ,
which therefore have real square roots. Define B on each orthogonal summand Vλ to be the scalar

√
λ.

Since these eigenspaces are mutually orthogonal, the operator B so defined really is hermitian, as we now
verify. Let v =

∑
λ vλ and w =

∑
µ wµ be orthogonal decompositions of two vectors into eigenvectors vλ

with eigenvalues λ and wµ with eigenvalues µ. Then, using the orthogonality of eigenvectors with distinct
eigenvalues,

〈Bv,w〉 = 〈B
∑
λ

vλ,
∑
µ

wµ〉 = 〈
∑
λ

λvλ,
∑
µ

wµ〉 =
∑
λ

λ〈vλ, wλ〉

=
∑
λ

〈vλ, λwλ〉 = 〈
∑
µ

vµ,
∑
λ

λwλ〉 = 〈v,Bw〉

Uniqueness is slightly subtler. Since we do not know a priori that two positive-definite square roots B and
C of A commute, we cannot immediately say that B2 = C2 gives (B + C)(B − C) = 0, etc. If we could do
that, then since B and C are both positive-definite, we could say

〈(B + C)v, v〉 = 〈Bv, v〉+ 〈Cv, v〉 > 0

so B + C is positive-definite and, hence invertible. Thus, B − C = 0. But we cannot directly do this. We
must be more circumspect.

Let B be a positive-definite square root of A. Then B commutes with A. Thus, B stabilizes each eigenspace
of A. Since B is diagonalizable on V , it is diagonalizable on each eigenspace of A (from an earlier example).
Thus, since all eigenvalues of B are positive, and B2 = λ on the λ-eigenspace Vλ of A, it must be that B is
the scalar

√
λ on Vλ. That is, B is uniquely determined. ///



322 Eigenvectors, Spectral Theorems

24.9.8 Example: Given a square n-by-n complex matrix M , show that there are unitary matrices A
and B such that AMB is diagonal.

We prove this for not-necessarily square M , with the unitary matrices of appropriate sizes.

This asserted expression
M = unitary · diagonal · unitary

is called a Cartan decomposition of M .

First, if M is (square) invertible, then T = MM∗ is self-adjoint and invertible. From an earlier example, the
spectral theorem implies that there is a self-adjoint (necessarily invertible) square root S of T . Then

1 = S−1TS−1 = (S−1M)(−1SM)∗

so k1 = S−1M is unitary. Let k2 be unitary such that D = k2Sk
∗
2 is diagonal, by the spectral theorem.

Then
M = Sk1 = (k2Dk

∗
2)k1 = k2 ·D · (k∗2k1)

expresses M as
M = unitary · diagonal · unitary

as desired.

In the case of m-by-n (not necessarily invertible) M , we want to reduce to the invertible case by showing
that there are m-by-m unitary A1 and n-by-n unitary B1 such that

A1MB1 =
(
M ′ 0
0 0

)
where M ′ is square and invertible. That is, we can (in effect) do column and row reduction with unitary
matrices.

Nearly half of the issue is showing that by left (or right) multiplication by a suitable unitary matrix A an
arbitrary matrix M may be put in the form

AM =
(
M11 M12

0 0

)
with 0’s below the rth row, where the column space of M has dimension r. To this end, let f1, . . . , fr be
an orthonormal basis for the column space of M , and extend it to an orthonormal basis f1, . . . , fm for the
whole Cm. Let e1, . . . , em be the standard orthonormal basis for Cm. Let A be the linear endomorphism
of Cm defined by Afi = ei for all indices i. We claim that this A is unitary, and has the desired effect on
M . That it has the desired effect on M is by design, since any column of the original M will be mapped
by A to the span of e1, . . . , er, so will have all 0’s below the rth row. A linear endomorphism is determined
exactly by where it sends a basis, so all that needs to be checked is the unitariness, which will result from
the orthonormality of the bases, as follows. For v =

∑
i aifi and w =

∑
i bifi,

〈Av,Aw〉 = 〈
∑
i

aiAfi,
∑
j

bj Afj〉 = 〈
∑
i

ai ei,
∑
j

bj ej〉 =
∑
i

aibi

by orthonormality. And, similarly,∑
i

aibi = 〈
∑
i

ai fi,
∑
j

bj fj〉 = 〈v, w〉

Thus, 〈Av,Aw〉 = 〈v, w〉. To be completely scrupulous, we want to see that the latter condition implies
that A∗A = 1. We have 〈A∗Av,w〉 = 〈v, w〉 for all v and w. If A∗A 6= 1, then for some v we would have
A∗Av 6= v, and for that v take w = (A∗A− 1)v, so

〈(A∗A− 1)v, w〉 = 〈(A∗A− 1)v, (A∗A− 1)v〉 > 0
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contradiction. That is, A is certainly unitary.

If we had had the foresight to prove that row rank is always equal to column rank, then we would know
that a combination of the previous left multiplication by unitary and a corresponding right multiplication
by unitary would leave us with (

M ′ 0
0 0

)
with M ′ square and invertible, as desired. ///

24.9.9 Example: Given a square n-by-n complex matrix M , show that there is a unitary matrix A such
that AM is upper triangular.

Let {ei} be the standard basis for Cn. To say that a matrix is upper triangular is to assert that (with left
multiplication of column vectors) each of the maximal family of nested subspaces (called a maximal flag)

V0 = 0 ⊂ V1 = Ce1 ⊂ Ce1 +Ce2 ⊂ . . . ⊂ Ce1 + . . .+Cen−1 ⊂ Vn = Cn

is stabilized by the matrix. Of course

MV0 ⊂MV1 ⊂MV2 ⊂ . . . ⊂MVn−1 ⊂ Vn
is another maximal flag. Let fi+1 be a unit-length vector in the orthogonal complement to MVi inside
MVi+1 Thus, these fi are an orthonormal basis for V , and, in fact, f1, . . . , ft is an orthonormal basis for
MVt. Then let A be the unitary endomorphism such that Afi = ei. (In an earlier example and in class we
checked that, indeed, a linear map which sends one orthonormal basis to another is unitary.) Then

AMVi = Vi

so AM is upper-triangular. ///

24.9.10 Example: Let Z be an m-by-n complex matrix. Let Z∗ be its conjugate-transpose. Show that

det(1m − ZZ∗) = det(1n − Z∗Z)

Write Z in the (rectangular) Cartan decomposition

Z = ADB

with A and B unitary and D is m-by-n of the form

D =



d1

d2

. . .
dr

0
. . .


where the diagonal di are the only non-zero entries. We grant ourselves that det(xy) = det(x) · det(y) for
square matrices x, y of the same size. Then

det(1m − ZZ∗) = det(1m −ADBB∗D∗A∗) = det(1m −ADD∗A∗) = det(A · (1m −DD∗) ·A∗)

= det(AA∗) · det(1m −DD∗) = det(1m −DD∗) =
∏
i

(1− didi)

Similarly,

det(1n − Z∗Z) = det(1n −B∗D∗A∗ADB) = det(1n −B∗D∗DB) = det(B∗ · (1n −D∗D) ·B)

= det(B∗B) · det(1n −D∗D) = det(1n −D∗D) =
∏
i

(1− didi)

which is the same as the first computation. ///
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Exercises

24.1 Let B be a bilinear form on a vector space V over a field k. Suppose that for x, y ∈ V if B(x, y) = 0
then B(y, x) = 0. Show that B is either symmetric or alternating, that is, either B(x, y) = B(y, x) for all
x, y ∈ V or B(x, y) = −B(y, x) for all x, y ∈ V .

24.2 Let R be a commutative ring of endomorphisms of a finite-dimensional vectorspace V over C with
a hermitian inner product 〈, 〉. Suppose that R is closed under taking adjoints with respect to 〈, 〉. Suppose
that the only R-stable subspaces of V are {0} and V itself. Prove that V is one-dimensional.

24.3 Let T be a self-adjoint operator on a complex vector space V with hermitian inner product ,̄〉. Let
W be a T -stable subspace of V . Show that the restriction of T to W is self-adjoint.

24.4 Let T be a diagonalizable k-linear endomorphism of a k-vectorspace V . Let W be a T -stable subspace
of V . Show that T is diagonalizable on W .

24.5 Let V be a finite-dimensional vector space over an algebraically closed field k. Let T be a k-linear
endomorphism of V . Show that T can be written uniquely as T = D + N where D is diagonalizable, N is
nilpotent, and DN = ND.

24.6 Let S, T be commuting k-linear endomorphisms of a finite-dimensional vector space V over an
algebraically closed field k. Show that S, T have a common non-zero eigenvector.
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25. Duals, naturality, bilinear forms

25.1 Dual vectorspaces
25.2 First example of naturality
25.3 Bilinear forms
25.4 Worked examples

25.1 Dual vectorspaces
A (linear) functional λ : V −→ k on a vector space V over k is a linear map from V to the field k itself,
viewed as a one-dimensional vector space over k. The collection V ∗ of all such linear functionals is the dual
space of V .

25.1.1 Proposition: The collection V ∗ of linear functionals on a vector space V over k is itself a vector
space over k, with the addition

(λ+ µ)(v) = λ(v) + µ(v)

and scalar multiplication
(α · λ)(v) = α · λ(v)

Proof: The 0-vector in V ∗ is the linear functional which sends every vector to 0. The additive inverse −λ
is defined by

(−λ)(v) = −λ(v)

The distributivity properties are readily verified:

(α(λ+ µ))(v) = α(λ+ µ)(v) = α(λ(v) + µ(v)) = αλ(v) + αµ(v) = (αλ)(v) + (αµ)(v)

and
((α+ β) · λ)(v) = (α+ β)λ(v) = αλ(v) + βλ(v) = (αλ)(v) + (βλ)(v)

as desired. ///
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Let V be a finite-dimensional [317] vector space, with a basis e1, . . . , en for V . A dual basis λ1, . . . , λn for
V ∗ (and {ei}) is a basis for V ∗ with the property that

λj(ei) =
{

1 (for i = j)
0 (for i 6= j)

From the definition alone it is not at all clear that a dual basis exists, but the following proposition proves
that it does.

25.1.2 Proposition: The dual space V ∗ to an n-dimensional vector space V (with n a positive integer) is
also n-dimensional. Given a basis e1, . . . , en for V , there exists a unique corresponding dual basis λ1, . . . , λn
for V ∗, namely a basis for V ∗ with the property that

λj(ei) =
{

1 (for i = j)
0 (for i 6= j)

Proof: Proving the existence of a dual basis corresponding to the given basis will certainly prove the
dimension assertion. Using the uniqueness of expression of a vector in V as a linear combination of the basis
vectors, we can unambiguously define a linear functional λj by

λj

(∑
i

ciei

)
= cj

These functionals certainly have the desired relation to the basis vectors ei. We must prove that the λj are
a basis for V ∗. If ∑

j

bjλj = 0

then apply this functional to ei to obtain

bi =

∑
j

bjλj

 (ei) = 0(ei) = 0

This holds for every index i, so all coefficients are 0, proving the linear independence of the λj . To prove the
spanning property, let λ be an arbitrary linear functional on V . We claim that

λ =
∑
j

λ(ej) · λj

Indeed, evaluating the left-hand side on
∑
i aiei gives

∑
i aiλ(ei), and evaluating the right-hand side on∑

i aiei gives ∑
j

∑
i

ai λ(ej)λj(ei) =
∑
i

aiλ(ei)

since λj(ei) = 0 for i 6= j. This proves that any linear functional is a linear combination of the λj . ///

Let W be a subspace of a vector space V over k. The orthogonal complement W⊥ of W in V ∗ is

W⊥ = {λ ∈ V ∗ : λ(w) = 0, for all w ∈W}

[317] Some of the definitions and discussion here make sense for infinite-dimensional vector spaces V , but many of

the conclusions are either false or require substantial modification to be correct. For example, by contrast to

the proposition here, for infinite-dimensional V the (infinite) dimension of V ∗ is strictly larger than the (infinite)

dimension of V . Thus, for example, the natural inclusion of V into its second dual V ∗∗ would fail to be an isomorphism.
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• The orthogonal complement W⊥ of a subspace W of a vector space V is a vector subspace of V ∗.

Proof: Certainly W⊥ contains 0. If λ(w) = 0 and µ(w) = 0 for all w ∈ W , then certainly (λ+ µ)(w) = 0.
Likewise, (−λ)(w) = λ(−w), so W⊥ is a subspace. ///

25.1.3 Corollary: Let W be a subspace of a finite-dimensional vector space V over k.

dimW + dimW⊥ = dimV

Proof: Let e1, . . . , em be a basis of W , and extend it to a basis e1, . . . , em, fm+1, . . . , fn of V . Let
λ1, . . . , λm, µm+1, . . . , µn be the corresponding dual basis of V ∗. To prove the corollary it would suffice
to prove that µm+1, . . . , µn form a basis for W⊥. First, these functionals do lie in W⊥, since they are all 0
on the basis vectors for W . To see that they span W⊥, let

λ =
∑

1≤i≤m

aiλi +
∑

m+1≤j≤n

bjµj

be a functional in W⊥. Evaluating both sides on e` ∈W gives

0 = λ(e`) =
∑

1≤i≤m

aiλi(e`) +
∑

m+1≤j≤n

bjµj(e`) = a`

by the defining property of the dual basis. That is, every functional in W⊥ is a linear combination of the
µj , and thus the latter form a basis for W⊥. Then

dimW + dimW⊥ = m+ (n−m) = n = dimV

as claimed. ///

The second dual V ∗∗ of a vector space V is the dual of its dual. There is a natural vector space
homomorphism ϕ : V −→ V ∗∗ of a vector space V to its second V ∗∗ by [318]

ϕ(v)(λ) = λ(v)

for v ∈ V , λ ∈ V ∗.

25.1.4 Corollary: Let V be a finite-dimensional vector space. Then the natural map of V to V ∗∗ is an
isomorphism.

Proof: If v is in the kernel of the linear map v −→ ϕ(v), then ϕ(v)(λ) = 0 for all λ, so λ(v) = 0 for all λ.
But if v is non-zero then v can be part of a basis for V , which has a dual basis, among which is a functional
λ such that λ(v) = 1. Thus, for ϕ(v)(λ) to be 0 for all λ it must be that v = 0. Thus, the kernel of ϕ is {0},
so (from above) ϕ is an injection. From the formula

dim kerϕ+ dim Imϕ = dimV

[318] The austerity or starkness of this map is very different from formulas written in terms of matrices and column

or row vectors. Indeed, this is a different sort of assertion. Further, the sense of naturality here might informally

be construed exactly as that the formula does not use a basis, matrices, or any other manifestation of choices.

Unsurprisingly, but unfortunately, very elementary mathematics does not systematically present us with good

examples of naturality, since the emphasis is more often on computation. Indeed, we often take for granted the

idea that two different sorts of computations will ineluctably yield the same result. Luckily, this is often the case,

but becomes increasingly less obvious in more complicated situations.
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it follows that dim Imϕ = dimV . We showed above that the dimension of V ∗ is the same as that of V , since
V is finite-dimensional. Likewise, the dimension of V ∗∗ = (V ∗)∗ is the same as that of V ∗, hence the same
as that of V . Since the dimension of the image of ϕ in V ∗∗ is equal to the dimension of V , which is the same
as the dimension of V ∗∗, the image must be all of V ∗∗. Thus, ϕ : V −→ V ∗∗ is an isomorphism. ///

25.1.5 Corollary: Let W be a subspace of a finite-dimensional vector space V over k. Let ϕ : V −→ V ∗∗

be the isomorphism of the previous corollary. Then

(W⊥)⊥ = ϕ(W )

Proof: First, show that
ϕ(W ) ⊂ (W⊥)⊥

Indeed, for λ ∈W⊥,
ϕ(w)(λ) = λ(w) = 0

On the other hand,
dimW + dimW⊥ = dimV

and likewise
dimW⊥ + dim(W⊥)⊥ = dimV ∗ = dimV

Thus, ϕ(W ) ⊂ (W⊥)⊥ and
dim(W⊥)⊥ = dimϕ(W )

since ϕ is an isomorphism. Therefore, ϕ(W ) = (W⊥)⊥. ///

As an illustration of the efficacy of the present viewpoint, we can prove a useful result about matrices.

25.1.6 Corollary: Let M be an m-by-n matrix with entries in a field k. Let R be the subspace of kn

spanned by the rows of M . Let C be the subspace of km spanned by the columns of M . Let

column rank of M = dimC
row rank of M = dimR

Then
column rank of M = row rank of M

Proof: The matrix M gives a linear transformation T : kn −→ km by T (v) = Mv where v is a column
vector of length n. It is easy to see that the column space of M is the image of T . It is a little subtler that
the row space is (kerT )⊥. From above,

dim kerT + dim ImT = dimV

and also
dim kerT + dim(kerT )⊥ = dimV

Thus,
column rank M = dim ImT = dim(kerT )⊥ = row rank M

as claimed. ///
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25.2 First example of naturality
We have in hand the material to illustrate a simple case of a natural isomorphism versus not-natural
isomorphisms. This example could be given in the context of category theory, and in fact could be a first
example, but it is possible to describe the phenomenon without the larger context. [319]

Fix a field k, and consider the map [320]

D : {k-vectorspaces} −→ {k-vectorspaces}

from the class of k-vectorspaces to itself given by duality, namely [321]

DV = V ∗ = Homk(V, k)

Further, for a k-vectorspace homomorphism f : V −→ W we have an associated map [322] f∗ of the duals
spaces

f∗ : W ∗ −→ V ∗ by f∗(µ)(v) = µ(fv) for µ ∈W ∗, v ∈ V

Note that f∗ reverses direction, going from W ∗ to V ∗, while the original f goes from V to W .

The map [323] F = D ◦D associating to vector spaces V their double duals V ∗∗ also gives maps

f∗∗ : V ∗∗ −→W ∗∗

for any k-vectorspace map f : V −→W . (The direction of the arrows has been reversed twice, so is back to
the original direction.)

And for each k-vectorspace V we have a k-vectorspace map [324]

ηV : V −→ V ∗∗ = (V ∗)∗

given by
ηV (v)(λ) = λ(v)

The aggregate η of all the maps ηV : V −→ V ∗∗ is a natural transformation [325] meaning that for all
k-vectorspace maps

f : V −→W

[319] Indeed, probably a collection of such examples should precede a development of general category theory, else

there is certainly insufficient motivation to take the care necessary to develop things in great generality.

[320] In category-theory language a map on objects and on the maps among them is a functor. We will not emphasize

this language just now.

[321] Certainly this class is not a set, since it is far too large. This potentially worrying foundational point is another

feature of nascent category theory, as opposed to development of mathematics based as purely as possible on set

theory.

[322] We might write Df : DW −→ DV in other circumstances, in order to emphasize the fact that D maps both

objects and the homomorphisms among them, but at present this is not the main point.

[323] Functor.

[324] The austere or stark nature of this map certainly should be viewed as being in extreme contrast to the coordinate-

based linear maps encountered in introductory linear algebra. The very austerity itself, while being superficially

simple, may cause some vertigo or cognitive dissonance for those completely unacquainted with the possibility of

writing such things. Rest assured that this discomfort will pass.

[325] We should really speak of a natural transformation η from a functor to another functor. Here, η is from the

identity functor on k-vectorspaces (which associates each V to itself), to the functor that associates to V its second

dual V ∗∗.
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the diagram
V

ηV
−→ V ∗∗

f ↓ ↓ f∗∗

W
ηW
−→ W ∗∗

commutes. The commutativity of the diagram involving a particular M and N is called functoriality in
M and in N . That the diagram commutes is verified very simply, as follows. Let v ∈ V , µ ∈W ∗. Then

((f∗∗ ◦ ηV )(v)) (µ) = (f∗∗(ηV v)) (µ) (definition of composition)
= (ηV v)(f∗µ) (definition of f∗∗)
= (f∗µ)(v) (definition of ηV )
= µ(fv) (definition of f∗)
= (ηW (fv))(µ) (definition of ηW )
= ((ηW ◦ f)(v)) (µ) (definition of composition)

Since equality of elements of W ∗∗ is implied by equality of values on elements of W ∗, this proves that the
diagram commutes.

Further, for V finite-dimensional, we have

dimk V = dimk V
∗ = dimk V

∗∗

which implies that each ηV must be an isomorphism. Thus, the aggregate η of the isomorphisms
ηV : V −→ V ∗∗ is called a natural equivalence. [326]

25.3 Bilinear forms
Abstracting the notion of inner product or scalar product or dot product on a vector space V over k is
that of bilinear form or bilinear pairing. For purpose of this section, a bilinear form on V is a k-valued
function of two V -variables, written v · w or 〈v, w〉, with the following properties for u, v, w ∈ V and α ∈ k
• (Linearity in both arguments) 〈αu+ v, w〉 = α〈u,w〉+ 〈v, w〉 and 〈αu, βv + v′〉 = β〈u, v〉+ 〈u, v′〉
• (Non-degeneracy) For all v 6= 0 in V there is w ∈ V such that 〈v, w〉 6= 0. Likewise, for all w 6= 0 in V
there is v ∈ V such that 〈v, w〉 6= 0.
The two linearity conditions together are bilinearity.

In some situations, we may also have
• (Symmetry) 〈u, v〉 = 〈v, u〉However, the symmetry condition is not necessarily critical in many applications.

25.3.1 Remark: When the scalars are the complex numbers C, sometimes a variant of the symmetry
condition is useful, namely a hermitian condition that 〈u, v〉 = 〈v, u〉 where the bar denotes complex
conjugation.

25.3.2 Remark: When the scalars are real or complex, sometimes, but not always, the non-degeneracy
and symmetry are usefully replaced by a positive-definiteness condition, namely that 〈v, v〉 ≥ 0 and is 0 only
for v = 0.

When a vector space V has a non-degenerate bilinear form 〈, 〉, there are two natural linear maps v −→ λv
and v −→ µv from V to its dual V ∗, given by

λv(w) = 〈v, w〉

[326] More precisely, on the category of finite-dimensional k-vectorspaces, η is a natural equivalence of the identity

functor with the second-dual functor.
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µv(w) = 〈w, v〉

That λv and µv are linear functionals on V is an immediate consequence of the linearity of 〈, 〉 in its
arguments, and the linearity of the map v −→ λv itself is an immediate consequence of the linearity of 〈, 〉
in its arguments.

25.3.3 Remark: All the following assertions for L : v −→ λv have completely analogous assertions for
v −→ µv, and we leave them to the reader.

25.3.4 Corollary: Let V be a finite-dimensional vector space with a non-degenerate bilinear form 〈, 〉.
The linear map L : v −→ λv above is an isomorphism V −→ V ∗.

