Altenating grouops, commutator subgroups

Paul Garrett garrett@umn.edu https://www-users.cse.umn.edu/~garrett/

- Commutator subgroups and abelianization
- Alternating groups
- Linear groups

1. Commutator subgroups and abelianization

The *commutator* of two elements x, y of a group G is^[1]

$$[x, y] = xyx^{-1}y^{-1}$$

The commutator subgroup [G, G] of G is the smallest subgroup of G containing all commutators. ^[2] It is immediate that G is abelian if and only if all commutators are 1. At the other extreme, it can happen that G = [G, G], in which case G is called *perfect*.

[1.1] Proposition: Let $f: G \to A$ be a group homomorphism to an abelian group. Then ker f contains the commutator subgroup [G, G]. Conversely, the commutator subgroup is *normal* and the quotient G/[G, G] is abelian.

Proof: The main point of this is that, for a homomorphism $f: G \to A$ to an abelian group A,

$$f(xyx^{-1}y^{-1}) = f(x)f(y)f(x^{-1})f(y^{-1}) = f(x)f(x^{-1})f(y)f(y^{-1}) = 0$$

so commutators are certainly in the kernel of f. For the converse, observe first that

$$z \cdot [x,y] \cdot z^{-1} = z \cdot (xyx^{-1}y^{-1}) \cdot z^{-1} = (zxz^{-1})(zyz^{-1})(zxz^{-1})^{-1}(zyz^{-1})^{-1} = [zxz^{-1}, zyz^{-1}]$$

That is, the set of commutators is stable under conjugation. Thus, for a subgroup H containing all commutators, zHz^{-1} also contains all commutators. Then

$$z[G,G]z^{-1} = z\left(\bigcap_{H \ni \text{commutators}} H\right) = \bigcap_{H \ni \text{commutators}} zHz^{-1} = \bigcap_{H \ni \text{commutators}} H = [G,G]$$

proving the normality of the commutator subgroup. ^[3] Let $q: G \to [G, G]$ be the quotient map. To show that the quotient is abelian, consider commutators in the quotient

$$q(x)q(y)q(x)^{-1}q(y)^{-1} = q(xyx^{-1}y^{-1}) = 1$$

^[1] Beware that in other circumstances the same notation has different meanings. In a ring it may be that [x, y] = xy - yx. And in a *Lie algebra* (an important and useful type of non-associative algebra) the ring operation itself is written as [x, y] rather than multiplication, both to avoid suggesting associativity, and because it is in fact descended from the group commutator.

^[2] As usual, this language means that the commutator subgroup is the *intersection* of all subgroups containing all commutators. The intersection of any family of subgroups is a subgroup.

^[3] Note that we did *not* need to refer to explicit algebraic expressions involving commutators of elements.

Since these are all trivial, the quotient is abelian.

[1.2] Corollary: If a finite group G is $simple^{[4]}$ then it is equal to its own commutator subgroup. ///

///

[1.3] Corollary: If a non-trivial finite group G is solvable^[5] then its commutator subgroup is a proper subgroup.

Proof: If G is not already cyclic, then it has a normal subgroup G_1 such that G/G_1 is cyclic. In particular, G/G_1 is abelian, so G_1 must contain the commutator subgroup.

[1.4] Remark: We could also characterize the *abelianization* G/[G, G] more instrinsically, by saying that it is the *smallest* quotient of G such that every group homomorphism $f: G \to A$ to an abelian group factors through this quotient. More precisely, define an abelianization of G to be an abelian group G^{ab} equipped with a homomorphism

$$q: G \longrightarrow G^{\mathrm{ab}}$$

such that for any group homomorphism $f: G \to A$ to an abelian group, there is a unique $g: G^{ab} \to A$ such that

$$f = g \circ q : G \xrightarrow{q} G^{\mathrm{ab}} \xrightarrow{g} A$$

As usual when something is defined by such a universal property, we can prove that any two abelianizations (assuming they exist) are uniquely isomorphic, as follows.

First, with $f = q : G \to G^{ab}$, the uniqueness part of the definition of G^{ab} implies that the identity map 1 on G^{ab} is the only map of G^{ab} to itself compatible with q, that is, such that $1 \circ q = q$. Among other things, this proves that $q : G \to G^{ab}$ is a surjection.

