(January 14, 2009)

[02.1] Let G, H be finite groups with relatively prime orders. Show that any group homomorphism
f: G — H is necessarily trivial (that is, sends every element of G to the identity in H.)

The isomorphism theorem implies that
|G| = [ker f[ - [f(G)]

In particular, |f(G)| divides |G|. Since f(G) is a subgroup of H, its order must also divide |H|. These two
orders are relatively prime, so |f(G)| = 1.

[02.2] Let m and n be integers. Give a formula for an isomorphism of abelian groups

Z 7 Z Z

mn ged(m,n) © lem(m, n)

Let r, s be integers such that rm + sn = ged(m,n). Let m’ = m/ged(m,n) and n’ = n/ged(m,n). Then
rm’ + sn’ = 1. We claim that

fla+mZ,b+nZ) = ((a —b) + ged(m,n)Z, (b-rm’' +a-sn’) +lem(m,n)Z)
is such an isomorphism. To see that it is well-defined, observe that
(a+mZ)— (b+nZ) = (a—0b) + ged(m,n)Z

since
mZ + nZ = ged(m, n)Z

which itself follows from the facts that
ged(m,n) =rm+ sn € mZ + nZ

and (by definition) mZ C ged(m,n)Z and nZ C ged(m, n)Z. And, similarly
sn' - mZ +rm’ - nZ = lem(m,n)7Z

so the second component of the map is also well-defined.

Now since these things are finite, it suffices to show that the kernel is trivial. That is, suppose b =
a + kged(m,n) for some integer k, and consider

b-rm' +a-sn

The latter is
(a + kged(m,n))rm’ +a-sn’ =a-rm' +a-sn’ = amodm

since ged(m,n)m’ = m and rm’ + sn’ = 1. Symmetrically, it is b mod n. Thus, if it is 0 mod lem(m,n),
a = 0 mod m and b = 0 mod n. This proves that the kernel is trivial, so the map is injective, and, because
of finiteness, surjective as well.

[0.0.1] Remark: I leave you the fun of guessing where the a — b expression (above) comes from.

[02.3] Show that every group of order 5 - 13 is cyclic.

Invoke the Sylow theorem: the number of 5-Sylow subgroups is 1 mod 5 and also divides the order 5 - 13,
so must be 1 (since 13 is not 1 mod 5). Thus, the 5-Sylow subgroup is normal. Similarly, even more easily,
the 13-Sylow subgroup is normal. The intersection of the two is trivial, by Lagrange. Thus, we have two
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normal subgroups with trivial intersection and the product of whose orders is the order of the whole group,
and conclude that the whole group is isomorphic to the (direct) product of the two, namely Z/5 & Z/13.
Further, this is isomorphic to Z/65.

[02.4] Show that every group of order 5 - 72 is abelian.

From the classification of groups of prime-squared order, we know that there are only two (isomorphism
classes of) groups of order 72, Z/49 and Z/7 @ 7Z/7. From the Sylow theorem, since the number of 7-Sylow
subgroups is 1 mod 7 and also divides the group order, the 7-Sylow subgroup is normal. For the same reason
the 5-Sylow subgroup is normal. The intersection of the two is trivial (Lagrange). Thus, again, we have two
normal subgroups with trivial intersection the product of whose orders is the group order, so the group is
the direct product. Since the factor groups are abelian, so is the whole.

[02.5] Exhibit a non-abelian group of order 3 - 7.

We can construct this as a semi-direct product, since there exists a non-trivial homomorphism of Z/3 to
Aut(Z/7), since the latter automorphism group is isomorphic to (Z/7)*, of order 6. Note that we are assured
of the existence of a subgroup of order 3 of the latter, whether or not we demonstrate an explicit element.

[02.6] Exhibit a non-abelian group of order 5 - 192.

We can construct this as a semi-direct product, since there exists a non-trivial homomorphism of Z/5 to
Aut(Z/19 & 7/19), since the latter automorphism group has order (192 — 1)(19? — 19), which is divisible
by 5. Note that we are assured of the existence of a subgroup of order 5 of the latter, whether or not we
demonstrate an explicit element.

[02.7] Show that every group of order 3 -5 - 17 is cyclic.

Again, the usual divisibility trick from the Sylow theorem proves that the 17-group is normal. Further, since
neither 3 nor 5 divides 17 — 1 = |Aut(Z/17)|, the 17-group is central. But, since 3 -17 = 1 mod 5, and
5-17 = 1 mod 3, we cannot immediately reach the same sort of conclusion about the 3-group and 5-group.
But if both the 3-group and 5-group were not normal, then we’d have at least

1+(17-1)+(5—-1)-3-17+(3—1)-5-17=2391 > 3-5- 17 = 255

elements in the group. So at least one of the two is normal. If the 5-group is normal, then the 3-group
acts trivially on it by automorphisms, since 3 does not divide 5 — 1 = |Aut(Z/5)|. Then we’d have a central
subgroup of order 5 - 17 group, and the whole group is abelian, so is cyclic by the type of arguments given
earlier. Or, if the 3-group is normal, then for the same reason it is is central, so we have a central (cyclic)
group of order 3 - 17, and again the whole group is cyclic.

[02.8] Do there exist 4 primes p, ¢, r, s such that every group of order pgrs is necessarily abelian?

We want to arrange that all of the p, ¢, r, s Sylow subgroups P, @, R, .S are normal. Then, because the primes
are distinct, still
PNQ={e}
P-QNR={e}
P-Q-RNnS={e}

(and all other combinations) so these subgroups commute with each other. And then, as usual, the whole
group is the direct product of these Sylow subgroups.

One way to arrange that all the Sylow subgroups are normal is that, mod p, none of q,r, s, qr, gs,rs,qrs is
1, and symmetrically for the other primes. Further, with none of ¢, r, s dividing p — 1 the p-group is central.
For example, after some trial and error, plausible p < ¢ < r < s has p = 17. Take ¢,r,s mod 11 = 2,3,5
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respectively. Take ¢ = 13, so p = —2 mod 13, and require r,s = 2,5mod ¢q. Then r = 3 mod 11 and
r = 2mod 13 is 80 mod 143, and 223 is the first prime in this class. With s = 5 mod 223, none of the 7
quantities is 1 mod r.. Then s = 5 mod 11 - 13 - 223 and the first prime of this form is
s=5+6-11-13-223 = 191339

By this point, we know that the p, ¢, and r-sylow groups are central, so the whole thing is cyclic.