Proof: The non-degeneracy means that for v 6= 0 the linear functional λv is not 0, since there is w ∈ V
such that λv(w) 6= 0. Thus, the linear map v −→ λv has kernel {0}, so v −→ λv is injective. Since V is
finite-dimensional, from above we know that it and its dual have the same dimension. Let L(v) = λv. Since

dim ImL+ dim kerL = dimV

the image of V under v −→ λv in V is that of V . Since proper subspaces have strictly smaller dimension it
must be that L(V ) = V ∗. ///

Let V be a finite-dimensional vector space with non-degenerate form 〈, 〉, and W a subspace. Define the
orthogonal complement

W⊥ = {λ ∈ V ∗ : λ(w) = 0, for all w ∈W}

25.3.5 Corollary: Let V be a finite-dimensional vector space with a non-degenerate form 〈, 〉, and W
a subspace. Under the isomorphism L : v −→ λv of V to its dual,

L ({v ∈ V : 〈v, w〉 = 0 for all w ∈W}) = W⊥

Proof: Suppose that L(v) ∈ W⊥. Thus, λv(w) = 0 for all w ∈ W . That is, 〈v, w〉 = 0 for all w ∈ W . On
the other hand, suppose that 〈v, w〉 = 0 for all w ∈W . Then λv(w) = 0 for all w ∈W , so λv ∈W⊥. ///

25.3.6 Corollary: Now suppose that 〈, 〉 is symmetric, meaning that 〈v, w〉 = 〈w, v〉 for all v, w ∈ V .
Redefine

W⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈W}

Then
dimW + dimW⊥ = dimV

and
W⊥⊥ = W

Proof: With our original definition of W⊥orig as

W⊥orig = {λ ∈ V ∗ : λ(w) = 0 for all w ∈W}

we had proven
dimW + dimW⊥orig = dimV

We just showed that L(W⊥) = W⊥orig, and since the map L : V −→ V ∗ by v −→ λv is an isomorphism

dimW⊥ = dimW⊥orig

Thus,
dimW + dimW⊥ = dimV
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as claimed.

Next, we claim that W ⊂W⊥⊥. Indeed, for w ∈W it is certainly true that for v ∈W⊥

〈v, w〉 = 〈v, w〉 = 0

That is, we see easily that W ⊂W⊥⊥. On the other hand, from

dimW + dimW⊥ = dimV

and
dimW⊥ + dimW⊥⊥ = dimV

we see that dimW⊥⊥ = dimW . Since W is a subspace of W⊥⊥ with the same dimension, the two must be
equal (from our earlier discussion). ///

25.3.7 Remark: When a non-degenerate bilinear form on V is not symmetric, there are two different
versions of W⊥, depending upon which argument in 〈, 〉 is used:

W⊥,rt = {v ∈ V : 〈v, w〉 = 0, for all w ∈W}

W⊥,lft = {v ∈ V : 〈w, v〉 = 0, for all w ∈W}

And then there are two correct statements about W⊥⊥, namely(
W⊥,rt

)⊥,lft
= W(

W⊥,lft
)⊥,rt

= W

These are proven in the same way as the last corollary, but with more attention to the lack of symmetry
in the bilinear form. In fact, to more scrupulously consider possible asymmetry of the form, we proceed as
follows.

For many purposes we can consider bilinear maps [327] (that is, k-valued maps linear in each argument)

〈, 〉 : V ×W −→ k

where V and W are vectorspaces over the field k. [328]

The most common instance of such a pairing is that of a vector space and its dual

〈, 〉 : V × V ∗ −→ k

by
〈v, λ〉 = λ(v)

This notation and viewpoint helps to emphasize the near-symmetry [329] of the relationship between V and
V ∗.

Rather than simply assume non-degeneracy conditions, let us give ourselves a language to talk about such
issues. Much as earlier, define

W⊥ = {v ∈ V : 〈v, w〉 = 0 for all w ∈W}

[327] Also called bilinear forms, or bilinear pairings, or simply pairings.

[328] Note that now the situation is unsymmetrical, insofar as the first and second arguments to 〈, 〉 are from different

spaces, so that there is no obvious sense to any property of symmetry.

[329] The second dual V ∗∗ is naturally isomorphic to V if and only if dimV <∞.
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V ⊥ = {w ∈W : 〈v, w〉 = 0 for all v ∈ V }

Then we have

25.3.8 Proposition: A bilinear form 〈, 〉 : V ×W −→ k induces a bilinear form, still denoted 〈, 〉,

〈, 〉 : V/W⊥ ×W/V ⊥ −→ k

defined in the natural manner by
〈v +W⊥, w + V ⊥〉 = 〈v, w〉

for any representatives v, w for the cosets. This form is non-degenerate in the sense that, on the quotient,
given x ∈ V/W⊥, there is y ∈W/V ⊥ such that 〈x, y〉 6= 0, and symmetrically.

Proof: The first point is that the bilinear form on the quotients is well-defined, which is immediate from
the definition of W⊥ and V ⊥. Likewise, the non-degeneracy follows from the definition: given x = v +W⊥

in V/W⊥, take w ∈W such that 〈v, w〉 6= 0, and let y = w + V ⊥. ///

25.3.9 Remark: The pairing of a vector space V and its dual is non-degenerate, even if the vector space
is infinite-dimensional.

In fact, the pairing of (finite-dimensional) V and V ∗ is the universal example of a non-degenerate pairing:

25.3.10 Proposition: For finite-dimensional V and W , a non-degenerate pairing

〈, 〉 : V ×W −→ k

gives natural isomorphisms

V
≈
−→W ∗

W
≈
−→V ∗

via
v −→ λv where λv(w) = 〈v, w〉

w −→ λw where λw(v) = 〈v, w〉

Proof: The indicated maps are easily seen to be linear, with trivial kernels exactly since the pairing is
non-degenerate, and since the dimensions match, these maps are isomorphisms. ///

25.4 Worked examples

25.4.1 Example: Let k be a field, and V a finite-dimensional k-vectorspace. Let Λ be a subset of the
dual space V ∗, with |Λ| < dimV . Show that the homogeneous system of equations

λ(v) = 0 (for all λ ∈ Λ)

has a non-trivial (that is, non-zero) solution v ∈ V (meeting all these conditions).

The dimension of the span W of Λ is strictly less than dimV ∗, which we’ve proven is dimV ∗ = dimV . We
may also identify V ≈ V ∗∗ via the natural isomorphism. With that identification, we may say that the set
of solutions is W⊥, and

dim(W⊥) + dimW = dimV ∗ = dimV

Thus, dimW⊥ > 0, so there are non-zero solutions. ///
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25.4.2 Example: Let k be a field, and V a finite-dimensional k-vectorspace. Let Λ be a linearly
independent subset of the dual space V ∗. Let λ −→ aλ be a set map Λ −→ k. Show that an inhomogeneous
system of equations

λ(v) = aλ (for all λ ∈ Λ)

has a solution v ∈ V (meeting all these conditions).

Let m = |Λ|, Λ = {λ1, . . . , λm}. One way to use the linear independence of the functionals in Λ is to extend
Λ to a basis λ1, . . . , λn for V ∗, and let e1, . . . , en ∈ V ∗∗ be the corresponding dual basis for V ∗∗. Then let
v1, . . . , vn be the images of the ei in V under the natural isomorphism V ∗∗ ≈ V . (This achieves the effect
of making the λi be a dual basis to the vi. We had only literally proven that one can go from a basis of a
vector space to a dual basis of its dual, and not the reverse.) Then

v =
∑

1≤i≤m

aλi · vi

is a solution to the indicated set of equations, since

λj(v) =
∑

1≤i≤m

aλi · λj(vi) = aλj

for all indices j ≤ m. ///

25.4.3 Example: Let T be a k-linear endomorphism of a finite-dimensional k-vectorspace V . For an
eigenvalue λ of T , let Vλ be the generalized λ-eigenspace

Vλ = {v ∈ V : (T − λ)nv = 0 for some 1 ≤ n ∈ Z}

Show that the projector P of V to Vλ (commuting with T ) lies inside k[T ].

First we do this assuming that the minimal polynomial of T factors into linear factors in k[x].

Let f(x) be the minimal polynomial of T , and let fλ(x) = f(x)/(x−λ)e where (x−λ)e is the precise power
of (x− λ) dividing f(x). Then the collection of all fλ(x)’s has gcd 1, so there are aλ(x) ∈ k[x] such that

1 =
∑
λ

aλ(x) fλ(x)

We claim that Eλ = aλ(T )fλ(T ) is a projector to the generalized λ-eigenspace Vλ. Indeed, for v ∈ Vλ,

v = 1V · v =
∑
µ

aµ(T )fµ(T ) · v =
∑
µ

aµ(T )fµ(T ) · v = aλ(T )fλ(T ) · v

since (x− λ)e divides fµ(x) for µ 6= λ, and (T − λ)ev = 0. That is, it acts as the identity on Vλ. And

(T − λ)e ◦ Eλ = aλ(T ) f(T ) = 0 ∈ Endk(V )

so the image of Eλ is inside Vλ. Since Eλ is the identity on Vλ, it must be that the image of Eλ is exactly
Vλ. For µ 6= λ, since f(x)|fµ(x)fλ(x), EµEλ = 0, so these idempotents are mutually orthogonal. Then

(aλ(T )fλ(T ))2 = (aλ(T )fλ(T )) · (1−
∑
µ6=λ

aµ(T )fµ(T )) = aλ(T )fλ(T )− 0

That is, E2
λ = Eλ, so Eλ is a projector to Vλ.

The mutual orthogonality of the idempotents will yield the fact that V is the direct sum of all the generalized
eigenspaces of T . Indeed, for any v ∈ V ,

v = 1 · v = (
∑
λ

Eλ) v =
∑
λ

(Eλv)
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and Eλv ∈ Vλ. Thus, ∑
λ

Vλ = V

To check that the sum is (unsurprisingly) direct, let vλ ∈ Vλ, and suppose∑
λ

vλ = 0

Then vλ = Eλvλ, for all λ. Then apply Eµ and invoke the orthogonality of the idempotents to obtain

vµ = 0

This proves the linear independence, and that the sum is direct.

To prove uniqueness of a projector E to Vλ commuting with T , note that any operator S commuting with
T necessarily stabilizes all the generalized eigenspaces of T , since for v ∈ Vµ

(T − λ)e Sv = S (T − λ)ev = S · 0 = 0

Thus, E stabilizes all the Vµs. Since V is the direct sum of the Vµ and E maps V to Vλ, it must be that E
is 0 on Vµ for µ 6= λ. Thus,

E = 1 · Eλ +
∑
µ 6=λ

0 · Eµ = Eλ

That is, there is just one projector to Vλ that also commutes with T . This finishes things under the
assumption that f(x) factors into linear factors in k[x].

The more general situation is similar. More generally, for a monic irreducible P (x) in k[x] dividing f(x),
with P (x)e the precise power of P (x) dividing f(x), let

fP (x) = f(x)/P (x)e

Then these fP have gcd 1, so there are aP (x) in k[x] such that

1 =
∑
P

aP (x) · fP (x)

Let EP = aP (T )fP (T ). Since f(x) divides fP (x) · fQ(x) for distinct irreducibles P,Q, we have EP ◦EQ = 0
for P 6= Q. And

E2
P = EP (1−

∑
Q 6=P

EQ) = EP

so (as in the simpler version) the EP ’s are mutually orthogonal idempotents. And, similarly, V is the direct
sum of the subspaces

VP = EP · V

We can also characterize VP as the kernel of P e(T ) on V , where P e(x) is the power of P (x) dividing f(x).
If P (x) = (x− λ), then VP is the generalized λ-eigenspace, and EP is the projector to it.

If E were another projector to Vλ commuting with T , then E stabilizes VP for all irreducibles P dividing
the minimal polynomial f of T , and E is 0 on VQ for Q 6= (x− λ), and E is 1 on Vλ. That is,

E = 1 · Ex−λ +
∑

Q 6=x−λ

0 · EQ = EP

This proves the uniqueness even in general. ///
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25.4.4 Example: Let T be a matrix in Jordan normal form with entries in a field k. Let Tss be the
matrix obtained by converting all the off-diagonal 1’s to 0’s, making T diagonal. Show that Tss is in k[T ].

This implicitly demands that the minimal polynomial of T factors into linear factors in k[x].

Continuing as in the previous example, let Eλ ∈ k[T ] be the projector to the generalized λ-eigenspace Vλ,
and keep in mind that we have shown that V is the direct sum of the generalized eigenspaces, equivalent,
that

∑
λEλ = 1. By definition, the operator Tss is the scalar operator λ on Vλ. Then

Tss =
∑
λ

λ · Eλ ∈ k[T ]

since (from the previous example) each Eλ is in k[T ]. ///

25.4.5 Example: Let M =
(
A B
0 D

)
be a matrix in a block decomposition, where A is m-by-m and

D is n-by-n. Show that
detM = detA · detD

One way to prove this is to use the formula for the determinant of an N -by-N matrix

detC =
∑
π∈SN

σ(π) aπ(1),1 . . . aπ(N),N

where cij is the (i, j)th entry of C, π is summed over the symmetric group SN , and σ is the sign
homomorphism. Applying this to the matrix M ,

detM =
∑

π∈Sm+n

σ(π)Mπ(1),1 . . .Mπ(m+n),m+n

where Mij is the (i, j)th entry. Since the entries Mij with 1 ≤ j ≤ m and m < i ≤ m+n are all 0, we should
only sum over π with the property that

π(j) ≤ m for 1 ≤ j ≤ m

That is, π stabilizes the subset {1, . . . ,m} of the indexing set. Since π is a bijection of the index set,
necessarily such π stabilizes {m+ 1,m+ 2, . . . ,m+ n}, also. Conversely, each pair (π1, π2) of permutation
π1 of the first m indices and π2 of the last n indices gives a permutation of the whole set of indices.

Let X be the set of the permutations π ∈ Sm+n that stabilize {1, . . . ,m}. For each π ∈ X, let π1 be the
restriction of π to {1, . . . ,m}, and let π2 be the restriction to {m + 1, . . . ,m + n}. And, in fact, if we plan
to index the entries of the block D in the usual way, we’d better be able to think of π2 as a permutation of
{1, . . . , n}, also. Note that σ(π) = σ(π1)σ(π2). Then

detM =
∑
π∈X

σ(π)Mπ(1),1 . . .Mπ(m+n),m+n

=
∑
π∈X

σ(π) (Mπ(1),1 . . .Mπ(m),m) · (Mπ(m+1),m+1 . . .Mπ(m+n),m+n)

=

( ∑
π1∈Sm

σ(π1)Mπ1(1),1 . . .Mπ1(m),m

)
·

( ∑
π2∈Sn

σ(π2)(Mπ2(m+1),m+1 . . .Mπ2(m+n),m+n

)

=

( ∑
π1∈Sm

σ(π1)Aπ1(1),1 . . . Aπ1(m),m

)
·

( ∑
π2∈Sn

σ(π2)Dπ2(1),1 . . . Dπ2(n),n

)
= detA · detD
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where in the last part we have mapped {m+ 1, . . . ,m+ n} bijectively by ` −→ `−m. ///

25.4.6 Example: The so-called Kronecker product [330] of an m-by-m matrix A and an n-by-n matrix
B is

A⊗B =


A11 ·B A12 ·B . . . A1m ·B
A21 ·B A22 ·B . . . A2m ·B

...
Am1 ·B Am2 ·B . . . Amm ·B


where, as it may appear, the matrix B is inserted as n-by-n blocks, multiplied by the respective entries Aij
of A. Prove that

det(A⊗B) = (detA)n · (detB)m

at least for m = n = 2.

If no entry of the first row of A is non-zero, then both sides of the desired equality are 0, and we’re done. So
suppose some entry A1i of the first row of A is non-zero. If i 6= 1, then for ` = 1, . . . , n interchange the `th

and (i − 1)n + `th columns of A ⊗ B, thus multiplying the determinant by (−1)n. This is compatible with
the formula, so we’ll assume that A11 6= 0 to do an induction on m.

We will manipulate n-by-n blocks of scalar multiples of B rather than actual scalars.

Thus, assuming that A11 6= 0, we want to subtract multiples of the left column of n-by-n blocks from the
blocks further to the right, to make the top n-by-n blocks all 0 (apart from the leftmost block, A11B). In
terms of manipulations of columns, for ` = 1, . . . , n and j = 2, 3, . . . ,m subtract A1j/A11 times the `th

column of A ⊗ B from the ((j − 1)n + `)th. Since for 1 ≤ ` ≤ n the `th column of A ⊗ B is A11 times the
`th column of B, and the ((j − 1)n + `)th column of A ⊗ B is A1j times the `th column of B, this has the
desired effect of killing off the n-by-n blocks along the top of A⊗B except for the leftmost block. And the
(i, j)th n-by-n block of A⊗B has become (Aij −A1jAi1/A11) ·B. Let

A′ij = Aij −A1jAi1/A11

and let D be the (m− 1)-by-(m− 1) matrix with (i, j)th entry Dij = A′(i−1),(j−1). Thus, the manipulation
so far gives

det(A⊗B) = det
(
A11B 0
∗ D ⊗B

)
By the previous example (or its tranpose)

det
(
A11B 0
∗ D ⊗B

)
= det(A11B) · det(D ⊗B) = An11 detB · det(D ⊗B)

by the multilinearity of det.

And, at the same time subtracting A1j/A11 times the first column of A from the jth column of A for
2 ≤ j ≤ m does not change the determinant, and the new matrix is(

A11 0
∗ D

)
Also by the previous example,

detA = det
(
A11 0
∗ D

)
= A11 · detD

Thus, putting the two computations together,

det(A⊗B) = An11 detB · det(D ⊗B) = An11 detB · (detD)n(detB)m−1

[330] As we will see shortly, this is really a tensor product, and we will treat this question more sensibly.



Garrett: Abstract Algebra 339

= (A11 detD)n detB · (detB)m−1 = (detA)n(detB)m

as claimed.

Another approach to this is to observe that, in these terms, A⊗B is

A11 0 . . . 0
0 A11
...

. . .
0 A11

. . .

A1m 0 . . . 0
0 A1m
...

. . .
0 A1m

...
...

Am1 0 . . . 0
0 Am1
...

. . .
0 Am1

. . .

Amm 0 . . . 0
0 Amm
...

. . .
0 Amm




B 0 . . . 0
0 B
...

. . .
0 B



where there are m copies of B on the diagonal. By suitable permutations of rows and columns (with an
interchange of rows for each interchange of columns, thus giving no net change of sign), the matrix containing
the Aijs becomes 

A 0 . . . 0
0 A
...

. . .
0 A


with n copies of A on the diagonal. Thus,

det(A⊗B) = det


A 0 . . . 0
0 A
...

. . .
0 A

 · det


B 0 . . . 0
0 B
...

. . .
0 B

 = (detA)n · (detB)m

This might be more attractive than the first argument, depending on one’s tastes. ///

Exercises

25.1 Let T be a hermitian operator on a finite-dimensional complex vector space V with a positive-definite
inner product 〈, 〉. Let P be an orthogonal projector to the λ-eigenspace Vλ of T . (This means that P is the
identity on Vλ and is 0 on the orthogonal complement V ⊥λ of Vλ.) Show that P ∈ C[T ].

25.2 Let T be a diagonalizable operator on a finite-dimensional vector space V over a field k. Show that
there is a unique projector P to the λ-eigenspace Vλ of T such that TP = PT .

25.3 Let k be a field, and V,W finite-dimensional vector spaces over k. Let S be a k-linear endomorphism
of V , and T a k-linear endomorphism of W . Let S ⊕ T be the k-linear endomorphism of V ⊕W defined by

(S ⊕ T )(v ⊕ w) = S(v)⊕ T (w) (for v ∈ V and w ∈W )

Show that the minimal polynomial of S ⊕ T is the least common multiple of the minimal polynomials of S
and T .

25.4 Let T be an n-by-n matrix with entries in a commutative ring R, with non-zero entries only above
the diagonal. Show that Tn = 0.
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25.5 Let T be an endomorphism of a finite-dimensional vector space V over a field k. Suppose that T is
nilpotent, that is, that Tn = 0 for some positive integer n. Show that trT = 0.

25.6 Let k be a field of characteristic 0, and T a k-linear endomorphism of an n-dimensional vector space
V over k. Show that T is nilpotent if and only if trace (T i) = 0 for 1 ≤ i ≤ n.

25.7 Fix a field k of characteristic not 2, and let K = k(
√
D) where D is a non-square in k. Let σ be the

non-trivial automorphism of K over k. Let ∆ ∈ k×. Let A be the k-subalgebra of 2-by-2 matrices over K
generated by (

0 1
∆ 0

) (
α 0
0 ασ

)
where α ranges over K. Find a condition relating D and ∆ necessary and sufficient for A to be a division
algebra.

25.8 A Lie algebra (named after the mathematician Sophus Lie) over a field k of characteristic 0 is a
k-vectorspace with a k-bilinear map [, ] (the Lie bracket) such that [x, y] = −[y, x], and satisfying the Jacobi
identity

[[x, y], z] = [x, [y, z]]− [y, [x, z]]

Let A be an (associative) k-algebra. Show that A can be made into a Lie algebra by defining [x, y] = xy−yx.

25.9 Let g be a Lie algebra over a field k. Let A be the associative algebra of k-vectorspace endomorphisms
of g. The adjoint action of g on itself is defined by

(adx)(y) = [x, y]

Show that the map g −→ AutkG defined by x −→ adx is a Lie homomorphism, meaning that

[adx, ady] = ad[x, y]

(The latter property is the Jacobi identity.)
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26. Determinants I

26.1 Prehistory
26.2 Definitions
26.3 Uniqueness and other properties
26.4 About existence

Both as a careful review of a more pedestrian viewpoint, and as a transition to a coordinate-independent
approach, we roughly follow Emil Artin’s rigorization of determinants of matrices with entries in a field.
Standard properties are derived, in particular uniqueness, from simple assumptions. We also prove existence.
Soon, however, we will want to develop corresponding intrinsic versions of ideas about endomorphisms. This
is multilinear algebra. Further, for example to treat the Cayley-Hamilton theorem in a forthright manner,
we will want to consider modules over commutative rings, not merely vector spaces over fields.

26.1 Prehistory
Determinants arose many years ago in formulas for solving linear equations. This is Cramer’s Rule,
described as follows. [331] Consider a system of n linear equations in n unknowns x1, . . . , xn

a11x1 + a12x2 + . . . + a1nxn = c1
a21x1 + a22x2 + . . . + a2nxn = c2
a31x1 + a32x2 + . . . + a3nxn = c3

...
. . .

...
...

an1x1 + an2x2 + . . . + annxn = cn

[331] We will prove Cramer’s Rule just a little later. In fact, quite contrary to a naive intuition, the proof is very easy

from an only slightly more sophisticated viewpoint.
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Let A be the matrix with (i, j)th entry aij . Let A(`) be the matrix A with its `th column replaced by the
cis, that is, the (i, `)th entry of A(`) is c`. Then Cramer’s Rule asserts that

x` =
detA(`)

detA

where det is determinant, at least for detA 6= 0. It is implicit that the coefficients aij and the constants c`
are in a field. As a practical method for solving linear systems Cramer’s Rule is far from optimal. Gaussian
elimination is much more efficient, but is less interesting.