Next, let $q_i : G \to H_i$ for i = 1, 2 be two abelianizations. Then there is a unique $g_1 : H_1 \to H_2$ such that $q_2 = g_1 \circ q_1$, and, symmetrically, there is a unique $g_2 : H_2 \to H_1$ such that $q_1 = g_2 \circ q_2$. Then $g_2 \circ g_1 : H_1 \to H_1$ and $g_1 \circ g_2 : H_2 \to H_2$ are maps of the H_i to themselves and are compatible with $q_i : G \to H_i$. Thus, they are the identity maps on the H_i , so g_1 and g_2 are mutual inverses.

By this point we can be confident that whatever *construction* of an abelianization we choose, the resulting object will be the same. In effect, the proposition above about G/[G,G] proves that this quotient (with the natural map of G to it) is an abelianization.

2. Alternating groups

[2.1] Proposition: For $n \ge 2$, the commutator subgroup $[S_n, S_n]$ of the symmetric group S_n on n things is the alternating group ^[6] A_n . In particular, all 3-cycles are commutators, and A_n is generated by 3-cycles. (For n = 2 this is vacuously true.)

Proof: Certainly commutators are even permutations, so $[S_n, S_n] \subset A_n$. For $1 \leq i < n$ let s_i be the i^{th}

^[4] That is, it has no proper normal subgroups, and, by convention, is not cyclic of prime order.

^[5] As usual, this means that there is a chain of subgroups $G = G_o \supset \ldots \supset G_n$ such that G_{i+1} is normal in G_i , and such that all quotients G_i/G_{i+1} are cyclic.

^[6] As usual, the alternating group is the subgroup of S_n consisting of *even* permutations, that is, those expressible as a product of an even number of 2-cycles.

adjacent transposition, that is the 2-cycle interchanging i and i + 1. For $1 \le i \le n - 2$

$$(s_i \, s_{i+1})(j) = \begin{cases} j & (\text{for } j \neq i, i+1, i+2) \\ i+2 & (\text{for } j = i+1) \\ i & (\text{for } j = i+2) \\ i+1 & (\text{for } j = i) \end{cases}$$

which is a 3-cycle t_i . Thus, we compute a commutator

$$s_i s_{i+1} s_i^{-1} s_{i+1}^{-1} = s_i s_{i+1} s_i s_{i+1} = t_i^2 = t_i^{-1}$$

Thus, every 3-cycle on adjacent elements i, i+1, i+2 is in the commutator subgroup $[S_n, S_n]$. We now prove that any product $s_i s_j$ of two adjacent transpositions is expressible as a product of these particular 3-cycles t_i . Indeed, for i < j, we have collapsing

$$t_i t_{i+1} t_{i+2} \dots t_{j-1} t_j = (s_i s_{i+1}) (s_{i+1} s_{i+2}) \dots (s_j s_{j+1}) = s_i s_{j+1}$$

Since the adjacent transpositions s_i generate S_n , the products of pairs of adjacent transpositions generate A_n .

[2.2] Proposition: For $n \ge 5$, $[A_n, A_n] = A_n$.

Proof: All 3-cycles are in A_n . Then

$$t_{1}t_{3}t_{1}^{-1}t_{3}^{-1} = s_{1}s_{2}s_{3}s_{4}(s_{2}s_{1})s_{4}s_{3} = s_{1}s_{2}s_{3}(s_{2}s_{1})s_{4}s_{4}s_{3} = s_{1}s_{2}s_{3}s_{2}s_{1}s_{3}$$

using the fact that s_1 and s_2 commute with s_4 . This permutation has the effect, traced through its 6 steps for each of 1, 2, 3, 4,

$$1 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 4 \rightarrow 4$$

$$2 \rightarrow 2 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 1 \rightarrow 2$$

$$3 \rightarrow 4 \rightarrow 4 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1$$

$$4 \rightarrow 3 \rightarrow 3 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 3$$

That is, the result is the 3-cycle $1 \rightarrow 4 \rightarrow 3 \rightarrow 1$. Once this artifact is discovered, it is clear that a suitable choice of 3-cycles will give any desired 3 cycle as commutator.^[7] ///

3. Linear groups

[3.1] Proposition: For a field k with $|k| \ge 4$, and for $n \ge 2$, the group $SL_n(k)$, consisting of n-by-n matrices with entries in k and determinant 1, is its own commutator subgroup.

///

Proof: The essential point is already visible in $SL_2(k)$. [... iou ...]

^[7] It is a little strange that the extra room $n \ge 5$ is needed to achieve the effect used in this proof.