[02.1] Find all the idempotent elements in \(\mathbb{Z}[i]/(13) \).

[02.2] Find all the nilpotent elements in \(\mathbb{Z}[i]/(2) \).

[02.3] (Lagrange interpolation) Let \(\alpha_1, \ldots, \alpha_n \) be distinct elements in a field \(k \), and let \(\beta_1, \ldots, \beta_n \) be any elements of \(k \). Prove that there is a unique polynomial \(P(x) \) of degree \(< n \) in \(k[x] \) such that, for all indices \(i \),

\[
P(\alpha_i) = \beta_i
\]

Indeed, letting

\[
Q(x) = \prod_{i=1}^{n} (x - \alpha_i)
\]

show that

\[
P(x) = \sum_{i=1}^{n} \frac{Q(x)}{(x - \alpha_i) \cdot Q'(\alpha_i)} \cdot \beta_i
\]

[02.4] (Simple case of partial fractions) Let \(\alpha_1, \ldots, \alpha_n \) be distinct elements in a field \(k \). Let \(R(x) \) be any polynomial in \(k[x] \) of degree \(< n \). Show that there exist unique constants \(c_i \in k \) such that in the field of rational functions \(k(x) \)

\[
\frac{R(x)}{(x - \alpha_1) \cdots (x - \alpha_n)} = \frac{c_1}{x - \alpha_1} + \cdots + \frac{c_n}{x - \alpha_n}
\]

In particular, let

\[
Q(x) = \prod_{i=1}^{n} (x - \alpha_i)
\]

and show that

\[
c_i = \frac{R(\alpha_i)}{Q'(\alpha_i)}
\]

[02.5] (Analogue of partial fractions for rational numbers) Show that every positive rational number is expressible as

\[
\ell + \sum_p \frac{c_p}{p^{n_p}} \quad (0 \leq \ell \in \mathbb{Z}, \text{ distinct primes } p, \text{ exponents } 0 \leq n_p \in \mathbb{Z}, \text{ integers } 0 \leq c_p < p^{n_p})
\]

[02.6] Show that the ideal \(I \) generated in \(\mathbb{Z}[x] \) by \(x^2 + 1 \) and 5 is not maximal.

[02.7] Show that the ideal \(I \) generated in \(\mathbb{Z}[x] \) by \(x^2 + x + 1 \) and 11 is maximal.

[02.8] Let \(k \) be a field. Given \(P \in k[x] \) of degree \(n \), show that there is a \(k \)-linear map \(T : k^n \to k^n \) such that \(P(T) = 0 \).

[02.9] Determine all two-sided ideals in the ring of \(n \)-by-\(n \) matrices with entries in a field \(k \).

[02.10] Let \(V_1 \subset \ldots \subset V_{n-1} \subset V \) and \(W_1 \subset \ldots \subset W_{n-1} \subset V \) be two maximal flags in an \(n \)-dimensional vector space \(V \) over a field \(k \). Show that there is a \(k \)-linear map \(T : V \to V \) such that \(TV_i = W_i \).