Ironically, in the context of very elementary mathematics it seems difficult to give an intelligible definition
or formula for determinants of arbitrary sizes, so typical discussions are limited to very small matrices. For
example, in the 2-by-2 case there is the palatable formula

det
(
a b
c d

)
= ad− bc

Thus, for the linear system
ax+ by = c1
cx+ dy = c2

by Cramer’s Rule

x =
det
(
c1 b
c2 d

)
det
(
a b
c d

) y =
det
(
a c1
c c2

)
det
(
a b
c d

)
In the 3-by-3 case there is the still-barely-tractable formula (reachable by a variety of elementary mnemonics)

det

 a11 a12 a13

a21 a22 a23

a31 a32 a33


= (a11a22a33 + a12a23a31 + a13a21a32)− (a31a22a13 + a32a23a11 + a31a21a12)

Larger determinants are defined ambiguously by induction as expansions by minors. [332]

Inverses of matrices are expressible, inefficiently, in terms of determinants. The cofactor matrix or
adjugate matrix Aadjg of an n-by-n matrix A has (i, j)th entry

Aadjg
ij = (−1)i+j detA(ji)

where Aji is the matrix A with jth row and ith column removed. [333] Then

A ·Aadjg = (detA) · 1n

where 1n is the n-by-n identity matrix. That is, if A is invertible,

A−1 =
1

detA
·Aadjg

In the 2-by-2 case this formula is useful:(
a b
c d

)−1

=
1

ad− bc
·
(
d −b
−c a

)
[332] We describe expansion by minors just a little later, and prove that it is in fact unambiguous and correct.

[333] Yes, there is a reversal of indices: the (ij)th entry of Aadjg is, up to sign, the determinant of A with jth row and

ith column removed. Later discussion of exterior algebra will clarify this construction/formula.
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Similarly, a matrix (with entries in a field) is invertible if and only if its determinant is non-zero. [334]

The Cayley-Hamilton theorem is a widely misunderstood result, often given with seriously flawed proofs.
[335] The characteristic polynomial PT (x) of an n-by-n matrix T is defined to be

PT (x) = det(x · 1n − T )

The assertion is that
PT (T ) = 0n

where 0n is the n-by-n zero matrix. The main use of this is that the eigenvalues of T are the roots of
PT (x) = 0. However, except for very small matrices, this is a suboptimal computational approach, and
the minimal polynomial is far more useful for demonstrating qualitative facts about endomorphisms.
Nevertheless, because there is a formula for the characteristic polynomial, it has a substantial popularity.

The easiest false proof of the Cayley-Hamilton Theorem is to apparently compute

PT (T ) = det(T · 1n − T ) = det(T − T ) = det(0n) = 0

The problem is that the substitution x · 1n −→ T · 1n is not legitimate. The operation cannot be any
kind of scalar multiplication after T is substituted for x, nor can it be composition of endomorphisms (nor
multiplication of matrices). Further, there are interesting fallacious explanations of this incorrectness. For
example, to say that we cannot substitute the non-scalar T for the scalar variable x fails to recognize that
this is exactly what happens in the assertion of the theorem, and fails to see that the real problem is in the
notion of the scalar multiplication of 1n by x. That is, the correct objection is that x · 1n is no longer a
matrix with entries in the original field k (whatever that was), but in the polynomial ring k[x], or in its field
of fractions k(x). But then it is much less clear what it might mean to substitute T for x, if x has become
a kind of scalar.

Indeed, Cayley and Hamilton only proved the result in the 2-by-2 and 3-by-3 cases, by direct computation.

Often a correct argument is given that invokes the (existence part of the) structure theorem for finitely-
generated modules over PIDs. A little later, our discussion of exterior algebra will allow a more direct
argument, using the adjugate matrix. More importantly, the exterior algebra will make possible the long-
postponed uniqueness part of the proof of the structure theorem for finitely-generated modules over PIDs.

26.2 Definitions
For the present discussion, a determinant is a function D of square matrices with entries in a field k, taking
values in that field, satisfying the following properties.

• Linearity as a function of each column: letting C1, . . . , Cn in kn be the columns of an n-by-n matrix C,
for each 1 ≤ i ≤ n the function

Ci −→ D(C)

is a k-linear map kn −→ k. [336] That is, for scalar b and for two columns Ci and C ′i

D(. . . , bCi, . . .) = b ·D(. . . , Ci, . . .)

D(. . . , Ci + C ′i, . . .) = D(. . . , Ci, . . .) +D(. . . , C ′i, . . .)

[334] We prove this later in a much broader context.

[335] We give two different correct proofs later.

[336] Linearity as a function of several vector arguments is called multilinearity.
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• Alternating property: [337] If two adjacent columns of a matrix are equal, the determinant is 0.

• Normalization: The determinant of an identity matrix is 1:

D


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

...
0 0 0 . . . 1

 = 1

That is, as a function of the columns, if the columns are the standard basis vectors in kn then the value of
the determinant is 1.

26.3 Uniqueness and other properties

• If two columns of a matrix are interchanged the value of the determinant is multiplied by −1. That is,
writing the determinant as a function of the columns

D(C) = D(C1, . . . , Cn)

we have

D(C1, . . . , Ci−1, Ci, Ci+1, Ci+2, . . . , Cn) = −D(C1, . . . , Ci−1, Ci+1, Ci, Ci+2, . . . , Cn)

Proof: There is a little trick here. Consider the matrix with Ci+Cj at both the ith and jth columns. Using
the linearity in both ith and jth columns, we have

0 = D(. . . , Ci + Cj , . . . , Ci + Cj , . . .)

= D(. . . , Ci, . . . , Ci, . . .) +D(. . . , Ci, . . . , Cj , . . .)

+ D(. . . , Cj , . . . , Ci, . . .) +D(. . . , Cj , . . . , Cj , . . .)

The first and last determinants on the right are also 0, since the matrices have two identical columns. Thus,

0 = D(. . . , Ci, . . . , Cj , . . .) +D(. . . , Cj , . . . , Ci, . . .)

as claimed. ///

26.3.1 Remark: If the characteristic of the underlying field k is not 2, then we can replace the
requirement that equality of two columns forces a determinant to be 0 by the requirement that interchange
of two columns multiplies the determinant by −1. But this latter is a strictly weaker condition when the
characteristic is 2.

• For any permutation π of {1, 2, 3, . . . , n} we have

D(Cπ(1), . . . , Cπ(n)) = σ(π) ·D(C1, . . . , Cn)

where Ci are the columns of a square matrix and σ is the sign function on Sn.

[337] The etymology of alternating is somewhat obscure, but does have a broader related usage, referring to rings that

are anti-commutative, that is, in which x · y = −y · x. We will see how this is related to the present situation when

we talk about exterior algebras. Another important family of alternating rings is Lie algebras, named after Sophus

Lie, but in these the product is written [x, y] rather than x · y, both by convention and for functional reasons.
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Proof: This argument is completely natural. The adjacent transpositions generate the permutation group
Sn, and the sign function σ(π) evaluated on a permutation π is (−1)t where t is the number of adjacent
transpositions used to express π in terms of adjacent permutations. ///

• The value of a determinant is unchanged if a multiple of one column is added to another. That is, for
indices i < j, with columns Ci considered as vectors in kn, and for b ∈ k,

D(. . . , Ci, . . . , Cj , . . .) = D(. . . , Ci, . . . , Cj + bCi, . . .)

D(. . . , Ci, . . . , Cj , . . .) = D(. . . , Ci + bCj , . . . , Cj , . . .)

Proof: Using the linearity in the jth column,

D(. . . , Ci, . . . , Cj + bCi, . . .) = D(. . . , Ci, . . . , Cj , . . .) + b ·D(. . . , Ci, . . . , Ci, . . .)

= D(. . . , Ci, . . . , Cj , . . .) + b · 0 = D(. . . , Ci, . . . , Cj , . . .)

since a determinant is 0 if two columns are equal. ///

• Let
Cj =

∑
i

bijAi

where bij are in k and Ai ∈ kn. Let C be the matrix with ith column Ci, and let A the the matrix with ith

column Ai. Then

D(C) =

(∑
π∈Sn

σ(π) bπ(1),1 . . . , bπ(n),n

)
·D(A)

and also

D(C) =

(∑
π∈Sn

σ(π) b1,π(1),1 . . . , bn,π(n)

)
·D(A)

Proof: First, expanding using (multi-) linearity, we have

D(. . . , Cj , . . .) = D(. . . ,
∑
ibijAi, . . .) =

∑
i1,...,in

bi1,1 . . . bin,nD(Ai1 , . . . , Ain)

where the ordered n-tuple i1, . . . , in is summed over all choices of ordered n-tupes with entries from {1, . . . , n}.
If any two of ip and iq with p 6= q are equal, then the matrix formed from the Ai will have two identical
columns, and will be 0. Thus, we may as well sum over permutations of the ordered n-tuple 1, 2, 3, . . . , n.
Letting π be the permutation which takes ` to i`, we have

D(Ai1 , . . . , Ain) = σ(π) ·D(A1, . . . , An)

Thus,

D(C) = D(. . . , Cj , . . .) =

(∑
π∈Sn

σ(π) bπ(1),1 . . . , bn,π(n)

)
·D(A)

as claimed. For the second, complementary, formula, since multiplication in k is commutative,

bπ(1),1 . . . bπ(n),n = b1,π−1(1) . . . bn,π−1(n)

Also,
1 = σ(1) = σ(π ◦ π−1) = σ(π) · σ(π−1)
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And the map π −→ π−1 is a bijecton of Sn to itself, so∑
π∈Sn

σ(π) bπ(1),1 . . . , bn,π(n) =
∑
π∈Sn

σ(π) b1,π(1) . . . , bπ(n),n

which yields the second formula. ///

26.3.2 Remark: So far we have not used the normalization that the determinant of the identity matrix
is 1. Now we will use this.

• Let cij be the (i, j)th entry of an n-by-n matrix C. Then

D(C) =
∑
π∈Sn

σ(π) cπ(1),1 . . . , cn,π(n)

Proof: In the previous result, take A to be the identity matrix. ///

• (Uniqueness) There is at most one one determinant function on n-by-n matrices.

Proof: The previous formula is valid once we prove that determinants exist. ///

• The transpose C> of C has the same determinant as does C

D(C>) = D(C)

Proof: Let cij be the (i, j)th entry of C. The (i, j)th entry c>ij of C> is cji, and we have shown that

D(C>) =
∑
π∈Sn

σ(π) c>π(1),1 . . . c
>
π(n),n

Thus,
D(C>) =

∑
π∈Sn

σ(π) cπ(1),1 . . . cn,π(n)

which is also D(C), as just shown. ///

• (Multiplicativity) For two square matrices A,B with entries aij and bij and product C = AB with
entries cij , we have

D(AB) = D(A) ·D(B)

Proof: The jth column Cj of the product C is the linear combination

A1 · b1,j + . . .+An · bn,j

of the columns A1, . . . , An of A. Thus, from above,

D(AB) = D(C) =

(∑
π

σ(π) bπ(1),1 . . . bπ(n),1

)
·D(A)

And we know that the sum is D(B). ///
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• If two rows of a matrix are identical, then its determinant is 0.

Proof: Taking transpose leaves the determinant alone, and a matrix with two identical columns has
determinant 0. ///

• Cramer’s Rule Let A be an n-by-n matrix with jth column Aj . Let b be a column vector with ith entry
bi. Let x be a column vector with ith entry xi. Let A(`) be the matrix obtained from A by replacing the jth

column Aj by b. Then a solution x to an equation

Ax = b

is given by

x` =
D(A(`))
D(A)

if D(A) 6= 0.

Proof: This follows directly from the alternating multilinear nature of determinants. First, the equation
Ax = b can be rewritten as an expression of b as a linear combination of the columns of A, namely

b = x1A1 + x2A2 + . . .+ xnAn

Then
D(A(`)) = D(. . . , A`−1,

∑
j

xjAj , A`+1, . . .) =
∑
j

xj ·D(. . . , A`−1, Aj , A`+1, . . .)

= x` ·D(. . . , A`−1, A`, A`+1, . . .) = x` ·D(A)

since the determinant is 0 whenever two columns are identical, that is, unless ` = j. ///

26.3.3 Remark: In fact, this proof of Cramer’s Rule does a little more than verify the formula. First,
even if D(A) = 0, still

D(A(`)) = x` ·D(A)

Second, for D(A) 6= 0, the computation actually shows that the solution x is unique (since any solutions x`s
satisfy the indicated relation).

• An n-by-n matrix is invertible if and only if its determinant is non-zero.

Proof: If A has an inverse A−1, then from A ·A−1 = 1n and the multiplicativity of determinants,

D(A) ·D(A−1) = D(1n) = 1

so D(A) 6= 0. On the other hand, suppose D(A) 6= 0. Let ei be the ith standard basis element of kn, as a
column vector. For each j = 1, . . . , n Cramer’s Rule gives us a solution bj to the equation

Abj = ej

Let B be the matrix whose jth column is bj . Then

AB = 1n

To prove that also BA = 1n we proceed a little indirectly. Let TM be the endomorphism of kn given by a
matrix M . Then

TA ◦ TB = TAB = T1n = idkn
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Thus, TA is surjective. Since
dim ImTA + dim kerTA = n

necessarily TA is also injective, so is an isomorphism of kn. In particular, a right inverse is a left inverse, so
also

TBA = TB ◦ TA = idkn

The only matrix that gives the identity map on kn is 1n, so BA = 1n. Thus, A is invertible. ///

26.3.4 Remark: All the above discussion assumes existence of determinants.

26.4 Existence
The standard ad hoc argument for existence is ugly, and we won’t write it out. If one must a way to proceed
is to check directly by induction on size that an expansion by minors along any row or column meets the
requirements for a determinant function. Then invoke uniqueness.

This argument might be considered acceptable, but, in fact, it is much less illuminating than the use above
of the key idea of multilinearity to prove properties of determinants before we’re sure they exist. With
hindsight, the capacity to talk about a determinant function D(A) which is linear as a function of each
column (and is alternating) is very effective in proving properties of determinants.

That is, without the notion of linearity a derivation of properties of determinants is much clumsier. This is
why high-school treatments (and 200-year-old treatments) are awkward.

By contrast, we need a more sophisticated viewpoint than basic linear algebra in order to give a conceptual
reason for the existence of determinants. Rather than muddle through expansion by minors, we will wait
until we have developed the exterior algebra that makes this straightforward.

Exercises

26.1 Prove the expansion by minors formula for determinants, namely, for an n-by-n matrix A with entries
aij , letting Aij be the matrix obtained by deleting the ith row and jth column, for any fixed row index i,

detA = (−1)i
n∑
j=1

(−1)j aij detAij

and symmetrically for expansion along a column. (Hint: Prove that this formula is linear in each row/column,
and invoke the uniqueness of determinants.)

26.2 From just the most basic properties of determinants of matrices, show that the determinant of an
upper-triangular matrix is the product of its diagonal entries. That is, show that

det


a11 a12 a13 . . . a1n

0 a22 a23 . . . a2n

0 0 a33
...

. . .
...

0 . . . 0 ann

 = a11a22a33 . . . ann

26.3 Show that determinants respect block decompositions, at least to the extent that

det
(
A B
0 D

)
= detA · detD
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where A is an m-by-n matrix, B is m-by-n, and D is n-by-n.

26.4 By an example, show that it is not always the case that

det
(
A B
C D

)
= detA · detD − detB · detC

for blocks A,B,C,D.

26.5 Let x1, . . . , xn and y1, . . . , yn be two orthonormal bases in a real inner-product space. Let M be the
matrix whose ijth entry is

Mij = 〈xi, yj〉

Show that detM = 1.

26.6 For real numbers a, b, c, d, prove that∣∣∣det
(
a b
c d

) ∣∣∣ = (area of parallelogram spanned by (a, b) and (c, d))

26.7 For real vectors vi = (xi, yi, zi) with i = 1, 2, 3, show that

∣∣∣∣ det

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣∣∣∣ = (volume of parallelogram spanned by v1, v2, v3)
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27. Tensor products

27.1 Desiderata
27.2 Definitions, uniqueness, existence
27.3 First examples
27.4 Tensor products f ⊗ g of maps
27.5 Extension of scalars, functoriality, naturality
27.6 Worked examples

In this first pass at tensor products, we will only consider tensor products of modules over commutative
rings with identity. This is not at all a critical restriction, but does offer many simplifications, while still
illuminating many important features of tensor products and their applications.

27.1 Desiderata
It is time to take stock of what we are missing in our development of linear algebra and related matters.

Most recently, we are missing the proof of existence of determinants, although linear algebra is sufficient to
give palatable proofs of the properties of determinants.

We want to be able to give a direct and natural proof of the Cayley-Hamilton theorem (without using the
structure theorem for finitely-generated modules over PIDs). This example suggests that linear algebra over
fields is insufficient.

We want a sufficient conceptual situation to be able to finish the uniqueness part of the structure theorem for
finitely-generated modules over PIDs. Again, linear or multi-linear algebra over fields is surely insufficient
for this.

We might want an antidote to the antique styles of discussion of vectors vi [sic], covectors vi [sic], mixed
tensors T ijk , and other vague entities whose nature was supposedly specified by the number and pattern
of upper and lower subscripts. These often-ill-defined notions came into existence in the mid-to-late 19th
century in the development of geometry. Perhaps the impressive point is that, even without adequate
algebraic grounding, people managed to envision and roughly formulate geometric notions.

In a related vein, at the beginning of calculus of several variables, one finds ill-defined notions and ill-made
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distinctions between
dx dy

and
dx ∧ dy

with the nature of the so-called differentials dx and dy even less clear. For a usually unspecified reason,

dx ∧ dy = −dy ∧ dx

though perhaps
dx dy = dy dx

In other contexts, one may find confusion between the integration of differential forms versus integration
with respect to a measure. We will not resolve all these confusions here, only the question of what a ∧ b
might mean.

Even in fairly concrete linear algebra, the question of extension of scalars to convert a real vector space to
a complex vector space is possibly mysterious. On one hand, if we are content to say that vectors are column
vectors or row vectors, then we might be equally content in allowing complex entries. For that matter, once
a basis for a real vector space is chosen, to write apparent linear combinations with complex coefficients
(rather than merely real coefficients) is easy, as symbol manipulation. However, it is quite unclear what
meaning can be attached to such expressions. Further, it is unclear what effect a different choice of basis
might have on this process. Finally, without a choice of basis, these ad hoc notions of extension of scalars
are stymied. Instead, the construction below of the tensor product

V ⊗R C = complexification of V

of a real vectorspace V with C over R is exactly right, as will be discussed later.

The notion of extension of scalars has important senses in situations which are qualitatively different than
complexification of real vector spaces. For example, there are several reasons to want to convert abelian groups
A (Z-modules) into Q-vectorspaces in some reasonable, natural manner. After explicating a minimalist
notion of reasonability, we will see that a tensor product

A⊗Z Q

is just right.

There are many examples of application of the construction and universal properties of tensor products.

27.2 Definitions, uniqueness, existence

Let R be a commutative ring with 1. We will only consider R-modules M with the property [338] that
1 ·m = m for all m ∈M . Let M , N , and X be R-modules. A map

B : M ×N −→ X

is R-bilinear if it is R-linear separately in each argument, that is, if

B(m+m′, n) = B(m,n) +B(m′, n)
B(rm, n) = r ·B(m,n)

B(m,n+ n′) = B(m,n) +B(m,n′)
B(m, rn) = r ·B(m,n)

for all m,m′ ∈M , n, n′ ∈ N , and r ∈ R.

[338] Sometimes such a module M is said to be unital, but this terminology is not universal, and, thus, somewhat

unreliable. Certainly the term is readily confused with other usages.
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As in earlier discussion of free modules, and in discussion of polynomial rings as free algebras, we will define
tensor products by mapping properties. This will allow us an easy proof that tensor products (if they exist)
are unique up to unique isomorphism. Thus, whatever construction we contrive must inevitably yield the
same (or, better, equivalent) object. Then we give a modern construction.

A tensor product of R-modules M , N is an R-module denoted M ⊗R N together with an R-bilinear map
τ : M ×N −→M ⊗R N

such that, for every R-bilinear map
ϕ : M ×N −→ X

there is a unique linear map
Φ : M ⊗R N −→ X

such that the diagram
M ⊗R N

Φ

$$H
H

H
H

H

M ×N
ϕ //

τ

OO

X

commutes, that is, ϕ = Φ ◦ τ .

The usual notation does not involve any symbol such as τ , but, rather, denotes the image τ(m×n) of m×n
in the tensor product by

m⊗ n = image of m× n in M ⊗R N

In practice, the implied R-bilinear map

M ×N −→M ⊗R N

is often left anonymous. This seldom causes serious problems, but we will be temporarily more careful about
this while setting things up and proving basic properties.

The following proposition is typical of uniqueness proofs for objects defined by mapping property
requirements. Note that internal details of the objects involved play no role. Rather, the argument proceeds
by manipulation of arrows.

27.2.1 Proposition: Tensor products M ⊗R N are unique up to unique isomorphism. That is, given
two tensor products

τ1 : M ×N −→ T1

τ2 : M ×N −→ T2

there is a unique isomorphism i : T1 −→ T2 such that the diagram

T1

i

���
�
�
�
�
�
�

M ×N

τ1

66nnnnnnnnnnnnn

τ2

((PPPPPPPPPPPPP

T2

commutes, that is, τ2 = i ◦ τ1.

Proof: First, we show that for a tensor product τ : M × N −→ T , the only map f : T −→ T compatible
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with τ is the identity. That is the identity map is the only map f such that

T

f

���
�
�
�
�
�
�

M ×N

τ

66nnnnnnnnnnnnn

τ

((PPPPPPPPPPPPP

T

commutes. Indeed, the definition of a tensor product demands that, given the bilinear map

τ : M ×N −→ T

(with T in the place of the earlier X) there is a unique linear map Φ : T −→ T such that the diagram

T
Φ

((PPPPPPPP

M ×N

τ

OO

τ // T

commutes. The identity map on T certainly has this property, so is the only map T −→ T with this property.

