[0.1] Claim: Finite rings R (with 1, but not necessarily commutative) without (proper) zero-divisors are division rings, in the sense that every non-zero element has a multiplicative inverse.

Proof: In general, in a ring R without proper zero-divisors, the maps $x \to xb$ and $x \to bx$, for fixed non-zero b, are injective: indeed, if $xb = x'b$, then $(x - x')b = 0$, so $x - x' = 0$. The same argument applies on the other side.

In particular, for R finite, injectivity implies surjectivity. Thus, for given $0 \neq b \in R$, there is $x \in R$ such that $bx = 1$. In fact, since $b(xb) = (bx)b = b \cdot 1$, by cancellation we have also $xb = 1$, so x is a two-sided inverse to b.

In fact, the same proof mechanism shows:

[0.2] Claim: Finite rings R (not necessarily commutative) not necessarily with a 1, without proper zero-divisors, do have a unit 1.

Proof: Again, for $b \neq 0$, multiplication operators $x \to xb$ and $x \to bx$ are injective, due to absence of zero divisors. Finiteness of R implies surjectivity of these maps. Thus, given b, there is x such that $bx = b$. Then $b(xb) = (bx)b = b \cdot b$. By cancelling, $xb = b$, so x also acts as a unit (for b) on the other side.

For any other $c \in R$, similarly, $(cx)b = c(xb) = c \cdot b$, so $cx = c$. A similar argument shows that $xc = x$. Thus, x is a unit in R, in the sense of behaving like 1.

[0.3] Remark: The truth of the latter claim is interesting, but, perhaps, of minor interest. Still, it gives:

[0.4] Example: For integer $m > 1$ and prime p not dividing m, the subring R of \mathbb{Z}/mp, consisting of multiples of m, can be verified to satisfy the hypothesis of this last claim, so has a unit, even though it does not contain 1 mod mp. However, as soon as we see this, it’s maybe obvious via Sun-Ze’s theorem: there is x mod mp with $x = 0$ mod m and $x = 1$ mod p, which is the unit in R.

[0.5] Theorem: (Wedderburn 1905, Dickson, et al) Finite rings R without proper zero divisors are commutative, that is, are fields.

Proof: Using the orbit-stabilizer theorem, consider the group R^\times acting on the set R^\times by conjugation $x \to bxb^{-1}$. That is,

$$\# R^\times = \sum_{x_o} \frac{\# R^\times}{\# G_{x_o}}$$

where G_{x_o} is the fixer/isotropy subgroup

$$G_{x_o} = \{ g \in R^\times : gx_og^{-1} = x_o \}$$

Let Z be the center of R. It is a finite commutative ring without zero-divisors, so is a finite field, with cardinality q for some prime power q.

Also, $R_{x_o} = G_{x_o} \cup \{ 0 \}$ is a subring of R: certainly $R_{x_o}^\times$ is a subgroup of R^\times, for general reasons, and, for $a, b \in G_{x_o}$,

$$(a + b)x_o = ax_o + bx_o = x_o(a + x_o b) = x_o(a + b)$$
Since R_{x_o} has no zero-divisors, it is a division ring. If we want to argue by induction, then, for non-central x_o, R_{x_o} is a proper subring of R, so has lesser cardinality, so is a field. As an overfield of \mathbb{Z} it has cardinality q^m for some m. Since R is a vectorspace over R_{x_o}, it has cardinality $(q^m)^k$ for some k. That is, $m|n$.

In fact, a basic theory of module/vectorspaces over division rings is an easy extrapolation of vectorspaces over fields, so this induction is not strictly needed.

The orbit-stabilizer identity is

$$q^n - 1 = \#R^\times = \sum_{x\in R^\times} \frac{q^n - 1}{q^m - 1}$$

where the first sum is over central elements, and where $m = m_{x_o}$ depends on x_o, and $m|n$, with $m < n$ for non-central x_o.

Because $x^m - 1$ factors into cyclotomic polynomials $x^m - 1 = \prod_{d|m} \Phi_d(x)$ as polynomials with integer coefficients. Thus, for $m|n$ and $m < n$, the polynomial $\Phi_n(x)$ divides the polynomial $\frac{x^n - 1}{x^m - 1}$. Since Φ_n has integer coefficients, $q^m - 1 = \prod_{d|m} \Phi_d(q)$ as integers, and $\Phi_n(q)$ divides the integer $\frac{q^n - 1}{q^m - 1}$.

From the orbit-stabilizer relation, $\Phi_n(q)$ divides $q - 1$, if R is not commutative. To see that this is impossible, use the geometry of the complex numbers. Namely,

$$\Phi_n(q) = \prod_k (q - e^{2\pi ik/n}) \quad \text{(product over } k \text{ prime to } n)$$

The complex-geometry fact is that, for such k, $|q - e^{2\pi ik/n}| > q - 1$. Thus, the product, which is an integer, is strictly larger than $q - 1$, so cannot divide $q - 1$.

So the center of R must be all of R.

///

[0.6] Example: In a more naive context, one surely might imagine that there’d be a finite-field analogue of the Hamiltonian quaternions

$$\mathbb{H} = \{a + bi + cj + dk : a, b, c, d \in \mathbb{R}\}$$

with the coefficients in \mathbb{F}_p. Take $p > 2$ to avoid $-1 = +1$. Yes, such a ring exists, and for $p > 2$ is non-commutative. However, since it is non-commutative, and finite, it must have 0-divisors, unlike \mathbb{H}.

Paul Garrett: The Small Wedderburn Theorem (January 22, 2024)