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1. Commutator subgroups and abelianization

The commutator of two elements x, y of a group G is [1]

[x, y] = xyx−1y−1

The commutator subgroup [G,G] of G is the smallest subgroup of G containing all commutators. [2] It is
immediate that G is abelian if and only if all commutators are 1. At the other extreme, it can happen that
G = [G,G], in which case G is called perfect.

[1.1] Proposition: Let f : G→ A be a group homomorphism to an abelian group. Then ker f contains the
commutator subgroup [G,G]. Conversely, the commutator subgroup is normal and the quotient G/[G,G] is
abelian.

Proof: The main point of this is that, for a homomorphism f : G→ A to an abelian group A,

f(xyx−1y−1) = f(x) f(y) f(x−1) f(y−1) = f(x)f(x−1) f(y)f(y−1) = 0

so commutators are certainly in the kernel of f . For the converse, observe first that

z · [x, y] · z−1 = z · (xyx−1y−1) · z−1 = (zxz−1) (zyz−1) (zxz−1)−1 (zyz−1)−1 = [zxz−1, zyz−1]

That is, the set of commutators is stable under conjugation. Thus, for a subgroup H containing all
commutators, zHz−1 also contains all commutators. Then

z[G,G]z−1 = z

 ⋂
H3commutators

H

 =
⋂

H3commutators

zHz−1 =
⋂

H3commutators

H = [G,G]

proving the normality of the commutator subgroup. [3] Let q : G → [G,G] be the quotient map. To show
that the quotient is abelian, consider commutators in the quotient

q(x)q(y)q(x)−1q(y)−1 = q(xyx−1y−1) = 1

[1] Beware that in other circumstances the same notation has different meanings. In a ring it may be that

[x, y] = xy − yx. And in a Lie algebra (an important and useful type of non-associative algebra) the ring operation

itself is written as [x, y] rather than multiplication, both to avoid suggesting associativity, and because it is in fact

descended from the group commutator.

[2] As usual, this language means that the commutator subgroup is the intersection of all subgroups containing all

commutators. The intersection of any family of subgroups is a subgroup.

[3] Note that we did not need to refer to explicit algebraic expressions involving commutators of elements.
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Since these are all trivial, the quotient is abelian. ///

[1.2] Corollary: If a finite group G is simple [4] then it is equal to its own commutator subgroup. ///

[1.3] Corollary: If a non-trivial finite group G is solvable [5] then its commutator subgroup is a proper
subgroup.

Proof: If G is not already cyclic, then it has a normal subgroup G1 such that G/G1 is cyclic. In particular,
G/G1 is abelian, so G1 must contain the commutator subgroup. ///

[1.4] Remark: We could also characterize the abelianization G/[G,G] more instrinsically, by saying that it
is the smallest quotient of G such that every group homomorphism f : G → A to an abelian group factors
through this quotient. More precisely, define an abelianization of G to be an abelian group Gab equipped
with a homomorphism

q : G −→ Gab

such that for any group homomorphism f : G→ A to an abelian group, there is a unique g : Gab → A such
that

f = g ◦ q : G
q
−→Gab

g
−→A

As usual when something is defined by such a universal property, we can prove that any two abelianizations
(assuming they exist) are uniquely isomorphic, as follows.

First, with f = q : G → Gab, the uniqueness part of the definition of Gab implies that the identity map 1
on Gab is the only map of Gab to itself compatible with q, that is, such that 1 ◦ q = q. Among other things,
this proves that q : G→ Gab is a surjection.

Next, let qi : G → Hi for i = 1, 2 be two abelianizations. Then there is a unique g1 : H1 → H2 such that
q2 = g1◦q1, and, symmetrically, there is a unique g2 : H2 → H1 such that q1 = g2◦q2. Then g2◦g1 : H1 → H1

and g1 ◦ g2 : H2 → H2 are maps of the Hi to themselves and are compatible with qi : G → Hi. Thus, they
are the identity maps on the Hi, so g1 and g2 are mutual inverses.

By this point we can be confident that whatever construction of an abelianization we choose, the resulting
object will be the same. In effect, the proposition above about G/[G,G] proves that this quotient (with the
natural map of G to it) is an abelianization.

2. Alternating groups

[2.1] Proposition: For n ≥ 2, the commutator subgroup [Sn, Sn] of the symmetric group Sn on n things is

the alternating group [6] An. In particular, all 3-cycles are commutators, and An is generated by 3-cycles.
(For n = 2 this is vacuously true.)

Proof: Certainly commutators are even permutations, so [Sn, Sn] ⊂ An. For 1 ≤ i < n let si be the ith

[4] That is, it has no proper normal subgroups, and, by convention, is not cyclic of prime order.

[5] As usual, this means that there is a chain of subgroups G = Go ⊃ . . . ⊃ Gn such that Gi+1 is normal in Gi, and

such that all quotients Gi/Gi+1 are cyclic.

[6] As usual, the alternating group is the subgroup of Sn consisting of even permutations, that is, those expressible

as a product of an even number of 2-cycles.
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adjacent transposition, that is the 2-cycle interchanging i and i + 1. For 1 ≤ i ≤ n− 2

(si si+1)(j) =


j (for j 6= i, i + 1, i + 2)

i + 2 (for j = i + 1)
i (for j = i + 2)

i + 1 (for j = i)

which is a 3-cycle ti. Thus, we compute a commutator

sisi+1s
−1
i s−1i+1 = sisi+1sisi+1 = t2i = t−1i

Thus, every 3-cycle on adjacent elements i, i+1, i+2 is in the commutator subgroup [Sn, Sn]. We now prove
that any product sisj of two adjacent transpositions is expressible as a product of these particular 3-cycles
ti. Indeed, for i < j, we have collapsing

ti ti+1 ti+2 . . . tj−1 tj = (sisi+1) (si+1si+2) . . . (sjsj+1) = si sj+1

Since the adjacent transpositions si generate Sn, the products of pairs of adjacent transpositions generate
An. ///

[2.2] Proposition: For n ≥ 5, [An, An] = An.

Proof: All 3-cycles are in An. Then

t1t3t
−1
1 t−13 = s1s2s3s4(s2s1)s4s3 = s1s2s3(s2s1)s4s4s3 = s1s2s3s2s1s3

using the fact that s1 and s2 commute with s4. This permutation has the effect, traced through its 6 steps
for each of 1, 2, 3, 4,

1→ 1→ 2→ 3→ 4→ 4→ 4
2→ 2→ 1→ 1→ 1→ 1→ 2
3→ 4→ 4→ 4→ 3→ 2→ 1
4→ 3→ 3→ 2→ 2→ 3→ 3

That is, the result is the 3-cycle 1→ 4→ 3→ 1. Once this artifact is discovered, it is clear that a suitable
choice of 3-cycles will give any desired 3 cycle as commutator. [7] ///

3. Linear groups

[3.1] Proposition: For a field k with |k| ≥ 4, and for n ≥ 2, the group SLn(k), consisting of n-by-n matrices
with entries in k and determinant 1, is its own commutator subgroup.

Proof: The essential point is already visible in SL2(k). [... iou ...] ///

[7] It is a little strange that the extra room n ≥ 5 is needed to achieve the effect used in this proof.
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