Looking at two tensor products, first take τ2 : M × N −→ T2 in place of the ϕ : M × N −→ X. That is,
there is a unique linear Φ1 : T1 −→ T2 such that

T1

Φ1

''PPPPPPPP

M ×N

τ1

OO

τ2 // T2

commutes. Similarly, reversing the roles, there is a unique linear Φ2 : T2 −→ T1 such that

T2

Φ2

''PPPPPPPP

M ×N

τ2

OO

τ1 // T1

commutes. Then Φ2 ◦Φ1 : T1 −→ T1 is compatible with τ1, so is the identity, from the first part of the proof.
And, symmetrically, Φ1 ◦ Φ2 : T2 −→ T2 is compatible with τ2, so is the identity. Thus, the maps Φi are
mutual inverses, so are isomorphisms. ///

For existence, we will give an argument in what might be viewed as an extravagant modern style. Its
extravagance is similar to that in E. Artin’s proof of the existence of algebraic closures of fields, in which
we create an indeterminate for each irreducible polynomial, and look at the polynomial ring in these myriad
indeterminates. In a similar spirit, the tensor product M ⊗RN will be created as a quotient of a truly huge
module by an only slightly less-huge module.

27.2.2 Proposition: Tensor products M ⊗R N exist.

Proof: Let i : M ×N −→ F be the free R-module on the set M ×N . Let Y be the R-submodule generated
by all elements

i(m+m′, n)− i(m,n)− i(m′, n)
i(rm, n)− r · i(m,n)
i(m,n+ n′)− i(m,n)− i(m,n′)
i(m, rn)− r · i(m,n)
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for all r ∈ R, m,m′ ∈M , and n, n′ ∈ N . Let

q : F −→ F/Y

be the quotient map. We claim that τ = q ◦ i : M ×N −→ F/Y is a tensor product.

Given a bilinear map ϕ : M ×N −→ X, by properties of free modules there is a unique Ψ : F −→ X such
that the diagram

F
Ψ

((PPPPPPPP

M ×N

i

OO

ϕ // X

commutes. We claim that Ψ factors through F/Y , that is, that there is Φ : F/Y −→ X such that

Ψ = Φ ◦ q : F −→ X

Indeed, since ϕ : M ×N −→ X is bilinear, we conclude that, for example,

ϕ(m+m′, n) = ϕ(m,n) + ϕ(m′, n)

Thus,
(Ψ ◦ i)(m+m′, n) = (Ψ ◦ i)(m,n) + (Ψ ◦ i)(m′, n)

Thus, since Ψ is linear,
Ψ( i(m+m′, n)− i(m,n)− i(m′, n) ) = 0

A similar argument applies to all the generators of the submodule Y of F , so Ψ does factor through F/Y .
Let Φ be the map such that Ψ = Φ ◦ q.
A similar argument on the generators for Y shows that the composite

τ = q ◦ i : M ×N −→ F/Y

is bilinear, even though i was only a set map.

The uniqueness of Ψ yields the uniqueness of Φ, since q is a surjection, as follows. For two maps Φ1 and Φ2

with
Φ1 ◦ q = Ψ = Φ2 ◦ q

given x ∈ F/Y let y ∈ F be such that q(y) = x. Then

Φ1(x) = (Φ1 ◦ q)(y) = Ψ(y) = (Φ2 ◦ q)(y) = Φ2(x)

Thus, Φ1 = Φ2. ///

27.2.3 Remark: It is worthwhile to contemplate the many things we did not do to prove the uniqueness
and the existence.

Lest anyone think that tensor products M ⊗RN contain anything not implicitly determined by the behavior
of the monomial tensors [339] m⊗ n, we prove

27.2.4 Proposition: The monomial tensors m ⊗ n (for m ∈ M and n ∈ N) generate M ⊗R N as an
R-module.

Proof: Let X be the submodule of M ⊗R N generated by the monomial tensors, Q = M ⊗R N)/X the
quotient, and q : M ⊗R N −→ Q the quotient map. Let

B : M ×N −→ Q

[339] Again, m⊗ n is the image of m× n ∈M ×N in M ⊗R N under the map τ : M ×N −→M ⊗R N .
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be the 0-map. A defining property of the tensor product is that there is a unique R-linear

β : M ⊗R N −→ Q

making the usual diagram commute, that is, such that B = β ◦ τ , where τ : M ×N −→M ⊗R N . Both the
quotient map q and the 0-map M ⊗R N −→ Q allow the 0-map M ×N −→ Q to factor through, so by the
uniqueness the quotient map is the 0-map. That is, Q is the 0-module, so X = M ⊗R N . ///

27.2.5 Remark: Similarly, define the tensor product

τ : M1 × . . .×Mn −→M1 ⊗R . . .⊗RMn

of an arbitrary finite number of R-modules as an R-module and multilinear map τ such that, for any R-
multilinear map

ϕ : M1 ×M2 × . . .×Mn −→ X

there is a unique R-linear map
Φ : M1 ⊗RM2 ⊗R . . .⊗RMn −→ X

such that ϕ = Φ ◦ τ . That is, the diagram

M1 ⊗RM2 ⊗R . . .⊗RMn

Φ

**UUUUUUUUUU

M1 ×M2 × . . .×Mn

τ

OO

ϕ // X

commutes. There is the subordinate issue of proving associativity, namely, that there are natural
isomorphisms

(M1 ⊗R . . .⊗RMn−1)⊗RMn ≈M1 ⊗R (M2 ⊗R . . .⊗RMn)

to be sure that we need not worry about parentheses.

27.3 First examples

We want to illustrate the possibility of computing [340] tensor products without needing to make any use of
any suppositions about the internal structure of tensor products.

First, we emphasize that to show that a tensor product M⊗RN of two R-modules (where R is a commutative
ring with identity) is 0, it suffices to show that all monomial tensors are 0, since these generate the tensor
product (as R-module). [341]

Second, we emphasize [342] that in M ⊗R N , with r ∈ R, m ∈M , and n ∈ N , we can always rearrange

(rm)⊗ n = r(m⊗ n) = m⊗ (rn)

Also, for r, s ∈ R,
(r + s)(m⊗ n) = rm⊗ n+ sm⊗ n

[340] Of course, it is unclear in what sense we are computing. In the simpler examples the tensor product is the 0

module, which needs no further explanation. However, in other cases, we will see that a certain tensor product is the

right answer to a natural question, without necessarily determining what the tensor product is in some other sense.

[341] This was proven just above.

[342] These are merely translations into this notation of part of the definition of the tensor product, but deserve

emphasis.
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27.3.1 Example: Let’s experiment [343] first with something like

Z/5⊗Z Z/7

Even a novice may anticipate that the fact that 5 annihilates the left factor, while 7 annihilates the right
factor, creates an interesting dramatic tension. What will come of this? For any m ∈ Z/5 and n ∈ Z/7, we
can do things like

0 = 0 · (m⊗ n) = (0 ·m)⊗ n = (5 ·m)⊗ n = m⊗ 5n

and
0 = 0 · (m⊗ n) = m⊗ (0 · n) = m⊗ (7 · n) = 7m⊗ n = 2m⊗ n

Then
(5m⊗ n)− 2 · (2m⊗ n) = (5− 2 · 2)m⊗ n = m⊗ n

but also
(5m⊗ n)− 2 · (2m⊗ n) = 0− 2 · 0 = 0

That is, every monomial tensor in Z/5⊗Z Z/7 is 0, so the whole tensor product is 0.

27.3.2 Example: More systematically, given relatively prime integers [344] a, b, we claim that

Z/a⊗Z Z/b = 0

Indeed, using the Euclidean-ness of Z, let r, s ∈ Z such that

1 = ra+ sb

Then
m⊗ n = 1 · (m⊗ n) = (ra+ sb) · (m⊗ n) = ra(m⊗ n) + s

= b(m⊗ n) = a(rm⊗ n) + b(m⊗ sn) = a · 0 + b · 0 = 0

Thus, every monomial tensor is 0, so the whole tensor product is 0.

27.3.3 Remark: Yes, it somehow not visible that these should be 0, since we probably think of tensors
are complicated objects, not likely to be 0. But this vanishing is an assertion that there are no non-zero
Z-bilinear maps from Z/5× Z/7, which is a plausible more-structural assertion.

27.3.4 Example: Refining the previous example: let a, b be arbitrary non-zero integers. We claim that

Z/a⊗Z Z/b ≈ Z/gcd(a, b)

First, take r, s ∈ Z such that
gcd(a, b) = ra+ sb

Then the same argument as above shows that this gcd annihilates every monomial

(ra+ sb)(m⊗ n) = r(am⊗ n) + s(m⊗ bn) = r · 0 + s · 0 = 0

[343] Or pretend, disingenuously, that we don’t know what will happen? Still, some tangible numerical examples are

worthwhile, much as a picture may be worth many words.

[344] The same argument obviously works as stated in Euclidean rings R, rather than just Z. Further, a restated form

works for arbitrary commutative rings R with identity: given two ring elements a, b such that the ideal Ra + Rb

generated by both is the whole ring, we have R/a⊗R R/b = 0. The point is that this adjusted hypothesis again gives

us r, s ∈ R such that 1 = ra+ sb, and then the same argument works.
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Unlike the previous example, we are not entirely done, since we didn’t simply prove that the tensor product
is 0. We need something like

27.3.5 Proposition: Let {mα : α ∈ A} be a set of generators for an R-module M , and {nβ : β ∈ B} a
set of generators for an R-module N . Then

{mα ⊗ nβ : α ∈ A, β ∈ B}

is a set of generators [345] for M ⊗R N .

Proof: Since monomial tensors generate the tensor product, it suffices to show that every monomial tensor
is expressible in terms of the mα ⊗ nβ . Unsurprisingly, taking rα and sβ in R (0 for all but finitely-many
indices), by multilinearity

(
∑
α

rαmα)⊗ (
∑
β

sβnβ) =
∑
α,β

rαsβ mα ⊗ nβ

This proves that the special monomials mα ⊗ nβ generate the tensor product. ///

Returning to the example, since 1 + aZ generates Z/a and 1 + bZ generates Z/b, the proposition assures us
that 1⊗ 1 generates the tensor product. We already know that

gcd(a, b) · 1⊗ 1 = 0

Thus, we know that Z/a⊗ Z/b is isomorphic to some quotient of Z/gcd(a, b).

But this does not preclude the possibility that something else is 0 for a reason we didn’t anticipate. One
more ingredient is needed to prove the claim, namely exhibition of a sufficiently non-trivial bilinear map
to eliminate the possibility of any further collapsing. One might naturally contrive a Z-blinear map with
formulaic expression

B(x, y) = xy . . .

but there may be some difficulty in intuiting where that xy resides. To understand this, we must be
scrupulous about cosets, namely

(x+ aZ) · (y + bZ) = xy + ayZ+ bxZ+ abZ ⊂ xy + aZ+ bZ = xy + gcd(a, b)Z

That is, the bilinear map is
B : Z/a× Z/b −→ Z/gcd(a, b)

By construction,
B(1, 1) = 1 ∈ Z/gcd(a, b)

so
β(1⊗ 1) = B(1, 1) = 1 ∈ Z/gcd(a, b)

In particular, the map is a surjection. Thus, knowing that the tensor product is generated by 1 ⊗ 1, and
that this element has order dividing gcd(a, b), we find that it has order exactly gcd(a, b), so is isomorphic to
Z/gcd(a, b), by the map

x⊗ y −→ xy

[345] It would be unwise, and generally very difficult, to try to give generators and relations for tensor products.
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27.4 Tensor products f 
 g of maps
Still R is a commutative ring with 1.

An important type of map on a tensor product arises from pairs of R-linear maps on the modules in the
tensor product. That is, let

f : M −→M ′ g : N −→ N ′

be R-module maps, and attempt to define

f ⊗ g : M ⊗R N −→M ′ ⊗R N ′

by
(f ⊗ g)(m⊗ n) = f(m)⊗ g(n)

Justifiably interested in being sure that this formula makes sense, we proceed as follows.

If the map is well-defined then it is defined completely by its values on the monomial tensors, since these
generate the tensor product. To prove well-definedness, we invoke the defining property of the tensor product,
by first considering a bilinear map

B : M ×N −→M ′ ⊗R N ′

given by
B(m× n) = f(m)⊗ g(n)

To see that this bilinear map is well-defined, let

τ ′ : M ′ ×N ′ −→M ′ ⊗R N ′

For fixed n ∈ N , the composite

m −→ f(m) −→ τ ′(f(m), g(n)) = f(m)⊗ g(n)

is certainly an R-linear map in m. Similarly, for fixed m ∈M ,

n −→ g(n) −→ τ ′(f(m), g(n)) = f(m)⊗ g(n)

is an R-linear map in n. Thus, B is an R-bilinear map, and the formula for f ⊗ g expresses the induced
linear map on the tensor product.

Similarly, for an n-tuple of R-linear maps
fi : Mi −→ Ni

there is an associated linear

f1 ⊗ . . .⊗ fn : M1 ⊗ . . .⊗Mn −→ N1 ⊗ . . .⊗Nn
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27.5 Extension of scalars, functoriality, naturality

How to turn an R-module M into an S-module? [346] We assume that R and S are commutative rings with
unit, and that there is a ring homomorphism α : R −→ S such that α(1R) = 1S . For example the situation
that R ⊂ S with 1R = 1S is included. But also we want to allow not-injective maps, such as quotient maps
Z −→ Z/n. This makes S an R-algebra, by

r · s = α(r)s

Before describing the internal details of this conversion, we should tell what criteria it should meet. Let

F : {R−modules} −→ {S −modules}

be this conversion. [347] Our main requirement is that for R-modules M and S-modules N , there should be
a natural [348] isomorphism [349]

HomS(FM,N) ≈ HomR(M,N)

where on the right side we forget that N is an S-module, remembering only the action of R on it. If we want
to make more explicit this forgetting, we can write

ResSRN = R-module obtained by forgetting S-module structure on N

and then, more carefully, write what we want for extension of scalars as

HomS(FM,N) ≈ HomR(M,ResSRN)

Though we’ll not use it much in the immediate sequel, this extra notation does have the virtue that it makes
clear that something happened to the module N .

This association of an S-module FM to an R-module M is not itself a module map. Instead, it is a functor
from R-modules to S-modules, meaning that for an R-module map f : M −→M ′ there should be a naturally
associated S-module map Ff : FM −→ FM ′. Further, the effect of F on should respect the composition of
module homomorphisms, namely, for R-module homomorphisms

M
f
−→M ′

g
−→M ′′

it should be that
F (g ◦ f) = Fg ◦ Ff : FM −→ FM ′′

[346] As an alert reader can guess, the anticipated answer involves tensor products. However, we can lend some dignity

to the proceedings by explaining requirements that should be met, rather than merely contriving from an R-module

a thing that happens to be an S-module.

[347] This F would be an example of a functor from the category of R-modules and R-module maps to the

category of S-modules and S-module maps. To be a genuine functor, we should also tell how F converts R-

module homomorphisms to S-module homomorphisms. We do not need to develop the formalities of category theory

just now, so will not do so. In fact, direct development of a variety of such examples surely provides the only sensible

and genuine motivation for a later formal development of category theory.

[348] This sense of natural will be made precise shortly. It is the same sort of naturality as discussed earlier in the

simplest example of second duals of finite-dimensional vector spaces over fields.

[349] It suffices to consider the map as an isomorphism of abelian groups, but, in fact, the isomorphism potentially

makes sense as an S-module map, if we give both sides S-module structures. For Φ ∈ HomS(FM,N), there is an

unambiguous and unsurprising S-module structure, namely (sΦ)(m′) = s ·Φ(m′) = s ·Φ(m′) for m′ ∈ FM and s ∈ S.

For ϕ ∈ HomR(M,N), since N does have the additional structure of S-module, we have (s · ϕ)(m) = s · ϕ(m).
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This already makes clear that we shouldn’t be completely cavalier in converting R-modules to S-modules.

Now we are able to describe the naturality we require of the desired isomorphism

HomS(FM,N)
iM,N
−→ HomR(M,N)

One part of the naturality is functoriality in N , which requires that for every R-module map g : N −→ N ′

the diagram

HomS(FM,N)
iM,N //

g◦−
��

HomR(M,N)

g◦−
��

HomS(FM,N ′)
iM,N′ // HomR(M,N ′)

commutes, where the map g ◦ − is (post-) composition with g, by

g ◦ − : ϕ −→ g ◦ ϕ

Obviously one oughtn’t imagine that it is easy to haphazardly guess a functor F possessing such virtues.
[350] There is also the requirement of functoriality in M , which requires for every f : M −→M ′ that the
diagram

HomS(FM,N)
iM,N // HomR(M,N)

HomS(FM ′, N)
iM′,N //

−◦Ff

OO

HomR(M ′, N)

−◦f

OO

commutes, where the map − ◦ Ff is (pre-) composition with Ff , by

− ◦ Ff : ϕ −→ ϕ ◦ Ff

After all these demands, it is a relief to have

27.5.1 Theorem: The extension-of-scalars (from R to S) module FM attached to an R-module M is

extension-of-scalars-R-to-S of M = M ⊗R S

That is, for every R-module M and S-module N there is a natural isomorphism

HomS(M ⊗R S,N)
iM,N
−→ HomR(M,ResSRN)

given by
iM,N (Φ)(m) = Φ(m⊗ 1)

for Φ ∈ HomS(M ⊗R S,N), with inverse

jM,N (ϕ)(m⊗ s) = s · ϕ(m)

for s ∈ S, m ∈M .

Proof: First, we verify that the map iM,N given in the statement is an isomorphism, and then prove the
functoriality in N , and functoriality in M .

[350] Further, the same attitude might demand that we worry about the uniqueness of such F . Indeed, there is such a

uniqueness statement that can be made, but more preparation would be required than we can afford just now. The

assertion would be about uniqueness of adjoint functors.
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For the moment, write simply i for iM,N and j for jM,N . Then

((j ◦ i)Φ)(m⊗ s) = (j(iΦ))(m⊗ s) = s · (iΦ)(m) = s · Φ(m⊗ 1) = Φ(m⊗ s)

and
((i ◦ j)ϕ)(m) = (i(jϕ))(m) = (jϕ)(m⊗ 1) = 1 · ϕ(m) = ϕ(m)

This proves that the maps are isomorphisms.

For functoriality in N , we must prove that for every R-module map g : N −→ N ′ the diagram

HomS(M ⊗R S,N)
iM,N //

g◦−
��

HomR(M,N)

g◦−
��

HomS(M ⊗R S,N ′)
iM,N′ // HomR(M,N ′)

commutes. For brevity, let i = iM,N and i′ = iM,N ′ . Directly computing, using the definitions,

((i′ ◦ (g ◦ −))Φ)(m) = (i′ ◦ (g ◦ Φ))(m) = (g ◦ Φ)(m⊗ 1)

= g(Φ(m⊗ 1)) = g(iΦ(m)) = ((g ◦ −) ◦ i)Φ)(m)

For functoriality in M , for each R-module homomorphism f : M −→M ′ we must prove that the diagram

HomS(M ⊗R S,N)
iM,N // HomR(M,N)

HomS(M ′ ⊗R S,N)
iM′,N //

−◦Ff

OO

HomR(M ′, N)

−◦f

OO

commutes, where f ⊗ 1 is the map of M ⊗R S to itself determined by

(f ⊗ 1)(m⊗ s) = f(m)⊗ s

and − ◦ (f ⊗ 1) is (pre-) composition with this function. Again, let i = iM,N and i′ = iM ′,N , and compute
directly

(((− ◦ f) ◦ i′)Ψ)(m) = ((− ◦ f)(i′Ψ)(m) = (i′Ψ ◦ f)(m) = (i′Ψ)(fm)

= Ψ(fm⊗ 1) = (Ψ ◦ (f ⊗ 1))(m⊗ 1) = (i(Ψ ◦ (f ⊗ 1)))(m) = ((i ◦ (− ◦ (f ⊗ 1)))Ψ)(m)

Despite the thicket of parentheses, this does prove what we want, namely, that

(− ◦ f) ◦ i′ = i ◦ (− ◦ (f ⊗ 1))

proving the functoriality of the isomorphism in M . ///
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27.6 Worked examples

27.6.1 Example: For distinct primes p, q, compute

Z/p⊗Z/pq Z/q

where for a divisor d of an integer n the abelian group Z/d is given the Z/n-module structure by

(r + nZ) · (x+ dZ) = rx+ dZ

We claim that this tensor product is 0. To prove this, it suffices to prove that every m ⊗ n (the image of
m × n in the tensor product) is 0, since we have shown that these monomial tensors always generate the
tensor product.

Since p and q are relatively prime, there exist integers a, b such that 1 = ap+ bq. Then for all m ∈ Z/p and
n ∈ Z/q,

m⊗ n = 1 · (m⊗ n) = (ap+ bq)(m⊗ n) = a(pm⊗ n) + b(m⊗ qn) = a · 0 + b · 0 = 0

An auxiliary point is to recognize that, indeed, Z/p and Z/q really are Z/pq-modules, and that the equation
1 = ap+ bq still does make sense inside Z/pq. ///

27.6.2 Example: Compute Z/n⊗Z Q with 0 < n ∈ Z.

We claim that the tensor product is 0. It suffices to show that every m ⊗ n is 0, since these monomials
generate the tensor product. For any x ∈ Z/n and y ∈ Q,

x⊗ y = x⊗ (n · y
n

) = (nx)⊗ y

n
= 0⊗ y

n
= 0

as claimed. ///

27.6.3 Example: Compute Z/n⊗Z Q/Z with 0 < n ∈ Z.

We claim that the tensor product is 0. It suffices to show that every m ⊗ n is 0, since these monomials
generate the tensor product. For any x ∈ Z/n and y ∈ Q/Z,

x⊗ y = x⊗ (n · y
n

) = (nx)⊗ y

n
= 0⊗ y

n
= 0

as claimed. ///

27.6.4 Example: Compute HomZ(Z/n,Q/Z) for 0 < n ∈ Z.

Let q : Z −→ Z/n be the natural quotient map. Given ϕ ∈ HomZ(Z/n,Q/Z), the composite ϕ ◦ q
is a Z-homomorphism from the free Z-module Z (on one generator 1) to Q/Z. A homomorphism
Φ ∈ HomZ(Z,Q/Z) is completely determined by the image of 1 (since Φ(`) = Φ(` · 1) = ` · Φ(1)), and
since Z is free this image can be anything in the target Q/Z.

Such a homomorphism Φ ∈ HomZ(Z,Q/Z) factors through Z/n if and only if Φ(n) = 0, that is, n ·Φ(1) = 0.
A complete list of representatives for equivalence classes in Q/Z annihilated by n is 0, 1

n ,
2
n ,

3
n , . . . ,

n−1
n .

Thus, HomZ(Z/n,Q/Z) is in bijection with this set, by

ϕi/n(x+ nZ) = ix/n+ Z

In fact, we see that HomZ(Z/n,Q/Z) is an abelian group isomorphic to Z/n, with

ϕ1/n(x+ nZ) = x/n+ Z

as a generator. ///
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27.6.5 Example: Compute Q⊗Z Q.

We claim that this tensor product is isomorphic to Q, via the Z-linear map β induced from the Z-bilinar
map B : Q×Q −→ Q given by

B : x× y −→ xy

First, observe that the monomials x ⊗ 1 generate the tensor product. Indeed, given a/b ∈ Q (with a, b
integers, b 6= 0) we have

x⊗ a

b
= (

x

b
· b)⊗ a

b
=
x

b
⊗ (b · a

b
) =

x

b
⊗ a =

x

b
⊗ a · 1 = (a · x

b
)⊗ 1 =

ax

b
⊗ 1

proving the claim. Further, any finite Z-linear combination of such elements can be rewritten as a single
one: letting ni ∈ Z and xi ∈ Q, we have∑

i

ni · (xi ⊗ 1) = (
∑
i

nixi)⊗ 1

This gives an outer bound for the size of the tensor product. Now we need an inner bound, to know that
there is no further collapsing in the tensor product.

From the defining property of the tensor product there exists a (unique) Z-linear map from the tensor
product to Q, through which B factors. We have B(x, 1) = x, so the induced Z-linear map β is a bijection
on {x⊗ 1 : x ∈ Q}, so it is an isomorphism. ///

27.6.6 Example: Compute (Q/Z)⊗Z Q.

We claim that the tensor product is 0. It suffices to show that every m ⊗ n is 0, since these monomials
generate the tensor product. Given x ∈ Q/Z, let 0 < n ∈ Z such that nx = 0. For any y ∈ Q,

x⊗ y = x⊗ (n · y
n

) = (nx)⊗ y

n
= 0⊗ y

n
= 0

as claimed. ///

27.6.7 Example: Compute (Q/Z)⊗Z (Q/Z).

We claim that the tensor product is 0. It suffices to show that every m ⊗ n is 0, since these monomials
generate the tensor product. Given x ∈ Q/Z, let 0 < n ∈ Z such that nx = 0. For any y ∈ Q/Z,

x⊗ y = x⊗ (n · y
n

) = (nx)⊗ y

n
= 0⊗ y

n
= 0

as claimed. Note that we do not claim that Q/Z is a Q-module (which it is not), but only that for given
y ∈ Q/Z there is another element z ∈ Q/Z such that nz = y. That is, Q/Z is a divisible Z-module.
///

27.6.8 Example: Prove that for a subring R of a commutative ring S, with 1R = 1S , polynomial rings
R[x] behave well with respect to tensor products, namely that (as rings)

R[x]⊗R S ≈ S[x]

Given an R-algebra homomorphism ϕ : R −→ A and a ∈ A, let Φ : R[x] −→ A be the unique R-algebra
homomorphism R[x] −→ A which is ϕ on R and such that ϕ(x) = a. In particular, this works for A an
S-algebra and ϕ the restriction to R of an S-algebra homomorphism ϕ : S −→ A. By the defining property
of the tensor product, the bilinear map B : R[x]× S −→ A given by

B(P (x)× s) = s · Φ(P (x))
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gives a unique R-module map β : R[x] ⊗R S −→ A. Thus, the tensor product has most of the properties
necessary for it to be the free S-algebra on one generator x⊗ 1.

27.6.9 Remark: However, we might be concerned about verification that each such β is an S-algebra
map, rather than just an R-module map. We can certainly write an expression that appears to describe the
multiplication, by

(P (x)⊗ s) · (Q(x)⊗ t) = P (x)Q(x)⊗ st

for polynomials P,Q and s, t ∈ S. If it is well-defined, then it is visibly associative, distributive, etc., as
required.

27.6.10 Remark: The S-module structure itself is more straightforward: for any R-module M the
tensor product M ⊗R S has a natural S-module structure given by

s · (m⊗ t) = m⊗ st

for s, t ∈ S and m ∈ M . But one could object that this structure is chosen at random. To argue that this
is a good way to convert M into an S-module, we claim that for any other S-module N we have a natural
isomorphism of abelian groups

HomS(M ⊗R S,N) ≈ HomR(M,N)

(where on the right-hand side we simply forget that N had more structure than that of R-module). The
map is given by

Φ −→ ϕΦ where ϕΦ(m) = Φ(m⊗ 1)

and has inverse
Φϕ ←− ϕ where Φϕ(m⊗ s) = s · ϕ(m)

One might further carefully verify that these two maps are inverses.

27.6.11 Remark: The definition of the tensor product does give an R-linear map

β : R[x]⊗R S −→ S[x]

associated to the R-bilinear B : R[x]× S −→ S[x] by

B(P (x)⊗ s) = s · P (x)

for P (x) ∈ R[x] and s ∈ S. But it does not seem trivial to prove that this gives an isomorphism. Instead, it
may be better to use the universal mapping property of a free algebra. In any case, there would still remain
the issue of proving that the induced maps are S-algebra maps.

27.6.12 Example: Let K be a field extension of a field k. Let f(x) ∈ k[x]. Show that

k[x]/f ⊗k K ≈ K[x]/f

where the indicated quotients are by the ideals generated by f in k[x] and K[x], respectively.

Upon reflection, one should realize that we want to prove isomorphism as K[x]-modules. Thus, we implicitly
use the facts that k[x]/f is a k[x]-module, that k[x]⊗k K ≈ K[x] as K-algebras, and that M ⊗k K gives a
k[x]-module M a K[x]-module structure by

(
∑
i

six
i) · (m⊗ 1) =

∑
i

(xi ·m)⊗ si

The map
k[x]⊗k K ≈ring K[x] −→ K[x]/f
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has kernel (in K[x]) exactly of multiples Q(x) · f(x) of f(x) by polynomials Q(x) =
∑
i six

i in K[x]. The
inverse image of such a polynomial via the isomorphism is∑

i

xif(x)⊗ si

Let I be the ideal generated in k[x] by f , and Ĩ the ideal generated by f in K[x]. The k-bilinear map

k[x]/f ×K −→ K[x]/f

by
B : (P (x) + I)× s −→ s · P (x) + Ĩ

gives a map β : k[x]/f ⊗k K −→ K[x]/f . The map β is surjective, since

β(
∑
i

(xi + I)⊗ si) =
∑
i

six
i + Ĩ

hits every polynomial
∑
i six

i mod Ĩ. On the other hand, if

β(
∑
i

(xi + I)⊗ si) ∈ Ĩ

then
∑
i six

i = F (x) · f(x) for some F (x) ∈ K[x]. Let F (x) =
∑
j tjx

j . With f(x) =
∑
` c`x

`, we have

si =
∑
j+`=i

tjc`

Then, using k-linearity,

∑
i

(xi + I)⊗ si =
∑
i

xi + I ⊗ (
∑
j+`=i

tjc`)

 =
∑
j,`

(
xj+` + I ⊗ tjc`

)

=
∑
j,`

(
c`x

j+` + I ⊗ tj
)

=
∑
j

(
∑
`

c`x
j+` + I)⊗ tj =

∑
j

(f(x)xj + I)⊗ tj =
∑
j

0 = 0

So the map is a bijection, so is an isomorphism. ///

27.6.13 Example: Let K be a field extension of a field k. Let V be a finite-dimensional k-vectorspace.
Show that V ⊗k K is a good definition of the extension of scalars of V from k to K, in the sense that for
any K-vectorspace W

HomK(V ⊗k K,W ) ≈ Homk(V,W )

where in Homk(V,W ) we forget that W was a K-vectorspace, and only think of it as a k-vectorspace.

This is a special case of a general phenomenon regarding extension of scalars. For any k-vectorspace V the
tensor product V ⊗k K has a natural K-module structure given by

s · (v ⊗ t) = v ⊗ st

for s, t ∈ K and v ∈ V . To argue that this is a good way to convert k-vectorspaces V into K-vectorspaces,
claim that for any other K-module W have a natural isomorphism of abelian groups

HomK(V ⊗k K,W ) ≈ Homk(V,W )
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On the right-hand side we forget that W had more structure than that of k-vectorspace. The map is

Φ −→ ϕΦ where ϕΦ(v) = Φ(v ⊗ 1)

and has inverse
Φϕ ←− ϕ where Φϕ(v ⊗ s) = s · ϕ(v)

To verify that these are mutual inverses, compute

ϕΦϕ(v) = Φϕ(v ⊗ 1) = 1 · ϕ(v) = ϕ(v)

and
ΦϕΦ(v ⊗ 1) = 1 · ϕΦ(v) = Φ(v ⊗ 1)

which proves that the maps are inverses. ///

27.6.14 Remark: In fact, the two spaces of homomorphisms in the isomorphism can be given natural
structures of K-vectorspaces, and the isomorphism just constructed can be verified to respect this additional
structure. The K-vectorspace structure on the left is clear, namely

(s · Φ)(m⊗ t) = Φ(m⊗ st) = s · Φ(m⊗ t)

The structure on the right is
(s · ϕ)(m) = s · ϕ(m)

The latter has only the one presentation, since only W is a K-vectorspace.

27.6.15 Example: Let M and N be free R-modules, where R is a commutative ring with identity.
Prove that M ⊗R N is free and

rankM ⊗R N = rankM · rankN

Let M and N be free on generators i : X −→ M and j : Y −→ N . We claim that M ⊗R N is free on a set
map

` : X × Y −→M ⊗R N

To verify this, let ϕ : X × Y −→ Z be a set map. For each fixed y ∈ Y , the map x −→ ϕ(x, y) factors
through a unique R-module map By : M −→ Z. For each m ∈ M , the map y −→ By(m) gives rise to a
unique R-linear map n −→ B(m,n) such that

B(m, j(y)) = By(m)

The linearity in the second argument assures that we still have the linearity in the first, since for
n =

∑
t rt j(yt) we have

B(m,n) = B(m,
∑
t

rtj(yt)) =
∑
t

rtByt(m)

which is a linear combination of linear functions. Thus, there is a unique map to Z induced on the tensor
product, showing that the tensor product with set map i× j : X × Y −→M ⊗R N is free. ///

27.6.16 Example: Let M be a free R-module of rank r, where R is a commutative ring with identity.
Let S be a commutative ring with identity containing R, such that 1R = 1S . Prove that as an S module
M ⊗R S is free of rank r.

We prove a bit more. First, instead of simply an inclusion R ⊂ S, we can consider any ring homomorphism
ψ : R −→ S such that ψ(1R) = 1S .

Also, we can consider arbitrary sets of generators, and give more details. Let M be free on generators
i : X −→M , where X is a set. Let τ : M × S −→M ⊗R S be the canonical map. We claim that M ⊗R S is
free on j : X −→M ⊗R S defined by

j(x) = τ(i(x)× 1S)
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Given an S-module N , we can be a little forgetful and consider N as an R-module via ψ, by r · n = ψ(r)n.
Then, given a set map ϕ : X −→ N , since M is free, there is a unique R-module map Φ : M −→ N such
that ϕ = Φ ◦ i. That is, the diagram

M
Φ

''NNNNNNN

X

i

OO

ϕ // N

commutes. Then the map
ψ : M × S −→ N

by
ψ(m× s) = s · Φ(m)

induces (by the defining property of M ⊗R S) a unique Ψ : M ⊗R S −→ N making a commutative diagram

M ⊗R S

Ψ

��

E
C

@
>

;
9

7
5

3
1

/
.

,
+

M × S

ψ

!!B
B

B
B

B
B

B
B

B
B

τ

OO

X × {1S}

i×inc

OO

X
ϕ //

t

OO

N

where inc is the inclusion map {1S} −→ S, and where t : X −→ X × {1S} by x −→ x× 1S . Thus, M ⊗R S
is free on the composite j : X −→ M ⊗R S defined to be the composite of the vertical maps in that last
diagram. This argument does not depend upon finiteness of the generating set. ///

27.6.17 Example: For finite-dimensional vectorspaces V,W over a field k, prove that there is a natural
isomorphism

(V ⊗k W )∗ ≈ V ∗ ⊗W ∗

where X∗ = Homk(X, k) for a k-vectorspace X.

For finite-dimensional V and W , since V ⊗k W is free on the cartesian product of the generators for V and
W , the dimensions of the two sides match. We make an isomorphism from right to left. Create a bilinear
map

V ∗ ×W ∗ −→ (V ⊗k W )∗

as follows. Given λ ∈ V ∗ and µ ∈W ∗, as usual make Λλ,µ ∈ (V ⊗k W )∗ from the bilinear map

Bλ,µ : V ×W −→ k

defined by
Bλ,µ(v, w) = λ(v) · µ(w)

This induces a unique functional Λλ,µ on the tensor product. This induces a unique linear map

V ∗ ⊗W ∗ −→ (V ⊗k W )∗

as desired.

Since everything is finite-dimensional, bijectivity will follow from injectivity. Let e1, . . . , em be a basis for
V , f1, . . . , fn a basis for W , and λ1, . . . , λm and µ1, . . . , µn corresponding dual bases. We have shown that
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a basis of a tensor product of free modules is free on the cartesian product of the generators. Suppose that∑
ij cijλi ⊗ µj gives the 0 functional on V ⊗W , for some scalars cij . Then, for every pair of indices s, t, the

function is 0 on es ⊗ ft. That is,
0 =

∑
ij

cijλi(es)λj(ft) = cst

Thus, all constants cij are 0, proving that the map is injective. Then a dimension count proves the
isomorphism. ///

27.6.18 Example: For a finite-dimensional k-vectorspace V , prove that the bilinear map

B : V × V ∗ −→ Endk(V )

by
B(v × λ)(x) = λ(x) · v

gives an isomorphism V ⊗k V ∗ −→ Endk(V ). Further, show that the composition of endormorphisms is the
same as the map induced from the map on

(V ⊗ V ∗)× (V ⊗ V ∗) −→ V ⊗ V ∗

given by
(v ⊗ λ)× (w ⊗ µ) −→ λ(w)v ⊗ µ

The bilinear map v × λ −→ Tv,λ given by

Tv,λ(w) = λ(w) · v

induces a unique linear map j : V ⊗ V ∗ −→ Endk(V ).

To prove that j is injective, we may use the fact that a basis of a tensor product of free modules is free on
the cartesian product of the generators. Thus, let e1, . . . , en be a basis for V , and λ1, . . . , λn a dual basis for
V ∗. Suppose that

n∑
i,j=1

cij ei ⊗ λj −→ 0Endk(V )

That is, for every e`, ∑
ij

cijλj(e`)ei = 0 ∈ V

This is ∑
i

cijei = 0 (for all j)

Since the eis are linearly independent, all the cijs are 0. Thus, the map j is injective. Then counting
k-dimensions shows that this j is a k-linear isomorphism.

Composition of endomorphisms is a bilinear map

Endk(V )× Endk(V )
◦
−→Endk(V )

by
S × T −→ S ◦ T

Denote by
c : (v ⊗ λ)× (w ⊗ µ) −→ λ(w)v ⊗ µ
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the allegedly corresonding map on the tensor products. The induced map on (V ⊗ V ∗) ⊗ (V ⊗ V ∗) is an
example of a contraction map on tensors. We want to show that the diagram

Endk(V )× Endk(V ) ◦ // Endk(V )

(V ⊗k V ∗)× (V ⊗k V ∗)

j×j

OO

c // V ⊗k V ∗

j

OO

commutes. It suffices to check this starting with (v⊗λ)× (w⊗µ) in the lower left corner. Let x ∈ V . Going
up, then to the right, we obtain the endomorphism which maps x to

j(v ⊗ λ) ◦ j(w ⊗ µ) (x) = j(v ⊗ λ)(j(w ⊗ µ)(x)) = j(v ⊗ λ)(µ(x)w)

= µ(x) j(v ⊗ λ)(w) = µ(x)λ(w) v

Going the other way around, to the right then up, we obtain the endomorphism which maps x to

j( c((v ⊗ λ)× (w ⊗ µ))) (x) = j(λ(w)(v ⊗ µ) ) (x) = λ(w)µ(x) v

These two outcomes are the same. ///

27.6.19 Example: Under the isomorphism of the previous problem, show that the linear map

tr : Endk(V ) −→ k

is the linear map
V ⊗ V ∗ −→ k

induced by the bilinear map v × λ −→ λ(v).

Note that the induced map
V ⊗k V ∗ −→ k by v ⊗ λ −→ λ(v)

is another contraction map on tensors. Part of the issue is to compare the coordinate-bound trace with
the induced (contraction) map t(v ⊗ λ) = λ(v) determined uniquely from the bilinear map v × λ −→ λ(v).
To this end, let e1, . . . , en be a basis for V , with dual basis λ1, . . . , λn. The corresponding matrix coefficients
Tij ∈ k of a k-linear endomorphism T of V are

Tij = λi(Tej)

(Always there is the worry about interchange of the indices.) Thus, in these coordinates,

trT =
∑
i

λi(Tei)

Let T = j(es ⊗ λt). Then, since λt(ei) = 0 unless i = t,

trT =
∑
i

λi(Tei) =
∑
i

λi(j(es ⊗ λt)ei) =
∑
i

λi(λt(ei) · es) = λt(λt(et) · es) =
{

1 (s = t)
0 (s 6= t)

On the other hand,

t(es ⊗ λt) = λt(es) =
{

1 (s = t)
0 (s 6= t)

Thus, these two k-linear functionals agree on the monomials, which span, they are equal. ///
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27.6.20 Example: Prove that tr (AB) = tr (BA) for two endomorphisms of a finite-dimensional vector
space V over a field k, with trace defined as just above.

Since the maps
Endk(V )× Endk(V ) −→ k

by
A×B −→ tr (AB) and/or A×B −→ tr (BA)

are bilinear, it suffices to prove the equality on (images of) monomials v ⊗ λ, since these span the
endomophisms over k. Previous examples have converted the issue to one concerning V ⊗k V

∗. (We have
already shown that the isomorphism V ⊗k V ∗ ≈ Endk(V ) is converts a contraction map on tensors to
composition of endomorphisms, and that the trace on tensors defined as another contraction corresponds to
the trace of matrices.) Let tr now denote the contraction-map trace on tensors, and (temporarily) write

(v ⊗ λ) ◦ (w ⊗ µ) = λ(w) v ⊗ µ

for the contraction-map composition of endomorphisms. Thus, we must show that

tr (v ⊗ λ) ◦ (w ⊗ µ) = tr (w ⊗ µ) ◦ (v ⊗ λ)

The left-hand side is

tr (v ⊗ λ) ◦ (w ⊗ µ) = tr (λ(w) v ⊗ µ) = λ(w) tr (v ⊗ µ) = λ(w)µ(v)

The right-hand side is

tr (w ⊗ µ) ◦ (v ⊗ λ) = tr (µ(v)w ⊗ λ) = µ(v) tr (w ⊗ λ) = µ(v)λ(w)

These elements of k are the same. ///

27.6.21 Example: Prove that tensor products are associative, in the sense that, for R-modules A,B,C,
we have a natural isomorphism

A⊗R (B ⊗R C) ≈ (A⊗R B)⊗R C

In particular, do prove the naturality, at least the one-third part of it which asserts that, for every R-module
homomorphism f : A −→ A′, the diagram

A⊗R (B ⊗R C) ≈ //

f⊗(1B⊗1C)

��

(A⊗R B)⊗R C

(f⊗1B)⊗1C

��
A′ ⊗R (B ⊗R C) ≈ // (A′ ⊗R B)⊗R C

commutes, where the two horizontal isomorphisms are those determined in the first part of the problem.
(One might also consider maps g : B −→ B′ and h : C −→ C ′, but these behave similarly, so there’s no real
compulsion to worry about them, apart from awareness of the issue.)

Since all tensor products are over R, we drop the subscript, to lighten the notation. As usual, to make a
(linear) map from a tensor product M ⊗ N , we induce uniquely from a bilinear map on M × N . We have
done this enough times that we will suppress this part now.

The thing that is slightly less trivial is construction of maps to tensor products M ⊗ N . These are always
obtained by composition with the canonical bilinear map

M ×N −→M ⊗N

Important at present is that we can create n-fold tensor products, as well. Thus, we prove the indicated
isomorphism by proving that both the indicated iterated tensor products are (naturally) isomorphic to the
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un-parenthesis’d tensor product A ⊗ B ⊗ C, with canonical map τ : A × B × C −→ A ⊗ B ⊗ C, such that
for every trilinear map ϕ : A×B × C −→ X there is a unique linear Φ : A⊗B ⊗ C −→ X such that

A⊗B ⊗ C
Φ

((QQQQQQQQ

A×B × C
ϕ //

τ

OO

X

The set map
A×B × C ≈ (A×B)× C −→ (A⊗B)⊗ C

by
a× b× c −→ (a× b)× c −→ (a⊗ b)⊗ c

is linear in each single argument (for fixed values of the others). Thus, we are assured that there is a unique
induced linear map

A⊗B ⊗ C −→ (A⊗B)⊗ C

such that
A⊗B ⊗ C

i

))TTTTTTTT

A×B × C //

OO

(A⊗B)⊗ C

commutes.

Similarly, from the set map
(A×B)× C ≈ A×B × C −→ A⊗B ⊗ C

by
(a× b)× c −→ a× b× c −→ a⊗ b⊗ c

is linear in each single argument (for fixed values of the others). Thus, we are assured that there is a unique
induced linear map

(A⊗B)⊗ C −→ A⊗B ⊗ C

such that
(A⊗B)⊗ C

j

))TTTTTTTT

(A×B)× C //

OO

A⊗B ⊗ C

commutes.

Then j ◦ i is a map of A⊗B⊗C to itself compatible with the canonical map A×B×C −→ A⊗B⊗C. By
uniqueness, j ◦ i is the identity on A⊗B ⊗ C. Similarly (just very slightly more complicatedly), i ◦ j must
be the identity on the iterated tensor product. Thus, these two maps are mutual inverses.

To prove naturality in one of the arguments A,B,C, consider f : C −→ C ′. Let jABC be the isomorphism
for a fixed triple A,B,C, as above. The diagram of maps of cartesian products (of sets, at least)

(A×B)× C
jABC //

(1A×1B)×f
��

A×B × C

1A×1B×f
��

(A×B)× C
j // A×B × C

does commute: going down, then right, is

jABC′ ((1A × 1B)× f)((a× b)× c)) = jABC′ ((a× b)× f(c)) = a× b× f(c)
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Going right, then down, gives

(1A × 1B × f) (jABC((a× b)× c)) = (1A × 1B × f) (a× b× c)) = a× b× f(c)

These are the same. ///

Exercises

27.1 Let I and J be two ideals in a PID R. Determine

R/I ⊗R R/J

27.2 For an R-module M and an ideal I in R, show that

M/I ·M ≈ M ⊗R R/I

27.3 Let R be a commutative ring with unit, and S a commutative R algebra. Given an R-bilinear map
B : V ×W −→ R, give a natural S-blinear extension of B to the S-linear extensions S ⊗R V and S ⊗RW .

27.4 A multiplicative subset S of a commutative ring R with unit is a subset of R closed under
multiplication. The localization S−1R of R at S is the collection of ordered pairs (r, s) with r ∈ R and
s ∈ S, modulo the equivalence relation that (r, s) ∼ (r′, s′) if and only if there is s′′ ∈ S such that

s′′ · (rs′ − r′s) = 0

Let P be a prime ideal in R. Show that S−1P is a prime ideal in S−1R.

27.5 In the situation of the previous exercise, show that the field of fractions of (S−1R)/(S−1P ) is naturally
isomorphic to the field of fractions of R/P .

27.6 In the situation of the previous two exercises, for an R-module M , define a reasonable notion of
S−1M .

27.7 In the situation of the previous three exercises, for an R-module M , show that

S−1M ≈ M ⊗R S−1R

27.8 Identify the commutative Q-algebra Q(
√

2)⊗Q Q(
√

2) as a sum of fields.

27.9 Identify the commutative Q-algebra Q( 3
√

2)⊗Q Q( 3
√

2) as a sum of fields.

27.10 Let ζ be a primitie 5th root of unity. Identify the commutative Q-algebra Q(
√

5) ⊗Q Q(ζ) as a
sum of fields.

27.11 Let H be the Hamiltonian quaternions. Identify H⊗R C in familiar terms.

27.12 Let H be the Hamiltonian quaternions. Identify H⊗R H in familiar terms.
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28. Exterior powers

28.1 Desiderata
28.2 Definitions, uniqueness, existence
28.3 Some elementary facts
28.4 Exterior powers

∧i
f of maps

28.5 Exterior powers of free modules
28.6 Determinants revisited
28.7 Minors of matrices
28.8 Uniqueness in the structure theorem
28.9 Cartan’s lemma
28.10 Cayley-Hamilton theorem
28.11 Worked examples

While many of the arguments here have analogues for tensor products, it is worthwhile to repeat these
arguments with the relevant variations, both for practice, and to be sensitive to the differences.

28.1 Desiderata
Again, we review missing items in our development of linear algebra.

We are missing a development of determinants of matrices whose entries may be in commutative rings, rather
than fields. We would like an intrinsic definition of determinants of endomorphisms, rather than one that
depends upon a choice of coordinates, even if we eventually prove that the determinant is independent of
the coordinates. We anticipate that Artin’s axiomatization of determinants of matrices should be mirrored
in much of what we do here.

We want a direct and natural proof of the Cayley-Hamilton theorem. Linear algebra over fields is insufficient,
since the introduction of the indeterminate x in the definition of the characteristic polynomial takes us outside
the class of vector spaces over fields.

We want to give a conceptual proof for the uniqueness part of the structure theorem for finitely-generated
modules over principal ideal domains. Multi-linear algebra over fields is surely insufficient for this.
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28.2 Definitions, uniqueness, existence
Let R be a commutative ring with 1. We only consider R-modules M with the property that 1 ·m = m for
all m ∈M . Let M and X be R-modules. An R-multilinear map

B : M × . . .×M︸ ︷︷ ︸
n

−→ X

is alternating if B(m1, . . . ,mn) = 0 whenever mi = mj for two indices i 6= j.

As in earlier discussion of free modules, and in discussion of polynomial rings as free algebras, we will define
exterior powers by mapping properties. As usual, this allows an easy proof that exterior powers (if they
exist) are unique up to unique isomorphism. Then we give a modern construction.

An exterior nth power
∧n
RM over R of an R-module M is an R-module

∧n
RM with an alternating R-

multilinear map (called the canonical map) [351]

α : M × . . .×M︸ ︷︷ ︸
n

−→
∧n
RM

such that, for every alternating R-multilinear map

ϕ : M × . . .×M︸ ︷︷ ︸
n

−→ X

there is a unique R-linear map
Φ :
∧n
RM −→ X

such that ϕ = Φ ◦ α, that is, such that the diagram∧n
RM

Φ

((RRRRRRRR

M × . . .×M

α

OO

ϕ // X

commutes.

28.2.1 Remark: If there is no ambiguity, we may drop the subscript R on the exterior power
∧n
RM ,

writing simply
∧n

M .

The usual notation does not involve any symbol such as α, but in our development it is handy to have a
name for this map. The standard notation denotes the image α(m× n) of m× n in the exterior product by

image of m1 × . . .×mn in
∧n

M = m1 ∧ . . . ∧mn

In practice, the implied R-multilinear alternating map

M × . . .×M −→
∧n

M

called α here is often left anonymous.

The following proposition is typical of uniqueness proofs for objects defined by mapping property
requirements. It is essentially identical to the analogous argument for tensor products. Note that internal
details of the objects involved play no role. Rather, the argument proceeds by manipulation of arrows.

[351] There are many different canonical maps in different situations, but context should always make clear what the

properties are that are expected. Among other things, this potentially ambiguous phrase allows us to avoid trying

to give a permanent symbolic name to the maps in question.
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28.2.2 Proposition: Exterior powers α : M × . . .×M −→
∧n

M are unique up to unique isomorphism.
That is, given two exterior nth powers

α1 : M × . . .×M −→ E1

α2 : M × . . .×M −→ E2

there is a unique R-linear isomorphism i : E1 −→ E2 such that the diagram

E1

i

��

M × . . .×M

α1

55lllllllllllllll

α2

))RRRRRRRRRRRRRRR

E2

commutes, that is, α2 = i ◦ α1.

Proof: First, we show that for a nth exterior power α : M × . . . ×M −→ T , the only map f : E −→ E
compatible with α is the identity. That is, the identity map is the only map f such that

E

f

��

M × . . .×M

α

55lllllllllllllll

α

))RRRRRRRRRRRRRRR

E

commutes. Indeed, the definition of a nth exterior power demands that, given the alternating multilinear
map

α : M × . . .×M −→ E

(with E in the place of the earlier X) there is a unique linear map Φ : E −→ E such that the diagram

E
Φ

))RRRRRRRRR

M × . . .×M α //

α

OO

E

commutes. The identity map on E certainly has this property, so is the only map E −→ E with this property.

Looking at two nth exterior powers, first take α2 : M× . . .×M −→ E2 in place of the ϕ : M× . . .×M −→ X.
That is, there is a unique linear Φ1 : E1 −→ E2 such that the diagram

E1

Φ1

))RRRRRRRRR

M × . . .×M
α2 //

α1

OO

E2

commutes. Similarly, reversing the roles, there is a unique linear Φ2 : E2 −→ E1 such that

E2

Φ2

))RRRRRRRRR

M × . . .×M
α1 //

α2

OO

E1
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commutes. Then Φ2 ◦ Φ1 : E1 −→ E1 is compatible with α1, so is the identity, from the first part of the
proof. And, symmetrically, Φ1 ◦Φ2 : E2 −→ E2 is compatible with α2, so is the identity. Thus, the maps Φi
are mutual inverses, so are isomorphisms. ///

For existence, we express the nth exterior power
∧n

M as a quotient of the tensor power

n⊗
M = M ⊗ . . .⊗M︸ ︷︷ ︸

n

28.2.3 Proposition: nth exterior powers
∧n

M exist. In particular, let I be the submodule of
⊗n

M
generated by all tensors

m1 ⊗ . . .⊗mn

where mi = mj for some i 6= j. Then ∧n
M =

n⊗
M/I

The alternating map
α : M × . . .×M −→

∧n
M

is the composite of the quotient map
⊗n −→

∧n
M with the canonical multilinear map M × . . . ×M −→⊗n

M .

Proof: Let ϕ : M × . . .×M −→ X be an alternating R-multilinear map. Let τ : M × . . .×M −→
⊗n

M
be the tensor product. By properties of the tensor product there is a unique R-linear Ψ :

⊗n
M −→ X

through which ϕ factors, namely ϕ = Ψ ◦ τ .

Let q :
⊗n −→

∧n
M be the quotient map. We claim that Ψ factors through q, as Ψ = Φ ◦ q, for a linear

map Φ :
∧n

M −→ X. That is, we claim that there is a commutative diagram

⊗n
M

q

&&MMMMMMMMMM
Ψ

��

∧n
M

Φ

((RRRRRRRR

M × . . .×M

τ

YY

α

OO

ϕ // X

Specifically, we claim that Ψ(I) = 0, where I is the submodule generated by m1 ⊗ . . . ⊗mn with mi = mj

for some i 6= j. Indeed, using the fact that ϕ is alternating,

Ψ(m1 ⊗ . . .⊗m) = Ψ(τ(m1 × . . .×mn)) = ϕ(m1 × . . .×mn) = 0

That is, ker Ψ ⊃ I, so Ψ factors through the quotient
∧n

M .

Last, we must check that the map α = q ◦ τ is alternating. Indeed, with mi = mj (and i 6= j),

α(m1 × . . .×mn) = (q ◦ τ)(m1 × . . .×mn) = q(m1 ⊗ . . .⊗mn)

Since mi = mj , that monomial tensor is in the submodule I, which is the kernel of the quotient map q.
Thus, α is alternating. ///
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28.3 Some elementary facts

Again, [352] the naive notion of alternating would entail that, for example, in
∧2
M

x ∧ y = −y ∧ x

More generally, in
∧n

M ,

. . . ∧mi ∧ . . . ∧mj ∧ . . . = − . . . ∧mj ∧ . . . ∧mi ∧ . . .

(interchanging the ith and jth elements) for i 6= j. However, this isn’t the definition. Again, the definition
is that

. . . ∧mi ∧ . . . ∧mj ∧ . . . = 0 if mi = mj for any i 6= j

This latter condition is strictly stronger than the change-of-sign requirement if 2 is a 0-divisor in the
underlying ring R. As in Artin’s development of determinants from the alternating property, we do recover
the change-of-sign property, since

0 = (x+ y) ∧ (x+ y) = x ∧ x+ x ∧ y + y ∧ x+ y ∧ y = 0 + x ∧ y + y ∧ x+ 0

which gives
x ∧ y = −y ∧ x

The natural induction on the number of 2-cycles in a permutation π proves

28.3.1 Proposition: For m1, . . . ,mn in M , and for a permutation π of n things,

mπ(1) ∧ . . . ∧mπ(n) = σ(π) ·m1 ∧ . . . ∧mn

Proof: Let π = sτ , where s is a 2-cycle and τ is a permutation expressible as a product of fewer 2-cycles
than π. Then

mπ(1) ∧ . . . ∧mπ(n) = msτ(1) ∧ . . . ∧msτ(n) = −mτ(1) ∧ . . . ∧mτ(n)

= −σ(τ) ·m1 ∧ . . . ∧mn = σ(π) ·m1 ∧ . . . ∧mn

as asserted. ///

28.3.2 Proposition: The monomial exterior products m1 ∧ . . . ∧mn generate
∧n

M as an R-module,
as the mi run over all elements of M .

Proof: Let X be the submodule of
∧n

M generated by the monomial tensors, Q = (
∧n

M)/X the quotient,
and q :

∧n
M −→ X the quotient map. Let

B : M × . . .×M −→ Q

be the 0-map. A defining property of the nth exterior power is that there is a unique R-linear

β :
∧n

M −→ Q

making the usual diagram commute, that is, such that B = β ◦ α, where α : M × . . .×M −→
∧n

M . Both
the quotient map q and the 0-map

∧n
M −→ Q allow the 0-map M × . . .×M −→ Q to factor through, so

by the uniqueness the quotient map is the 0-map. That is, Q is the 0-module, so X =
∧n

M . ///

[352] We already saw this refinement in the classical context of determinants of matrices, as axiomatized in the style

of Emil Artin.
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28.3.3 Proposition: Let {mβ : β ∈ B} be a set of generators for an R-module M , where the index set
B is ordered. Then the monomials

mβ1 ∧ . . . ∧mβn with β1 < β2 < . . . < βn

generate
∧n

M .

Proof: First, claim that the monomials

mβ1 ∧ . . . ∧mβn (no condition on βis)

generate the exterior power. Let I be the submodule generated by them. If I is proper, let X = (
∧n

M)/I
and let q :

∧n
M −→ X be the quotient map. The composite

q ◦ α : M × . . .×M︸ ︷︷ ︸
n

−→
∧n

M −→ X

is an alternating map, and is 0 on any mβ1 × . . . × mβn . In each variable, separately, the map is linear,
and vanishes on generators for M , so is 0. Thus, q ◦ α = 0. This map certainly factors through the 0-map∧n

M −→ X. But, using the defining property of the exterior power, the uniqueness of a map
∧n

M −→ X
through which q ◦ α factors implies that q = 0, and X = 0. Thus, these monomials generate the whole.

Now we will see that we can reorder monomials to put the indices in ascending order. First, since

mβ1 ∧ . . . ∧mβn = α(mβ1 × . . .×mβn)

and α is alternating, the monomial is 0 if mβi = mβj for βi 6= βj . And for a permutation π of n things, as
observed just above,

mβπ(1) ∧ . . . ∧mβπ(n) = σ(π) ·mβ1 ∧ . . . ∧mβn

where σ is the parity function on permutations. Thus, to express elements of
∧n

M it suffices to use only
monomials with indices in ascending order. ///

28.4 Exterior powers
Vnf of maps

Still R is a commutative ring with 1.

An important type of map on an exterior power
∧n

M arises from R-linear maps on the module M . That
is, let

f : M −→ N

be an R-module map, and attempt to define∧n
f :
∧n

M −→
∧n

N

by
(
∧n

f)(m1 ∧ . . . ∧mn) = f(m1) ∧ . . . ∧ f(mn)

Justifiably interested in being sure that this formula makes sense, we proceed as follows.

If the map is well-defined then it is defined completely by its values on the monomial exterior products, since
these generate the exterior power. To prove well-definedness, we invoke the defining property of the nth

exterior power. Let α′ : N × . . .×N −→
∧n

N be the canonical map. Consider

B : M × . . .×M︸ ︷︷ ︸
n

f×...×f
−→ N × . . .×N︸ ︷︷ ︸

n

α′

−→
∧n

N
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given by
B(m1 × . . .×mn) = f(m1) ∧ . . . ∧ f(mn)

For fixed index i, and for fixed mj ∈M for j 6= i, the composite

m −→ α′(. . .× f(mi−1)× f(m)× f(mi+1) ∧ . . .)

is certainly an R-linear map in m. Thus, B is R-multilinear. As a function of each single argument in
M × . . . ×M , the map B is linear, so B is multilinear. Since α′ is alternating, B is alternating. Then (by
the defining property of the exterior power) there is a unique R-linear map Φ giving a commutative diagram

∧n
M Φ=∧nf

))

^ ] ] \ [ Z Y X W V U T S

M × . . .×M
f×...×f //

α

OO

N × . . .×N α′ // ∧nN
the formula for

∧n
f is the induced linear map Φ on the nth exterior power. Since the map arises as the

unique induced map via the defining property of
∧n

M , it is certainly well-defined.

28.5 Exterior powers of free modules
The main point here is that free modules over commutative rings with identity behave much like vector
spaces over fields, with respect to multilinear algebra operations. In particular, we prove non-vanishing of
the nth exterior power of a free module of rank n, which (as we will see) proves the existence of determinants.

At the end, we discuss the natural bilinear map∧s
M ×

∧t
M −→

∧s+t
M

by
(m1 ∧ . . . ∧ms)× (ms+1 ∧ . . . ∧ms+t) −→ m1 ∧ . . . ∧ms ∧ms+1 ∧ . . . ∧ms+t

which does not require free-ness of M .

28.5.1 Theorem: Let F be a free module of rank n over a commutative ring R with identity. Then∧`
F is free of rank

(
n
`

)
. In particular, if m1, . . . ,mn form an R-basis for F , then the monomials

mi1 ∧ . . . ∧mi` with i1 < . . . < i`

are an R basis for
∧`
F .

Proof: The elementary discussion just above shows that the monomials involving the basis and with strictly
ascending indices generate

∧`
F . The remaining issue is to prove linear independence.

First, we prove that
∧n

F is free of rank 1. We know that it is generated by

m1 ∧ . . . ∧mn

But for all we know it might be that
r ·m1 ∧ . . . ∧mn = 0

for some r 6= 0 in R. We must prove that this does not happen. To do so, we make a non-trivial alternating
(multilinear) map

ϕ : F × . . .× F︸ ︷︷ ︸
n

−→ R
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To make this, let λ1, . . . , λn be a dual basis [353] for HomR(F,R), namely,

λi(mj) =
{

1 i = j
0 (else)

For arbitrary x1, . . . , xn in F , let [354]

ϕ(x1 × . . .× xn) =
∑
π∈Sn

σ(π)λ1(xπ(1)) . . . λn(xπ(n))

where Sn is the group of permutations of n things. Suppose that for some i 6= j we have xi = xj . Let i′ and
j′ be indices such that π(i′) = i and π(j′) = j. Let s still be the 2-cycle that interchanges i and j. Then the
n! summands can be seen to cancel in pairs, by

σ(π)λ1(xπ(1)) . . . λn(xπ(n)) + σ(sπ)λ1(xsπ(1)) . . . λn(xsπ(n))

= σ(π)

 ∏
` 6=i′,j′

λ`(xπ(`))

 · (λi(xπ(i′)λi(xπ(j′))− λi(xsπ(i′))λi(xsπ(j′))
)

Since s just interchanges i = π(i′) and j = π(j′), the rightmost sum is 0. This proves the alternating
property of ϕ.

To see that ϕ is not trivial, note that when the arguments to ϕ are the basis elements m1, . . . ,mn, in the
expression

ϕ(m1 × . . .×mn) =
∑
π∈Sn

σ(π)λ1(mπ(1)) . . . λn(mπ(n))

λi(mπ(i)) = 0 unless π(i) = i. That is, the only non-zero summand is with π = 1, and we have

ϕ(m1 × . . .×mn) = λ1(m1) . . . λn(mn) = 1 ∈ R

Then ϕ induces a map Φ :
∧n

F −→ R such that

Φ(m1 ∧ . . . ∧mn) = 1

For r ∈ R such that r · (m1 ∧ . . . ∧mn) = 0, apply Φ to obtain

0 = Φ(0) = Φ(r ·m1 ∧ . . . ∧mn) = r · Φ(m1 ∧ . . . ∧mn) = r · 1 = r

This proves that
∧n

F is free of rank 1.

The case of
∧`
F with ` < n reduces to the case ` = n, as follows. We already know that monomials

mi1 ∧ . . . ∧mi` with i1 < . . . < i` span
∧`
F . Suppose that∑

i1<...<i`

ri1...i` ·mi1 ∧ . . . ∧mi` = 0

The trick is to consider, for a fixed `-tuple j1 < . . . < j` of indices, the R-linear map

f :
∧`
F −→

∧n
F

[353] These exist, since (by definition of free-ness of F ) given a set of desired images ϕ(mi) ∈ R of the basis mi, there

is a unique map Φ : F −→ R such that Φ(mi) = ϕ(mi).

[354] This formula is suggested by the earlier discussion of determinants of matrices following Artin.
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given by
f(x) = x ∧ (m1 ∧m2 ∧ . . . ∧ m̂j1 ∧ . . . ∧ m̂j` ∧ . . . ∧mn)

where
m1 ∧m2 ∧ . . . ∧ m̂j1 ∧ . . . ∧ m̂j` ∧ . . . ∧mn)

is the monomial with exactly the mjts missing. Granting that this map is well-defined,

0 = f(0) = f

( ∑
i1<...<i`

ri1...i` ·mi1 ∧ . . . ∧mi`

)
= ±rj1...j`m1 ∧ . . . ∧mn

since all the other monomials have some repeated mt, so are 0. That is, any such relation must have all
coefficients 0. This proves the linear independence of the indicated monomials.

To be sure that these maps f are well-defined, [355] we prove a more systematic result, that could have been
given earlier, but with less motivation:

28.5.2 Proposition: Let M be an R-module. [356] Let s, t be positive integers. The canonical
alternating multilinear map

α : M × . . .×M −→
∧s+t

M

induces a natural bilinear map
B : (

∧s
M)× (

∧t
M) −→

∧s+t
M

by
(m1 ∧ . . . ∧ms)× (ms+1 ∧ . . . ∧ms+t) −→ m1 ∧ . . . ∧ms ∧ms+1 ∧ . . . ∧ms+t

Proof: For fixed choice of the last t arguments, the map α on the first s factors is certainly alternating
multilinear. Thus, from the defining property of

∧s
M , α factors uniquely through the map∧s

M ×M × . . .×M︸ ︷︷ ︸
t

−→
∧s+t

M

defined (by linearity) by

(m1 ∧ . . . ∧ms)×ms+1 × . . .×ms+t = m1 ∧ . . . ∧ms ∧ms+1 ∧ . . . ∧ms+t

Indeed, by the defining property of the exterior power, for each fixed choice of last t arguments the map
is linear on

∧s
M . Further, for fixed choice of first arguments α on the last t arguments is alternating

multilinear, so α factors through the expected map

(
∧s
M)× (

∧t
M) −→

∧s+t
M

linear in the
∧t
M argument for each choice of the first. That is, this map is bilinear. ///

Since we have cleared up the concern about well-definedness, we are done with the theorem. ///

[355] The importance of verifying that symbolically reasonable expressions make sense is often underestimated.

Seemingly well-defined things can easily be ill-defined. For example, f : Z/3 −→ Z/5 defined [sic] by f(x) = x,

or, seemingly more clearly, by f(x+ 3Z) = x+ 5Z. This is not well-defined, since 0 = f(0) = f(3) = 3 6= 0.

[356] In particular, M need not be free, and need not be finitely-generated.
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28.6 Determinants revisited
The fundamental idea is that for an endomorphism T of a free R-module M of rank n (with R commutative
with unit), detT ∈ R is determined as

Tm1 ∧ . . . ∧ Tmn = (detT ) · (m1 ∧ . . . ∧mn)

Since
∧n

M is free of rank 1, all R-linear endomorphisms are given by scalars: indeed, for an endomorphism
A of a rank-1 R-module with generator e,

A(re) = r ·Ae = r · (s · e)

for all r ∈, for some s ∈ R, since Ae ∈ R · e.
This gives a scalar detT , intrinsically defined, assuming that we verify that this does what we want.

And certainly this would give a pleasant proof of the multiplicativity of determinants, since

(detST ) · (m1 ∧ . . . ∧mn) = (ST )m1 ∧ . . . ∧ (ST )mn = S(Tm1) ∧ . . . ∧ S(Tmn)

= (detS) (Tm1 ∧ . . . ∧ Tmn) = (detS)(detT )(m1 ∧ . . . ∧mn)

Note that we use the fact that

(detT ) · (m1 ∧ . . . ∧mn) = Tm1 ∧ . . . ∧ Tmn

for all n-tuples of elements mi in F .

Let e1, . . . , en be the standard basis of kn. Let v1, . . . , vn be the columns of an n-by-n matrix. Let T be the
endomorphism (of column vectors) given by (left multiplication by) that matrix. That is, Tei = vi. Then

v1 ∧ . . . ∧ vn = Te1 ∧ . . . ∧ Ten = (detT ) · (e1 ∧ . . . ∧ en)

The leftmost expression in the latter line is an alternating multilinear
∧n(kn)-valued function. (Not k-

valued.) But since we know that
∧n(kn) is one-dimensional, and is spanned by e1 ∧ . . . ∧ en, (once again)

we know that there is a unique scalar detT such that the right-hand equality holds. That is, the map

v1 × . . .× vn −→ detT

where T is the endomorphism given by the matrix with columns vi, is an alternating k-valued map. And it
is 1 for vi = ei.

This translation back to matrices verifies that our intrinsic determinant meets our earlier axiomatized
requirements for a determinant. ///

Finally we note that the basic formula for determinants of matrices that followed from Artin’s axiomatic
characterization, at least in the case of entires in fields, is valid for matrices with entries in commutative
rings (with units). That is, for an n-by-n matrix A with entries Aij in a commutative ring R with unit,

detA =
∑
π∈Sn

σ(π)Aπ(1),1 . . . Aπ(n),n

where Sn is the symmetric group on n things and σ(π) is the sign function on permutations. Indeed, let
v1, . . . , vn be the rows of A, let e1, . . . , en be the standard basis (row) vectors for Rn, and consider A as
an endomorphism of Rn. As in the previous argument, A · ej = ejA = vj (where A acts by right matrix
multiplication). And vi =

∑
j Aijej . Then

(detA) e1 ∧ . . . ∧ en = (A · e1) ∧ . . . ∧ (A · en) = v1 ∧ . . . ∧ vn =
∑

i1,...,in

(A1i1ei1) ∧ . . . ∧ (Aninein)
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=
∑
π∈Sn

(A1π(1)eπ(1)) ∧ . . . ∧ (Anπ(n)eπ(n)) =
∑
π∈Sn

(A1π(1) . . . Anπ(n)) eπ(1) ∧ . . . ∧ eπ(n)

=
∑
π∈Sn

(Aπ−1(1),1 . . . Aπ−1(n), n) σ(π)e1 ∧ . . . ∧ en

by reordering the eis, using the alternating multilinear nature of
∧n(Rn). Of course σ(π) = σ(π−1).

Replacing π by π−1 (thus replacing π−1 by π) gives the desired

(detA) e1 ∧ . . . ∧ en =
∑
π∈Sn

(Aπ(1),1 . . . Aπ(n), n) σ(π)e1 ∧ . . . ∧ en

Since e1 ∧ . . . ∧ en is an R-basis for the free rank-one R-module
∧n(Rn), this proves that detA is given by

the asserted formula. ///

28.6.1 Remark: Indeed, the point that e1 ∧ . . . ∧ en is an R-basis for the free rank-one R-module∧n(Rn), as opposed to being 0 or being annihilated by some non-zero elements of R, is exactly what is
needed to make the earlier seemingly field-oriented arguments work more generally.

28.7 Minors of matrices
At first, one might be surprised at the following phenomenon.

Let

M =
(
a b c
x y z

)
with entries in some commutative ring R with unit. Viewing each of the two rows as a vector in R3, inside∧2
R3 we compute (letting e1, e2, e3 be the standard basis)

(ae1 + be2 + ce3) ∧ (xe1 + ye2 + ze3)

=

 axe1 ∧ e1 + aye1 ∧ e2 + aze1 ∧ e3

+ bxe2 ∧ e1 + bye2 ∧ e2 + bze2 ∧ e3

+ cxe3 ∧ e1 + cye3 ∧ e2 + cze3 ∧ e3

=

 0 + aye1 ∧ e2 + aze1 ∧ e3

−bxe1 ∧ e2 + 0 + bze2 ∧ e3

−cxe1 ∧ e3 + −cye2 ∧ e3 + 0

= (ay − bx) e1 ∧ e2 + (az − cx) e1 ∧ e3 + (bz − cy) e2 ∧ e3

=
∣∣∣∣ a b
x y

∣∣∣∣ e1 ∧ e2 +
∣∣∣∣ a c
x z

∣∣∣∣ e1 ∧ e3 +
∣∣∣∣ b c
y z

∣∣∣∣ e2 ∧ e3

where, to fit it on a line, we have written ∣∣∣∣ a b
x y

∣∣∣∣ = det
(
a b
x y

)
That is, the coefficients in the second exterior power are the determinants of the two-by-two minors.

At some point it becomes unsurprising to have

28.7.1 Proposition: Let M be an m-by-n matrix with m < n, entries in a commutative ring R with
identity. Viewing the rows M1, . . . ,Mm of M as elements of Rn, and letting e1, . . . , en be the standard basis
of Rn, in

∧m
Rn

M1 ∧ . . . ∧Mn =
∑

i1<...<im

det(M i1...im) · ei1 ∧ . . . ∧ eim
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where M i1...im is the m-by-m matrix consisting of the ith1 , ith2 , . . ., ithm columns of M .

Proof: Write
Mi =

∑
j

rijej

Then
M1 ∧ . . . ∧Mm =

∑
i1,...,im

(M1i1ei1) ∧ (M2i2ei2) ∧ . . . ∧ (Mmimein)

=
∑

i1,...,im

M1i1 . . .Mmim ei1 ∧ ei2 ∧ . . . ∧ eim

=
∑

i1<...<im

∑
π∈Sm

σ(π)M1,iπ(1) . . .Mm,iπ(i) ei1 ∧ . . . ∧ eim

=
∑

i1<...<im

detM i1...im ei1 ∧ . . . ∧ eim

where we reorder the eijs via π in the permutations group Sm of {1, 2, . . . ,m} and σ(π) is the sign function
on permutation. This uses the general formula for the determinant of an n-by-n matrix, from above.
///

28.8 Uniqueness in the structure theorem
Exterior powers give a decisive trick to give an elegant proof of the uniqueness part of the structure theorem
for finitely-generated modules over principal ideal domains. This will be the immediate application of

28.8.1 Proposition: Let R be a commutative ring with identity. Let M be a free R-module with
R-basis m1, . . . ,mn. Let d1, . . . , dn be elements of R, and let

N = R · d1m1 ⊕ . . .⊕R · dnmn ⊂M

Then, for any 1 < ` ∈ Z, we have∧`
N =

⊕
j1<...<j`

R · (dj1 . . . dj`) · (mj1 ∧ . . . ∧mj`) ⊂
∧`
M

28.8.2 Remark: We do not need to assume that R is a PID, nor that d1| . . . |dn, in this proposition.

Proof: Without loss of generality, by re-indexing, suppose that d1, . . . , dt are non-zero and dt+1 = dt+2 =
. . . = dn = 0. We have already shown that the ordered monomials mj1 ∧ . . . ∧mj` are a basis for the free
R-module

∧`
M , whether or not R is a PID. Similarly, the basis d1m1, . . . , dtmt for N yields a basis of the

`-fold monomials for
∧`
N , namely

dj1mj1 ∧ . . . ∧ dj`mj` with j1 < . . . < j` ≤ t

By the multilinearity,

dj1mj1 ∧ . . . ∧ dj`mj` = (dj1dj2 . . . dj`) · (mj1 ∧ . . . ∧mj`)

This is all that is asserted. ///

At last, we prove the uniqueness of elementary divisors.
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28.8.3 Corollary: Let R be a principal ideal domain. Let M be a finitely-generated free R-module,
and N a submodule of M . Then there is a basis m1, . . . ,mn of M and elementary divisors d1| . . . |dn in R
such that

N = Rd1m1 ⊕ . . .⊕Rdnmn

The ideals Rdi are uniquely determined by M,N .

Proof: The existence was proven much earlier. Note that the highest elementary divisor dn, or, really, the
ideal Rdn, is determined intrinsically by the property

Rdn = {r ∈ R : r · (M/N) = 0}

since dn is a least common multiple of all the dis. That is, Rdn is the annihilator of M/N .

Suppose that t is the last index so that dt 6= 0, so d1, . . . , dt are non-zero and dt+1 = dt+2 = . . . = dn = 0.
Using the proposition, the annihilator of

∧2
M/
∧2
N is R · dt−1dt, since dt−1 and dt are the two largest

non-zero elementary divisors. Since Rdt is uniquely determined, Rdt−1 is uniquely determined.

Similarly, the annihilator of
∧i
M/
∧i
N is Rdt−i+1 . . . dt−1dt, which is uniquely determined. By induction,

dt, dt−1, . . ., dt−i+2 are uniquely determined. Thus, dt−i+1 is uniquely determined. ///

28.9 Cartan’s lemma
To further illustrate computations in exterior algebra, we prove a result that arises in differential geometry,
often accidentally disguised as something more than the simple exterior algebra it is.

28.9.1 Proposition: (Cartan) Let V be a vector space over a field k. Let v1, . . ., vn be linearly
independent vectors in V . Let w1, . . ., wn be any vectors in V . Then

v1 ∧ w1 + . . .+ vn ∧ wn = 0

if and only if there is a symmetric matrix with entries Aij ∈ k such that

wi =
∑
i

Aij vj

Proof: First, prove that if the identity holds, then the wj ’s lie in the span of the vi’s. Suppose not.
Then, by renumbering for convenience, we can suppose that w1, v1, . . . , vn are linearly independent. Let
η = v2 ∧ . . . ∧ vn. Then (

v1 ∧ w1 + . . .+ vn ∧ wn
)
∧ η = 0 ∧ η = 0 ∈

∧n+1
V

On the other hand, the exterior products of η with all summands but the first are 0, since some vi with i ≥ 2
is repeated. Thus,(

v1 ∧ w1 + . . .+ vn ∧ wn
)
∧ η = v1 ∧ w1 ∧ η = v1 ∧ w1 ∧ v2 ∧ . . . ∧ vn 6= 0

This contradiction proves that the wj ’s do all lie in the span of the vi’s if the identity is satisfied. Let Aij
be elements of k expressing the wj ’s as linear combinations

wi =
∑
i

Aij vj

We need to prove that Aij = Aji.
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Let
ω = v1 ∧ . . . ∧ vn ∈

∧n
V

By our general discussion of exterior powers, by the linear independence of the vi this is non-zero. For
1 ≤ i ≤ n, let

ωi = v1 ∧ . . . ∧ v̂i ∧ . . . ∧ vn ∈
∧n−1

V

where the hat indicates omission. In any linear combination v =
∑
j cj vj we can pick out the ith coefficient

by exterior product with ωi, namely

v ∧ ωi =
(∑

j

cj vj

)
∧ ωi =

∑
j

cj vj ∧ ωi = ci vi ∧ ωi = (−1)i−1 ci ω

For i < j, let
ωij = v1 ∧ . . . ∧ v̂i ∧ . . . ∧ v̂j ∧ . . . ∧ vn ∈

∧n−2
V

Then (
v1 ∧ w1 + . . .+ vn ∧ wn

)
∧ ωij = v1 ∧ w1 ∧ ωij + . . .+ vn ∧ wn ∧ ωij

= vi ∧ wi ∧ ωij + vj ∧ wj ∧ ωij

since all the other monomials vanish, having repeated factors. Thus, moving things around slightly,

wi ∧ vi ∧ ωij = −wj ∧ vj ∧ ωij

Then, using the hypothesis of the lemma,

0 ∧ ωij =
(
v1 ∧ w1 + . . .+ vn ∧ wn

)
∧ ωij = v1 ∧ w1 ∧ ωij + . . .+ vn ∧ wn ∧ ωij

= vi ∧ wi ∧ ωij + vj ∧ wj ∧ ωij

since all the other monomials vanish, having repeated factors. Thus, moving things around slightly,

wi ∧ vi ∧ ωij = −wj ∧ vj ∧ ωij

By moving the vi and vj across, flipping signs as we go, with i < j, we have

vi ∧ ωij = (−1)i−1ωj vj ∧ ωij = (−1)j−2ωi

Expanding the equality wi ∧ vi ∧ ωij = −wj ∧ vj ∧ ωij , the left-hand side is

wi ∧ vi ∧ ωij = (−1)i−1wi ∧ ωi = (−1)i−1
∑
k

Aikvk ∧ ωj = (−1)i−1Aijvi ∧ ωj = (−1)i−1 (−1)j−1Aijω

while, similarly, the right-hand side is

−wj ∧ vj ∧ ωij = (−1) (−1)j−2 (−1)i−1Ajiω

Equating the transformed versions of left and right sides,

Aij = Aji

Reversing this argument gives the converse. Specifically, suppose that wi =
∑
j Aij vj with Aij = Aji. Let

W be the span of v1, . . . , vn inside W . Then running the previous computation backward directly yields(
v1 ∧ w1 + . . .+ vn ∧ wn

)
∧ ωij = 0
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for all i < j. The monomials ωij span
∧n−2

W and we have shown the non-degeneracy of the pairing∧n−2
W ×

∧2
W −→

∧n
W by α× β −→ α ∧ β

Thus,
v1 ∧ w1 + . . .+ vn ∧ wn = 0 ∈

∧2
W ⊂

∧2
V

as claimed. ///

28.10 Cayley-Hamilton Theorem

28.10.1 Theorem: (Cayley-Hamilton) Let T be a k-linear endomorphism of a finite-dimensional vector
space V over a field k. Let PT (x) be the characteristic polynomial

PT (x) = det(x · 1V − T )

Then
PT (T ) = 0 ∈ Endk(V )

28.10.2 Remarks: Cayley and Hamilton proved the cases with n = 2, 3 by direct computation. The
theorem can be made a corollary of the structure theorem for finitely-generated modules over principal ideal
domains, if certain issues are glossed over. For example, how should an indeterminate x act on a vectorspace?
It would be premature to say that x · 1V acts as T on V , even though at the end this is exactly what is
supposed to happen, because, if x = T at the outset, then PT (x) is simply 0, and the theorem asserts
nothing. Various misconceptions can be turned into false proofs. For example, it is not correct to argue that

PT (T ) = det(T − T ) = det 0 = 0 (incorrect)

However, the argument given just below is a correct version of this idea. Indeed, in light of these remarks, we
must clarify what it means to substitute T for x. Incidental to the argument, intrinsic versions of determinant
and adjugate (or cofactor) endomorphism are described, in terms of multi-linear algebra.

Proof: The module V ⊗k k[x] is free of rank dimk V over k[x], and is the object associated to V on which
the indeterminate x reasonably acts. Also, V is a k[T ]-module by the action v −→ Tv, so V ⊗k k[x] is a
k[T ]⊗k k[x]-module. The characteristic polynomial PT (x) ∈ k[x] of T ∈ Endk(V ) is the determinant of
1⊗ x− T ⊗ 1, defined intrinsically by∧n

k[x] (T ⊗ 1− 1⊗ x) = PT (x) · 1 (where n = dimk V = rkk[x]V ⊗k k[x])

where the first 1 is the identity in k[x], the second 1 is the identity map on V , and the last 1 is the identity
map on

∧n
k[x](V ⊗k k[x]).

To substitute T for x is a special case of the following procedure. Let R be a commutative ring with 1, and
M an R-module with 1 ·m = m for all m ∈ M . For an ideal I of R, the quotient M/I ·M is the natural
associated R/I-module, and every R-endomorphism α of M such that

α(I ·M) ⊂ I ·M

descends to an R/I-endomorphism of M/I ·M . In the present situation,

R = k[T ]⊗k k[x] M = V ⊗k k[x]

and I is the ideal generated by 1⊗ x− T ⊗ 1. Indeed, 1⊗ x is the image of x in this ring, and T ⊗ 1 is the
image of T . Thus, 1⊗ x− T ⊗ 1 should map to 0.
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To prove that PT (T ) = 0, we will factor PT (x)·1 so that after substituting T for x the resulting endomorphism
PT (T ) · 1 has a literal factor of T − T = 0. To this end, consider the natural k[x]-bilinear map

〈, 〉 :
∧n−1
k[x] V ⊗k k[x] × V ⊗k k[x] −→

∧n
k[x]V ⊗k k[x]

of free k[x]-modules, identifying V ⊗k k[x] with its first exterior power. Letting A = 1 ⊗ x − T ⊗ 1, for all
m1, . . . ,mn in V ⊗k k[x],

〈
∧n−1

A(m1 ∧ . . . ∧mn−1), Amn〉 = PT (x) ·m1 ∧ . . . ∧mn

By definition, the adjugate or cofactor endomorphism Aadg of A is the adjoint of
∧n−1

A with respect to this
pairing. Thus,

〈m1 ∧ . . . ∧mn−1, (Aadg ◦A)mn〉 = PT (x) ·m1 ∧ . . . ∧mn

and, therefore,
Aadg ◦A = PT (x) · 1 (on V ⊗k k[x])

Since 〈, 〉 is k[x]-bilinear, Aadg is a k[x]-endomorphism of V ⊗k k[x]. To verify that Aadg commutes with
T ⊗ 1, it suffices to verify that Aadg commutes with A. To this end, further extend scalars on all the free
k[x]-modules

∧`
k[x]V ⊗k k[x] by tensoring with the field of fractions k(x) of k[x]. Then

Aadg ·A = PT (x) · 1 (now on V ⊗k k(x))

Since PT (x) is monic, it is non-zero, hence, invertible in k(x). Thus, A is invertible on V ⊗k k(x), and

Aadg = PT (x) ·A−1 (on V ⊗k k(x))

In particular, the corresponding version of Aadg commutes with A on V ⊗k k(x), and, thus, Aadg commutes
with A on V ⊗k k[x].

Thus, Aadg descends to an R/I-linear endomorphism of M/I ·M , where

R = k[T ]⊗k k[x] M = V ⊗k k[x] I = R ·A (with A = 1⊗ x− T ⊗ 1)

That is, on the quotient M/I ·M ,

(image of )Aadg · (image of )(1⊗ x− T ⊗ 1) = PT (T ) · 1M/IM

The image of 1⊗ x− T ⊗ 1 here is 0, so

(image of )Aadg · 0 = PT (T ) · 1M/IM

This implies that
PT (T ) = 0 (on M/IM)

Note that the composition
V −→ V ⊗k k[x] = M −→M/IM

is an isomorphism of k[T ]-modules, and, a fortiori, of k-vectorspaces. ///

28.10.3 Remark: This should not be the first discussion of this result seen by a novice. However, all
the issues addressed are genuine!

28.11 Worked examples
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28.11.1 Example: Consider the injection Z/2
t
−→Z/4 which maps

t : x+ 2Z −→ 2x+ 4Z

Show that the induced map
t⊗ 1Z/2 : Z/2⊗Z Z/2 −→ Z/4⊗Z Z/2

is no longer an injection.

We claim that t⊗ 1 is the 0 map. Indeed,

(t⊗ 1)(m⊗ n) = 2m⊗ n = 2 · (m⊗ n) = m⊗ 2n = m⊗ 0 = 0

for all m ∈ Z/2 and n ∈ Z/2. ///

28.11.2 Example: Prove that if s : M −→ N is a surjection of Z-modules and X is any other Z module,
then the induced map

s⊗ 1Z : M ⊗Z X −→ N ⊗Z X

is still surjective.

Given
∑
i ni ⊗ xi in N ⊗Z X, let mi ∈M be such that s(mi) = ni. Then

(s⊗ 1)(
∑
i

mi ⊗ xi) =
∑
i

s(mi)⊗ xi =
∑
i

ni ⊗ xi

so the map is surjective. ///

28.11.3 Remark: Note that the only issue here is hidden in the verification that the induced map s⊗ 1
exists.

28.11.4 Example: Give an example of a surjection f : M −→ N of Z-modules, and another Z-module
X, such that the induced map

f ◦ − : HomZ(X,M) −→ HomZ(X,N)

(by post-composing) fails to be surjective.

Let M = Z and N = Z/n with n > 0. Let X = Z/n. Then

HomZ(X,M) = HomZ(Z/n,Z) = 0

since
0 = ϕ(0) = ϕ(nx) = n · ϕ(x) ∈ Z

so (since n is not a 0-divisor in Z) ϕ(x) = 0 for all x ∈ Z/n. On the other hand,

HomZ(X,N) = HomZ(Z/n,Z/n) ≈ Z/n 6= 0

Thus, the map cannot possibly be surjective. ///

28.11.5 Example: Let G : {Z − modules} −→ {sets} be the functor that forgets that a module is a
module, and just retains the underlying set. Let F : {sets} −→ {Z−modules} be the functor which creates
the free module FS on the set S (and keeps in mind a map i : S −→ FS). Show that for any set S and any
Z-module M

HomZ(FS,M) ≈ Homsets(S,GM)

Prove that the isomorphism you describe is natural in S. (It is also natural in M , but don’t prove this.)
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Our definition of free module says that FS = X is free on a (set) map i : S −→ X if for every set map
ϕ : S −→M with R-module M gives a unique R-module map Φ : X −→M such that the diagram

X
Φ

''NNNNNNN

S

i

OO

ϕ // M

commutes. Of course, given Φ, we obtain ϕ = Φ ◦ i by composition (in effect, restriction). We claim that
the required isomorphism is

HomZ(FS,M) oo Φ←→ϕ // Homsets(S,GM)

Even prior to naturality, we must prove that this is a bijection. Note that the set of maps of a set into an
R-module has a natural structure of R-module, by

(r · ϕ)(s) = r · ϕ(s)

The map in the direction ϕ −→ Φ is an injection, because two maps ϕ,ψ mapping S −→M that induce the
same map Φ on X give ϕ = Φ ◦ i = ψ, so ϕ = ψ. And the map ϕ −→ Φ is surjective because a given Φ is
induced from ϕ = Φ ◦ i.
For naturality, for fixed S and M let the map ϕ −→ Φ be named jS,M . That is, the isomorphism is

HomZ(FS,M) oo jS,X Homsets(S,GM)

To show naturality in S, let f : S −→ S′ be a set map. Let i′ : S′ −→ X ′ be a free module on S′. That is,
X ′ = FS′. We must show that

HomZ(FS,M) oo jS,M Homsets(S,GM)

HomZ(FS′,M) oo
jS′,M

−◦Ff

OO

Homsets(S′, GM)

−◦f

OO

commutes, where − ◦ f is pre-composition by f , and − ◦ Ff is pre-composition by the induced map
Ff : FS −→ FS′ on the free modules X = FS and X ′ = FS′. Let ϕ ∈ Homset(S′, GM), and
x =

∑
s rs · i(s) ∈ X = FS, Go up, then left, in the diagram, computing,

(jS,M ◦ (− ◦ f)) (ϕ)(x) = jS,M (ϕ ◦ f) (x) = jS,M (ϕ ◦ f)

(∑
s

rsi(s)

)
=
∑
s

rs(ϕ ◦ f)(s)

On the other hand, going left, then up, gives

((− ◦ Ff) ◦ jS′,M ) (ϕ)(x) = (jS′,M (ϕ) ◦ Ff) (x) = (jS′,M (ϕ))Ff(x)

= (jS′,M (ϕ))

(∑
s

rsi
′(fs)

)
=
∑
s

rsϕ(fs)

These are the same. ///

28.11.6 Example: Let M =
(
m21 m22 m23

m31 m32 m33

)
be a 2-by-3 integer matrix, such that the gcd of the

three 2-by-2 minors is 1. Prove that there exist three integers m11,m12,m33 such that

det

m11 m12 m13

m21 m22 m23

m31 m32 m33

 = 1
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This is the easiest of this and the following two examples. Namely, let Mi be the 2-by-2 matrix obtained by
omitting the ith column of the given matrix. Let a, b, c be integers such that

a detM1 − bdetM2 + cdetM3 = gcd(detM1,detM2,detM3) = 1

Then, expanding by minors,

det

 a b c
m21 m22 m23

m31 m32 m33

 = adetM1 − bdetM2 + cdetM3 = 1

as desired. ///

28.11.7 Example: Let a, b, c be integers whose gcd is 1. Prove (without manipulating matrices) that
there is a 3-by-3 integer matrix with top row (a b c) with determinant 1.

Let F = Z3, and E = Z · (a, b, c). We claim that, since gcd(a, b, c) = 1, F/E is torsion-free. Indeed, for
(x, y, z) ∈ F = Z3, r ∈ Z, and r · (x, y, z) ∈ E, there must be an integer t such that ta = rx, tb = ry, and
tc = rz. Let u, v, w be integers such that

ua+ vb+ wz = gcd(a, b, c) = 1

Then the usual stunt gives

t = t · 1 = t · (ua+ vb+ wz) = u(ta) + v(tb) + w(tc) = u(rx) + v(ry) + w(rz) = r · (ux+ vy + wz)

This implies that r|t. Thus, dividing through by r, (x, y, z) ∈ Z · (a, b, c), as claimed.

Invoking the Structure Theorem for finitely-generated Z-modules, there is a basis f1, f2, f3 for F and
0 < d1 ∈ Z such that E = Z · d1f1. Since F/E is torsionless, d1 = 1, and E = Z · f1. Further, since both
(a, b, c) and f1 generate E, and Z× = {±1}, without loss of generality we can suppose that f1 = (a, b, c).

Let A be an endomorphism of F = Z3 such that Afi = ei. Then, writing A for the matrix giving the
endomorphism A,

(a, b, c) ·A = (1, 0, 0)

Since A has an inverse B,
1 = det 13 = det(AB) = detA · detB

so the determinants of A and B are in Z× = {±1}. We can adjust A by right-multiplying by 1 0 0
0 1 0
0 0 −1


to make detA = +1, and retaining the property f1 ·A = e1. Then

A−1 = 13 ·A−1 =

 e1

e2

e3

 ·A−1 =

 a b c
∗ ∗ ∗
∗ ∗ ∗


That is, the original (a, b, c) is the top row of A−1, which has integer entries and determinant 1. ///

28.11.8 Example: Let

M =

m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35


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and suppose that the gcd of all determinants of 3-by-3 minors is 1. Prove that there exists a 5-by-5 integer
matrix M̃ with M as its top 3 rows, such that det M̃ = 1.

Let F = Z5, and let E be the submodule generated by the rows of the matrix. Since Z is a PID and F is
free, E is free.

Let e1, . . . , e5 be the standard basis for Z5. We have shown that the monomials ei1∧ei2∧ei3 with i1 < i2 < i3
are a basis for

∧3
F . Since the gcd of the determinants of 3-by-3 minors is 1, some determinant of 3-by-3

minor is non-zero, so the rows of M are linearly independent over Q, so E has rank 3 (rather than something
less). The structure theorem tells us that there is a Z-basis f1, . . . , f5 for F and divisors d1|d2|d3 (all non-zero
since E is of rank 3) such that

E = Z · d1f1 ⊕ Z · d2f2 ⊕ Z · d3f3

Let i : E −→ F be the inclusion. Consider
∧3 :

∧3
E −→

∧3
F . We know that

∧3
E has Z-basis

d1f1 ∧ d2f2 ∧ d3f3 = (d1d2d3) · (f1 ∧ f2 ∧ f3)

On the other hand, we claim that the coefficients of (d1d2d3) · (f1∧f2∧f3) in terms of the basis ei1 ∧ei2 ∧ei3
for
∧3
F are exactly (perhaps with a change of sign) the determinants of the 3-by-3 minors of M . Indeed,

since both f1, f2, f3 and the three rows of M are bases for the rowspace of M , the fis are linear combinations
of the rows, and vice versa (with integer coefficients). Thus, there is a 3-by-3 matrix with determinant ±1
such that left multiplication of M by it yields a new matrix with rows f1, f2, f3. At the same time, this
changes the determinants of 3-by-3 minors by at most ±, by the multiplicativity of determinants.

The hypothesis that the gcd of all these coordinates is 1 means exactly that
∧3
F/
∧3
E is torsion-free. (If

the coordinates had a common factor d > 1, then d would annihilate the quotient.) This requires that
d1d2d3 = 1, so d1 = d2 = d3 = 1 (since we take these divisors to be positive). That is,

E = Z · f1 ⊕ Z · f2 ⊕ Z · f3

Writing f1, f2, and f3 as row vectors, they are Z-linear combinations of the rows of M , which is to say that
there is a 3-by-3 integer matrix L such that

L ·M =

 f1

f2

f3


Since the fi are also a Z-basis for E, there is another 3-by-3 integer matrix K such that

M = K ·

 f1

f2

f3


Then LK = LK = 13. In particular, taking determinants, both K and L have determinants in Z×, namely,
±1.

Let A be a Z-linear endomorphism of F = Z5 mapping fi to ei. Also let A be the 5-by-5 integer matrix
such that right multiplication of a row vector by A gives the effect of the endomorphism A. Then

L ·M ·A =

 f1

f2

f3

 ·A =

 e1

e2

e3


Since the endormorphism A is invertible on F = Z5, it has an inverse endomorphism A−1, whose matrix has
integer entries. Then

M = L−1 ·

 e1

e2

e3

 ·A−1
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Let

Λ =

L−1 0 0
0 1 0
0 0 ±1


where the ±1 = detA = detA−1. Then

Λ ·


e1

e2

e3

e4

e5

 ·A−1 = Λ · 15 ·A−1 = Λ ·A−1

has integer entries and determinant 1 (since we adjusted the ±1 in Λ). At the same time, it is

Λ ·A−1 =

L−1 0 0
0 1 0
0 0 ±1

 ·

e1

e2

e3

∗
∗

 ·A−1 =

M
∗
∗

 = 5-by-5

This is the desired integer matrix M̃ with determinant 1 and upper 3 rows equal to the given matrix.
///

28.11.9 Example: Let R be a commutative ring with unit. For a finitely-generated free R-module F ,
prove that there is a (natural) isomorphism

HomR(F,R) ≈ F

Or is it only
HomR(R,F ) ≈ F

instead? (Hint: Recall the definition of a free module.)

For any R-module M , there is a (natural) isomorphism

i : M −→ HomR(R,M)

given by
i(m)(r) = r ·m

This is injective, since if i(m)(r) were the 0 homomorphism, then i(m)(r) = 0 for all r, which is to say that
r ·m = 0 for all r ∈ R, in particular, for r = 1. Thus, m = 1 ·m = 0, so m = 0. (Here we use the standing
assumption that 1 ·m = m for all m ∈M .) The map is surjective, since, given ϕ ∈ HomR(R,M), we have

ϕ(r) = ϕ(r · 1) = r · ϕ(1)

That is, m = ϕ(1) determines ϕ completely. Then ϕ = i(ϕ(m)) and m = i(m)(1), so these are mutually
inverse maps. This did not use finite generation, nor free-ness. ///

Consider now the other form of the question, namely whether or not

HomR(F,R) ≈ F

is valid for F finitely-generated and free. Let F be free on i : S −→ F , with finite S. Use the natural
isomorphism

HomR(F,R) ≈ Homsets(S,R)
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discussed earlier. The right-hand side is the collection of R-valued functions on S. Since S is finite, the
collection of all R-valued functions on S is just the collection of functions which vanish off a finite subset.
The latter was our construction of the free R-module on S. So we have the isomorphism. ///

28.11.10 Remark: Note that if S is not finite, HomR(F,R) is too large to be isomorphic to F . If F is
not free, it may be too small. Consider F = Z/n and R = Z, for example.

28.11.11 Remark: And this discussion needs a choice of the generators i : S −→ F . In the language
style which speaks of generators as being chosen elements of the module, we have most certainly chosen a
basis.

28.11.12 Example: Let R be an integral domain. Let M and N be free R-modules of finite ranks r, s,
respectively. Suppose that there is an R-bilinear map

B : M ×N −→ R

which is non-degenerate in the sense that for every 0 6= m ∈ M there is n ∈ N such that B(m,n) 6= 0, and
vice versa. Prove that r = s.

All tensors and homomorphisms are over R, so we suppress the subscript and other references to R when
reasonable to do so. We use the important identity (proven afterward)

Hom(A⊗B,C)
iA,B,C // Hom(A,Hom(B,C))

by
iA,B,C(Φ)(a)(b) = Φ(a⊗ b)

We also use the fact (from an example just above) that for F free on t : S −→ F there is the natural (given
t : S −→ F , anyway!) isomorphism

j : Hom(F,R) ≈ Homsets(S,R) = F

for modules E, given by
j(ψ)(s) = ψ(t(s))

where we use construction of free modules on sets S that they are R-valued functions on S taking non-zero
values at only finitely-many elements.

Thus,

Hom(M ⊗N,R) i // Hom(M,Hom(N,R))
j // Hom(M,N)

The bilinear form B induces a linear functional β such that

β(m⊗ n) = B(m,n)

The hypothesis says that for each m ∈M there is n ∈ N such that

i(β)(m)(n) 6= 0

That is, for all m ∈ M , i(β)(m) ∈ Hom(N,R) ≈ N is 0. That is, the map m −→ i(β)(m) is injective. So
the existence of the non-degenerate bilinear pairing yields an injection of M to N . Symmetrically, there is
an injection of N to M .

Using the assumption that R is a PID, we know that a submodule of a free module is free of lesser-or-equal
rank. Thus, the two inequalities

rankM ≤ rankN rankN ≤ rankM
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from the two inclusions imply equality. ///

28.11.13 Remark: The hypothesis that R is a PID may be too strong, but I don’t immediately see a
way to work around it.

Now let’s prove (again?) that

Hom(A⊗B,C) i // Hom(A,Hom(B,C))

by
i(Φ)(a)(b) = Φ(a⊗ b)

is an isomorphism. The map in the other direction is

j(ϕ)(a⊗ b) = ϕ(a)(b)

First,
i(j(ϕ))(a)(b) = j(ϕ)(a⊗ b) = ϕ(a)(b)

Second,
j(i(Φ))(a⊗ b) = i(Φ)(a)(b) = Φ(a⊗ b)

Thus, these maps are mutual inverses, so each is an isomorphism. ///

28.11.14 Example: Write an explicit isomorphism

Z/a⊗Z Z/b −→ Z/gcd(a, b)

and verify that it is what is claimed.

First, we know that monomial tensors generate the tensor product, and for any x, y ∈ Z

x⊗ y = (xy) · (1⊗ 1)

so the tensor product is generated by 1⊗ 1. Next, we claim that g = gcd(a, b) annihilates every x⊗ y, that
is, g · (x⊗ y) = 0. Indeed, let r, s be integers such that ra+ sb = g. Then

g · (x⊗ y) = (ra+ sb) · (x⊗ y) = r(ax⊗ y) = s(x⊗ by) = r · 0 + s · 0 = 0

So the generator 1⊗ 1 has order dividing g. To prove that that generator has order exactly g, we construct
a bilinear map. Let

B : Z/a× Z/b −→ Z/g

by
B(x× y) = xy + gZ

To see that this is well-defined, first compute

(x+ aZ)(y + bZ) = xy + xbZ+ yaZ+ abZ

Since
xbZ+ yaZ ⊂ bZ+ aZ = gcd(a, b)Z

(and abZ ⊂ gZ), we have

(x+ aZ)(y + bZ) + gZ = xy + xbZ+ yaZ+ abZ+ Z
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and well-definedness. By the defining property of the tensor product, this gives a unique linear map β on
the tensor product, which on monomials is

β(x⊗ y) = xy + gcd(a, b)Z

The generator 1⊗ 1 is mapped to 1, so the image of 1⊗ 1 has order gcd(a, b), so 1⊗ 1 has order divisible by
gcd(a, b). Thus, having already proven that 1⊗ 1 has order at most gcd(a, b), this must be its order.

In particular, the map β is injective on the cyclic subgroup generated by 1 ⊗ 1. That cyclic subgroup is
the whole group, since 1 ⊗ 1. The map is also surjective, since ·1 ⊗ 1 hits r mod gcd(a, b). Thus, it is an
isomorphism. ///

28.11.15 Example: Let ϕ : R −→ S be commutative rings with unit, and suppose that ϕ(1R) = 1S ,
thus making S an R-algebra. For an R-module N prove that HomR(S,N) is (yet another) good definition
of extension of scalars from R to S, by checking that for every S-module M there is a natural isomorphism

HomR(ResSRM,N) ≈ HomS(M,HomR(S,N)

where ResSRM is the R-module obtained by forgetting S, and letting r ∈ R act on M by r ·m = ϕ(r)m. (Do
prove naturality in M , also.)

Let
i : HomR(ResSRM,N) −→ HomS(M,HomR(S,N)

be defined for ϕ ∈ HomR(ResSRM,N) by

i(ϕ)(m)(s) = ϕ(s ·m)

This makes some sense, at least, since M is an S-module. We must verify that i(ϕ) : M −→ HomR(S,N) is
S-linear. Note that the S-module structure on HomR(S,N) is

(s · ψ)(t) = ψ(st)

where s, t ∈ S, ψ ∈ HomR(S,N). Then we check:

(i(ϕ)(sm)) (t) = i(ϕ)(t · sm) = i(ϕ)(stm) = i(ϕ)(m)(st) = (s · i(ϕ)(m)) (t)

which proves the S-linearity.

The map j in the other direction is described, for Φ ∈ HomS(M,HomR(S,N)), by

j(Φ)(m) = Φ(m)(1S)

where 1S is the identity in S. Verify that these are mutual inverses, by

i(j(Φ))(m)(s) = j(Φ)(s ·m) = Φ(sm)(1S) = (s · Φ(m)) (1S) = Φ(m)(s · 1S) = Φ(m)(s)

as hoped. (Again, the equality
(s · Φ(m)) (1S) = Φ(m)(s · 1S)

is the definition of the S-module structure on HomR(S,N).) In the other direction,

j(i(ϕ))(m) = i(ϕ)(m)(1S) = ϕ(1 ·m) = ϕ(m)

Thus, i and j are mutual inverses, so are isomorphisms.

For naturality, let f : M −→ M ′ be an S-module homomorphism. Add indices to the previous notation, so
that

iM,N : HomR(ResSRM,N) −→ HomS(M,HomR(S,N)
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is the isomorphism discussed just above, and iM ′,N the analogous isomorphism for M ′ and N . We must
show that the diagram

HomR(ResSRM,N)
iM,N // HomS(M,HomR(S,N))

HomR(ResSRM
′, N))

iM′,N //

−◦f

OO

HomS(M ′,HomR(S,N))

−◦f

OO

commutes, where − ◦ f is pre-composition with f . (We use the same symbol for the map f : M −→M ′ on
the modules whose S-structure has been forgotten, leaving only the R-module structure.) Starting in the
lower left of the diagram, going up then right, for ϕ ∈ HomR(ResSRM

′, N),

(iM,N ◦ (− ◦ f) ϕ) (m)(s) = (iM,N (ϕ ◦ f)) (m)(s) = (ϕ ◦ f)(s ·m) = ϕ(f(s ·m))

On the other hand, going right, then up,

((− ◦ f) ◦ iM ′,N ϕ) (m)(s) = (iM ′,N ϕ) (fm)(s) = ϕ(s · fm) = ϕ(f(s ·m))

since f is S-linear. That is, the two outcomes are the same, so the diagram commutes, proving functoriality
in M , which is a part of the naturality assertion. ///

28.11.16 Example: Let

M = Z⊕ Z⊕ Z⊕ Z N = Z⊕ 4Z⊕ 24Z⊕ 144Z

What are the elementary divisors of
∧2(M/N)?

First, note that this is not the same as asking about the structure of (
∧2
M)/(

∧2
N). Still, we can address

that, too, after dealing with the question that was asked.

First,
M/N = Z/Z⊕ Z/4Z⊕ Z/24Z⊕ Z/144Z ≈ Z/4⊕ Z/24⊕ Z/144

where we use the obvious slightly lighter notation. Generators for M/N are

m1 = 1⊕ 0⊕ 0 m2 = 0⊕ 1⊕ 0 m3 = 0⊕ 0⊕ 1

where the 1s are respectively in Z/4, Z/24, and Z/144. We know that ei ∧ ej generate the exterior square,
for the 3 pairs of indices with i < j. Much as in the computation of Z/a⊗Z/b, for e in a Z-module E with
a · e = 0 and f in E with b · f = 0, let r, s be integers such that

ra+ sb = gcd(a, b)

Then
gcd(a, b) · e ∧ f = r(ae ∧ f) + s(e ∧ bf) = r · 0 + s · 0 = 0

Thus, 4 · e1 ∧ e2 = 0 and 4 · e1 ∧ e3 = 0, while 24 · e2 ∧ e3 = 0. If there are no further relations, then we could
have ∧2(M/N) ≈ Z/4⊕ Z/4⊕ Z/24

(so the elementary divisors would be 4, 4, 24.)

To prove, in effect, that there are no further relations than those just indicated, we must construct suitable
alternating bilinear maps. Suppose for r, s, t ∈ Z

r · e1 ∧ e2 + s · e1 ∧ e3 + t · e2 ∧ e3 = 0
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Let
B12 : (Ze1 ⊕ Ze2 ⊕ Ze3)× (Ze1 ⊕ Ze2 ⊕ Ze3) −→ Z/4

by
B12(xe1 + ye2 + ze3, ξe1 + ηe2 + ζe3) = (xη − ξy) + 4Z

(As in earlier examples, since 4|4 and 4|24, this is well-defined.) By arrangement, this B12 is alternating,
and induces a unique linear map β12 on

∧2(M/N), with

β12(e1 ∧ e2) = 1 β12(e1 ∧ e3) = 0 β12(e2 ∧ e3) = 0

Applying this to the alleged relation, we find that r = 0 mod 4. Similar contructions for the other two pairs
of indices i < j show that s = 0 mod 4 and t = 0 mod 24. This shows that we have all the relations, and∧2(M/N) ≈ Z/4⊕ Z/4⊕ Z/24

as hoped/claimed. ///

Now consider the other version of this question. Namely, letting

M = Z⊕ Z⊕ Z⊕ Z N = Z⊕ 4Z⊕ 24Z⊕ 144Z

compute the elementary divisors of (
∧2
M)/(

∧2
N).

Let e1, e2, e3, e4 be the standard basis for Z4. Let i : N −→M be the inclusion. We have shown that exterior
powers of free modules are free with the expected generators, so M is free on

e1 ∧ e2, e1 ∧ e3, e1 ∧ e4, e2 ∧ e3, e2 ∧ e4, e3 ∧ e4

and N is free on

(1 · 4) e1 ∧ e2, (1 · 24) e1 ∧ e3, (1 · 144) e1 ∧ e4, (4 · 24) e2 ∧ e3, (4 · 144) e2 ∧ e4, (24 · 144) e3 ∧ e4

The inclusion i : N −→ M induces a natural map
∧2
i :
∧2 −→

∧2
M , taking r · ei ∧ ej (in N) to r · ei ∧ ej

(in M). Thus, the quotient of
∧2
M by (the image of)

∧2
N is visibly

Z/4⊕ Z/24⊕ Z/144⊕ Z/96⊕ Z/576⊕ Z/3456

The integers 4, 24, 144, 96, 576, 3456 do not quite have the property 4|24|144|96|576|3456, so are not
elementary divisors. The problem is that neither 144|96 nor 96|144. The only primes dividing all these
integers are 2 and 3, and, in particular,

4 = 22, 24 = 23 · 3, 144 = 24 · 32, 96 = 25 · 3, 576 = 26 · 32, 3456 = 27 · 33,

From Sun-Ze’s theorem,
Z/(2a · 3b) ≈ Z/2a ⊕ Z/3b

so we can rewrite the summands Z/144 and Z/96 as

Z/144⊕ Z/96 ≈ (Z/24 ⊕ Z/32)⊕ (Z/25 ⊕ Z/3) ≈ (Z/24 ⊕ Z/3)⊕ (Z/25 ⊕ Z/32) ≈ Z/48⊕ Z/288

Now we do have 4|24|48|288|576|3456, and

(
∧2
M)/(

∧2
N) ≈ Z/4⊕ Z/24⊕ Z/48⊕ Z/288⊕ Z/576⊕ Z/3456

is in elementary divisor form. ///
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Exercises

28.1 Show that there is a natural isomorphism

fX : Πs HomR(Ms, X) ≈ HomR(⊕s Ms, X)

where everything is an R-module, and R is a commutative ring.

28.2 For an abelian group A (equivalently, Z-module), the dual group (Z-module) is

A∗ = Hom(A,Q/Z)

Prove that the dual group of a direct sum is the direct product of the duals. Prove that the dual group of a
finite abelian group A is isomorphic to A (although not naturally isomorphic).

28.3 Let R be a commutative ring with unit. Let M be a finitely-generated free module over R. Let
M∗ = HomR(M,R) be the dual. Show that, for each integer ` ≥ 1, the module

∧`
M is dual to

∧`
M∗,

under the bilinear map induced by

〈m1 ∧ . . . ∧m`, µ1 ∧ . . . ∧ µ`〉 = det{〈mi, µj〉}

for mi ∈M and µj ∈M∗.

28.4 Let v1, . . . , vn be linearly independent vectors in a vector space V over a field k. For each pair of
indices i < j, take another vector wij ∈ V . Suppose that∑

i<j

vi ∧ vj ∧ wij = 0

Show that the wij ’s are in the span of the vk’s. Let

wij =
∑
k

ckij vk

Show that, for i < j < k,
ckij − c

j
ik + cijk = 0

28.5 Show that the adjugate (that is, cofactor) matrix of a 2-by-2 matrix with entries in a commutative
ring R is (

a b
c d

)adg

=
(

d −b
−c a

)
28.6 Let M be an n-by-n matrix with entries in a commutative ring R with unit, viewed as an
endomorphism of the free R-module Rn by left matrix multiplication. Determine the matrix entries for
the adjugate matrix Madg in terms of those of M .


